1
|
Yan RR, Louie JCY. Sugar guidelines should be evidence-based and contain simple and easily actionable messages. Front Nutr 2023; 10:1227377. [PMID: 37649529 PMCID: PMC10464488 DOI: 10.3389/fnut.2023.1227377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Rina Ruolin Yan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jimmy Chun Yu Louie
- Department of Nursing and Allied Health, School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
2
|
Liao Y, Davies NA, Bogle IDL. A process systems Engineering approach to analysis of fructose consumption in the liver system and consequences for Non-Alcoholic fatty liver disease. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Malik VS, Hu FB. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat Rev Endocrinol 2022; 18:205-218. [PMID: 35064240 PMCID: PMC8778490 DOI: 10.1038/s41574-021-00627-6] [Citation(s) in RCA: 390] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Sugar-sweetened beverages (SSBs) are a major source of added sugars in the diet. A robust body of evidence has linked habitual intake of SSBs with weight gain and a higher risk (compared with infrequent SSB consumption) of type 2 diabetes mellitus, cardiovascular diseases and some cancers, which makes these beverages a clear target for policy and regulatory actions. This Review provides an update on the evidence linking SSBs to obesity, cardiometabolic outcomes and related cancers, as well as methods to grade the strength of nutritional research. We discuss potential biological mechanisms by which constituent sugars can contribute to these outcomes. We also consider global trends in intake, alternative beverages (including artificially-sweetened beverages) and policy strategies targeting SSBs that have been implemented in different settings. Strong evidence from cohort studies on clinical outcomes and clinical trials assessing cardiometabolic risk factors supports an aetiological role of SSBs in relation to weight gain and cardiometabolic diseases. Many populations show high levels of SSB consumption and in low-income and middle-income countries, increased consumption patterns are associated with urbanization and economic growth. As such, more intensified policy efforts are needed to reduce intake of SSBs and the global burden of obesity and chronic diseases.
Collapse
Affiliation(s)
- Vasanti S Malik
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Coronati M, Baratta F, Pastori D, Ferro D, Angelico F, Del Ben M. Added Fructose in Non-Alcoholic Fatty Liver Disease and in Metabolic Syndrome: A Narrative Review. Nutrients 2022; 14:1127. [PMID: 35334784 PMCID: PMC8950441 DOI: 10.3390/nu14061127] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease and it is considered the hepatic manifestation of metabolic syndrome (MetS). Diet represents the key element in NAFLD and MetS treatment, but some nutrients could play a role in their pathophysiology. Among these, fructose added to foods via high fructose corn syrup (HFCS) and sucrose might participate in NAFLD and MetS onset and progression. Fructose induces de novo lipogenesis (DNL), endoplasmic reticulum stress and liver inflammation, promoting insulin resistance and dyslipidemia. Fructose also reduces fatty acids oxidation through the overproduction of malonyl CoA, favoring steatosis. Furthermore, recent studies suggest changes in intestinal permeability associated with fructose consumption that contribute to the risk of NAFLD and MetS. Finally, alterations in the hunger-satiety mechanism and in the synthesis of uric acid link the fructose intake to weight gain and hypertension, respectively. However, further studies are needed to better evaluate the causal relationship between fructose and metabolic diseases and to develop new therapeutic and preventive strategies against NAFLD and MetS.
Collapse
Affiliation(s)
- Mattia Coronati
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| | - Francesco Baratta
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| | - Daniele Pastori
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| | - Domenico Ferro
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Del Ben
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| |
Collapse
|
5
|
Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab 2021; 33:2329-2354. [PMID: 34619074 PMCID: PMC8665132 DOI: 10.1016/j.cmet.2021.09.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.
Collapse
Affiliation(s)
- Mark A Herman
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | | |
Collapse
|
6
|
Jacome-Sosa M, Hu Q, Manrique-Acevedo CM, Phair RD, Parks EJ. Human intestinal lipid storage through sequential meals reveals faster dinner appearance is associated with hyperlipidemia. JCI Insight 2021; 6:e148378. [PMID: 34369385 PMCID: PMC8489663 DOI: 10.1172/jci.insight.148378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background It is increasingly recognized that intestinal cells can store lipids after a meal, yet the effect of this phenomenon on lipid absorption patterns in insulin resistance remains unknown. Methods The kinetics of meal fat appearance were measured in insulin-sensitive (IS, n = 8) and insulin-resistant (IR, n = 8) subjects after sequential, isotopically labeled lunch and dinner meals. Plasma dynamics on triacylglycerol-rich (TAG-rich) lipoproteins and plasma hormones were analyzed using a nonlinear, non–steady state kinetic model. Results At the onset of dinner, IS subjects showed an abrupt plasma appearance of lunch lipid consistent with the “second-meal effect,” followed by slower appearance of dinner fat in plasma, resulting in reduced accumulation of dinner TAG of 48% compared with lunch. By contrast, IR subjects exhibited faster meal TAG appearance rates after both lunch and dinner. This effect of lower enterocyte storage between meals was associated with greater nocturnal and next-morning hyperlipidemia. The biochemical data and the kinetic analysis of second-meal effect dynamics are consistent with rapid secretion of stored TAG bypassing lipolysis and resynthesis. In addition, the data are consistent with a role for the diurnal pattern of plasma leptin in regulating the processing of dietary lipid. Conclusion These data support the concept that intestinal lipid storage may be physiologically beneficial in IS subjects. Trial registration ClinicalTrials.gov NCT02020343. Funding This study was supported by a grant from the American Diabetes Association (grant 1-13-TS-12).
Collapse
Affiliation(s)
| | - Qiong Hu
- Department of Nutrition and Exercise Physiology and
| | | | - Robert D Phair
- Integrative Bioinformatics, Inc., Mountain View, California, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology and.,Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Wali JA, Milner AJ, Luk AWS, Pulpitel TJ, Dodgson T, Facey HJW, Wahl D, Kebede MA, Senior AM, Sullivan MA, Brandon AE, Yau B, Lockwood GP, Koay YC, Ribeiro R, Solon-Biet SM, Bell-Anderson KS, O'Sullivan JF, Macia L, Forbes JM, Cooney GJ, Cogger VC, Holmes A, Raubenheimer D, Le Couteur DG, Simpson SJ. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat Metab 2021; 3:810-828. [PMID: 34099926 DOI: 10.1038/s42255-021-00393-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Reduced protein intake, through dilution with carbohydrate, extends lifespan and improves mid-life metabolic health in animal models. However, with transition to industrialised food systems, reduced dietary protein is associated with poor health outcomes in humans. Here we systematically interrogate the impact of carbohydrate quality in diets with varying carbohydrate and protein content. Studying 700 male mice on 33 isocaloric diets, we find that the type of carbohydrate and its digestibility profoundly shape the behavioural and physiological responses to protein dilution, modulate nutrient processing in the liver and alter the gut microbiota. Low (10%)-protein, high (70%)-carbohydrate diets promote the healthiest metabolic outcomes when carbohydrate comprises resistant starch (RS), yet the worst outcomes were with a 50:50 mixture of monosaccharides fructose and glucose. Our findings could explain the disparity between healthy, high-carbohydrate diets and the obesogenic impact of protein dilution by glucose-fructose mixtures associated with highly processed diets.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia.
| | - Annabelle J Milner
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Alison W S Luk
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tamara J Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tim Dodgson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Harrison J W Facey
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Devin Wahl
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Mitchell A Sullivan
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Belinda Yau
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Glen P Lockwood
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Rosilene Ribeiro
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Kim S Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - John F O'Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Josephine M Forbes
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Wali JA, Solon-Biet SM, Freire T, Brandon AE. Macronutrient Determinants of Obesity, Insulin Resistance and Metabolic Health. BIOLOGY 2021; 10:336. [PMID: 33923531 PMCID: PMC8072595 DOI: 10.3390/biology10040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023]
Abstract
Obesity caused by the overconsumption of calories has increased to epidemic proportions. Insulin resistance is often associated with an increased adiposity and is a precipitating factor in the development of cardiovascular disease, type 2 diabetes, and altered metabolic health. Of the various factors contributing to metabolic impairments, nutrition is the major modifiable factor that can be targeted to counter the rising prevalence of obesity and metabolic diseases. However, the macronutrient composition of a nutritionally balanced "healthy diet" are unclear, and so far, no tested dietary intervention has been successful in achieving long-term compliance and reductions in body weight and associated beneficial health outcomes. In the current review, we briefly describe the role of the three major macronutrients, carbohydrates, fats, and proteins, and their role in metabolic health, and provide mechanistic insights. We also discuss how an integrated multi-dimensional approach to nutritional science could help in reconciling apparently conflicting findings.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Baleeiro RDS, Guimarães AP, de Souza PM, Andrade RDS, Barbosa de Queiroz K, Coelho DB, de Oliveira EC, Becker LK. Sucrose-Sweetened Drinks Reduce the Physical Performance and Increase the Cardiovascular Risk in Physically Active Males. J Nutr Metab 2021; 2021:6683657. [PMID: 33763239 PMCID: PMC7964112 DOI: 10.1155/2021/6683657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The intake of sugar-sweetened beverages (SSBs) has increased rapidly, but the effects of this habit on health and physical performance are unknown. This study assessed the effect of excessive SSB intake on biochemical, physical performance, and biochemical and cardiovascular parameters of physically active males. METHODS Seventeen volunteers consumed a placebo drink (Pd; carbohydrate free) and an excessive SSB drink (eSSBd = Pd plus 300 g sucrose). In a blind randomized crossover study, the subjects were assigned to Pd or eSSBd groups for 15 days. After an interval of 7 days, subjects were reassigned to the other condition. RESULTS After eSSBd intake, there was an increase in weight (69.34 ± 13.71 vs. 70.62 ± 14.06), body mass index (24.49 ± 4.01 vs. 24.97 ± 4.13), waist circumference (75.33 ± 11.22 vs. 76.79 ± 11.51), VLDL (19.54 ± 9.50 vs. 25.52 ± 11.18), triglycerides (78.94 ± 23.79 vs. 114.77 ± 43.65), and peak systolic blood pressure (178.57 ± 26.56 vs. 200.71 ± 24.64). The cardiorespiratory response to exercise (VO2max) (48.15 ± 10.42 vs. 40.98 ± 11.20), peak heart rate (186.64 ± 8.00 vs. 179.64 ± 6.28), total exercise time (15.02 ± 1.57 vs. 14.00 ± 2.18), and mechanical work (15.83 ± 4.53 vs. 13.68 ± 5.67) decreased after eSSBd intake (all values expressed in initial mean ± DP vs. final). The rates of perceived exertion were higher (1.300 vs.1.661 slope and -0.7186 vs. -1.118 y-intercept) after eSSBd intake. CONCLUSION The present study shows that 15 days of eSSBd intake may negatively modulate biochemical parameters associated with cardiovascular risk. In addition, this overintake can impair the physical performance and cardiovascular responses to physical exercise.
