1
|
Yiannakou I, Long MT, Jacques PF, Beiser A, Pickering RT, Moore LL. Eggs, Dietary Choline, and Nonalcoholic Fatty Liver Disease in the Framingham Heart Study. J Nutr 2025; 155:923-935. [PMID: 39424072 PMCID: PMC11934245 DOI: 10.1016/j.tjnut.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Eggs are rich in bioactive compounds, including choline and carotenoids that may benefit cardiometabolic outcomes. However, little is known about their relationship with nonalcoholic fatty liver disease (NAFLD). OBJECTIVES We investigated the association between intakes of eggs and selected egg-rich nutrients (choline, lutein, and zeaxanthin) and NAFLD risk and changes in liver fat over ∼6 y of follow-up in the Framingham Offspring and Third Generation cohorts. METHODS On 2 separate occasions (2002-2005 and 2008-2011), liver fat was assessed using a computed tomography scan to estimate the average liver fat attenuation relative to a control phantom to create the liver phantom ratio (LPR). In 2008-2011, cases of incident NAFLD were identified as an LPR ≤0.33 in the absence of heavy alcohol use, after excluding prevalent NAFLD (LPR ≤0.33) in 2002-2005. Food frequency questionnaires were used to estimate egg intakes (classified as <1, 1, and ≥2 per week), dietary choline (adjusted for body weight using the residual method), and the combined intakes of lutein and zeaxanthin. Multivariable modified Poisson regression and general linear models were used to compute incident risk ratios (RR) of NAFLD and adjusted mean annualized liver fat change. RESULTS NAFLD cumulative incidence was 19% among a total of 1414 participants. We observed no associations between egg intake or the combined intakes of lutein and zeaxanthin with an incident NAFLD risk or liver fat change. Other diet and cardiometabolic risk factors did not modify the association between egg intake and NAFLD risk. However, dietary choline intakes were inversely associated with NAFLD risk (RR for tertile 3 compared with tertile 1: 0.69, 95% CI: 0.51, 0.94). CONCLUSIONS Although egg intake was not directly associated with NAFLD risk, eggs are a major source of dietary choline, which was strongly inversely associated with NAFLD risk in this community-based cohort.
Collapse
Affiliation(s)
- Ioanna Yiannakou
- Department of Medicine/Preventive Medicine and Epidemiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Michelle T Long
- Department of Medicine/Section of Gastroenterology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States; Novo Nordisk A/S, Vandtårnsvej 108-110 Søborg Denmark
| | - Paul F Jacques
- Nutritional Epidemiology, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Richard T Pickering
- Department of Medicine/Preventive Medicine and Epidemiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Lynn L Moore
- Department of Medicine/Preventive Medicine and Epidemiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States.
| |
Collapse
|
2
|
Nikrandt G, Chmurzynska A. Decoding Betaine: A Critical Analysis of Therapeutic Potential Compared with Marketing Hype-A Narrative Review. J Nutr 2024; 154:3167-3176. [PMID: 39270852 DOI: 10.1016/j.tjnut.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Research interest in betaine supplementation has surged in recent years, for both enhancing sports performance and treating metabolic conditions. This surge aligns with an expanding market for betaine supplements, which are often marketed as promising aids for a range of metabolic conditions. Despite numerous in vitro and in vivo studies elucidating betaine's involvement in crucial metabolic pathways, consensus remains elusive on its clinical efficacy as a dietary supplement, based on results from randomized controlled trials. One analysis of dietary betaine intake in 28 observational studies showed a mean intake of 182 mg/d of betaine, with the main sources including grain-based foods, baked products, grains, cereals, and vegetables. Analysis of the results from human randomized clinical trials has shown that betaine supplementation improves body composition when combined with physical activity. Additionally, betaine supplementation decreases serum homocysteine levels, but does not affect liver enzymes, triglycerides, or high-density lipoprotein cholesterol levels, although it does increase total cholesterol and low-density lipoprotein cholesterol levels at doses ≥4 g/d. Market analysis has demonstrated that betaine is a popular supplement for supporting various physiological processes, such as digestibility, methylation, physical performance, and liver or cardiovascular health. Manufacturers suggest a diverse range of applications for betaine supplements, with 14 different uses identified. Additionally, high variability can be seen in the recommended usage directions for betaine. This narrative research sheds light on the evolving landscape of betaine supplementation and highlights the need for further investigation to clarify its clinical efficacy.
Collapse
Affiliation(s)
- Grzegorz Nikrandt
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
3
|
Huang Y, Wu Y, Zhang Y, Bai H, Peng R, Ruan W, Zhang Q, Cai E, Ma M, Zhao Y, Lu Y, Zheng L. Dynamic Changes in Gut Microbiota-Derived Metabolite Trimethylamine-N-Oxide and Risk of Type 2 Diabetes Mellitus: Potential for Dietary Changes in Diabetes Prevention. Nutrients 2024; 16:1711. [PMID: 38892643 PMCID: PMC11174887 DOI: 10.3390/nu16111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND A gut-microbial metabolite, trimethylamine N-oxide (TMAO), has been associated with type 2 diabetes mellitus (T2DM). Few previous prospective studies have addressed associations between the changes in TMAO and T2DM incidence. METHODS Data were derived from a longitudinal cohort conducted from 2019 to 2021 in rural areas of Fuxin County, Liaoning Province, China, and 1515 diabetes-free participants aged above 35 years were included. The concentrations of serum TMAO and its precursors were measured at two time points, namely in 2019 and 2021. TMAO and TMAO changes (ΔTMAO) were separately tested in a logistic regression model. For further examination, the odds ratios (ORs) for T2DM were calculated according to a combination of TMAO levels and ΔTMAO levels. RESULTS During a median follow-up of 1.85 years, 81 incident cases of T2DM (5.35%) were identified. Baseline TMAO levels exhibited a nonlinear relationship, first decreasing and then increasing, and only at the highest quartile was it associated with the risk of T2DM. The OR for T2DM in the highest quartile of serum TMAO was 3.35 (95%CI: 1.55-7.26, p = 0.002), compared with the lowest quartile. As for its precursors, only choline level was associated with T2DM risk and the OR for T2DM in the Q3 and Q4 of serum choline was 3.37 (95%CI: 1.41-8.05, p = 0.006) and 4.72 (95%CI: 1.47-15.13, p = 0.009), respectively. When considering both baseline TMAO levels and ΔTMAO over time, participants with sustained high TMAO levels demonstrated a significantly increased risk of T2DM, with a multivariable-adjusted OR of 8.68 (95%CI: 1.97, 38.34). CONCLUSION Both initial serum TMAO levels and long-term serum TMAO changes were collectively and significantly associated with the occurrence of subsequent T2DM events. Interventions aimed at normalizing TMAO levels, such as adopting a healthy dietary pattern, may be particularly beneficial in T2DM prevention.
Collapse
Affiliation(s)
- Yuliang Huang
- Department of Acute Communicable Diseases Control and Prevention, Huangpu District Center for Disease Control and Prevention, Shanghai 200023, China;
| | - Yani Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.); (H.B.); (R.P.)
| | - Yao Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - He Bai
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.); (H.B.); (R.P.)
| | - Ruiheng Peng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.); (H.B.); (R.P.)
| | - Wenli Ruan
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai 200051, China; (W.R.); (E.C.)
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;
| | - Enmao Cai
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai 200051, China; (W.R.); (E.C.)
| | - Mingfeng Ma
- Department of Cardiovascular Medicine, Fenyang Hospital, Shanxi Medical University, Fenyang 032200, China;
| | - Yueyang Zhao
- Library, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ying Lu
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai 200051, China; (W.R.); (E.C.)
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.); (H.B.); (R.P.)
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;
| |
Collapse
|
4
|
Bogl LH, Strohmaier S, Hu FB, Willett WC, Eliassen AH, Hart JE, Sun Q, Chavarro JE, Field AE, Schernhammer ES. Maternal One-Carbon Nutrient Intake and Risk of Being Overweight or Obese in Their Offspring-A Transgenerational Prospective Cohort Study. Nutrients 2024; 16:1210. [PMID: 38674900 PMCID: PMC11054902 DOI: 10.3390/nu16081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to investigate the associations between maternal intake of folate, vitamin B12, B6, B2, methionine, choline, phosphatidylcholine and betaine during the period surrounding pregnancy and offspring weight outcomes from birth to early adulthood. These associations were examined among 2454 mother-child pairs from the Nurses' Health Study II and Growing Up Today Study. Maternal energy-adjusted nutrient intakes were derived from food frequency questionnaires. Birth weight, body size at age 5 and repeated BMI measurements were considered. Overweight/obesity was defined according to the International Obesity Task Force (<18 years) and World Health Organization guidelines (18+ years). Among other estimands, we report relative risks (RRs) for offspring ever being overweight with corresponding 95% confidence intervals across quintiles of dietary factors, with the lowest quintile as the reference. In multivariate-adjusted models, higher maternal intakes of phosphatidylcholine were associated with a higher risk of offspring ever being overweight (RRQ5vsQ1 = 1.16 [1.01-1.33] p-trend: 0.003). The association was stronger among offspring born to mothers with high red meat intake (high red meat RRQ5vsQ1 = 1.50 [1.14-1.98], p-trend: 0.001; low red meat RRQ5vsQ1 = 1.05 [0.87-1.27], p-trend: 0.46; p-interaction = 0.13). Future studies confirming the association between a higher maternal phosphatidylcholine intake during pregnancy and offspring risk of being overweight or obese are needed.
Collapse
Affiliation(s)
- Leonie H. Bogl
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
- School of Health Professions, Bern University of Applied Sciences, 3012 Bern, Switzerland
| | - Susanne Strohmaier
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Walter C. Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - A. Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Alison E. Field
- Department of Epidemiology, Brown University, Providence, RI 02903, USA
| | - Eva S. Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Karlsson T, Winkvist A, Strid A, Lindahl B, Johansson I. Associations of dietary choline and betaine with all-cause mortality: a prospective study in a large Swedish cohort. Eur J Nutr 2024; 63:785-796. [PMID: 38175250 PMCID: PMC10948568 DOI: 10.1007/s00394-023-03300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Investigate the association between choline and betaine intake and all-cause mortality in a large Swedish cohort. METHODS Women (52,246) and men (50,485) attending the Västerbotten Intervention Programme 1990-2016 were included. Cox proportional hazard regression models adjusted for energy intake, age, BMI, smoking, education, and physical activity were used to estimate mortality risk according to betaine, total choline, phosphatidylcholine, glycerophosphocholine, phosphocholine, sphingomyelin, and free choline intakes [continuous (per 50 mg increase) and in quintiles]. RESULTS During a median follow-up of 16 years, 3088 and 4214 deaths were registered in women and men, respectively. Total choline intake was not associated with all-cause mortality in women (HR 1.01; 95% CI 0.97, 1.06; P = 0.61) or men (HR 1.01; 95% CI 0.98, 1.04; P = 0.54). Betaine intake was associated with decreased risk of all-cause mortality in women (HR 0.95; 95% CI 0.91, 0.98; P < 0.01) but not in men. Intake of free choline was negatively associated with risk of all-cause mortality in women (HR 0.98; 95% CI 0.96, 1.00; P = 0.01). No other associations were found between intake of the different choline compounds and all-cause mortality. In women aged ≥ 55 years, phosphatidylcholine intake was positively associated with all-cause mortality. In men with higher folate intake, total choline intake was positively associated with all-cause mortality. CONCLUSION Overall, our results do not support that intake of total choline is associated with all-cause mortality. However, some associations were modified by age and with higher folate intake dependent on sex. Higher intake of betaine was associated with lower risk of all-cause mortality in women.
Collapse
Affiliation(s)
- Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden.
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Anna Strid
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden
| | - Bernt Lindahl
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | | |
Collapse
|
6
|
Socha MW, Flis W, Wartęga M. Epigenetic Genome Modifications during Pregnancy: The Impact of Essential Nutritional Supplements on DNA Methylation. Nutrients 2024; 16:678. [PMID: 38474806 PMCID: PMC10934520 DOI: 10.3390/nu16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Pregnancy is an extremely stressful period in a pregnant woman's life. Currently, women's awareness of the proper course of pregnancy and its possible complications is constantly growing. Therefore, a significant percentage of women increasingly reach for various dietary supplements during gestation. Some of the most popular substances included in multi-ingredient supplements are folic acid and choline. Those substances are associated with positive effects on fetal intrauterine development and fewer possible pregnancy-associated complications. Recently, more and more attention has been paid to the impacts of specific environmental factors, such as diet, stress, physical activity, etc., on epigenetic modifications, understood as changes occurring in gene expression without the direct alteration of DNA sequences. Substances such as folic acid and choline may participate in epigenetic modifications by acting via a one-carbon cycle, leading to the methyl-group donor formation. Those nutrients may indirectly impact genome phenotype by influencing the process of DNA methylation. This review article presents the current state of knowledge on the use of folic acid and choline supplementation during pregnancy, taking into account their impacts on the maternal-fetal unit and possible pregnancy outcomes, and determining possible mechanisms of action, with particular emphasis on their possible impacts on epigenetic modifications.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Bellio TA, Laguna-Torres JY, Campion MS, Chou J, Yee S, Blusztajn JK, Mellott TJ. Perinatal choline supplementation prevents learning and memory deficits and reduces brain amyloid Aβ42 deposition in AppNL-G-F Alzheimer's disease model mice. PLoS One 2024; 19:e0297289. [PMID: 38315685 PMCID: PMC10843108 DOI: 10.1371/journal.pone.0297289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive and memory impairments and neuropathological abnormalities. AD has no cure, inadequate treatment options, and a limited understanding of possible prevention measures. Previous studies have demonstrated that AD model mice that received a diet high in the essential nutrient choline had reduced amyloidosis, cholinergic deficits, and gliosis, and increased neurogenesis. In this study, we investigated the lifelong effects of perinatal choline supplementation on behavior, cognitive function, and amyloidosis in AppNL-G-F AD model mice. Pregnant and lactating mice were given a diet containing either 1.1 g/kg (control) or 5 g/kg (supplemented) of choline chloride until weaning and subsequently, all offspring received the control diet throughout their life. At 3, 6, 9, and 12 months of age, animals were behaviorally tested in the Open Field Test, Elevated Plus Maze, Barnes Maze, and in a contextual fear conditioning paradigm. Immunohistochemical analysis of Aβ42 was also conducted on the brains of these mice. AppNL-G-F mice displayed hippocampal-dependent spatial learning deficits starting at 3-months-old that persisted until 12-months-old. These spatial learning deficits were fully prevented by perinatal choline supplementation at young ages (3 and 6 months) but not in older mice (12 months). AppNL-G-F mice also had impaired fearful learning and memory at 9- and 12-months-old that were diminished by choline supplementation. Perinatal choline supplementation reduced Aβ42 deposition in the amygdala, cortex, and hippocampus of AppNL-G-F mice. Together, these results demonstrate that perinatal choline supplementation is capable of preventing cognitive deficits and dampening amyloidosis in AppNL-G-F mice and suggest that ensuring adequate choline consumption during early life may be a valuable method to prevent or reduce AD dementia and neuropathology.