Collapse
Affiliation(s)
- Raianne dos Santos Baleeiro
- Health and Nutrition, PPGSN, Research Center in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Aparecida Patricia Guimarães
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Perciliany Martins de Souza
- Research Center in Biological Sciences, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rafael da Silva Andrade
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Karina Barbosa de Queiroz
- Health and Nutrition, PPGSN, Food Department, Nutrition School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniel Barbosa Coelho
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Emerson Cruz de Oliveira
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Lenice Kappes Becker
- Health and Nutrition, PPGSN, Physical Education Department, Physical Education School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
10
|
Yunker AG, Luo S, Jones S, Dorton HM, Alves JM, Angelo B, DeFendis A, Pickering TA, Monterosso JR, Page KA. Appetite-Regulating Hormones Are Reduced After Oral Sucrose vs Glucose: Influence of Obesity, Insulin Resistance, and Sex. J Clin Endocrinol Metab 2021; 106:654-664. [PMID: 33300990 PMCID: PMC7947782 DOI: 10.1210/clinem/dgaa865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Fructose compared to glucose has adverse effects on metabolic function, but endocrine responses to oral sucrose vs glucose is not well understood. OBJECTIVE We investigated how oral sucrose vs glucose affected appetite-regulating hormones, and how biological factors (body mass index [BMI], insulin sensitivity, sex) influence endocrine responses to these 2 types of sugar. DESIGN Sixty-nine adults (29 men; 23.22 ± 3.74 years; BMI 27.03 ± 4.96 kg/m2) completed the study. On 2 occasions, participants consumed 300-mL drinks containing 75 g of glucose or sucrose. Blood was sampled at baseline, 10, 35, and 120 minutes post drink for plasma glucose, insulin, glucagon-like peptide (GLP-1)(7-36), peptide YY (PYY)total, and acyl-ghrelin measures. Hormone levels were compared between conditions using a linear mixed model. Interaction models were performed, and results were stratified to assess how biological factors influence endocrine responses. RESULTS Sucrose vs glucose ingestion provoked a less robust rise in glucose (P < .001), insulin (P < .001), GLP-1 (P < .001), and PYY (P = .02), whereas acyl-ghrelin suppression was similar between the sugars. We found BMI status by sugar interactions for glucose (P = .01) and PYY (P = .03); obese individuals had smaller increases in glucose and PYY levels after consuming sucrose vs glucose. There were interactions between insulin sensitivity and sugar for glucose (P = .003) and insulin (P = .04), and a sex by sugar interaction for GLP-1 (P = .01); men demonstrated smaller increases in GLP-1 in response to oral sucrose vs glucose. CONCLUSION Sucrose is less efficient at signaling postprandial satiation than glucose, and biological factors influence differential hormone responses to sucrose vs glucose consumption.
Collapse
Affiliation(s)
- Alexandra G Yunker
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Sabrina Jones
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hilary M Dorton
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Jasmin M Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brendan Angelo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alexis DeFendis
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Trevor A Pickering
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John R Monterosso
- Department of Psychology, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Kathleen A Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Correspondence and Reprint Requests: Kathleen A. Page, MD, USC Keck School of Medicine, Division of Endocrinology, Diabetes and Obesity Research Institute, 2250 Alcazar St, CSC 209, Los Angeles, CA 90089, USA. E-mail:
| |
Collapse
|
11
|
Sigala DM, Stanhope KL. An Exploration of the Role of Sugar-Sweetened Beverage in Promoting Obesity and Health Disparities. Curr Obes Rep 2021; 10:39-52. [PMID: 33411311 PMCID: PMC7788552 DOI: 10.1007/s13679-020-00421-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The mechanistic role of sugar-sweetened beverage (SSB) in the etiology of obesity is undetermined. We address whether, compared to other foods, does consumption of SSB (1) automatically lead to failure to compensate for the energy it contains? (2) fail to elicit homeostatic hormone responses? (3) promote hedonic eating through activation of the brain's reward pathways? We followed the evidence to address: (4) Would restriction of targeted marketing of SSB and other unhealthy foods to vulnerable populations decrease their prevalence of obesity? RECENT FINDINGS The data are lacking to demonstrate that SSB consumption promotes body weight gain compared with isocaloric consumption of other beverages or foods and that this is linked to its failure to elicit adequate homeostatic hormone responses. However, more recent data have linked body weight gain to reward activation in the brain to palatable food cues and suggest that sweet tastes and SSB consumption heightens the reward response to food cues. Studies investigating the specificity of these responses have not been conducted. Nevertheless, the current data provide a biological basis to the body of evidence demonstrating that the targeted marketing (real life palatable food cues) of SSB and other unhealthy foods to vulnerable populations, including children and people of color and low socioeconomic status, is increasing their risk for obesity. While the mechanisms for the association between SSB consumption and body weight gain cannot be identified, current scientific evidence strongly suggests that proactive environmental measures to reduce exposure to palatable food cues in the form of targeting marketing will decrease the risk of obesity in vulnerable populations.
Collapse
Affiliation(s)
- Desiree M. Sigala
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California (UC), Davis, 2211 VM3B, Davis, CA 95616 USA
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California (UC), Davis, 2211 VM3B, Davis, CA 95616 USA
- Basic Sciences, Touro University of California, Vallejo, CA USA
| |
Collapse
|
12
|
Ahmad A, Isherwood C, Umpleby M, Griffin B. Effects of High and Low Sugar Diets on Cardiovascular Disease Risk Factors. J Nutr Sci Vitaminol (Tokyo) 2021; 66:S18-S24. [PMID: 33612591 DOI: 10.3177/jnsv.66.s18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been proposed that a high sugar intake was associated with cardiovascular disease (CVD) risk and metabolic syndrome depending on the amount of carbohydrate (CHO), other nutrients in foods, and underlying metabolic disturbances. This study aimed to investigate the effects of high (HS) and low sugar (LS) diets on metabolic profiles in 25 middle-aged men at increased CVD risk in a 12-week randomised cross-over intervention study. An isocaloric dietary exchanged model consisted of HS (24% energy from sugar) and LS (6% energy from sugar) with comparable total CHO, fat and fibre composition in normal foods was used. Anthropometric, blood pressure and plasma lipid profile were measured pre- and post-intervention. Body weight, waist circumference and fat mass increased and decreased significantly after HS (by 0.7±0.3 kg, 1.4±1.0 cm and 0.5±0.3 kg) and LS (by 2.1±0.5 kg, 2.0±0.8 cm and 1.4±0.3 kg) (p<0.05), respectively. Plasma TG increased significantly after HS by 0.26±0.07 mmol/L and decreased after LS by 0.35±0.16 mmol/L. Plasma HDL decreased by 0.11±0.03 mmol/L (p<0.05) after HS, whilst, plasma TC and LDL decreased significantly by 10% after LS. There was no significant change in other parameters after either diet. This study confirmed that a diet with a greater proportion of sugar increased CVD risk via negative changes in metabolic profiles including body weight, waist circumference and lipid parameters, whereas LS produced the positive effects. A restriction of sugar intake to lower than 10% energy intake is vital to reduce CVD risk.
Collapse
Affiliation(s)
- Aryati Ahmad
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin.,Faculty of Health & Medical Sciences, University of Surrey
| | | | - Margot Umpleby
- Faculty of Health & Medical Sciences, University of Surrey
| | - Bruce Griffin
- Faculty of Health & Medical Sciences, University of Surrey
| |
Collapse
|
13
|
Khorshidian N, Shadnoush M, Zabihzadeh Khajavi M, Sohrabvandi S, Yousefi M, Mortazavian AM. Fructose and high fructose corn syrup: are they a two-edged sword? Int J Food Sci Nutr 2021; 72:592-614. [PMID: 33499690 DOI: 10.1080/09637486.2020.1862068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-fructose syrups are used as sugar substitutes due to their physical and functional properties. High fructose corn syrup (HFCS) is used in bakery products, dairy products, breakfast cereals and beverages, but it has been reported that there might be a direct relationship between high fructose intake and adverse health effects such as obesity and the metabolic syndrome. Thus, fructose has recently received much attention, most of which was negative. Although studies have indicated that there might be a correlation between high fructose-rich diet and several adverse effects, however, the results of these studies cannot be certainly generalised to the effects of HFCS; because they have investigated pure fructose at very high concentrations in measurement of metabolic upsets. This review critically considered the advantages and possible disadvantages of HFCS application and consumption in food industry, as a current challenging issue between nutritionists and food technologists.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zabihzadeh Khajavi
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amir M Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Hieronimus B, Medici V, Bremer AA, Lee V, Nunez MV, Sigala DM, Keim NL, Havel PJ, Stanhope KL. Synergistic effects of fructose and glucose on lipoprotein risk factors for cardiovascular disease in young adults. Metabolism 2020; 112:154356. [PMID: 32916151 PMCID: PMC8744004 DOI: 10.1016/j.metabol.2020.154356] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/23/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fructose consumption increases risk factors for cardiometabolic disease. It is assumed that the effects of free sugars on risk factors are less potent because they contain less fructose. We compared the effects of consuming fructose, glucose or their combination, high fructose corn syrup (HFCS), on cardiometabolic risk factors. METHODS Adults (18-40 years; BMI 18-35 kg/m2) participated in a parallel, double-blinded dietary intervention during which beverages sweetened with aspartame, glucose (25% of energy requirements (ereq)), fructose or HFCS (25% and 17.5% ereq) were consumed for two weeks. Groups were matched for sex, baseline BMI and plasma lipid/lipoprotein concentrations. 24-h serial blood samples were collected at baseline and at the end of intervention. Primary outcomes were 24-h triglyceride AUC, LDL-cholesterol (C), and apolipoprotein (apo)B. Interactions between fructose and glucose were assessed post hoc. FINDINGS 145 subjects (26.0 ± 5.8 years; body mass index 25.0 ± 3.7 kg/m2) completed the study. As expected, the increase of 24-h triglycerides compared with aspartame was highest during fructose consumption (25%: 6.66 mmol/Lx24h 95% CI [1.90 to 11.63], P = 0.0013 versus aspartame), intermediate during HFCS consumption (25%: 4.68 mmol/Lx24h 95% CI [-0.18 to 9.55], P = 0.066 versus aspartame) and lowest during glucose consumption. In contrast, the increase of LDL-C was highest during HFCS consumption (25%: 0.46 mmol/L 95% CI [0.16 to 0.77], P = 0.0002 versus aspartame) and intermediate during fructose consumption (25%: 0.33 mmol/L 95% CI [0.03 to 0.63], P = 0.023 versus aspartame), as was the increase of apoB (HFCS-25%: 0.108 g/L 95%CI [0.032 to 0.184], P = 0.001; fructose 25%: 0.072 g/L 95%CI [-0.004 to 0.148], P = 0.074 versus aspartame). The post hoc analyses showed significant interactive effects of fructose*glucose on LDL-C and apoB (both P < 0.01), but not on 24-h triglyceride (P = 0.340). CONCLUSION A significant interaction between fructose and glucose contributed to increases of lipoprotein risk factors when the two monosaccharides were co-ingested as HFCS. Thus, the effects of HFCS on lipoprotein risks factors are not solely mediated by the fructose content and it cannot be assumed that glucose is a benign component of HFCS. Our findings suggest that HFCS may be as harmful as isocaloric amounts of pure fructose and provide further support for the urgency to implement strategies to limit free sugar consumption.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Max Rubner-Institut, Institute of Child Nutrition, Karlsruhe, Germany; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America.
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, University of California, Davis, CA, United States of America
| | - Andrew A Bremer
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, United States of America; Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Vivien Lee
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Marinelle V Nunez
- Department of Nutrition, University of California, Davis, CA, United States of America
| | - Desiree M Sigala
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America; Department of Nutrition, University of California, Davis, CA, United States of America
| | - Nancy L Keim
- Department of Nutrition, University of California, Davis, CA, United States of America; United States Department of Agriculture, Western Human Nutrition Research Center, Davis, CA, United States of America
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America; Department of Nutrition, University of California, Davis, CA, United States of America
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| |
Collapse
|
15
|
Al-Jawaldeh A, Taktouk M, Nasreddine L. Food Consumption Patterns and Nutrient Intakes of Children and Adolescents in the Eastern Mediterranean Region: A Call for Policy Action. Nutrients 2020; 12:E3345. [PMID: 33143163 PMCID: PMC7693485 DOI: 10.3390/nu12113345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022] Open
Abstract
The Eastern Mediterranean Region (EMR) has witnessed significant social and economic changes that may have influenced the diet of children and adolescents, and increased the risk for obesity and malnutrition in this age group. This review aims to characterize and assess food consumption patterns and nutrient intakes amongst school-aged children (5-10 years) and adolescents (10-19 years) in countries of the EMR. Electronic databases (MedLine, PubMed, Scopus, and Google Scholar) were searched for relevant articles published between 2005 and 2020; international organizations and governmental websites were also searched. Available studies documented low intakes of fruits, vegetables and fiber, inadequate consumption of water, milk and dairy products, coupled with high intakes of fat, saturated fat, and sugar sweetened beverages, as well as a frequent consumption of energy-dense, nutrient poor foods such as sweet and savory snacks. Micronutrient inadequacies were also observed, particularly for calcium, iron, zinc and vitamins A, D, C, and folate. Acknowledging the impact that nutrition may have on building societies and transforming the lives of children, adolescents and their families, there is a crucial need for a food system approach in developing and implementing national and regional policies and interventions aimed at improving the diet of children and adolescents.
Collapse
Affiliation(s)
- Ayoub Al-Jawaldeh
- World Health Organization (WHO), Regional Office for the Eastern Mediterranean (EMRO), Cairo 7608, Egypt;
| | - Mandy Taktouk
- Nutrition and Food Sciences Department, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Lara Nasreddine
- Nutrition and Food Sciences Department, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut 11-0236, Lebanon;
| |
Collapse
|
16
|
Liao Y, Davies NA, Bogle IDL. Computational Modeling of Fructose Metabolism and Development in NAFLD. Front Bioeng Biotechnol 2020; 8:762. [PMID: 32775322 PMCID: PMC7388684 DOI: 10.3389/fbioe.2020.00762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcohol fatty liver disease (NAFLD) is a common disorder that has increased in prevalence 20-fold over the last three decades. It covers a spectrum of conditions resulting from excess lipid accumulation in the liver without alcohol abuse. Among all the risk factors, over-consumption of fructose has been repeatedly reported in both clinical and experimental studies to be highly associated with the development of NAFLD. However, studying in vivo systems is complicated, time consuming and expensive. A detailed kinetic model of fructose metabolism was constructed to investigate the metabolic mechanisms whereby fructose consumption can induce dyslipidaemia associated with NAFLD and to explore whether the pathological conditions can be reversed during the early stages of disease. The model contains biochemical components and reactions identified from the literature, including ~120 parameters, 25 variables, and 25 first order differential equations. Three scenarios were presented to demonstrate the behavior of the model. Scenario one predicts the acute effects of a change in carbohydrate input in lipid profiles. The results present progressive triglyceride accumulations in the liver and plasma for three diets. The rate of accumulation was greater in the fructose diet than that of the mixed or glucose only models. Scenario two explores the variability of metabolic reaction rate within the general population. Sensitivity analysis reveals that hepatic triglyceride concentration is most sensitive to the rate constant of pyruvate kinase and fructokinase. Scenario three tests the effect of one specific inhibitor that might be potentially administered. The simulations of fructokinase suppression provide a good model for potentially reversing simple steatosis induced by high fructose consumption, which can be corroborated by experimental studies. The predictions in these three scenarios suggest that the model is robust and it has sufficient detail to present the kinetic relationship between fructose and lipid in the liver.
Collapse
Affiliation(s)
- Yunjie Liao
- Department of Chemical Engineering, Center for Process Systems Engineering, University College London, London, United Kingdom.,Division of Medicine, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Nathan A Davies
- Division of Medicine, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - I David L Bogle
- Department of Chemical Engineering, Center for Process Systems Engineering, University College London, London, United Kingdom
| |
Collapse
|
17
|
Lee DPS, Low JHM, Chen JR, Zimmermann D, Actis-Goretta L, Kim JE. The Influence of Different Foods and Food Ingredients on Acute Postprandial Triglyceride Response: A Systematic Literature Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2020; 11:1529-1543. [PMID: 32609800 PMCID: PMC7666897 DOI: 10.1093/advances/nmaa074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The use of postprandial triglyceride (ppTG) as a cardiovascular disease risk indicator has gained recent popularity. However, the influence of different foods or food ingredients on the ppTG response has not been comprehensively characterized. A systematic literature review and meta-analysis was conducted to assess the effects of foods or food ingredients on the ppTG response. PubMed, MEDLINE, Cochrane, and CINAHL databases were searched for relevant acute (<24-h) randomized controlled trials published up to September 2018. Based on our selection criteria, 179 relevant trials (366 comparisons) were identified and systematically compiled into distinct food or food ingredient categories. A ppTG-lowering effect was noted for soluble fiber (Hedges' giAUC = -0.72; 95% CI: -1.33, -0.11), sodium bicarbonate mineral water (Hedges' gAUC = -0.42; 95% CI: -0.79, -0.04), diacylglycerol oil (Hedges' giAUC = -0.38; 95% CI: -0.75, -0.00), and whey protein when it was contrasted with other proteins. The fats group showed significant but opposite effects depending on the outcome measure used (Hedges' giAUC = -0.32; 95% CI: -0.61, -0.03; and Hedges' gAUC = 0.16; 95% CI: 0.06, 0.26). Data for other important food groups (nuts, vegetables, and polyphenols) were also assessed but of limited availability. Assessing for oral fat tolerance test (OFTT) recommendation compliance, most trials were ≥4 h long but lacked a sufficiently high fat challenge. iAUC and AUC were more common measures of ppTG. Overall, our analyses indicate that the effects on ppTG by different food groups are diverse, largely influenced by the type of food or food ingredient within the same group. The type of ppTG measurement can also influence the response.