Collapse
Affiliation(s)
- Thomas A. Bellio
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Jessenia Y. Laguna-Torres
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Mary S. Campion
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Jay Chou
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Sheila Yee
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Jan K. Blusztajn
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Tiffany J. Mellott
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Obeid R, Karlsson T. Choline - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10359. [PMID: 38187796 PMCID: PMC10770654 DOI: 10.29219/fnr.v67.10359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/15/2022] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Choline is an essential nutrient with metabolic roles as a methyl donor in one carbon metabolism and as a precursor for membrane phospholipids and the neurotransmitter acetylcholine. Choline content is particularly high in liver, eggs, and wheat germ, although it is present in a variety of foods. The main dietary sources of choline in the Nordic and Baltic countries are meat, dairy, eggs, and grain. A diet that is devoid of choline causes liver and muscle dysfunction within 3 weeks. Choline requirements are higher during pregnancy and lactation than in non-pregnant women. Although no randomized controlled trials are available, observational studies in human, supported by coherence from interventional studies with neurodevelopmental outcomes and experimental studies in animals, strongly suggest that sufficient intake of choline during pregnancy is necessary for normal brain development and function in the child. Observational studies suggested that adequate intake of choline could have positive effects on cognitive function in older people. However, prospective data are lacking, and no intervention studies are available in the elderly.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Homburg, Germany
| | - Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Gillies NA, Milan AM, Cameron-Smith D, Mumme KD, Conlon CA, von Hurst PR, Haskell-Ramsay CF, Jones B, Roy NC, Coad J, Wall CR, Beck KL. Vitamin B and One-Carbon Metabolite Profiles Show Divergent Associations with Cardiometabolic Risk Markers but not Cognitive Function in Older New Zealand Adults: A Secondary Analysis of the REACH Study. J Nutr 2023; 153:3529-3542. [PMID: 37863266 DOI: 10.1016/j.tjnut.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Vitamin B inadequacies and elevated homocysteine status have been associated with impaired cognitive and cardiometabolic health with aging. There is, however, a scarcity of research investigating integrated profiles of one-carbon (1C) metabolites in this context, including metabolites of interconnected folate, methionine, choline oxidation, and transsulfuration pathways. OBJECTIVES The study aimed to examine associations between vitamins B and 1C metabolites with cardiometabolic health and cognitive function in healthy older adults, including the interactive effects of Apolipoprotein E-ε4 status. METHODS Three hundred and thirteen healthy participants (65-74 y, 65% female) were analyzed. Vitamins B were estimated according to dietary intake (4-d food records) and biochemical status (serum folate and vitamin B12). Fasting plasma 1C metabolites were quantified by liquid chromatography with tandem mass spectrometry. Measures of cardiometabolic health included biochemical (lipid panel, blood glucose) and anthropometric markers. Cognitive function was assessed by the Computerized Mental Performance Assessment System (COMPASS) and Montreal Cognitive Assessment (MoCA). Associations were analyzed using multivariate linear (COMPASS, cardiometabolic health) and Poisson (MoCA) regression modeling. RESULTS Over 90% of participants met dietary recommendations for riboflavin and vitamins B6 and B12, but only 78% of males and 67% of females achieved adequate folate intakes. Higher serum folate and plasma betaine and glycine concentrations were associated with favorable cardiometabolic markers, whereas higher plasma choline and homocysteine concentrations were associated with greater cardiometabolic risk based on body mass index and serum lipids concentration values (P< 0.05). Vitamins B and homocysteine were not associated with cognitive performance in this cohort, though higher glycine concentrations were associated with better global cognitive performance (P = 0.017), episodic memory (P = 0.016), and spatial memory (P = 0.027) scores. Apolipoprotein E-ε4 status did not modify the relationship between vitamins B or 1C metabolites with cognitive function in linear regression analyses. CONCLUSIONS Vitamin B and 1C metabolite profiles showed divergent associations with cardiometabolic risk markers and limited associations with cognitive performance in this cohort of healthy older adults.
Collapse
Affiliation(s)
- Nicola A Gillies
- The Liggins Institute, The University of Auckland, New Zealand; The Riddet Institute, New Zealand
| | - Amber M Milan
- The Liggins Institute, The University of Auckland, New Zealand; The High-Value Nutrition National Science Challenge, New Zealand; AgResearch Ltd, Grasslands Research Centre, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, The University of Auckland, New Zealand; The Riddet Institute, New Zealand; School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Australia
| | - Karen D Mumme
- School of Sport Exercise and Nutrition, Massey University, New Zealand
| | - Cathryn A Conlon
- School of Sport Exercise and Nutrition, Massey University, New Zealand
| | | | | | - Beatrix Jones
- Department of Statistics, University of Auckland, New Zealand; The High-Value Nutrition National Science Challenge, New Zealand
| | - Nicole C Roy
- The Riddet Institute, New Zealand; The High-Value Nutrition National Science Challenge, New Zealand; Department of Human Nutrition, University of Otago, New Zealand
| | - Jane Coad
- College of Sciences, Massey University, New Zealand
| | - Clare R Wall
- Discipline of Nutrition and Dietetics, University of Auckland, Auckland, New Zealand
| | - Kathryn L Beck
- School of Sport Exercise and Nutrition, Massey University, New Zealand.
| |
Collapse
|
10
|
Parsons E, Rifas-Shiman SL, Bozack AK, Baccarelli AA, DeMeo DL, Hivert MF, Godderis L, Duca RC, Oken E, Cardenas A. Prenatal trimester-specific intake of micronutrients: global DNA methylation and hydroxymethylation at birth and persistence in childhood. J Dev Orig Health Dis 2023; 14:311-318. [PMID: 36515010 PMCID: PMC9998337 DOI: 10.1017/s2040174422000642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prenatal environment may program health and disease susceptibility via epigenetic mechanisms. We evaluated associations of maternal trimester-specific intake of micronutrients with global DNA methylation (%5mC) and 5-hydroxymethylation (%5hmC) at birth in cord blood and tested for persistence into childhood. We quantified global %5mC and %5hmC in cord blood cells (n = 434) and in leukocytes collected in early (n = 108) and mid-childhood (n = 390) from children in Project Viva, a pre-birth cohort from Boston, MA. Validated food frequency questionnaires estimated maternal first- and second-trimester intakes of vitamin B2, vitamin B6, vitamin B12, folate, betaine, choline, methionine, iron, and zinc. Mean (SD) cord blood %5mC and %5hmC was 5.62% (2.04) and 0.25% (0.15), respectively. Each μg increase in first-trimester B12 intake was associated with 0.002 lower %5hmC in cord blood (95% CI: -0.005, -0.0003), and this association persisted in early childhood (β = -0.007; 95% CI: -0.01, -0.001) but not mid-childhood. Second-trimester iron (mg) was associated with 0.01 lower %5mC (95% CI: -0.02, -0.002) and 0.001 lower %5hmC (95% CI: -0.01, -0.00001) in cord blood only. Increased second-trimester zinc (mg) intake was associated with 0.003 greater %5hmC in early childhood (β = 0.003; 95% CI: 0.0004, 0.006). Second-trimester folate was positively associated with %5hmC in early childhood only (β = 0.08, 95% CI: 0.003, 0.16). Associations did not survive multiple testing adjustment; future replication is needed. Trimester-specific nutrients may impact various sensitive windows of epigenetic programming some with lasting effects in childhood. Further research is needed to understand the role of gene-specific epigenetic changes and how global DNA methylation measures relate to child health.
Collapse
Affiliation(s)
- Ella Parsons
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Anne K. Bozack
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Lode Godderis
- Centre for Environment & Health, Department of Public Health & Primary Care, University of Leuven (KU Leuven), Belgium
- IDEWE, External service for prevention and protection at work, Heverlee, Belgium
| | - Radu-Corneliu Duca
- Centre for Environment & Health, Department of Public Health & Primary Care, University of Leuven (KU Leuven), Belgium
- Environmantal Hygiene and Biological Surveillance at the National Health Laboratory (LNS), Luxembourg
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
11
|
Abstract
This Viewpoint discusses food insecurity and the importance of choline-fortified food aid products.
Collapse
Affiliation(s)
| | - Marie Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Mark Manary
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri.,US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Houston, Texas
| |
Collapse
|
12
|
Díez-Ricote L, San-Cristobal R, Concejo MJ, Martínez-González MÁ, Corella D, Salas-Salvadó J, Goday A, Martínez JA, Alonso-Gómez ÁM, Wärnberg J, Vioque J, Romaguera D, López-Miranda J, Estruch R, Tinahones FJ, Lapetra J, Serra-Majem L, Bueno-Cavanillas A, Tur JA, Martín Sánchez V, Pintó X, Gaforio JJ, Matía-Martín P, Vidal J, Mas Fontao S, Ros E, Vázquez-Ruiz Z, Ortega-Azorín C, García-Gavilán JF, Malcampo M, Martínez-Urbistondo D, Tojal-Sierra L, García Rodríguez A, Gómez-Bellvert N, Chaplin A, García-Ríos A, Bernal-López RM, Santos-Lozano JM, Basterra-Gortari J, Sorlí JV, Murphy M, Gasulla G, Micó V, Salaverria-Lete I, Goñi Ochandorena E, Babio N, Herraiz X, Ordovás JM, Daimiel L. One-year longitudinal association between changes in dietary choline or betaine intake and cardiometabolic variables in the PREvención con DIeta MEDiterránea-Plus (PREDIMED-Plus) trial. Am J Clin Nutr 2022; 116:1565-1579. [PMID: 36124652 PMCID: PMC9761742 DOI: 10.1093/ajcn/nqac255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/09/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Choline and betaine intakes have been related to cardiovascular health. OBJECTIVES We aimed to explore the relation between 1-y changes in dietary intake of choline or betaine and 1-y changes in cardiometabolic and renal function traits within the frame of the PREDIMED (PREvención con DIeta MEDiterránea)-Plus trial. METHODS We used baseline and 1-y follow-up data from 5613 participants (48.2% female and 51.8% male; mean ± SD age: 65.01 ± 4.91 y) to assess cardiometabolic traits, and 3367 participants to assess renal function, of the Spanish PREDIMED-Plus trial. Participants met ≥3 criteria of metabolic syndrome and had overweight or obesity [BMI (in kg/m2) ≥27 and ≤40]. These criteria were similar to those of the PREDIMED parent study. Dietary intakes of choline and betaine were estimated from the FFQ. RESULTS The greatest 1-y increase in dietary choline or betaine intake (quartile 4) was associated with improved serum glucose concentrations (-3.39 and -2.72 mg/dL for choline and betaine, respectively) and HbA1c levels (-0.10% for quartile 4 of either choline or betaine intake increase). Other significant changes associated with the greatest increase in choline or betaine intake were reduced body weight (-2.93 and -2.78 kg, respectively), BMI (-1.05 and -0.99, respectively), waist circumference (-3.37 and -3.26 cm, respectively), total cholesterol (-4.74 and -4.52 mg/dL, respectively), and LDL cholesterol (-4.30 and -4.16 mg/dL, respectively). Urine creatinine was reduced in quartile 4 of 1-y increase in choline or betaine intake (-5.42 and -5.74 mg/dL, respectively). CONCLUSIONS Increases in dietary choline or betaine intakes were longitudinally related to improvements in cardiometabolic parameters. Markers of renal function were also slightly improved, and they require further investigation.This trial was registered at https://www.isrctn.com/ as ISRCTN89898870.
Collapse
Affiliation(s)
- Laura Díez-Ricote
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Rodrigo San-Cristobal
- Cardiometabolic Health Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | | | - Miguel Á Martínez-González
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, Navarra Institute of Health Research (IdISNA), University of Navarra, Pamplona, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Unit of Preventive Medicine & Public Health, Faculty of Medicine & Health Sciences, Universitat Rovira i Virgili, Reus, Spain
| | - Albert Goday
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d`Investigació Médica (IMIM), Barcelona, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J Alfredo Martínez
- Cardiometabolic Health Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Center for Nutrition Research, Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain
| | - Ángel M Alonso-Gómez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Cardiovascular, Respiratory and Metabolic Area, Bioaraba Health Research Institute; Araba University Hospital, Osakidetza Basque Health Service; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Nursing, University of Málaga, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Institute of Health and Biomedical Research of Alicante, Miguel Hernández University (ISABIAL-UMH), Alicante, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - José López-Miranda
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Endocrinology, Virgen de la Victoria Hospital, Málaga Biomedical Research Institute (IBIMA), University of Málaga, Málaga, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Unit, Department of Family Medicine, Sevilla Primary Care Health District, Sevilla, Spain
| | - Lluís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria and Maternal and Child Insular University Hospital Center (CHUIMI), Canarian Health Service, Las Palmas de Gran Canaria, Spain
| | - Aurora Bueno-Cavanillas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Vicente Martín Sánchez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Bellvitge University Hospital, Barcelona, Spain
| | - José J Gaforio
- CIBER de Epidemiología y Salud Pública (CIBERESP), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Department of Health Sciences, University Institute for Research on Olives and Olive Oils, University of Jaén, Jaén, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, San Carlos Clinical Hospital Institute of Health Research (IdISSC), Madrid, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Department of Endocrinology, Institut d` Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Sebastián Mas Fontao
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Jimenez Díaz Foundation Hospital Biomedical Research Institute (IISFJD), Autonomous University of Madrid, Madrid, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Zenaida Vázquez-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, Navarra Institute of Health Research (IdISNA), University of Navarra, Pamplona, Spain
- Endocrinology Service, Navarra Hospital Complex, Osasunbidea, Navarro Health Service, Pamplona, Spain
| | - Carolina Ortega-Azorín
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Jesús F García-Gavilán
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Mireia Malcampo
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d`Investigació Médica (IMIM), Barcelona, Spain
| | | | - Lucas Tojal-Sierra
- Cardiovascular, Respiratory and Metabolic Area, Bioaraba Health Research Institute; Araba University Hospital, Osakidetza Basque Health Service; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Antonio García Rodríguez
- Division of Preventive Medicine and Public Health, University of Malaga, Institute of Biomedical Research in Málaga (IBIMA-University of Malaga), Málaga, Spain
| | | | - Alice Chaplin
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Antonio García-Ríos
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Rosa M Bernal-López
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Endocrinology, Virgen de la Victoria Hospital, Málaga Biomedical Research Institute (IBIMA), University of Málaga, Málaga, Spain
| | - José M Santos-Lozano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Unit, Department of Family Medicine, Sevilla Primary Care Health District, Sevilla, Spain
| | - Javier Basterra-Gortari
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, Navarra Institute of Health Research (IdISNA), University of Navarra, Pamplona, Spain
- Endocrinology Service, Navarra Hospital Complex, Osasunbidea, Navarro Health Service, Pamplona, Spain
| | - José V Sorlí
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Michelle Murphy
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Griselda Gasulla
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d`Investigació Médica (IMIM), Barcelona, Spain
| | - Víctor Micó
- Cardiometabolic Health Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Itziar Salaverria-Lete
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Cardiovascular, Respiratory and Metabolic Area, Bioaraba Health Research Institute; Araba University Hospital, Osakidetza Basque Health Service; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Estibaliz Goñi Ochandorena
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, Navarra Institute of Health Research (IdISNA), University of Navarra, Pamplona, Spain
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Xavier Herraiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d`Investigació Médica (IMIM), Barcelona, Spain
| | - José M Ordovás
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Yuan J, Liu X, Liu C, Ang AF, Massaro J, Devine SA, Auerbach SH, Blusztajn JK, Au R, Jacques PF. Is dietary choline intake related to dementia and Alzheimer's disease risks? Results from the Framingham Heart Study. Am J Clin Nutr 2022; 116:1201-1207. [PMID: 37208066 PMCID: PMC9630864 DOI: 10.1093/ajcn/nqac193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The positive association of choline for cognition has been reported in both animal and human studies, yet the associations of choline with the risks of incident dementia or Alzheimer's disease (AD) in humans is unclear. OBJECTIVES Our objective was to test the hypothesis that lower or higher dietary choline intake is associated with increased or decreased, respectively, risks of incident dementia and AD. METHODS Data from the Framingham Heart Study Offspring Cohort exam 5 to exam 9 were used. Participants were free of dementia and stroke, with a valid self-reported 126-item Harvard FFQ at exam 5. The intakes of total choline, its contributing compounds, and betaine were estimated based on a published nutrient database. The intakes were updated at each exam to represent the cumulative average intake across the 5 exams. The associations between dietary choline intakes and incident dementia and AD were examined in mixed-effect Cox proportional hazard models, adjusting for covariates. RESULTS A total of 3224 participants (53.8% female; mean ± SD age, 54.5 ± 9.7 y) were followed up for a mean ± SD of 16.1 ± 5.1 y (1991-2011). There were 247 incident dementia cases, of which 177 were AD. Dietary choline intake showed nonlinear relationships with incident dementia and AD. After adjusting for covariates, low choline intake (defined as ≤ 219 and ≤ 215 mg/d for dementia and AD, respectively) was significantly associated with incident dementia and incident AD. CONCLUSIONS Low choline intake was associated with increased risks of incident dementia and AD.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Xue Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alvin Fa Ang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA; Slone Epidemiology Center, Boston University School of Medicine, Boston, MA, USA
| | - Joseph Massaro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA
| | - Sherral A Devine
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA
| | - Sanford H Auerbach
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA; Slone Epidemiology Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA USA.
| |
Collapse
|
14
|
Ilyas A, Wijayasinghe YS, Khan I, El Samaloty NM, Adnan M, Dar TA, Poddar NK, Singh LR, Sharma H, Khan S. Implications of trimethylamine N-oxide (TMAO) and Betaine in Human Health: Beyond Being Osmoprotective Compounds. Front Mol Biosci 2022; 9:964624. [PMID: 36310589 PMCID: PMC9601739 DOI: 10.3389/fmolb.2022.964624] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Osmolytes are naturally occurring small molecular weight organic molecules, which are accumulated in large amounts in all life forms to maintain the stability of cellular proteins and hence preserve their functions during adverse environmental conditions. Trimethylamine N-oxide (TMAO) and N,N,N-trimethylglycine (betaine) are methylamine osmolytes that have been extensively studied for their diverse roles in humans and have demonstrated opposing relations with human health. These osmolytes are obtained from food and synthesized endogenously using dietary constituents like choline and carnitine. Especially, gut microbiota plays a vital role in TMAO synthesis and contributes significantly to plasma TMAO levels. The elevated plasma TMAO has been reported to be correlated with the pathogenesis of numerous human diseases, including cardiovascular disease, heart failure, kidney diseases, metabolic syndrome, etc.; Hence, TMAO has been recognized as a novel biomarker for the detection/prediction of several human diseases. In contrast, betaine acts as a methyl donor in one-carbon metabolism, maintains cellular S-adenosylmethionine levels, and protects the cells from the harmful effects of increased plasma homocysteine. Betaine also demonstrates antioxidant and anti-inflammatory activities and has a promising therapeutic value in several human diseases, including homocystinuria and fatty liver disease. The present review examines the multifarious functions of TMAO and betaine with possible molecular mechanisms towards a better understanding of their emerging and diverging functions with probable implications in the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Yasanandana Supunsiri Wijayasinghe
- Department of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka,*Correspondence: Yasanandana Supunsiri Wijayasinghe, , Nitesh Kumar Poddar, , , Shahanavaj Khan,
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Nourhan M. El Samaloty
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India,*Correspondence: Yasanandana Supunsiri Wijayasinghe, , Nitesh Kumar Poddar, , , Shahanavaj Khan,
| | - Laishram R. Singh
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Hemlata Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Shahanavaj Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Saharanpur, Uttar Pradesh, India,*Correspondence: Yasanandana Supunsiri Wijayasinghe, , Nitesh Kumar Poddar, , , Shahanavaj Khan,
| |
Collapse
|
15
|
Mafra D, Cardozo L, Ribeiro-Alves M, Bergman P, Shiels P, Stenvinkel P. Short Report: Choline plasma levels are related to Nrf2 transcriptional expression in chronic kidney disease? Clin Nutr ESPEN 2022; 50:318-321. [DOI: 10.1016/j.clnesp.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
|
16
|
Peng C, Zeleznik OA, Shutta KH, Rosner BA, Kraft P, Clish CB, Stampfer MJ, Willett WC, Tamimi RM, Eliassen AH. A Metabolomics Analysis of Circulating Carotenoids and Breast Cancer Risk. Cancer Epidemiol Biomarkers Prev 2021; 31:85-96. [PMID: 34697058 DOI: 10.1158/1055-9965.epi-21-0837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Higher circulating carotenoids are associated with lower breast cancer risk. The underlying biology remains under-explored. METHODS We profiled 293 prediagnostic plasma metabolites in a nested case-control study (n = 887 cases) within the Nurses' Health Studies. Associations between circulating carotenoids and metabolites were identified using linear-mixed models (FDR ≤ 0.05), and we further selected metabolites most predictive of carotenoids with LASSO. Metabolic signatures for carotenoids were calculated as weighted sums of LASSO selected metabolites. We further evaluated the metabolic signatures in relation to breast cancer risk using conditional logistic-regression. RESULTS We identified 48 to 110 metabolites associated with plasma levels of α-carotene, β-carotene, β-cryptoxanthin, estimated-vitamin-A-potential, lutein/zeaxanthin, and lycopene, which included primarily positively associated metabolites implicated in immune regulation (tryptophan), redox balance (plasmalogens, glutamine), epigenetic regulations (acetylated-/methylated-metabolites), and primarily inversely associated metabolites involved in β-oxidation (carnitines; FDR ≤ 0.05). The metabolomic signatures derived for β-carotene (Q4 vs. Q1 relative risk RR = 0.74, P trend = 0.02), and estimated-vitamin-A-potential (Q4 vs. Q1 RR = 0.74, P trend = 0.02)-measured ≥10 years before diagnosis-were associated with lower breast cancer risk. Modest attenuations of RR for measured levels of β-carotene and estimated-vitamin-A-potential were seen when we adjusted for their corresponding metabolic signatures. CONCLUSIONS Metabolites involved in immune regulation, redox balance, membrane signaling, and β-oxidation were associated with plasma carotenoids. Although some metabolites may reflect shared common food sources or compartmental colocalization with carotenoids, others may signal the underlying pathways of carotenoids-associated lowered breast cancer risk. IMPACT Consumption of carotenoid-rich diet is associated with a wide-range of metabolic changes which may help to reduce breast cancer risk.
Collapse
Affiliation(s)
- Cheng Peng
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Katherine H Shutta
- Department of Biostatistics and Epidemiology, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Bernard A Rosner
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Meir J Stampfer
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Walter C Willett
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - A Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
17
|
Van Parys A, Brække MS, Karlsson T, Vinknes KJ, Tell GS, Haugsgjerd TR, Ueland PM, Øyen J, Dierkes J, Nygård O, Lysne V. Assessment of Dietary Choline Intake, Contributing Food Items, and Associations with One-Carbon and Lipid Metabolites in Middle-Aged and Elderly Adults: The Hordaland Health Study. J Nutr 2021; 152:513-524. [PMID: 34643705 PMCID: PMC8826836 DOI: 10.1093/jn/nxab367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Choline is an essential nutrient for humans and is involved in various physiologic functions. Through its metabolite betaine, it is closely connected to the one-carbon metabolism, and the fat-soluble choline form phosphatidylcholine is essential for VLDL synthesis and secretion in the liver connecting choline to the lipid metabolism. Dietary recommendations for choline are not available in the Nordic countries primarily due to data scarcity. OBJECTIVES The aim of this study was to investigate the dietary intake of total choline and individual choline forms, dietary sources, and the association of total choline intake with circulating one-carbon metabolites and lipids. METHODS We included 5746 participants in the Hordaland Health Study, a survey including community-dwelling adults born in 1925-1927 (mean age 72 y, 55% women) and 1950-1951 (mean age 48 y, 57% women). Dietary data were obtained using a 169-item FFQ, and choline content was calculated using the USDA Database for Choline Content of Common Foods, release 2. Metabolites of the one-carbon and lipid metabolism were measured in a nonfasting blood sample obtained at baseline, and the association with total choline intake was assessed using polynomial splines. RESULTS The geometric mean (95% prediction interval) energy-adjusted total choline intake was 260 (170, 389) mg/d, with phosphatidylcholine being the main form (44%). The major food items providing dietary choline were eggs, low-fat milk, potatoes, and leafy vegetables. Dietary total choline was inversely associated with circulating concentrations of total homocysteine, glycine, and serine and positively associated with choline, methionine, cystathionine, cysteine, trimethyllysine, trimethylamine-N-oxide, and dimethylglycine. A weak association was observed between choline intake and serum lipids. CONCLUSIONS Phosphatidylcholine was the most consumed choline form in community-dwelling adults in Norway. Our findings suggest that choline intake is associated with the concentration of most metabolites involved in the one-carbon and lipid metabolism.