Collapse
Affiliation(s)
- Delia Pei Shan Lee
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Jasmine Hui Min Low
- Department of Food Science and Technology, National University of Singapore, Singapore
| | | | | | - Lucas Actis-Goretta
- Nestlé Research Singapore Hub, Singapore,Nestlé Research, Lausanne, Switzerland
| | | |
Collapse
|
18
|
Milutinović DV, Brkljačić J, Teofilović A, Bursać B, Nikolić M, Gligorovska L, Kovačević S, Djordjevic A, Preitner F, Tappy L, Matić G, Veličković N. Chronic Stress Potentiates High Fructose-Induced Lipogenesis in Rat Liver and Kidney. Mol Nutr Food Res 2020; 64:e1901141. [PMID: 32379936 DOI: 10.1002/mnfr.201901141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Intake of fructose-sweetened beverages and chronic stress (CS) both increase risk of cardiometabolic diseases. The aim is to investigate whether these factors synergistically perturb lipid metabolism in rat liver and kidney. METHODS AND RESULTS Fractional de novo lipogenesis (fDNL), intrahepatic- and intrarenal-triglycerides (IHTG and IRTG), de novo palmitate (DNPalm) content, FA composition, VLDL-TGs kinetics, and key metabolic gene expression at the end of the feeding and non-feeding phases in rats exposed to standard chow diet, chow diet + CS, 20% liquid high-fructose supplementation (HFr), or HFr+CS are measured. HFr induces hypertriglyceridemia, up-regulates fructose-metabolism and gluconeogenic enzymes, increases IHTG and DNPalm content in IHTG and IRTG, and augments fDNL at the end of the feeding phase. These changes are diminished after the non-feeding phase. CS does not exert such effects, but when combined with HFr, it reduces IHTG and visceral adiposity, enhances lipogenic gene expression and fDNL, and increases VLDL-DNPalm secretion. CONCLUSION Liquid high-fructose supplementation increases IHTG and VLDL-TG secretion after the feeding phase, the latter being the result of stimulated hepatic and renal DNL. Chronic stress potentiates the effects of high fructose on fDNL and export of newly synthesized VLDL-TGs, and decreases fructose-induced intrahepatic TG accumulation after the feeding phase.
Collapse
Affiliation(s)
- Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Ana Teofilović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Marina Nikolić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Frederic Preitner
- Mouse Metabolic Facility (MEF), Center for Integrative Genomics, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Luc Tappy
- Department of Physiology, University of Lausanne, UNIL-CHUV, Rue du Bugnon 7, Lausanne, CH-1005, Switzerland
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| |
Collapse
|
19
|
Ozcan-Sınır G, Inan S, Suna S, Tamer CE, Akgül MB, Bagdas D, Sonmez G, Evrensel T, Kaya E, Sarandol E, Dündar HZ, Tarım OF, Ercan I, Sıgırlı D, Incedayı B, Copur OU. Effect of High Fructose Corn Sirup on Pancreatic Ductal Adenocarcinoma Induced by Dimethyl Benzantracene (DMBA) in Rats. Nutr Cancer 2020; 73:339-349. [PMID: 32475178 DOI: 10.1080/01635581.2020.1770811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Increased risk of pancreatic cancer may be associated with consumption of sugar containing foods. The aim of this study was to evaluate the effect of peach nectar containing high fructose corn sirup (HFCS) consumption in a pancreatic carcinogenesis rat model induced by 7,12-Dimethyl benzanthracene (DMBA). Fifty-day-old male Sprague Dawley rats were fed with peach nectar containing HFCS + chow, peach nectar containing sucrose + chow and only chow. After 8 mo, feeding period, each group was divided into two subgroups, in which the rats were implanted with DMBA and no DMBA (sham). Histologic specimens were evaluated according to the routine tissue processing protocol. The animals with ad libitum access to pn-HFCS, pn-sucrose and chow (only) showed significant differences in chow consumption and glucose level. Necropsy and histopathologic findings showed tumor formation in the entire group treated with DMBA. Excluding one rat in chow group, which was classified as poorly differentiated type, the others were classified as moderately differentiated pancreatic ductal adenocarcinoma (PDAC). This study demonstrated that daily intake of HFCS did not increase body weight and there was no effect of peach nectar consumption on the development of PDAC induced by DMBA in rats.
Collapse
Affiliation(s)
- Gulsah Ozcan-Sınır
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Sevda Inan
- Department of Pathology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Senem Suna
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Canan Ece Tamer
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Mustafa Barış Akgül
- Department of Surgery, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Deniz Bagdas
- Department of Psychiatry, Yale University School of Medicine, New Heaven, CT, USA
| | - Gursel Sonmez
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Turkkan Evrensel
- Department of Medical Oncology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey Görükle
| | - Ekrem Kaya
- Department of Surgery, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Emre Sarandol
- Department of Biochemistry, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Halit Ziya Dündar
- Department of Surgery, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Omer Faruk Tarım
- Department of Paediatric Endocrinology, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Ilker Ercan
- Department of Biostatistic, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Deniz Sıgırlı
- Department of Biostatistic, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Bige Incedayı
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Omer Utku Copur
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| |
Collapse
|
20
|
Carroll HA, Chen Y, Templeman IS, Wharton P, Reeves S, Trim WV, Chowdhury EA, Brunstrom JM, Rogers PJ, Thompson D, James LJ, Johnson L, Betts JA. Effect of Plain Versus Sugar-Sweetened Breakfast on Energy Balance and Metabolic Health: A Randomized Crossover Trial. Obesity (Silver Spring) 2020; 28:740-748. [PMID: 32108442 PMCID: PMC7154643 DOI: 10.1002/oby.22757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/14/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study investigated the effect of 3 weeks of high-sugar ("Sweet") versus low-sugar ("Plain") breakfast on energy balance, metabolic health, and appetite. METHODS A total of 29 healthy adults (22 women) completed this randomized crossover study. Participants had pre- and postintervention appetite, health, and body mass outcomes measured, and they recorded diet, appetite (visual analogue scales), and physical activity for 8 days during each intervention. Interventions were 3 weeks of isoenergetic Sweet (30% by weight added sugar; average 32 g of sugar) versus Plain (no added sugar; average 8 g of sugar) porridge-based breakfasts. RESULTS Pre- to postintervention changes in body mass were similar between Plain (Δ 0.1 kg; 95% CI: -0.3 to 0.5 kg) and Sweet (Δ 0.2 kg; 95% CI: -0.2 to 0.5 kg), as were pre- to postintervention changes for biomarkers of health (all P ≥ 0.101) and psychological appetite (all P ≥ 0.152). Energy, fat, and protein intake was not statistically different between conditions. Total carbohydrate intake was higher during Sweet (287 ± 82 g/d vs. 256 ± 73 g/d; P = 0.009), driven more by higher sugar intake at breakfast (116 ± 46 g/d vs. 88 ± 38 g/d; P < 0.001) than post-breakfast sugar intake (Sweet 84 ± 42 g/d vs. Plain 80 ± 37 g/d; P = 0.552). Participants reported reduced sweet desire immediately after Sweet but not Plain breakfasts (trial × time P < 0.001). CONCLUSIONS Energy balance, health markers, and appetite did not respond differently to 3 weeks of high- or low-sugar breakfasts.
Collapse
Affiliation(s)
- Harriet A. Carroll
- Department for HealthUniversity of BathBathUK
- Rowett InstituteUniversity of AberdeenAberdeenUK
| | - Yung‐Chih Chen
- Department of Physical EducationNational Taiwan Normal UniversityTaipeiTaiwan
- Institute for Research Excellence in Learning ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | | | - Phoebe Wharton
- Department of Life SciencesUniversity of RoehamptonLondonUK
| | - Sue Reeves
- Department of Life SciencesUniversity of RoehamptonLondonUK
| | | | | | | | - Peter J. Rogers
- School of Psychological ScienceUniversity of BristolBristolUK
| | | | - Lewis J. James
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Laura Johnson
- School for Policy StudiesUniversity of BristolBristolUK
| | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Chronic consumption of fructose and fructose-containing sugars leads to dyslipidemia. Apolipoprotein (apo) CIII is strongly associated with elevated levels of triglycerides and cardiovascular disease risk. We reviewed the effects of fructose consumption on apoCIII levels and the role of apoCIII in fructose-induced dyslipidemia. RECENT FINDINGS Consumption of fructose increases circulating apoCIII levels compared with glucose. The more marked effects of fructose compared with glucose on apoCIII concentrations may involve the failure of fructose consumption to stimulate insulin secretion. The increase in apoCIII levels after fructose consumption correlates with increased postprandial serum triglyceride. Further, RNA interference of apoCIII prevents fructose-induced dyslipidemia in nonhuman primates. Increases in postprandial apoCIII after fructose, but not glucose consumption, are positively associated with elevated triglycerides in large triglyceride-rich lipoproteins and increased small dense LDL levels. SUMMARY ApoCIII might be causal in the lipid dysregulation observed after consumption of fructose and fructose-containing sugars. Decreased consumption of fructose and fructose-containing sugars could be an effective strategy for reducing circulating apoCIII and subsequently lowering triglyceride levels.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | | |
Collapse
|
22
|
Malik VS, Hu FB. Sugar-Sweetened Beverages and Cardiometabolic Health: An Update of the Evidence. Nutrients 2019; 11:E1840. [PMID: 31398911 PMCID: PMC6723421 DOI: 10.3390/nu11081840] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Sugar-sweetened beverages (SSBs) have little nutritional value and a robust body of evidence has linked the intake of SSBs to weight gain and risk of type 2 diabetes (T2D), cardiovascular disease (CVD), and some cancers. Metabolic Syndrome (MetSyn) is a clustering of risk factors that precedes the development of T2D and CVD; however, evidence linking SSBs to MetSyn is not clear. To make informed recommendations about SSBs, new evidence needs to be considered against existing literature. This review provides an update on the evidence linking SSBs and cardiometabolic outcomes including MetSyn. Findings from prospective cohort studies support a strong positive association between SSBs and weight gain and risk of T2D and coronary heart disease (CHD), independent of adiposity. Associations with MetSyn are less consistent, and there appears to be a sex difference with stroke with greater risk in women. Findings from short-term trials on metabolic risk factors provide mechanistic support for associations with T2D and CHD. Conclusive evidence from cohort studies and trials on risk factors support an etiologic role of SSB in relation to weight gain and risk of T2D and CHD. Continued efforts to reduce intake of SSB should be encouraged to improve the cardiometabolic health of individuals and populations.