Collapse
Affiliation(s)
| | - Maria Sandvik Brække
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Teresa R Haugsgjerd
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | | | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway,Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway,Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway,Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway,Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Jacques PF, Rogers G, Stookey JD, Perrier ET. Water Intake and Markers of Hydration Are Related to Cardiometabolic Risk Biomarkers in Community-Dwelling Older Adults: A Cross-Sectional Analysis. J Nutr 2021; 151:3205-3213. [PMID: 34383920 PMCID: PMC8485913 DOI: 10.1093/jn/nxab233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Emerging evidence links underhydration and habitual low water intake to higher cardiometabolic risk, but evidence is limited in community-dwelling older adults. OBJECTIVES The objective is to examine if higher water intake and better hydration are associated with better cardiometabolic health. METHODS This cross-sectional analysis using general linear models included 2238 participants from the Framingham Heart Study Second Generation and First Generation Omni cohorts with an estimated glomerular filtration rate >30 mL·min-1·1.73 m-2 and a valid FFQ for assessment of water intake. Of these participants, 2219 had fasting spot urinary creatinine data and 950 had 24-h urine creatinine data to assess hydration. Cardiometabolic risk factors included fasting glucose, triglycerides (TGs), total cholesterol (TC), HDL cholesterol, and calculated LDL cholesterol; glycated hemoglobin (HbA1c); C-reactive protein (CRP); and systolic (SBP) and diastolic (DBP) blood pressure. RESULTS The combined cohorts were on average aged 70 y; 55% were women. Mean (95% CI) daily total water intakes were 2098 (2048, 2150) mL for men and 2109 (2063, 2156) mL for women. Total daily water, beverage (including plain water), and plain water intakes demonstrated significant positive trends with HDL cholesterol (P < 0.01). TG concentrations were significantly lower among the highest plain water consumers (P < 0.05). The 24-h urine concentration, as measured by creatinine, was positively associated with LDL cholesterol and TG concentrations ( P < 0.01) and inversely associated with HDL cholesterol concentrations (P < 0.002). Neither water intake nor urine concentration was associated with glucose or HbA1c (P > 0.05). CONCLUSIONS Our findings of a consistent pattern between circulating lipid concentrations and different water sources and hydration markers support an association between hydration and lipid metabolism in older adults and add to the growing evidence that inadequate water intake and underhydration may lead to higher cardiometabolic risk.
Collapse
Affiliation(s)
- Paul F Jacques
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Gail Rogers
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | | - Erica T Perrier
- Health, Hydration & Nutrition Science, Danone Research, Palaiseau, France
| |
Collapse
|
19
|
Waldman HS, Bryant AR, McAllister MJ. Effects of Betaine Supplementation on Markers of Metabolic Flexibility, Body Composition, and Anaerobic Performance in Active College-Age Females. J Diet Suppl 2021; 20:89-105. [PMID: 34477469 DOI: 10.1080/19390211.2021.1973644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Betaine (BET) has shown to be effective in improving body composition and performance, although research in women is lacking. This study investigated the effects of BET supplementation on markers of metabolic flexibility, body composition, and anaerobic performance in college females. Twenty-three active subjects with 21.8 ± 3.0 years of age, 66.6 ± 8.8 kg body mass, 1.6 ± 0.1 m height, and 23.2 ± 5.3% body fat performed a graded exercise test on a cycle ergometer consisting of 4 incremental, 3 min stages for collection of fat and carbohydrate oxidation rates. Three 10 s sprint tests were then completed against a resistance of 7.5% of body mass, separated by 2.5 min of recovery. The study comprised 3 phases: (a) pre-supplementation, (b) randomization to supplement for 2-weeks with either 2.4 g/day BET or placebo (parallel design), and (c) post-supplementation. Repeated-measures analysis of variance were conducted to determine interactions or main effects. There were no group differences for substrate oxidation rates (p > 0.05). Although body composition improved pre-post for both groups (p < 0.05), only the BET group experienced a significant increase in fat free mass (p < 0.01; ∼3%). Further, only the BET group experienced improvements to performance such as a higher mean power output during the final sprint (p = 0.02; ∼3%) and a lower RPE during the final stage of the graded exercise test (p = 0.02). Results from this study suggest BET supplementation may improve body composition and some markers of performance during exercise in collegiate women.
Collapse
Affiliation(s)
- Hunter S Waldman
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, AL, USA
| | - Andrea R Bryant
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, AL, USA
| | - Matthew J McAllister
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
| |
Collapse
|
20
|
Van Every DW, Plotkin DL, Delcastillo K, Cholewa J, Schoenfeld BJ. Betaine Supplementation: A Critical Review of Its Efficacy for Improving Muscle Strength, Power, and Body Composition. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Zhang YW, Lu PP, Li YJ, Dai GC, Cao MM, Xie T, Zhang C, Shi L, Rui YF. Low dietary choline intake is associated with the risk of osteoporosis in elderly individuals: a population-based study. Food Funct 2021; 12:6442-6451. [PMID: 34076003 DOI: 10.1039/d1fo00825k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, little is known regarding the association between dietary choline intake and osteoporosis in elderly individuals, as well as if such intakes affect bone health and result in fractures. This study was aimed to examine associations between daily dietary choline intake and osteoporosis in elderly individuals. A total of 31 034 participants from the National Health and Nutritional Examination Survey (NHANES) during 2005-2010 were enrolled, and 3179 participants with complete data and aged 65 years and older were identified. Baseline characteristics and dietary intake data were obtained through method of in-home administered questionnaires. Of 3179 individuals with a mean age of 73.7 ± 5.6 years, female (P < 0.001) and non-hispanic white (P < 0.001) occupied a higher proportion in the osteoporosis group. The logistic regression analysis indicated that the prevalence of osteoporosis in three tertile categories with gradually enhanced dietary choline intake was decreased progressively (P for trend <0.001). The restricted cubic spline (RCS) showed that the risk of osteoporosis generally decreased with increasing daily dietary choline intake (P < 0.001), while this trend was not apparent in relation between the daily dietary choline intake and risk of hip fracture (P = 0.592). The receiver operating characteristic (ROC) analysis identified a daily dietary choline intake of 232.1 mg as the optimal cutoff value for predicting osteoporosis. Our nationwide data suggested that a lower level of daily dietary choline intake was positively associated with the increased risk of osteoporosis in the US elderly population.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guo F, Han M, Lin S, Ye H, Chen J, Zhu H, Lin W. Enteromorpha prolifera polysaccharide prevents high- fat diet-induced obesity in hamsters: A NMR-based metabolomic evaluation. J Food Sci 2021; 86:3672-3685. [PMID: 34191277 DOI: 10.1111/1750-3841.15818] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Enteromorpha prolifera polysaccharide (EP) has been shown to exhibit hypolipidemic and hypoglycemic activities in various experimental models. Here, an 1 H-NMR-based metabolomic study was conducted to explore the regulatory effects of EP on serum metabolic changes in obese hamsters. High-fat diet (HFD)-fed hamsters were orally administrated with EP (300, 450, or 600 mg/kg) once daily for 12 weeks. Compared with HFD-fed hamsters, EP treatment (450 and 600 mg/kg) significantly decreased the body weight (by 8.69 and 8.24%), liver weight (by 7.87 and 8.25%), epididymal white adipose tissue (by 19.54 and 17.26%), perirenal white adipose tissue (by 28.09 and 28.94%), serum total cholesterol (by 24.31 and 18.61%), triglyceride (by 30.64 and 31.38%), and low-density lipoprotein cholesterol (by 38.26 and 36.30%), respectively. In addition, EP intervention also significantly decreased hepatic cholesterol (by 23.20, 38.16, and 34.57%) and triglyceride content (by 17.78, 41.47, and 35.50%) as well as serum levels of alanine aminotransferase (ALT) and ALT/aspartate aminotransferase (AST) ratio. The serum samples of normal diet (ND) group, HFD group and HFD + EP 450 mg/kg (HFD + MEP) group were further analyzed by 1 H-NMR spectroscopy. Compared with ND group, 17 and 2 metabolites were significantly upregulated and downregulated in HFD group, respectively. Interestingly, EP treatment significantly downregulated nine metabolites and upregulated one metabolite when compared to those in HFD group. Our results indicated that EP intervention partially ameliorated HFD-induced metabolic dysfunction, and the most prominent metabolic pathways included citrate cycle, synthesis and degradation of ketone bodies, pyruvate metabolism, valine, leucine and isoleucine degradation, and arginine biosynthesis. PRACTICAL APPLICATION: Enteromorpha prolifera polysaccharide (EP), the main active component of Enteromorpha prolifera, is reported to have many biological activities. However, the antiobesity effect of EP and its corresponding metabolic mechanism have not been reported so far. The results of this study confirmed the antiobesity effect of EP on HFD-induced obese hamsters and elucidated its possible metabolic mechanism. Our study highlighted that EP might be used in weight-loss functional foods.
Collapse
Affiliation(s)
- Fuchuan Guo
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| | - Mengyuan Han
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China.,Department of Women's Health Care, Fujian Obstetrics and Gynecology Hospital, FuZhou, P. R. China
| | - Song Lin
- Department of Child Health Care, Fuqing Maternal and Child Health Care Hospital, FuQing, China
| | - Hui Ye
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| | - Jiedong Chen
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| | - Hongni Zhu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| | - Wenting Lin
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| |
Collapse
|
23
|
Van Puyvelde H, Papadimitriou N, Clasen J, Muller D, Biessy C, Ferrari P, Halkjær J, Overvad K, Tjønneland A, Fortner RT, Katzke V, Schulze MB, Chiodini P, Masala G, Pala V, Sacerdote C, Tumino R, Bakker MF, Agudo A, Ardanaz E, Chirlaque López MD, Sánchez MJ, Ericson U, Gylling B, Karlsson T, Manjer J, Schmidt JA, Nicolas G, Casagrande C, Weiderpass E, Heath AK, Godderis L, Van Herck K, De Bacquer D, Gunter MJ, Huybrechts I. Dietary Methyl-Group Donor Intake and Breast Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Nutrients 2021; 13:1843. [PMID: 34071317 PMCID: PMC8228096 DOI: 10.3390/nu13061843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
(1) Background: Methyl-group donors (MGDs), including folate, choline, betaine, and methionine, may influence breast cancer (BC) risk through their role in one-carbon metabolism; (2) Methods: We studied the relationship between dietary intakes of MGDs and BC risk, adopting data from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort; (3) Results: 318,686 pre- and postmenopausal women were followed between enrolment in 1992-2000 and December 2013-December 2015. Dietary MGD intakes were estimated at baseline through food-frequency questionnaires. Multivariable Cox proportional hazards regression models were used to quantify the association between dietary intake of MGDs, measured both as a calculated score based on their sum and individually, and BC risk. Subgroup analyses were performed by hormone receptor status, menopausal status, and level of alcohol intake. During a mean follow-up time of 14.1 years, 13,320 women with malignant BC were identified. No associations were found between dietary intakes of the MGD score or individual MGDs and BC risk. However, a potential U-shaped relationship was observed between dietary folate intake and overall BC risk, suggesting an inverse association for intakes up to 350 µg/day compared to a reference intake of 205 µg/day. No statistically significant differences in the associations were observed by hormone receptor status, menopausal status, or level of alcohol intake; (4) Conclusions: There was no strong evidence for an association between MGDs involved in one-carbon metabolism and BC risk. However, a potential U-shaped trend was suggested for dietary folate intake and BC risk. Further research is needed to clarify this association.
Collapse
Affiliation(s)
- Heleen Van Puyvelde
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; (H.V.P.); (K.V.H.); (D.D.B.)
- Nutrition and Metabolism Section, International Agency for Research on Cancer, CEDEX 08, 69372 Lyon, France; (N.P.); (C.B.); (P.F.); (G.N.); (C.C.); (M.J.G.)
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Nikos Papadimitriou
- Nutrition and Metabolism Section, International Agency for Research on Cancer, CEDEX 08, 69372 Lyon, France; (N.P.); (C.B.); (P.F.); (G.N.); (C.C.); (M.J.G.)
| | - Joanna Clasen
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Hospital, London W2 1PG, UK; (J.C.); (D.M.); (A.K.H.)
| | - David Muller
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Hospital, London W2 1PG, UK; (J.C.); (D.M.); (A.K.H.)
| | - Carine Biessy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, CEDEX 08, 69372 Lyon, France; (N.P.); (C.B.); (P.F.); (G.N.); (C.C.); (M.J.G.)
| | - Pietro Ferrari
- Nutrition and Metabolism Section, International Agency for Research on Cancer, CEDEX 08, 69372 Lyon, France; (N.P.); (C.B.); (P.F.); (G.N.); (C.C.); (M.J.G.)
| | - Jytte Halkjær
- Diet, Genes and Environment, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (J.H.); (A.T.)
| | - Kim Overvad
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (J.H.); (A.T.)
- Department of Public Health, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center, 69120 Heidelberg, Germany; (R.T.F.); (V.K.)
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, 69120 Heidelberg, Germany; (R.T.F.); (V.K.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Paolo Chiodini
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network—ISPRO, 50139 Firenze, Italy;
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano Via Venezian, 1, 20133 Milano, Italy;
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, 10126 Turin, Italy;
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), 97100 Ragusa, Italy;
| | - Marije F. Bakker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Antonio Agudo
- Cancer Epidemiology Research Program, Unit of Nutrition and Cancer, Institut Català d’Oncologa, 08908 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Eva Ardanaz
- Navarra Public Health Institute, 31003 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBER Epidemiology and Public Health CIBERESP, 28029 Madrid, Spain; (M.D.C.L.); (M.-J.S.)
| | - María Dolores Chirlaque López
- CIBER Epidemiology and Public Health CIBERESP, 28029 Madrid, Spain; (M.D.C.L.); (M.-J.S.)
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30120 Murcia, Spain
| | - Maria-Jose Sánchez
- CIBER Epidemiology and Public Health CIBERESP, 28029 Madrid, Spain; (M.D.C.L.); (M.-J.S.)
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs., 18014 Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
| | - Ulrika Ericson
- Diabetes and Cardiovascular Disease, Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, 205 02 Malmö, Sweden;
| | - Björn Gylling
- Unit Pathology, Department of Medical Biosciences, Umeå Universitet, 901 85 Umeå, Sweden;
| | - Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Jonas Manjer
- Department of Surgery, Skåne University Hospital Malmö, Lund University, Bröstmottagningen, 214 28 Malmö, Sweden;
| | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 LF7, UK;
| | - Geneviève Nicolas
- Nutrition and Metabolism Section, International Agency for Research on Cancer, CEDEX 08, 69372 Lyon, France; (N.P.); (C.B.); (P.F.); (G.N.); (C.C.); (M.J.G.)
| | - Corinne Casagrande
- Nutrition and Metabolism Section, International Agency for Research on Cancer, CEDEX 08, 69372 Lyon, France; (N.P.); (C.B.); (P.F.); (G.N.); (C.C.); (M.J.G.)
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer, CEDEX 08, 69372 Lyon, France;
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Hospital, London W2 1PG, UK; (J.C.); (D.M.); (A.K.H.)
| | - Lode Godderis
- Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium;
- IDEWE (Externe dienst voor Preventie en Bescherming op het Werk), 3001 Heverlee, Belgium
| | - Koen Van Herck
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; (H.V.P.); (K.V.H.); (D.D.B.)
| | - Dirk De Bacquer
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; (H.V.P.); (K.V.H.); (D.D.B.)
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, CEDEX 08, 69372 Lyon, France; (N.P.); (C.B.); (P.F.); (G.N.); (C.C.); (M.J.G.)
| | - Inge Huybrechts
- Nutrition and Metabolism Section, International Agency for Research on Cancer, CEDEX 08, 69372 Lyon, France; (N.P.); (C.B.); (P.F.); (G.N.); (C.C.); (M.J.G.)
| |
Collapse
|
24
|
Van Parys A, Karlsson T, Vinknes KJ, Olsen T, Øyen J, Dierkes J, Nygård O, Lysne V. Food Sources Contributing to Intake of Choline and Individual Choline Forms in a Norwegian Cohort of Patients With Stable Angina Pectoris. Front Nutr 2021; 8:676026. [PMID: 34055860 PMCID: PMC8160433 DOI: 10.3389/fnut.2021.676026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Choline is an essential nutrient involved in a wide range of physiological functions. It occurs in water- and lipid-soluble forms in the body and diet. Foods with a known high choline content are eggs, beef, chicken, milk, fish, and selected plant foods. An adequate intake has been set in the US and Europe, however, not yet in the Nordic countries. A higher intake of lipid-soluble choline forms has been associated with increased risk of acute myocardial infarction, highlighting the need for knowledge about food sources of the individual choline forms. In general, little is known about the habitual intake and food sources of choline, and individual choline forms. Objective: Investigate foods contributing to the intake of total choline and individual choline forms. Design: The study population consisted of 1,929 patients with stable angina pectoris from the Western Norway B Vitamin Intervention Trial. Dietary intake data was obtained through a 169-item food frequency questionnaire. Intake of total choline and individual choline forms was quantified using the USDA database, release 2. Results: The geometric mean (95% prediction interval) total choline intake was 287 (182, 437) mg/d. Phosphatidylcholine accounted for 42.5% of total choline intake, followed by free choline (25.8%) and glycerophosphocholine (21.2%). Phosphocholine and sphingomyelin contributed 4.2 and 4.5%, respectively. The main dietary choline sources were eggs, milk, fresh vegetables, lean fish, and bread. In general, animal food sources were the most important contributors to choline intake. Conclusion: This study is, to the best of our knowledge, the first to assess the intake of all choline forms and their dietary sources in a European population. Most choline was consumed in the form of phosphatidylcholine and animal food sources contributed most to choline intake. There is a need for accurate estimates of the dietary intake of this essential nutrient to issue appropriate dietary recommendations.
Collapse
Affiliation(s)
- Anthea Van Parys
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathrine J. Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
25
|
Yang JJ, Shu XO, Herrington DM, Moore SC, Meyer KA, Ose J, Menni C, Palmer ND, Eliassen H, Harada S, Tzoulaki I, Zhu H, Albanes D, Wang TJ, Zheng W, Cai H, Ulrich CM, Guasch-Ferré M, Karaman I, Fornage M, Cai Q, Matthews CE, Wagenknecht LE, Elliott P, Gerszten RE, Yu D. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: an international pooled analysis. Am J Clin Nutr 2021; 113:1145-1156. [PMID: 33826706 PMCID: PMC8106754 DOI: 10.1093/ajcn/nqaa430] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO), a diet-derived, gut microbial-host cometabolite, has been linked to cardiometabolic diseases. However, the relations remain unclear between diet, TMAO, and cardiometabolic health in general populations from different regions and ethnicities. OBJECTIVES To examine associations of circulating TMAO with dietary and cardiometabolic factors in a pooled analysis of 16 population-based studies from the United States, Europe, and Asia. METHODS Included were 32,166 adults (16,269 white, 13,293 Asian, 1247 Hispanic/Latino, 1236 black, and 121 others) without cardiovascular disease, cancer, chronic kidney disease, or inflammatory bowel disease. Linear regression coefficients (β) were computed for standardized TMAO with harmonized variables. Study-specific results were combined by random-effects meta-analysis. A false discovery rate <0.10 was considered significant. RESULTS After adjustment for potential confounders, circulating TMAO was associated with intakes of animal protein and saturated fat (β = 0.124 and 0.058, respectively, for a 5% energy increase) and with shellfish, total fish, eggs, and red meat (β = 0.370, 0.151, 0.081, and 0.056, respectively, for a 1 serving/d increase). Plant protein and nuts showed inverse associations (β = -0.126 for a 5% energy increase from plant protein and -0.123 for a 1 serving/d increase of nuts). Although the animal protein-TMAO association was consistent across populations, fish and shellfish associations were stronger in Asians (β = 0.285 and 0.578), and egg and red meat associations were more prominent in Americans (β = 0.153 and 0.093). Besides, circulating TMAO was positively associated with creatinine (β = 0.131 SD increase in log-TMAO), homocysteine (β = 0.065), insulin (β = 0.048), glycated hemoglobin (β = 0.048), and glucose (β = 0.023), whereas it was inversely associated with HDL cholesterol (β = -0.047) and blood pressure (β = -0.030). Each TMAO-biomarker association remained significant after further adjusting for creatinine and was robust in subgroup/sensitivity analyses. CONCLUSIONS In an international, consortium-based study, animal protein was consistently associated with increased circulating TMAO, whereas TMAO associations with fish, shellfish, eggs, and red meat varied among populations. The adverse associations of TMAO with certain cardiometabolic biomarkers, independent of renal function, warrant further investigation.
Collapse
Affiliation(s)
- Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Herrington
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katie A Meyer
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Jennifer Ose
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Thomas J Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cornelia M Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Robert E Gerszten
- Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
26
|
Ashtary-Larky D, Bagheri R, Ghanavati M, Asbaghi O, Tinsley GM, Mombaini D, Kooti W, Kashkooli S, Wong A. Effects of betaine supplementation on cardiovascular markers: A systematic review and Meta-analysis. Crit Rev Food Sci Nutr 2021; 62:6516-6533. [PMID: 33764214 DOI: 10.1080/10408398.2021.1902938] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Controversy regarding the effects of betaine supplementation on cardiovascular markers has persisted for decades. This systematic review and meta-analysis compared the effects of betaine supplementation on cardiovascular disease (CVD) markers. Studies examining betaine supplementation on CVD markers published up to February 2021 were identified through PubMed, the Cochrane Library, Web of Science, Embase, and SCOPUS. Betaine supplementation had a significant effect on concentrations of betaine (MD: 82.14 μmol/L, 95% CI: 67.09 to 97.20), total cholesterol (TC) (MD: 14.12 mg/dl, 95% CI%: 9.23 to 19.02), low-density lipoprotein (LDL) (MD: 10.26 mg/dl, 95% CI: 6.14 to 14.38)], homocysteine (WMD: -1.30 micromol/L, 95% CI: -1.61 to -0.98), dimethylglycine (DMG) (MD: 21.33 micromol/L, 95% CI: 13.87 to 28.80), and methionine (MD: 2.06 micromol/L, 95% CI: 0.23 to 3.88). Moreover, our analysis indicated that betaine supplementation did not affect serum concentrations of triglyceride (TG), high-density lipoprotein (HDL), fasting blood glucose (FBG), C-reactive protein (CRP), liver enzymes [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT)], and blood pressure. Our subgroup analysis suggested that a maximum dose of 4 g/d might have homocysteine-lowering effects without any adverse effect on lipid profiles reported with doses of ≥4 g/d. In conclusion, the present systematic review and meta-analysis supports the advantage of a lower dose of betaine supplementation (<4 g/d) on homocysteine concentrations without the lipid-augmenting effect observed with a higher dosage.
Collapse
Affiliation(s)
- Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Matin Ghanavati
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Grant M Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Delsa Mombaini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Wesam Kooti
- Lung Diseases & Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Kashkooli
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Texas, USA
| |
Collapse
|
27
|
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021; 13:699. [PMID: 33671569 PMCID: PMC7927055 DOI: 10.3390/nu13020699] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an "inflammatory disorder", with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system-microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Alejandro J. Castellanos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Fernando Noguerales-Fraguas
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Department of General Surgery, Príncipe de Asturias Hospital, 28806 Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Angel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
| | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares,28806 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain;
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain;
| |
Collapse
|
28
|
Shibutami E, Ishii R, Harada S, Kurihara A, Kuwabara K, Kato S, Iida M, Akiyama M, Sugiyama D, Hirayama A, Sato A, Amano K, Sugimoto M, Soga T, Tomita M, Takebayashi T. Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan. PLoS One 2021; 16:e0246456. [PMID: 33566801 PMCID: PMC7875413 DOI: 10.1371/journal.pone.0246456] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/19/2021] [Indexed: 11/18/2022] Open
Abstract
Food intake biomarkers can be critical tools that can be used to objectively assess dietary exposure for both epidemiological and clinical nutrition studies. While an accurate estimation of food intake is essential to unravel associations between the intake and specific health conditions, random and systematic errors affect self-reported assessments. This study aimed to clarify how habitual food intake influences the circulating plasma metabolome in a free-living Japanese regional population and to identify potential food intake biomarkers. To achieve this aim, we conducted a cross-sectional analysis as part of a large cohort study. From a baseline survey of the Tsuruoka Metabolome Cohort Study, 7,012 eligible male and female participants aged 40-69 years were chosen for this study. All data on patients' health status and dietary intake were assessed via a food frequency questionnaire, and plasma samples were obtained during an annual physical examination. Ninety-four charged plasma metabolites were measured using capillary electrophoresis mass spectrometry, by a non-targeted approach. Statistical analysis was performed using partial-least-square regression. A total of 21 plasma metabolites were likely to be associated with long-term food intake of nine food groups. In particular, the influential compounds in each food group were hydroxyproline for meat, trimethylamine-N-oxide for fish, choline for eggs, galactarate for dairy, cystine and betaine for soy products, threonate and galactarate for carotenoid-rich vegetables, proline betaine for fruits, quinate and trigonelline for coffee, and pipecolate for alcohol, and these were considered as prominent food intake markers in Japanese eating habits. A set of circulating plasma metabolites was identified as potential food intake biomarkers in the Japanese community-dwelling population. These results will open the way for the application of new reliable dietary assessment tools not by self-reported measurements but through objective quantification of biofluids.
Collapse
Affiliation(s)
- Eriko Shibutami
- Graduate School of Health Management, Keio University, Fujisawa, Kanagawa, Japan
| | - Ryota Ishii
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Ayako Kurihara
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Kuwabara
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Suzuka Kato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Miho Iida
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Miki Akiyama
- Graduate School of Health Management, Keio University, Fujisawa, Kanagawa, Japan
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Daisuke Sugiyama
- Graduate School of Health Management, Keio University, Fujisawa, Kanagawa, Japan
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
- Faculty of Nursing and Medical Care, Keio University, Fujisawa, Kanagawa, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kaori Amano
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Toru Takebayashi
- Graduate School of Health Management, Keio University, Fujisawa, Kanagawa, Japan
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- * E-mail:
| |
Collapse
|
29
|
Ali SAEM. Nutritional Deficiencies and Hyperhomocysteinemia. NUTRITIONAL MANAGEMENT AND METABOLIC ASPECTS OF HYPERHOMOCYSTEINEMIA 2021:259-267. [DOI: 10.1007/978-3-030-57839-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
30
|
Xie L, Zhao BX, Luo J, Li Y, Zhu F, Li GF, He M, Wang B, Zhang H, Cai Y, Huo Y, Wang X, Hou FF, Xu X, Qin X, Nie J. A U-shaped association between serum betaine and incident risk of first ischemic stroke in hypertensive patients. Clin Nutr 2020; 39:2517-2524. [DOI: 10.1016/j.clnu.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/07/2019] [Accepted: 11/06/2019] [Indexed: 01/01/2023]
|
31
|
Betaine Supplementation Does Not Improve Muscle Hypertrophy or Strength Following 6 Weeks of Cross-Fit Training. Nutrients 2020; 12:nu12061688. [PMID: 32516959 PMCID: PMC7352895 DOI: 10.3390/nu12061688] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
We aim to investigate the effect of 6 weeks of betaine supplementation on body composition and muscle performance during CrossFit© training. Twenty-nine subjects matched for training status (4.16 ± 0.95 day/week) and body fat mass (12.66 ± 4.08%) were randomly assigned to a betaine (BET; N = 14) or placebo group (PLA; N = 15). Body composition and cellular hydration were estimated with skinfolds measurement and bioelectrical impendence before and after 6 weeks of training. Muscle performance was assessed using three different tests: 3-RM back-squat for muscle strength, 2 km rowing test for aerobic capacity and Bergeron Beep Test for anaerobic capacity. Muscle strength assessed during back squat significantly increased in BET (p = 0.04) but not in the PLA group, however, there were no statistical differences between groups. Although not significant, fat mass was reduced in BET compared to PLA. Overall, body composition and cell hydration measurements did not change in response to training or betaine supplementation. Short-term (6 weeks) betaine supplementation supports muscle strength but was not ergogenic for trained subjects to aerobic and anaerobic performance in the CrossFit©-specific test.