Collapse
Affiliation(s)
- Vasanti S Malik
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Varsamis P, Formosa MF, Larsen RN, Reddy-Luthmoodoo M, Jennings GL, Cohen ND, Grace M, Hawley JA, Devlin BL, Owen N, Dunstan DW, Dempsey PC, Kingwell BA. Between-meal sucrose-sweetened beverage consumption impairs glycaemia and lipid metabolism during prolonged sitting: A randomized controlled trial. Clin Nutr 2019; 38:1536-1543. [PMID: 30217471 DOI: 10.1016/j.clnu.2018.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Chronic overconsumption of sugar-sweetened beverages (SSBs) is associated with unfavourable health effects, including promotion of obesity. However, the acute effects of consuming SSBs on glucose and lipid metabolism remain to be characterized in a real-world, post-prandial context of prolonged sitting. We quantified the acute effects of between-meal SSB consumption compared with water, on glucose and lipid metabolism in habitual soft drink consumers during prolonged sitting. METHODS Twenty-eight overweight or obese young adults [15 males; 23 ± 3 (mean ± SD) years, body mass index (BMI) 31.0 ± 3.6 kg/m2) participated. During uninterrupted sitting and following standardized breakfast and lunch meals, each participant completed two 7-h conditions on separate days in a randomized, crossover design study. For each condition, participants consumed either a sucrose SSB or water mid-morning and mid-afternoon. Peak responses and total area under the curve (tAUC) over 7 h for blood glucose, insulin, C-peptide, triglyceride and non-esterified fatty acid (NEFA) concentrations were quantified and compared. RESULTS Compared to water, SSB consumption significantly increased the peak responses for blood glucose (20 ± 4% (mean ± SEM)), insulin (43 ± 15%) and C-peptide (21 ± 6%) concentrations. The tAUC for all these parameters was also increased by SSB consumption. The tAUC for triglycerides was 15 ± 5% lower after SSBs and this was driven by males (P < 0.05), as females showed no difference between conditions. The tAUC for NEFAs was 13 ± 5% lower after the SSB condition (P < 0.05). CONCLUSIONS Between-meal SSB consumption significantly elevated plasma glucose responses, associated with a sustained elevation in plasma insulin throughout a day of prolonged sitting. The SSB-induced reduction in circulating triglycerides and NEFAs indicates significant modulation of lipid metabolism, particularly in males. These metabolic effects may contribute to the development of metabolic disease when SSB consumption is habitual and co-occurring with prolonged sitting. Clinical Trial Registry number: ACTRN12616000840482, https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12616000840482.
Collapse
Affiliation(s)
- Pia Varsamis
- Baker Heart & Diabetes Institute, Melbourne, Australia; Department of Physiology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Australia.
| | | | | | | | - Garry L Jennings
- Baker Heart & Diabetes Institute, Melbourne, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Neale D Cohen
- Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Megan Grace
- Baker Heart & Diabetes Institute, Melbourne, Australia; Department of Physiology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Australia
| | - John A Hawley
- Exercise & Nutrition Research Programme, Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Brooke L Devlin
- Exercise & Nutrition Research Programme, Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Neville Owen
- Baker Heart & Diabetes Institute, Melbourne, Australia; Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Australia; School of Sport Science, Exercise and Health, The University of Western Australia, Perth, Australia; Swinburne University of Technology, Melbourne, Australia; School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - David W Dunstan
- Baker Heart & Diabetes Institute, Melbourne, Australia; Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Australia; Centre of Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia; Exercise & Nutrition Research Programme, Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Victoria, Australia; School of Public Health, The University of Queensland, Brisbane, Australia; School of Sport Science, Exercise and Health, The University of Western Australia, Perth, Australia
| | - Paddy C Dempsey
- Baker Heart & Diabetes Institute, Melbourne, Australia; Swinburne University of Technology, Melbourne, Australia
| | - Bronwyn A Kingwell
- Baker Heart & Diabetes Institute, Melbourne, Australia; Department of Physiology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Australia; Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Miranda CA, Schönholzer TE, Klöppel E, Sinzato YK, Volpato GT, Damasceno DC, Campos KE. Repercussions of low fructose-drinking water in male rats. AN ACAD BRAS CIENC 2019; 91:e20170705. [PMID: 30785495 DOI: 10.1590/0001-3765201920170705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Fructose consumption has increased worldwide, and it has been associated with the development of metabolic diseases such as insulin resistance (IR) and steatosis. The aim was to evaluate if lower fructose concentrations may cause pancreatic structural abnormalities, leading to a glucose intolerance without steatosis in male rats. Young male rats orally received 7% fructose solution for 12 weeks. Body weight, food, water, and energy intake were measured. An oral glucose tolerance test (OGTT) was performed. After final experimental period, all rats were anaesthetized and killed. Blood samples were collected for biochemical analyses and organs (liver and pancreas) were processed for morphological analyses. Fructose consumption was not associated with lipid accumulation in liver. However, fructose administration was associated with an increased area under curve from OGTT and an increased percentage of insulin-positive cells, high beta cell mass and reduced pancreatic islet area. Fructose supplementation (7%) did not cause steatosis, but it led to abnormal morphology and function of pancreatic islet cells, contributing for glucose intolerance development. Our findings demonstrate that even low fructose concentrations may cause deleterious effects in animals.
Collapse
Affiliation(s)
- Carolina A Miranda
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil
| | - Tatiele E Schönholzer
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil
| | - Eduardo Klöppel
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil
| | - Yuri K Sinzato
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP, Brazil
| | - Gustavo T Volpato
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil.,Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP, Brazil
| | - Débora C Damasceno
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP, Brazil
| | - Kleber E Campos
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil
| |
Collapse
|
25
|
Bray GA, Popkin BM. 90th Anniversary Commentary: Consumption of Sweetened Beverages Predicts the Occurrence of Type 2 Diabetes. J Nutr 2018; 148:1688-1690. [PMID: 30281108 PMCID: PMC6669945 DOI: 10.1093/jn/nxy130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Barry M Popkin
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
26
|
Changes in Plasma Acylcarnitine and Lysophosphatidylcholine Levels Following a High-Fructose Diet: A Targeted Metabolomics Study in Healthy Women. Nutrients 2018; 10:nu10091254. [PMID: 30200659 PMCID: PMC6165514 DOI: 10.3390/nu10091254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background: The consumption of high amounts of fructose is associated with metabolic diseases. However, the underlying mechanisms are largely unknown. Objective: To determine the effects of high fructose intake on plasma metabolomics. Study design: We enrolled 12 healthy volunteers (six lean and six obese women, age 24–35 years) in a crossover intervention study. All participants carried out three diets: (1) low fructose (<10 g/day); (2) high fructose (100 g/day) from natural food sources (fruit); and (3) high fructose (100 g/day) from high fructose syrup (HFS). Outcome measures: The primary outcome was changes in plasma metabolites measured by targeted metabolomics. Results: High compared to low fructose diets caused a marked metabolite class separation, especially because of changes in acylcarnitine and lysophosphatidylcholine levels. Both high fructose diets resulted in a decrease in mean acylcarnitine levels in all subjects, and an increase in mean lysophosphatidylcholine and diacyl-phosphatidylcholine levels in obese individuals. Medium chain acylcarnitines were negatively correlated with serum levels of liver enzymes and with the fatty liver index. Discussion: The metabolic shifts induced by high fructose consumption suggest an inhibition of mitochondrial β-oxidation and an increase in lipid peroxidation. The effects tended to be more pronounced following the HFS than the fruit diet.
Collapse
|
27
|
French Recommendations for Sugar Intake in Adults: A Novel Approach Chosen by ANSES. Nutrients 2018; 10:nu10080989. [PMID: 30060614 PMCID: PMC6115815 DOI: 10.3390/nu10080989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023] Open
Abstract
This article presents a systematic review of the scientific evidence linking sugar consumption and health in the adult population performed by a group of experts, mandated by the French Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement, et du travail (ANSES). A literature search was performed by crossing search terms for overweight/obesity, diabetes/insulin resistance, dyslipidemia/cardiovascular diseases, non-alcoholic fatty liver diseases (NAFLD), and uric acid concentrations on one hand and for intake of sugars on the other. Controlled mechanistic studies, prospective cohort studies, and randomized clinical trials were extracted and assessed. A literature analysis supported links between sugar intake and both total energy intake and body weight gain, and between sugar intake and blood triglycerides independently of total energy intake. The effects of sugar on blood triglycerides were shown to be mediated by the fructose component of sucrose and were observed with an intake of fructose >50 g/day. In addition, prospective cohort studies showed associations between sugar intake and the risk of diabetes/insulin resistance, cardiovascular diseases, NAFLD, and hyperuricemia. Based on these observations, ANSES proposed to set a maximum limit to the intake of total sugars containing fructose (sucrose, glucose–fructose syrups, honey or other syrups, and natural concentrates, etc.) of 100 g/day.