Collapse
|
32
|
Ni LP, Du LY, Huang YQ, Zhou JY. Egg consumption and risk of type 2 diabetes mellitus in middle and elderly Chinese population: An observational study. Medicine (Baltimore) 2020; 99:e19752. [PMID: 32311974 PMCID: PMC7220326 DOI: 10.1097/md.0000000000019752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Data on the association between egg consumption and the risk of type 2 diabetes mellitus (T2DM) in the Chinese population are scarce. In the present study, we aimed to examine the association between egg consumption and the risk of T2DM in a middle and elderly Chinese population. A total of 3298 subjects (1645 men and 1653 women) from the Nutrition and Health Survey (2015-2017) in Hangzhou city were selected for the final analysis. Egg consumption was assessed using a validated food frequency questionnaire. All biochemical data and anthropometric measurements were collected following standardized procedures. Multivariable logistic regression analyses were used to assess the association between egg consumption and the risk of T2DM and the results were presented as odds ratios and 95% confidence interval (CI). Restricted cubic spline combined with logistic regression was used to explore the dose-response relationship between egg consumption and T2DM. Among 3298 subjects, 693 (21.0%) people had T2DM. Compared with participants who did not consume egg per week, the multivariable-adjusted odds ratios were 0.97 (95%CI : 0.78-1.21), 1.08 (95%CI : 0.91-1.06), 1.20 (95%CI : 0.94-1.55), 1.27 (95%CI : 0.99-1.68) in men (P > .05); 1.06 (95%CI : 0.81-1.37), 0.97 (95%CI : 0.78-1.21), 1.26 (95%CI : 0.99-1.59), 1.19 (0.92-1.54) in women (P > .05); 0.89 (95%CI : 0.79-1.04), 0.98 (95%CI : 0.91-1.06), 1.06 (95%CI : 0.87-1.30), 1.09 (95%CI : 0.88-1.34) in both men and women for egg consumption 0∼7, 7, 7∼14, and ≥14 eggs/week, respectively (P > .05). The dose-response curve showed that, with the increase of egg consumption, the risk of T2DM first increased and then decreased (P = .027).We found that the association between egg consumption and T2DM was nonlinear, and higher egg consumption was not associated with an elevated risk for T2DM in middle-aged and elderly Chinese. However, future prospective studies are needed to confirm these findings.
Collapse
|
33
|
Yang S, Zhao N, Sun B, Yang Y, Hu Y, Zhao R. Grandmaternal betaine supplementation enhances hepatic IGF2 expression in F2 rat offspring through modification of promoter DNA methylation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1486-1494. [PMID: 31756772 DOI: 10.1002/jsfa.10156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/07/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND We reported previously that maternal betaine promotes hepatic insulin-like growth factor (IGF2) expression in F1 offspring rats through hypermethylation of the IGF2/H19 imprinting control region (ICR). It remains unknown whether this acquired trait can be transmitted to the F2 generation. This study aimed to determine whether dietary betaine supplementation to grand dams affects the hepatic IGF2 expression in F2 rat offspring and how it is related to alterations in DNA methylation. F2 rat offspring derived from grand dams fed basal or betaine-supplemented diet (10 g kg-1 ) were examined at weaning. Serum IGF2 concentration was measured with enzyme-linked immunosorbent assay (ELISA). Hepatic expression of IGF2, together with other proliferation and apoptosis markers, was determined by using quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemistry. The methylation status of the IGF2/H19 ICR and the promoters of IGF2 gene were detected by methylated DNA immunoprecipitation quantitative polymerase chain reaction (MeDIP-qPCR). RESULTS The maternal betaine-induced up-regulation of hepatic IGF2 expression in F1 rat offspring was transmitted to the F2 generation. The F2 rats from the betaine group demonstrated enhanced hepatic IGF2 expression at both mRNA and protein levels, in association with higher serum IGF2 concentration. No alterations were observed in the ICR methylation of the IGF2/H19 locus, and hypomethylation was detected in promoters of IGF2 gene in betaine group. CONCLUSION These results indicate that maternal betaine enhances hepatic IGF2 expression in F2 rat offspring through modification of DNA methylation on IGF2 promoters. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Bo Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
34
|
Mosca R, van de Vlekkert D, Campos Y, Fremuth LE, Cadaoas J, Koppaka V, Kakkis E, Tifft C, Toro C, Allievi S, Gellera C, Canafoglia L, Visser G, Annunziata I, d’Azzo A. Conventional and Unconventional Therapeutic Strategies for Sialidosis Type I. J Clin Med 2020; 9:jcm9030695. [PMID: 32143456 PMCID: PMC7141319 DOI: 10.3390/jcm9030695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/26/2022] Open
Abstract
Congenital deficiency of the lysosomal sialidase neuraminidase 1 (NEU1) causes the lysosomal storage disease, sialidosis, characterized by impaired processing/degradation of sialo-glycoproteins and sialo-oligosaccharides, and accumulation of sialylated metabolites in tissues and body fluids. Sialidosis is considered an ultra-rare clinical condition and falls into the category of the so-called orphan diseases, for which no therapy is currently available. In this study we aimed to identify potential therapeutic modalities, targeting primarily patients affected by type I sialidosis, the attenuated form of the disease. We tested the beneficial effects of a recombinant protective protein/cathepsin A (PPCA), the natural chaperone of NEU1, as well as pharmacological and dietary compounds on the residual activity of mutant NEU1 in a cohort of patients’ primary fibroblasts. We observed a small, but consistent increase in NEU1 activity, following administration of all therapeutic agents in most of the fibroblasts tested. Interestingly, dietary supplementation of betaine, a natural amino acid derivative, in mouse models with residual NEU1 activity mimicking type I sialidosis, increased the levels of mutant NEU1 and resolved the oligosacchariduria. Overall these findings suggest that carefully balanced, unconventional dietary compounds in combination with conventional therapeutic approaches may prove to be beneficial for the treatment of sialidosis type I.
Collapse
Affiliation(s)
- Rosario Mosca
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.M.); (D.v.d.V.); (Y.C.); (L.E.F.); (I.A.)
| | - Diantha van de Vlekkert
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.M.); (D.v.d.V.); (Y.C.); (L.E.F.); (I.A.)
| | - Yvan Campos
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.M.); (D.v.d.V.); (Y.C.); (L.E.F.); (I.A.)
| | - Leigh E. Fremuth
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.M.); (D.v.d.V.); (Y.C.); (L.E.F.); (I.A.)
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jaclyn Cadaoas
- Ultragenyx Pharmaceutical, Novato, CA 94949, USA; (J.C.); (V.K.); (E.K.)
| | - Vish Koppaka
- Ultragenyx Pharmaceutical, Novato, CA 94949, USA; (J.C.); (V.K.); (E.K.)
| | - Emil Kakkis
- Ultragenyx Pharmaceutical, Novato, CA 94949, USA; (J.C.); (V.K.); (E.K.)
| | - Cynthia Tifft
- Office of the Clinical Director & Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health (NHGRI), Bethesda, MD 20892, USA;
| | - Camilo Toro
- Undiagnosed Disease Network, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Simona Allievi
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (S.A.); (C.G.)
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (S.A.); (C.G.)
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Laura Canafoglia
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.M.); (D.v.d.V.); (Y.C.); (L.E.F.); (I.A.)
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.M.); (D.v.d.V.); (Y.C.); (L.E.F.); (I.A.)
- Correspondence: ; Tel.: +1-901-595-2698
| |
Collapse
|
35
|
Yang JJ, Lipworth LP, Shu XO, Blot WJ, Xiang YB, Steinwandel MD, Li H, Gao YT, Zheng W, Yu D. Associations of choline-related nutrients with cardiometabolic and all-cause mortality: results from 3 prospective cohort studies of blacks, whites, and Chinese. Am J Clin Nutr 2020; 111:644-656. [PMID: 31915809 PMCID: PMC7049525 DOI: 10.1093/ajcn/nqz318] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Choline-related nutrients are dietary precursors of a gut microbial metabolite, trimethylamine-N-oxide, which has been linked to cardiometabolic diseases and related death. However, epidemiologic evidence on dietary choline and mortality remains limited, particularly among nonwhite populations. OBJECTIVES This study aimed to investigate the associations of choline-related nutrients with cardiometabolic and all-cause mortality among black and white Americans and Chinese adults. METHODS Included were 49,858 blacks, 23,766 whites, and 134,001 Chinese, aged 40-79 y, who participated in 3 prospective cohorts and lived ≥1 y after enrollment. Cox regression models were used to estimate HRs and 95% CIs for cardiometabolic [e.g., ischemic heart disease (IHD), stroke, and diabetes] and all-cause deaths. To account for multiple testing, P values < 0.003 were considered significant. RESULTS Mean choline intake among blacks, whites, and Chinese was 404.1 mg/d, 362.0 mg/d, and 296.8 mg/d, respectively. During a median follow-up of 11.7 y, 28,673 deaths were identified, including 11,141 cardiometabolic deaths. After comprehensive adjustments, including for overall diet quality and disease history, total choline intake was associated with increased cardiometabolic mortality among blacks and Chinese (HR for highest compared with lowest quintile: 1.26; 95% CI: 1.13, 1.40 and HR: 1.23; 95% CI: 1.11, 1.38, respectively; both P-trend < 0.001); among whites, the association was weaker (HR: 1.12; 95% CI: 0.95, 1.33; P-trend = 0.02). Total choline intake was also associated with diabetes and all-cause mortality in blacks (HR: 1.66; 95% CI: 1.26, 2.19 and HR: 1.20; 95% CI: 1.12, 1.29, respectively), with diabetes mortality in Chinese (HR: 2.24; 95% CI: 1.68, 2.97), and with IHD mortality in whites (HR: 1.31; 95% CI: 1.02, 1.69) (all P-trend < 0.001). The choline-mortality association was modified by alcohol consumption and appeared stronger among individuals with existing cardiometabolic disease. Betaine intake was associated with increased cardiometabolic mortality in Chinese only (HR: 1.16; 95% CI: 1.08, 1.25; P-trend < 0.001). CONCLUSIONS High choline intake was associated with increased cardiometabolic mortality in racially diverse populations.
Collapse
Affiliation(s)
- Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Loren P Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mark D Steinwandel
- International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Honglan Li
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
Mujica-Coopman MF, Tan A, Schroder TH, Sinclair G, Vallance HD, Lamers Y. Serum Betaine and Dimethylglycine Are Higher in South Asian Compared with European Pregnant Women in Canada, with Betaine and Total Homocysteine Inversely Associated in Early and Midpregnancy, Independent of Ethnicity. J Nutr 2019; 149:2145-2155. [PMID: 31504713 DOI: 10.1093/jn/nxz178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/11/2019] [Accepted: 07/08/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND As a methyl donor required in the folate-vitamin B-12 independent remethylation of total homocysteine (tHcy) to methionine, betaine is critical for fetal development. Pregnant South Asian women living in Canada had a higher reported prevalence of low vitamin B-12 status compared with Europeans; betaine concentrations in this population are unknown. OBJECTIVES We aimed to compare serum betaine concentrations between South Asian and European pregnant women, and to determine the relation between betaine and tHcy concentrations in early pregnancy. METHODS A retrospective cohort study was conducted using biobanked serum samples of 723 apparently healthy pregnant women of South Asian (50%) and European ethnicity residing in British Columbia, Canada. Betaine, dimethylglycine (DMG), tHcy, and related metabolites were quantified in samples collected in the first (8-13 weeks of gestation) and second (14-20 weeks of gestation) trimesters. The relation between betaine and tHcy concentrations was assessed using a generalized regression model adjusted for weeks of gestation, ethnicity, prepregnancy BMI, maternal age, neonatal sex, parity, total vitamin B-12, folate, pyridoxal 5'-phosphate, and methionine concentrations. RESULTS Median serum concentrations of betaine and its metabolite DMG were higher in South Asian women in the first (19.8 [IQR: 16.3-25.0] and 1.55 [IQR: 1.30-1.96] $\mu {\rm mol/L} $, respectively) and second trimesters (16.1 [IQR: 12.9-19.8] and 1.42 [IQR: 1.14-1.81] $\mu {\rm mol/L} $, respectively) compared with European women (17.6 [IQR: 13.7-22.6] and 1.38 [IQR: 1.12-1.77] $\mu {\rm mol/L} $, respectively) and (12.9 [IQR: 10.6-16.7] and 1.19 [IQR: 0.97-1.52] $\mu {\rm mol/L} $, respectively; all P values < 0.0001). Betaine was inversely associated with tHcy concentration (β = -0.0208; 95% CI: -0.0341, -0.00742; P = 0.002). Additionally, total vitamin B-12 was associated with tHcy concentration (β = -0.0312; 95% CI: -0.0401, -0.0224), after adjusting for confounding factors. CONCLUSIONS Pregnant South Asian women residing in Canada had higher betaine and DMG concentrations, compared with women of European ethnicity, while betaine and total vitamin B-12 predicted tHcy independent of ethnicity. Our results emphasize the role of betaine, as methyl donor, in the remethylation of tHcy in a folate-replete population.