Collapse
|
28
|
Macedo RCO, Boeno FP, Farinha JB, Ramis TR, Rodrigues-Krause J, Vieira AF, Queiroz J, Moritz CEJ, Reischak-Oliveira A. Acute and residual effects of aerobic exercise on fructose-induced postprandial lipemia on lean male subjects. Eur J Nutr 2018; 58:2293-2303. [DOI: 10.1007/s00394-018-1780-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
|
29
|
Effects of fructose consumption on postprandial TAG: an update on systematic reviews with meta-analysis. Br J Nutr 2018; 120:364-372. [PMID: 29962368 DOI: 10.1017/s0007114518001538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this study was to re-examine the chronic effect (>7 d) of fructose consumption on postprandial TAG, in adolescents and adults. The research was carried out in March 2017 and used different electronic databases, such as Medline ® (Pubmed®), Embase® and Cochrane. The review considered clinical trials (parallel or crossed) that evaluated the effect of fructose consumption for a period longer than 7 d, in humans. Two investigators independently performed data extraction. The outcome was the absolute delta of TAG concentration in a 4-h postprandial period. The results were presented with delta mean difference between treatments with 95 % CI. The calculations were made based on random-effect models. Statistical heterogeneity of treatment effects between studies was assessed by Cochrane's 'Q Test' and 'I 2' inconsistency test. The meta-analysis of the twelve selected interventions (n 318) showed that fructose generated larger variation (δ) of TAG concentrations during the postprandial period, compared with other carbohydrates (mean difference: 8·02 (95 % CI 0·46, 15·58) mg/dl (0·09 (95 % CI 0·01, 0·18) mmol/l); I 2: 74 %). High heterogeneity was generated almost exclusively by one study, and its withdrawal did not alter the result. We concluded that chronic consumption of fructose (>7 d) has a negative role on postprandial TAG in healthy adolescents and adults, as well as in overweight/obese individuals, but not in diabetics.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW It is widely accepted that sugar sweetened beverages (SSB) are implicated in weight gain and adverse cardiometabolic heath. To make informed recommendations about SSB, new evidence needs to be considered against existing literature. The present review will provide an update on the epidemiological and trial evidence linking intake of SSB to cardiometabolic outcomes. RECENT FINDINGS The weight of the evidence from prospective cohort studies supports a strong positive association between intake of SSB and weight gain and risk type 2 diabetes (T2D) and coronary heart disease (CHD) that is independent of adiposity. Associations with stroke are less clear and suggestive of greater risk in women than men. Findings from short-term trials of SSB and markers of cardiometabolic risk including lipids, glucose, blood pressure, and inflammatory cytokines provide mechanistic support for associations with T2D and CHD. Putative underlying mechanisms include adverse glycemic effects and increased hepatic metabolism of fructose. SUMMARY Conclusive evidence from epidemiological studies and trials on markers of cardiometabolic risk support an etiologic role of SSB in relation to weight gain and risk of T2D and CHD that is independent of weight. Continued efforts to reduce intake of SSB should be encouraged to improve the cardiometabolic health of individuals and populations.
Collapse
|
31
|
Effect of Commercially Available Sugar-Sweetened Beverages on Subjective Appetite and Short-Term Food Intake in Girls. Nutrients 2018; 10:nu10040394. [PMID: 29570607 PMCID: PMC5946179 DOI: 10.3390/nu10040394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background: The effect of sugar-sweetened beverages (SSBs) on satiety and short-term food intake (FI) regulation in girls has received little attention. The objective of the present study was to compare the effect of pre-meal consumption of commercially available SSBs on subjective appetite and short-term FI in 9–14-year-old girls. The methods we used include using a randomized crossover design in which 28 girls consumed isovolumetric amounts (350 mL) of a fruit drink (154 kcal), cola (158 kcal), 1% chocolate milk (224 kcal), or water (control; 0 kcal) on four separate mornings. Subjective appetite and thirst were measured at regular intervals via visual analogue scales (VAS) and FI was assessed at 60 min post-beverage consumption. The results show that subjective appetite and thirst decreased after all beverages, but did not differ among beverages. Short-term FI was suppressed following consumption of chocolate milk (15%; p < 0.001) and cola (11%; p = 0.02) compared to the water control. However, cumulative energy intake (beverage (kcal) + test meal (kcal)) was not affected by beverage type. In conclusion, chocolate milk and cola, but not fruit drink, suppressed FI in girls while cumulative FI did not differ among treatments.
Collapse
|
32
|
Valenzuela-Melgarejo FJ, Caro-Díaz C, Cabello-Guzmán G. Potential Crosstalk between Fructose and Melatonin: A New Role of Melatonin-Inhibiting the Metabolic Effects of Fructose. Int J Endocrinol 2018; 2018:7515767. [PMID: 30154843 PMCID: PMC6092995 DOI: 10.1155/2018/7515767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Increased consumption of energy-dense foods such as fructose-rich syrups represents one of the significant, growing concerns related to the alarming trend of overweight, obesity, and metabolic disorders worldwide. Metabolic pathways affected by fructose involve genes related to lipogenesis/lipolysis, beta-oxidation, mitochondrial biogenesis, gluconeogenesis, oxidative phosphorylation pathways, or altering of circadian production of insulin and leptin. Moreover, fructose can be a risk factor during pregnancy elevating the risk of preterm delivery, hypertension, and metabolic impairment of the mother and fetus. Melatonin is a chronobiotic and homeostatic hormone that can modulate the harmful effects of fructose via clock gene expression and metabolic pathways, modulating the expression of PPARγ, SREBF-1 (SREBP-1), hormone-sensitive lipase, C/EBP-α genes, NRF-1, PGC1α, and uncoupling protein-1. Moreover, this hormone has the capacity in the rat of reverting the harmful effects of fructose, increasing the body weight and weight ratio of the liver, and increasing the body weight and restoring the glycemia from mothers exposed to fructose. The aim of this review is to show the potential crosstalk between fructose and melatonin and their potential role during pregnancy.
Collapse
Affiliation(s)
| | - Claudia Caro-Díaz
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Gerardo Cabello-Guzmán
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| |
Collapse
|
33
|
Ibrahim M, Bonfiglio S, Schlögl M, Vinales KL, Piaggi P, Venti C, Walter M, Krakoff J, Thearle MS. Energy Expenditure and Hormone Responses in Humans After Overeating High-Fructose Corn Syrup Versus Whole-Wheat Foods. Obesity (Silver Spring) 2018; 26:141-149. [PMID: 29193741 PMCID: PMC5739953 DOI: 10.1002/oby.22068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study sought to understand how the dietary source of carbohydrates, either high-fructose corn syrup (HFCS) or complex carbohydrates, affects energy expenditure (EE) measures, appetitive sensations, and hormones during 24 hours of overfeeding. METHODS Seventeen healthy participants with normal glucose regulation had 24-hour EE measures and fasting blood and 24-hour urine collection during four different 1-day diets, including an energy-balanced diet, fasting, and two 75% carbohydrate diets (5% fat) given at 200% of energy requirements with either HFCS or whole-wheat foods as the carbohydrate source. In eight volunteers, hunger was assessed with visual analog scales the morning after the diets. RESULTS Compared with energy balance, 24-hour EE increased 12.8% ± 6.9% with carbohydrate overfeeding (P < 0.0001). No differences in 24-hour EE or macronutrient utilization were observed between the two high-carbohydrate diets; however, sleeping metabolic rate was higher after the HFCS diet (Δ = 35 ± 48 kcal [146 ± 200 kJ]; P = 0.01). Insulin, ghrelin, and triglycerides increased the morning after both overfeeding diets. Urinary cortisol concentrations (82.8 ± 35.9 vs. 107.6 ± 46.9 nmol/24 h; P = 0.01) and morning-after hunger scores (Δ = 2.4 ± 2.0 cm; P = 0.01) were higher with HFCS overfeeding. CONCLUSIONS The dietary carbohydrate source while overeating did not affect 24-hour EE, but HFCS overconsumption may predispose individuals to further overeating due to increased glucocorticoid release and increased hunger the following morning.
Collapse
Affiliation(s)
- Mostafa Ibrahim
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Susan Bonfiglio
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Mathias Schlögl
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
- Department of Geriatrics and Aging Research, University Hospital Zurich, Zurich, Switzerland
| | - Karyne L. Vinales
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Colleen Venti
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Mary Walter
- Clinical Laboratory Core, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Marie S. Thearle
- Phoenix Epidemiology and Clinical Research Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
34
|
Warden CH, Bettaieb A, Min E, Fisler JS, Haj FG, Stern JS. Chow fed UC Davis strain female Lepr fatty Zucker rats exhibit mild glucose intolerance, hypertriglyceridemia, and increased urine volume, all reduced by a Brown Norway strain chromosome 1 congenic donor region. PLoS One 2017; 12:e0188175. [PMID: 29211750 PMCID: PMC5718614 DOI: 10.1371/journal.pone.0188175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/23/2017] [Indexed: 12/01/2022] Open
Abstract
Our objective is to identify genes that influence the development of any phenotypes of type 2 diabetes (T2D) or kidney disease in obese animals. We use the reproductively isolated UC Davis fatty Zucker strain rat model in which the defective chromosome 4 leptin receptor (LeprfaSte/faSte) results in fatty obesity. We previously produced a congenic strain with the distal half of chromosome 1 from the Brown Norway strain (BN) on a Zucker (ZUC) background (BN.ZUC-D1Rat183–D1Rat90). Previously published studies in males showed that the BN congenic donor region protects from some phenotypes of renal dysfunction and T2D. We now expand our studies to include females and expand phenotyping to gene expression. We performed diabetes and kidney disease phenotyping in chow-fed females of the BN.ZUC-D1Rat183-D1Rat90 congenic strain to determine the specific characteristics of the UC Davis model. Fatty LeprfaSte/faSte animals of both BN and ZUC genotype in the congenic donor region had prediabetic levels of fasting blood glucose and blood glucose 2 hours after a glucose tolerance test. We observed significant congenic strain chromosome 1 genotype effects of the BN donor region in fatty females that resulted in decreased food intake, urine volume, glucose area under the curve during glucose tolerance test, plasma triglyceride levels, and urine glucose excretion per day. In fatty females, there were significant congenic strain BN genotype effects on non-fasted plasma urea nitrogen, triglyceride, and creatinine. Congenic region genotype effects were observed by quantitative PCR of mRNA from the kidney for six genes, all located in the chromosome 1 BN donor region, with potential effects on T2D or kidney function. The results are consistent with the hypothesis that the BN genotype chromosome 1 congenic region influences traits of both type 2 diabetes and kidney function in fatty UC Davis ZUC females and that there are many positional candidate genes.
Collapse
Affiliation(s)
- Craig H. Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States of America
- * E-mail:
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, TN, United States of America
| | - Esther Min
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
| | - Janis S. Fisler
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
| | - Fawaz G. Haj
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
| | - Judith S. Stern
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
- Internal Medicine, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
35
|
Evans RA, Frese M, Romero J, Cunningham JH, Mills KE. Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106:519-529. [PMID: 28592603 DOI: 10.3945/ajcn.116.145169] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/01/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Conflicting evidence exists on the role of long-term fructose consumption on health. No systematic review has addressed the effect of isoenergetic fructose replacement of other sugars and its effect on glycated hemoglobin (HbA1c), fasting blood glucose, insulin, and triglycerides.Objective: The objective of this study was to review the evidence for a reduction in fasting glycemic and insulinemic markers after chronic, isoenergetic replacement of glucose or sucrose in foods or beverages by fructose. The target populations were persons without diabetes, those with impaired glucose tolerance, and those with type 2 diabetes.Design: We searched the Cochrane Library, MEDLINE, EMBASE, the WHO International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov The date of the last search was 26 April 2016. We included randomized controlled trials of isoenergetic replacement of glucose, sucrose, or both by fructose in adults or children with or without diabetes of ≥2 wk duration that measured fasting blood glucose. The main outcomes analyzed were fasting blood glucose and insulin as well as fasting triglycerides, blood lipoproteins, HbA1c, and body weight.Results: We included 14 comparison arms from 11 trials, including 277 patients. The studies varied in length from 2 to 10 wk (mean: 28 d) and included doses of fructose between 40 and 150 g/d (mean: 68 g/d). Fructose substitution in some subgroups resulted in significantly but only slightly lowered fasting blood glucose (-0.14 mmol/L; 95% CI: -0.24, -0.036 mmol/L), HbA1c [-10 g/L (95% CI: -12.90, -7.10 g/L; impaired glucose tolerance) and -6 g/L (95% CI: -8.47, -3.53 g/L; normoglycemia)], triglycerides (-0.08 mmol/L; 95% CI: -0.14, -0.02 mmol/L), and body weight (-1.40 kg; 95% CI: -2.07, -0.74 kg). There was no effect on fasting blood insulin or blood lipids.Conclusions: The evidence suggests that the substitution of fructose for glucose or sucrose in food or beverages may be of benefit to individuals, particularly those with impaired glucose tolerance or type 2 diabetes. However, additional high-quality studies in these populations are required.
Collapse
Affiliation(s)
| | - Michael Frese
- Health Research Institute.,Faculty of Education, Science, Technology, and Mathematics, and
| | - Julio Romero
- Department of Software Engineering and Artificial Intelligence, University of Canberra, Canberra, Australia; and
| | - Judy H Cunningham
- Formerly of Risk Assessment Chemical Safety and Nutrition, Food Standards Australia New Zealand, Canberra, Australia
| | - Kerry E Mills
- Health Research Institute, .,Faculty of Education, Science, Technology, and Mathematics, and
| |
Collapse
|
36
|
Evans RA, Frese M, Romero J, Cunningham JH, Mills KE. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106:506-518. [PMID: 28592611 DOI: 10.3945/ajcn.116.145151] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/01/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Conflicting evidence exists on the effects of fructose consumption in people with type 1 and type 2 diabetes mellitus. No systematic review has addressed the effect of isoenergetic fructose replacement of glucose or sucrose on peak postprandial glucose, insulin, and triglyceride concentrations.Objective: The objective of this study was to review the evidence for postprandial glycemic and insulinemic responses after isoenergetic replacement of either glucose or sucrose in foods or beverages with fructose.Design: We searched the Cochrane Library, MEDLINE, EMBASE, the WHO International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov The date of the last search was 26 April 2016. We included randomized controlled trials measuring peak postprandial glycemia after isoenergetic replacement of glucose, sucrose, or both with fructose in healthy adults or children with or without diabetes. The main outcomes analyzed were peak postprandial blood glucose, insulin, and triglyceride concentrations.Results: Replacement of either glucose or sucrose by fructose resulted in significantly lowered peak postprandial blood glucose, particularly in people with prediabetes and type 1 and type 2 diabetes. Similar results were obtained for insulin. Peak postprandial blood triglyceride concentrations did not significantly increase.Conclusions: Strong evidence exists that substituting fructose for glucose or sucrose in food or beverages lowers peak postprandial blood glucose and insulin concentrations. Isoenergetic replacement does not result in a substantial increase in blood triglyceride concentrations.
Collapse
Affiliation(s)
| | - Michael Frese
- Health Research Institute.,Faculty of Education, Science, Technology and Mathematics, and
| | - Julio Romero
- Department of Software Engineering and Artificial Intelligence, University of Canberra, Canberra, Australia; and
| | - Judy H Cunningham
- Formerly of Risk Assessment Chemical Safety and Nutrition, Food Standards Australia New Zealand, Canberra, Australia
| | - Kerry E Mills
- Health Research Institute, .,Faculty of Education, Science, Technology and Mathematics, and
| |
Collapse
|
37
|
Postprandial glycaemic response to berry nectars containing inverted sucrose. J Nutr Sci 2017; 6:e4. [PMID: 28620479 PMCID: PMC5465854 DOI: 10.1017/jns.2016.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/29/2016] [Accepted: 11/28/2016] [Indexed: 01/16/2023] Open
Abstract
Sucrose is commonly used for sweetening berry products. During processing and storage of berry products containing added sucrose, sucrose is inverted to glucose and fructose. We have previously shown that postprandial glycaemic response induced by intact sucrose is attenuated when sucrose is consumed with berries rich in polyphenols. It is not known how inversion of sucrose affects glycaemic response. We investigated postprandial glycaemic and insulinaemic responses to blackcurrant (Ribes nigrum) and lingonberry (Vaccinium vitis-idaea) nectars and a reference drink (water) sweetened with glucose and fructose, representing completely inverted sucrose. The nectars and reference drink (300 ml) contained 17·5 g glucose and 17·5 g fructose. Polyphenol composition of the nectars was analysed. A total of eighteen healthy volunteers participated in a randomised, controlled, cross-over study. Blood samples were collected at fasting and six times postprandially during 120 min. Inverted sucrose in the reference drink induced glycaemic and insulinaemic responses similar to those previously observed for intact sucrose. In comparison with the reference, the blackcurrant nectar attenuated the early glycaemic response and improved glycaemic profile, and the lingonberry nectar reduced the insulinaemic response. The responses induced by inverted sucrose in the berry nectars are similar to those previously observed for berry nectars containing intact sucrose, suggesting that inversion has no major impact on glycaemic response to sucrose-sweetened berry products. The attenuated glycaemic response after the blackcurrant nectar may be explained by inhibition of intestinal absorption of glucose by blackcurrant anthocyanins.
Collapse
|
38
|
Despland C, Walther B, Kast C, Campos V, Rey V, Stefanoni N, Tappy L. A randomized-controlled clinical trial of high fructose diets from either Robinia honey or free fructose and glucose in healthy normal weight males. Clin Nutr ESPEN 2017. [DOI: 10.1016/j.clnesp.2017.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
OZCAN SINIR G, SUNA S, INAN S, BAGDAS D, TAMER CE, COPUR OU, SIGIRLI D, SARANDOL E, SONMEZ G, ERCAN I, EVRENSEL T, TARIM OF, EREN E, UYLASER V, INCEDAYI B. Effects of long-term consumption of high fructose corn syrup containing peach nectar on body weight gain in sprague dawley rats. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.25416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Allen RJ, Musante CJ. Modeling fructose-load-induced hepatic de-novo lipogenesis by model simplification. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017690133. [PMID: 28469410 PMCID: PMC5397296 DOI: 10.1177/1177625017690133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 11/28/2022]
Abstract
Hepatic de-novo lipogenesis is a metabolic process implemented in the pathogenesis of type 2 diabetes. Clinically, the rate of this process can be ascertained by use of labeled acetate and stimulation by fructose administration. A systems pharmacology model of this process is desirable because it facilitates the description, analysis, and prediction of this experiment. Due to the multiple enzymes involved in de-novo lipogenesis, and the limited data, it is desirable to use single functional expressions to encapsulate the flux between multiple enzymes. To accomplish this we developed a novel simplification technique which uses the available information about the properties of the individual enzymes to bound the parameters of a single governing ‘transfer function’. This method should be applicable to any model with linear chains of enzymes that are well stimulated. We validated this approach with computational simulations and analytical justification in a limiting case. Using this technique we generated a simple model of hepatic de-novo lipogenesis in these experimental conditions that matched prior data. This model can be used to assess pharmacological intervention at specific points on this pathway. We have demonstrated this with prospective simulation of acetyl-CoA carboxylase inhibition. This simplification technique suggests how the constituent properties of an enzymatic chain of reactions gives rise to the sensitivity (to substrate) of the pathway as a whole.