Collapse
Affiliation(s)
- Maria F Mujica-Coopman
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amy Tan
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Theresa H Schroder
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Graham Sinclair
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hilary D Vallance
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yvonne Lamers
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Van Parys A, Lysne V, Svingen GFT, Ueland PM, Dhar I, Øyen J, Dierkes J, Nygård OK. Dietary choline is related to increased risk of acute myocardial infarction in patients with stable angina pectoris. Biochimie 2019; 173:68-75. [PMID: 31707100 DOI: 10.1016/j.biochi.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023]
Abstract
High plasma choline has been associated with the metabolic syndrome and risk of chronic diseases, including cardiovascular disease. However, dietary choline is not correlated with choline plasma concentrations, and there are few studies and contradictory evidence regarding dietary choline and cardiovascular events. In addition, a recommended dietary allowance for choline has not been established and remains a point of contention. This study assessed the association between dietary choline, including choline forms, and risk of incident acute myocardial infarction (AMI) in patients with suspected stable angina pectoris (SAP). In total 1981 patients (80% men, median age 62) from the Western Norway B Vitamin Intervention Trial were included in this analysis. Information on dietary choline was obtained using a 169-item food frequency questionnaire. The Cardiovascular Disease in Norway project provided data on AMI. Risk associations were estimated using Cox-regression analysis using energy-adjusted choline intake. Median (25th, 75th percentile) total energy-adjusted choline intake was 288 (255, 326) mg/d. During a median (25th, 75th percentile) follow-up of 7.5 (6.3, 8.8) years, 312 (15.7%) patients experienced at least one AMI. Increased intakes of energy-adjusted choline (HR [95% CI] per 50 mg increase 1.11 [1.03, 1.20]), phosphatidylcholine (HR per 50 mg increase 1.24 [1.08, 1.42]) and sphingomyelin (HR per 5 mg increase 1.16 [1.02, 1.31]) were associated with higher AMI risk. In conclusion, higher dietary intakes of total choline, phosphatidylcholine and sphingomyelin were associated with increased risk of AMI in patients with SAP. Future studies are necessary to explore underlying mechanisms for this observation.
Collapse
Affiliation(s)
- Anthea Van Parys
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Indu Dhar
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar K Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
38
|
Mazidi M, Katsiki N, Mikhailidis DP, Banach M. Adiposity May Moderate the Link Between Choline Intake and Non-alcoholic Fatty Liver Disease. J Am Coll Nutr 2019; 38:633-639. [PMID: 31305223 DOI: 10.1080/07315724.2018.1507011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: In animal models, histological and biochemical changes are observed in response to choline deficiency. It is unclear whether dietary choline is linked to non-alcoholic fatty liver disease (NAFLD). Objective: We examined the link among liver tests, fatty liver index (FLI), and choline consumption. Furthermore, we evaluated the impact of adiposity on this association. Method: The National Health and Nutrition Examination Survey (NHANES) was used to obtain data on choline intake and liver function biomarkers. Masked variance and weighting methodology were performed to account for the complex NHANES data. Results: Of the 20,643 participants, 46.8% were men and 45.6% had NAFLD (defined as United States FLI ≥30). In a fully adjusted model (for demographic, dietary, and clinical factors), a significant negative association was found between FLI and choline consumption (β = -0.206, p < 0.001). Participants in the highest quartile (Q4) of choline intake had a 14% lower risk of NAFLD compared with those in the first quartile (Q1). This link was stronger for postmenopausal women; women in Q4 had a 26% lower risk of NAFLD compared with those in Q1. Body mass index (BMI) strongly moderated the link between FLI and choline intake. For example, when choline consumption increased from low (272 mg/d) to high (356 mg/d), FLI decreased from 79.3 to 74.1 in the low BMI category (mean BMI = 22.1 kg/m2) and from 32.1 to 20.6 in the high BMI category (mean BMI =35.9 kg/m2). Conclusions: Our results suggest the presence of a reverse significant association between choline intake and risk of NAFLD. Furthermore, BMI was shown to mediate this relationship since changes in FLI, in relation to choline consumption, were more pronounced in participants with a higher BMI.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Chaoyang , Beijing , China
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital , Thessaloniki , Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL) , London , UK
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz , Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI) , Lodz , Poland.,Cardiovascular Research Centre, University of Zielona Gora , Zielona Gora , Poland
| |
Collapse
|
39
|
Synoradzki K, Grieb P. Citicoline: A Superior Form of Choline? Nutrients 2019; 11:nu11071569. [PMID: 31336819 PMCID: PMC6683073 DOI: 10.3390/nu11071569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Medicines containing citicoline (cytidine-diphosphocholine) as an active principle have been marketed since the 1970s as nootropic and psychostimulant drugs available on prescription. Recently, the inner salt variant of this substance was pronounced a food ingredient in the major world markets. However, in the EU no nutrition or health claim has been authorized for use in commercial communications concerning its properties. Citicoline is considered a dietetic source of choline and cytidine. Cytidine does not have any health claim authorized either, but there are claims authorized for choline, concerning its contribution to normal lipid metabolism, maintenance of normal liver function, and normal homocysteine metabolism. The applicability of these claims to citicoline is discussed, leading to the conclusion that the issue is not a trivial one. Intriguing data, showing that on a molar mass basis citicoline is significantly less toxic than choline, are also analyzed. It is hypothesized that, compared to choline moiety in other dietary sources such as phosphatidylcholine, choline in citicoline is less prone to conversion to trimethylamine (TMA) and its putative atherogenic N-oxide (TMAO). Epidemiological studies have suggested that choline supplementation may improve cognitive performance, and for this application citicoline may be safer and more efficacious.
Collapse
Affiliation(s)
- Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
40
|
Yu D, Shu X, Rivera ES, Zhang X, Cai Q, Calcutt MW, Xiang Y, Li H, Gao Y, Wang TJ, Zheng W. Urinary Levels of Trimethylamine-N-Oxide and Incident Coronary Heart Disease: A Prospective Investigation Among Urban Chinese Adults. J Am Heart Assoc 2019; 8:e010606. [PMID: 30606084 PMCID: PMC6405718 DOI: 10.1161/jaha.118.010606] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
Background Trimethylamine-N-oxide ( TMAO ), a diet-derived, gut microbial-host cometabolite, has been associated with adverse cardiovascular outcomes in patient populations; however, evidence is lacking from prospective studies conducted in general populations and non-Western populations. Methods and Results We evaluated urinary levels of TMAO and its precursor metabolites (ie, choline, betaine, and carnitine) in relation to risk of coronary heart disease ( CHD ) among Chinese adults in a nested case-control study, including 275 participants with incident CHD and 275 individually matched controls. We found that urinary TMAO , but not its precursors, was associated with risk of CHD . The odds ratio for the highest versus lowest quartiles of TMAO was 1.91 (95% CI, 1.08-3.35; Ptrend=0.008) after adjusting for CHD risk factors including obesity, diet, lifestyle, and metabolic diseases and 1.75 (95% CI, 0.96-3.18; Ptrend=0.03) after further adjusting for potential confounders or mediators including central obesity, dyslipidemia, inflammation, and intake of seafood and deep-fried meat or fish, which were associated with TMAO level in this study. The odds ratio per standard deviation increase in log- TMAO was 1.30 (95% CI, 1.03-1.63) in the fully adjusted model. A history of diabetes mellitus modified the TMAO - CHD association. A high TMAO level (greater than or equal to versus lower than the median) was associated with odds ratios of 6.21 (95% CI, 1.64-23.6) and 1.56 (95% CI, 1.00-2.43), respectively, among diabetic and nondiabetic participants ( Pinteraction=0.02). Diabetes mellitus status also modified the associations of choline, betaine, and carnitine with risk of CHD ; significant positive associations were found among diabetic participants, but null associations were noted among total and nondiabetic participants. Conclusions Our study suggests that TMAO may accelerate the development of CHD , highlighting the importance of diet-gut microbiota-host interplay in cardiometabolic health.
Collapse
Affiliation(s)
- Danxia Yu
- Division of EpidemiologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Xiao‐Ou Shu
- Division of EpidemiologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Emilio S. Rivera
- Department of Biochemistry and Mass Spectrometry Research CenterVanderbilt UniversityNashvilleTN
| | | | - Qiuyin Cai
- Division of EpidemiologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Marion W. Calcutt
- Department of Biochemistry and Mass Spectrometry Research CenterVanderbilt UniversityNashvilleTN
| | - Yong‐Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of EpidemiologyShanghai Cancer InstituteRenji HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Honglan Li
- State Key Laboratory of Oncogene and Related Genes & Department of EpidemiologyShanghai Cancer InstituteRenji HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yu‐Tang Gao
- State Key Laboratory of Oncogene and Related Genes & Department of EpidemiologyShanghai Cancer InstituteRenji HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Thomas J. Wang
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Wei Zheng
- Division of EpidemiologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| |
Collapse
|
41
|
Examining the relationship between nutrition and cerebral structural integrity in older adults without dementia. Nutr Res Rev 2018; 32:79-98. [PMID: 30378509 DOI: 10.1017/s0954422418000185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The proportion of adults aged 60 years and over is expected to increase over the coming decades. This ageing of the population represents an important health issue, given that marked reductions to cerebral macro- and microstructural integrity are apparent with increasing age. Reduced cerebral structural integrity in older adults appears to predict poorer cognitive performance, even in the absence of clinical disorders such as dementia. As such, it is becoming increasingly important to identify those factors predicting cerebral structural integrity, especially factors that are modifiable. One such factor is nutritional intake. While the literature is limited, data from available cross-sectional studies indicate that increased intake of nutrients such as B vitamins (for example, B6, B12 and folate), choline, n-3 fatty acids and vitamin D, or increased adherence to prudent whole diets (for example, the Mediterranean diet) predicts greater cerebral structural integrity in older adults. There is even greater scarcity of randomised clinical trials investigating the effects of nutritional supplementation on cerebral structure, though it appears that supplementation with B vitamins (B6, B12 and folic acid) or n-3 fatty acids (DHA or EPA) may be beneficial. The current review presents an overview of available research examining the relationship between key nutrients or adherence to select diets and cerebral structural integrity in dementia-free older adults.
Collapse
|
42
|
Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients 2018; 10:nu10101513. [PMID: 30332744 PMCID: PMC6213596 DOI: 10.3390/nu10101513] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/13/2022] Open
Abstract
Choline, an essential dietary nutrient for humans, is required for the synthesis of the neurotransmitter, acetylcholine, the methyl group donor, betaine, and phospholipids; and therefore, choline is involved in a broad range of critical physiological functions across all stages of the life cycle. The current dietary recommendations for choline have been established as Adequate Intakes (AIs) for total choline; however, dietary choline is present in multiple different forms that are both water-soluble (e.g., free choline, phosphocholine, and glycerophosphocholine) and lipid-soluble (e.g., phosphatidylcholine and sphingomyelin). Interestingly, the different dietary choline forms consumed during infancy differ from those in adulthood. This can be explained by the primary food source, where the majority of choline present in human milk is in the water-soluble form, versus lipid-soluble forms for foods consumed later on. This review summarizes the current knowledge on dietary recommendations and assessment methods, and dietary choline intake from food sources across the life cycle.
Collapse
|
43
|
Dhana A, Yen H, Li T, Holmes MD, Qureshi AA, Cho E. Intake of folate and other nutrients related to one-carbon metabolism and risk of cutaneous melanoma among US women and men. Cancer Epidemiol 2018; 55:176-183. [PMID: 29990794 PMCID: PMC6097627 DOI: 10.1016/j.canep.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nutrients involved in one-carbon metabolism - folate, vitamins B6 and B12, methionine, choline, and betaine - have been inversely associated with multiple cancer sites and may be related to skin cancer. However, there is a lack of research on the association between intake of these nutrients and cutaneous melanoma risk. The aim of this study was to examine the associations between intake of one-carbon metabolism nutrients and cutaneous melanoma risk in two large prospective cohorts. METHODS The cohorts included 75,311 white women and 48,523 white men. Nutrient intake was assessed repeatedly by food frequency questionnaires and self-reported supplement use. We used Cox proportional hazards regression to estimate multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) and then pooled HRs using a random-effects model. RESULTS Over 24-26 years of follow-up, we documented 1328 melanoma cases (648 men and 680 women). Higher intake of folate from food only, but not total folate, was associated with increased melanoma risk (pooled HR for top versus bottom quintile: 1.36; 95% CI: 1.13-1.64; P for trend = 0.001). The association was significant in men, but attenuated in women. Higher intake of vitamins B6 and B12, choline, betaine, and methionine were not associated with melanoma risk, although there was modest increasing trend of risk for vitamin B6 from food only (pooled HR for top versus bottom quintile: 1.18; 95% CI: 0.99-1.41; P for trend = 0.03). CONCLUSIONS We found some evidence that higher intake of folate from food only was associated with a modest increased risk of cutaneous melanoma. However, since other factors related to dietary folate intake may account for the observed association, our findings warrant further investigation.
Collapse
Affiliation(s)
- Ashar Dhana
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Dermatology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Hsi Yen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tricia Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle D Holmes
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abrar A Qureshi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Eunyoung Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| |
Collapse
|
44
|
Cholewa JM, Hudson A, Cicholski T, Cervenka A, Barreno K, Broom K, Barch M, Craig SAS. The effects of chronic betaine supplementation on body composition and performance in collegiate females: a double-blind, randomized, placebo controlled trial. J Int Soc Sports Nutr 2018; 15:37. [PMID: 30064450 PMCID: PMC6069865 DOI: 10.1186/s12970-018-0243-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Betaine supplementation has been shown to improve body composition and some metrics of muscular performance in young men; but, whether betaine enhances body composition or performance in female subjects is currently unknown. Therefore, the purpose of this study was to investigate the interaction between resistance training adaptation and chronic betaine supplementation in females. METHODS Twenty-three young women (21.0 ± 1.4 years, 165.9 ± 6.4 cm, 68.6 ± 11.8 kg) without prior structured resistance training experience volunteered for this study. Body composition (BodPod), rectus femoris muscle thickness (B-mode Ultrasound), vertical jump, back squat 1RM and bench press 1RM were assessed pre- and post-training. Following 1 week of familiarization training, subjects were matched for body composition and squat strength, and randomly assigned to either a betaine (2.5 g/day; n = 11) or placebo (n = 12) group that completed 3 sets of 6-7 exercises per day performed to momentary muscular failure. Training was divided into two lower and one upper body training sessions per week performed on non-consecutive days for 8 weeks, and weekly volume load was used to analyze work capacity. RESULTS Significant main effects of time were found for changes in lean mass (2.4 ± 1.8 kg), muscle thickness (0.13 ± 0.08 cm), vertical jump (1.8 ± 1.6 cm), squat 1RM (39.8 ± 14.0 kg), and bench press 1 RM (9.1 ± 7.3 kg); however, there were no significant interactions. A trend (p = .056) was found for greater weekly training volumes for betaine versus placebo. Significant interactions were found for changes in body fat percentage and fat mass: body fat percentage and fat mass decreased significantly more in betaine (- 3.3 ± 1.7%; - 2.0 ± 1.1 kg) compared to placebo (- 1.7 ± 1.6%; - 0.8 ± 1.3 kg), respectively. CONCLUSIONS The results of this study indicated that betaine supplementation may enhance reductions in fat mass, but not absolute strength, that accompany a resistance training program in untrained collegiate females.
Collapse
Affiliation(s)
- Jason Michael Cholewa
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Andrea Hudson
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Taylor Cicholski
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Amanda Cervenka
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Karley Barreno
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Kayla Broom
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - McKenzie Barch
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Stuart A. S. Craig
- Regulatory & Scientific Affairs, DuPont Nutrition & Health Experimental Station, Wilmington, DE USA
| |
Collapse
|
45
|
Chmurzynska A, Seremak-Mrozikiewicz A, Malinowska AM, Różycka A, Radziejewska A, Szwengiel A, Kurzawińska G, Barlik M, Jagodziński PP, Drews K. PEMT rs12325817 and PCYT1A rs7639752 polymorphisms are associated with betaine but not choline concentrations in pregnant women. Nutr Res 2018; 56:61-70. [PMID: 30055775 DOI: 10.1016/j.nutres.2018.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
Maternal metabolism during gestation may depend on nutrient intake but also on polymorphism of genes encoding enzymes involved in metabolism of different nutrients. Data on choline or carnitine metabolism in pregnant women are scarce. We hypothesized that (1) choline intake in Polish pregnant women is inadequate and (2) choline and carnitine metabolism would differ by genotype and nutritional status of pregnant women. One hundred three healthy Polish women aged 18 to 44 years in the third trimester of pregnancy were enrolled in the study. The average choline, folate, and carnitine intakes were 365 ± 14 mg/d, 1089 ± 859 μg, and 132 ± 8 mg/d, respectively. Most women did not achieve an adequate intake of choline. Average choline, betaine, trimethylamine oxide, l-carnitine, and acetylcarnitine concentrations were 10.64 ± 3.30 μmol/L, 14.43 ± 4.01 μmol/L, 2.01 ± 1.24 μmol/L, 12.73 ± 5.41 μmol/L, and 6.79 ± 3.82 μmol/L, respectively. Approximately 15% lower betaine concentrations were observed in the GG homozygotes of PEMT rs12325817 and in the GG homozygotes of PCYT1A rs7639752 than in the respective minor allele carriers. Birth weight was higher in the G allele homozygotes of the CHDH rs2289205 than in the minor allele carriers: GG: 3398 ± 64 g; GA+AA: 3193 ± 76 g. Our study shows that choline intake in Polish pregnant women is inadequate and that polymorphisms of PEMT rs12325817 and PCYT1A rs7639752 are associated with betaine but not choline concentrations.
Collapse
Affiliation(s)
- Agata Chmurzynska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences.
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland; Laboratory of Molecular Biology, Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna M Malinowska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences
| | - Agata Różycka
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences
| | - Anna Radziejewska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences
| | - Artur Szwengiel
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences
| | - Grażyna Kurzawińska
- Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland; Laboratory of Molecular Biology, Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Barlik
- Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland; Laboratory of Molecular Biology, Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences
| | - Krzysztof Drews
- Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland; Laboratory of Molecular Biology, Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
46
|
Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018; 10:nu10060780. [PMID: 29914176 PMCID: PMC6024687 DOI: 10.3390/nu10060780] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States. For years, dietary cholesterol was implicated in increasing blood cholesterol levels leading to the elevated risk of CVD. To date, extensive research did not show evidence to support a role of dietary cholesterol in the development of CVD. As a result, the 2015–2020 Dietary Guidelines for Americans removed the recommendations of restricting dietary cholesterol to 300 mg/day. This review summarizes the current literature regarding dietary cholesterol intake and CVD. It is worth noting that most foods that are rich in cholesterol are also high in saturated fatty acids and thus may increase the risk of CVD due to the saturated fatty acid content. The exceptions are eggs and shrimp. Considering that eggs are affordable and nutrient-dense food items, containing high-quality protein with minimal saturated fatty acids (1.56 gm/egg) and are rich in several micronutrients including vitamins and minerals, it would be worthwhile to include eggs in moderation as a part of a healthy eating pattern. This recommendation is particularly relevant when individual’s intakes of nutrients are suboptimal, or with limited income and food access, and to help ensure dietary intake of sufficient nutrients in growing children and older adults.
Collapse
|
47
|
Petriello MC, Charnigo R, Sunkara M, Soman S, Pavuk M, Birnbaum L, Morris AJ, Hennig B. Relationship between serum trimethylamine N-oxide and exposure to dioxin-like pollutants. ENVIRONMENTAL RESEARCH 2018; 162:211-218. [PMID: 29353125 PMCID: PMC5811317 DOI: 10.1016/j.envres.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 05/29/2023]
Abstract
Trimethylamine N-oxide (TMAO) is a diet and gut microbiota-derived metabolite that has been linked to cardiovascular disease risk in human studies and animal models. TMAO levels show wide inter and intra individual variability in humans that can likely be accounted for by multiple factors including diet, the gut microbiota, levels of the TMAO generating liver enzyme Flavin-containing monooxygenase 3 (FMO3) and kidney function. We recently found that dioxin-like (DL) environmental pollutants increased FMO3 expression to elevate circulating diet-derived TMAO in mice, suggesting that exposure to this class of pollutants might also contribute to inter-individual variability in circulating TMAO levels in humans. To begin to explore this possibility we examined the relationship between body burden of DL pollutants (reported by serum lipid concentrations) and serum TMAO levels (n = 340) in the Anniston, AL cohort, which was highly exposed to polychlorinated biphenyls (PCBs). TMAO concentrations in archived serum samples from the Anniston Community Health Survey (ACHS-II) were measured, and associations of TMAO with 28 indices of pollutant body burden, including total dioxins toxic equivalent (TEQ), were quantified. Twenty-three (22 after adjustment for multiple comparisons) of the 28 indices were significantly positively associated with TMAO. Although the design of ACHS-II does not enable quantitative assessment of the contributions of previously known determinants of TMAO variability to this relationship, limited multivariate modeling revealed that total dioxins TEQ was significantly associated with TMAO among females (except at high BMIs) but not among males. Our results from this cross-sectional study indicate that exposure to DL pollutants may contribute to elevated serum TMAO levels. Prospective longitudinal studies will be required to assess the joint relationship between DL pollutant exposures, other determinants of TMAO, and health outcomes.
Collapse
Affiliation(s)
- Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Richard Charnigo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
| | - Manjula Sunkara
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Sony Soman
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Marian Pavuk
- CDC Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | | | - Andrew J Morris
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
48
|
Association of choline and betaine levels with cancer incidence and survival: A meta-analysis. Clin Nutr 2018; 38:100-109. [PMID: 29606601 DOI: 10.1016/j.clnu.2018.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Evidences suggest possible link between betaine and choline, methyl group donors, and cancer progression. We examined the association between choline and betaine levels and cancer incidence and survival in a meta-analysis of observational studies. METHODS We identified observational studies examining the association between choline and/or betaine levels from diet or blood and cancer incidence and survival by searching the PubMed and Web of Science databases for studies published up to Jan, 2018. After applying the selection criteria, 28 observational studies (9 case-control, 1 cross-sectional, and 18 cohort studies) were included. Relative risks (RRs) and 95% confidence intervals (CIs) were extracted, and combined RRs were calculated using random-effects models. RESULTS Choline levels were not associated with cancer incidence in a meta-analysis of cohort studies. Betaine levels reduced the risk of cancer incidence in a meta-analysis of cohort studies; combined relative risks (RRs) (95% CIs) comparing the top with the bottom categories were 0.93 (0.87-0.99). When we analyzed separately according to exposure assessment method, combined RRs (95% CIs) comparing the top with the bottom categories of betaine levels were 0.87 (95% CI: 0.78-0.95) for dietary betaine and 0.88 (95% CI: 0.77-0.99) for blood levels of betaine. There were no significant associations with cancer survivorship of choline or betaine levels. CONCLUSIONS We concluded that high betaine levels were associated with lower risk of the cancer incidence, especially for colorectal cancer.
Collapse
|
49
|
Yang S, Zhao N, Yang Y, Hu Y, Dong H, Zhao R. Mitotically Stable Modification of DNA Methylation in IGF2/H19 Imprinting Control Region Is Associated with Activated Hepatic IGF2 Expression in Offspring Rats from Betaine-Supplemented Dams. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2704-2713. [PMID: 29376352 DOI: 10.1021/acs.jafc.7b05418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growth-promoting action of betaine involves activation of GH/IGF-1 signaling, yet it remains unclear whether insulin-like growth factor 2 (IGF2), an imprinting gene, is affected by maternal dietary betaine supplementation. In this study, F1 offspring rats derived from dams fed basal or betaine-supplemented diet were examined at D21 and D63. Maternal betaine significantly upregulated the hepatic expression of IGF2 mRNA and protein in offspring rats at both D21 and D63, which was accompanied by enhanced hepatic IGF2 immunoreactivity and elevated serum IGF-2 level. Higher protein expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 was detected in the betaine group at D21, but not D63. However, hypermethylation of the imprinting control region of the IGF2/H19 locus at D21 was maintained at D63. These results indicate that maternal betaine modifies DNA methylation of IGF2/H19 imprinting control region in a mitotically stable fasion, which was associated with the activation hepatic IGF2 expression in offspring rats.
Collapse
Affiliation(s)
- Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Haibo Dong
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| |
Collapse
|
50
|
Reddan JM, White DJ, Macpherson H, Scholey A, Pipingas A. Glycerophospholipid Supplementation as a Potential Intervention for Supporting Cerebral Structure in Older Adults. Front Aging Neurosci 2018; 10:49. [PMID: 29563868 PMCID: PMC5845902 DOI: 10.3389/fnagi.2018.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 01/13/2023] Open
Abstract
Modifying nutritional intake through supplementation may be efficacious for altering the trajectory of cerebral structural decline evident with increasing age. To date, there have been a number of clinical trials in older adults whereby chronic supplementation with B vitamins, omega-3 fatty acids, or resveratrol, has been observed to either slow the rate of decline or repair cerebral tissue. There is also some evidence from animal studies indicating that supplementation with glycerophospholipids (GPL) may benefit cerebral structure, though these effects have not yet been investigated in adult humans. Despite this paucity of research, there are a number of factors predicting poorer cerebral structure in older humans, which GPL supplementation appears to beneficially modify or protect against. These include elevated concentrations of homocysteine, unbalanced activity of reactive oxygen species both increasing the risk of oxidative stress, increased concentrations of pro-inflammatory messengers, as well as poorer cardio- and cerebrovascular function. As such, it is hypothesized that GPL supplementation will support cerebral structure in older adults. These cerebral effects may influence cognitive function. The current review aims to provide a theoretical basis for future clinical trials investigating the effects of GPL supplementation on cerebral structural integrity in older adults.
Collapse
Affiliation(s)
- Jeffery M Reddan
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|