Collapse
|
41
|
Rosset R, Lecoultre V, Egli L, Cros J, Dokumaci AS, Zwygart K, Boesch C, Kreis R, Schneiter P, Tappy L. Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals. Am J Clin Nutr 2017; 105:609-617. [PMID: 28100512 DOI: 10.3945/ajcn.116.138214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/12/2016] [Indexed: 11/14/2022] Open
Abstract
Background: Postexercise nutrition is paramount to the restoration of muscle energy stores by providing carbohydrate and fat as precursors of glycogen and intramyocellular lipid (IMCL) synthesis. Compared with glucose, fructose ingestion results in lower postprandial glucose and higher lactate and triglyceride concentrations. We hypothesized that these differences in substrate concentration would be associated with a different partition of energy stored as IMCLs or glycogen postexercise.Objective: The purpose of this study was to compare the effect of isocaloric liquid mixed meals containing fat, protein, and either fructose or glucose on the repletion of muscle energy stores over 24 h after a strenuous exercise session.Design: Eight male endurance athletes (mean ± SEM age: 29 ± 2 y; peak oxygen consumption: 66.8 ± 1.3 mL · kg-1 · min-1) were studied twice. On each occasion, muscle energy stores were first lowered by a combination of a 3-d controlled diet and prolonged exercise. After assessment of glycogen and IMCL concentrations in vastus muscles, subjects rested for 24 h and ingested mixed meals providing fat and protein together with 4.4 g/kg fructose (the fructose condition; FRU) or glucose (the glucose condition; GLU). Postprandial metabolism was assessed over 6 h, and glycogen and IMCL concentrations were measured again after 24 h. Finally, energy metabolism was evaluated during a subsequent exercise session.Results: FRU and GLU resulted in similar IMCL [+2.4 ± 0.4 compared with +2.0 ± 0.6 mmol · kg-1 wet weight · d-1; time × condition (mixed-model analysis): P = 0.45] and muscle glycogen (+10.9 ± 0.9 compared with +12.3 ± 1.9 mmol · kg-1 wet weight · d-1; time × condition: P = 0.45) repletion. Fructose consumption in FRU increased postprandial net carbohydrate oxidation and decreased net carbohydrate storage (estimating total, muscle, and liver glycogen synthesis) compared with GLU (+117 ± 9 compared with +135 ± 9 g/6 h, respectively; P < 0.01). Compared with GLU, FRU also resulted in lower plasma glucose concentrations and decreased exercise performance the next day.Conclusions: Mixed meals containing fat, protein, and either fructose or glucose elicit similar repletion of IMCLs and muscle glycogen. Under such conditions, fructose lowers whole-body glycogen synthesis and impairs subsequent exercise performance, presumably because of lower hepatic glycogen stores. This trial was registered at clinicaltrials.gov as NCT01866215.
Collapse
Affiliation(s)
- Robin Rosset
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Virgile Lecoultre
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Léonie Egli
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Jérémy Cros
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Ayse Sila Dokumaci
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Karin Zwygart
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Chris Boesch
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Roland Kreis
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Philippe Schneiter
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Luc Tappy
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| |
Collapse
|
42
|
The Acute Effects of Simple Sugar Ingestion on Appetite, Gut-Derived Hormone Response, and Metabolic Markers in Men. Nutrients 2017; 9:nu9020135. [PMID: 28216550 PMCID: PMC5331566 DOI: 10.3390/nu9020135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022] Open
Abstract
This pilot study aimed to investigate the effect of simple sugar ingestion, in amounts typical of common ingestion, on appetite and the gut-derived hormone response. Seven healthy men ingested water (W) and equicaloric solutions containing 39.6 g glucose monohydrate (G), 36 g fructose (F), 36 g sucrose (S), and 19.8 g glucose monohydrate + 18 g fructose (C), in a randomised order. Serum concentrations of ghrelin, glucose dependent insulinotropic polypeptide (GIP), glucagon like peptide-1 (GLP-1), insulin, lactate, triglycerides, non-esterified fatty acids (NEFA), and d-3 hydroxybutyrate, were measured for 60 min. Appetite was measured using visual analogue scales (VAS). The ingestion of F and S resulted in a lower GIP incremental area under the curve (iAUC) compared to the ingestion of G (p < 0.05). No differences in the iAUC for GLP-1 or ghrelin were present between the trials, nor for insulin between the sugars. No differences in appetite ratings or hepatic metabolism measures were found, except for lactate, which was greater following the ingestion of F, S, and C, when compared to W and G (p < 0.05). The acute ingestion of typical amounts of fructose, in a variety of forms, results in marked differences in circulating GIP and lactate concentration, but no differences in appetite ratings, triglyceride concentration, indicative lipolysis, or NEFA metabolism, when compared to glucose.
Collapse
|
43
|
Kaliora AC, Kanellos PT, Gioxari A, Karathanos VT. Regulation of GIP and Ghrelin in Healthy Subjects Fed on Sun-Dried Raisins: A Pilot Study with a Crossover Trial Design. J Med Food 2017; 20:301-308. [PMID: 28170279 DOI: 10.1089/jmf.2016.0123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The comparative effects of glucose and fructose on appetite and specifically on hormones regulating appetite remain controversial, and the role of different types of sugars has not been investigated broadly. To estimate the effect of raisins, a dried fruit rich in fructose, fibers, and phenolics, on hormones involved in the postprandial response. Ten healthy normal-weight subjects received in a crossover design 74 g raisins or 50 g glucose as reference food. Glucose, insulin, and appetite hormones were measured at time 0 and 60, 120, and 180 min after consumption. Glucose and insulin peaked significantly at 60 min in both trials with no difference in two trials. Gastric inhibitory peptide peaked significantly at 60 min in both trials and was found lower in raisin compared to glucose at 60 and 120 min postprandially. Ghrelin was lower in raisin compared to glucose at 120 and at 180 min postingestion. Ghrelin/obestatin ratio was lower at 120 min in raisin compared to glucose. No differences were reported for glucagon-like peptide-1, apelin, and obestatin in either trial. Raisin consumption could be favorable in terms of regulating appetite compared to refined sugars or glucose-based products in normal-weight healthy subjects.
Collapse
Affiliation(s)
- Andriana C Kaliora
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University , Athens, Greece
| | - Panagiotis T Kanellos
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University , Athens, Greece
| | - Aristea Gioxari
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University , Athens, Greece
| | - Vaios T Karathanos
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University , Athens, Greece
| |
Collapse
|
44
|
Rippe JM, Angelopoulos TJ. Added sugars and risk factors for obesity, diabetes and heart disease. Int J Obes (Lond) 2016; 40 Suppl 1:S22-7. [PMID: 27001643 DOI: 10.1038/ijo.2016.10] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of added sugars on various chronic conditions are highly controversial. Some investigators have argued that added sugars increase the risk of obesity, diabetes and cardiovascular disease. However, few randomized controlled trials are available to support these assertions. The literature is further complicated by animal studies, as well as studies which compare pure fructose to pure glucose (neither of which is consumed to any appreciable degree in the human diet) and studies where large doses of added sugars beyond normal levels of human consumption have been administered. Various scientific and public health organizations have offered disparate recommendations for upper limits of added sugar. In this article, we will review recent randomized controlled trials and prospective cohort studies. We conclude that the normal added sugars in the human diet (for example, sucrose, high-fructose corn syrup and isoglucose) when consumed within the normal range of normal human consumption or substituted isoenergetically for other carbohydrates, do not appear to cause a unique risk of obesity, diabetes or cardiovascular disease.
Collapse
Affiliation(s)
- J M Rippe
- Rippe Lifestyle Institute, Shrewsbury, MA, USA.,Rippe Lifestyle Research Institute of Florida, Celebration, FL, USA.,University of Central Florida, Orlando, FL, USA
| | - T J Angelopoulos
- School of Health Sciences, Emory and Henry College, Emory, VA, USA
| |
Collapse
|
45
|
Relationship between Added Sugars Consumption and Chronic Disease Risk Factors: Current Understanding. Nutrients 2016; 8:nu8110697. [PMID: 27827899 PMCID: PMC5133084 DOI: 10.3390/nu8110697] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/11/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023] Open
Abstract
Added sugars are a controversial and hotly debated topic. Consumption of added sugars has been implicated in increased risk of a variety of chronic diseases including obesity, cardiovascular disease, diabetes and non-alcoholic fatty liver disease (NAFLD) as well as cognitive decline and even some cancers. Support for these putative associations has been challenged, however, on a variety of fronts. The purpose of the current review is to summarize high impact evidence including systematic reviews, meta-analyses, and randomized controlled trials (RCTs), in an attempt to provide an overview of current evidence related to added sugars and health considerations. This paper is an extension of a symposium held at the Experimental Biology 2015 conference entitled “Sweeteners and Health: Current Understandings, Controversies, Recent Research Findings and Directions for Future Research”. We conclude based on high quality evidence from randomized controlled trials (RCT), systematic reviews and meta-analyses of cohort studies that singling out added sugars as unique culprits for metabolically based diseases such as obesity, diabetes and cardiovascular disease appears inconsistent with modern, high quality evidence and is very unlikely to yield health benefits. While it is prudent to consume added sugars in moderation, the reduction of these components of the diet without other reductions of caloric sources seems unlikely to achieve any meaningful benefit.
Collapse
|
46
|
Mashhadi NS, Saadat S, Afsharmanesh MR, Shirali S. Study of association between beverage consumption pattern and lipid profile in shift workers. Diabetes Metab Syndr 2016; 10:227-229. [PMID: 27381967 DOI: 10.1016/j.dsx.2016.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/06/2016] [Indexed: 01/20/2023]
Abstract
AIMS The circadian system influences on health and metabolic function that can cause raising some risk factor of metabolic syndrome. Few studies have examined data that incorporate the full complexity of daily beverage intake pattern on lipid profiles. The purpose of this study was to investigate relation between daily water and beverage intake of adults working in day or shift work and lipid profile. MATERIALS AND METHODS Total beverages intake was estimated in shift and administrative staff of Ahvaz International Airport, Iran. Forty five male, aged 25-55 years, attending this institute were invited to participate in this study. They completed a three-day food records and all participants were measured plasma lipid profiles. RESULTS AND CONCLUSION Forty one of participants completed all aspects of the study. Two clusters were emerged, labeled descriptively as Conventional including "high Sugar-sweetened drinkers" and "low sugar drinkers". The highest intake of water was in cluster 1 (1170.9ml/day) even this amount is much less than the daily recommended amounts. There were significant differences in triglyceride levels among day and night shift workers. According to the results, there is inadequacy of water and high sugar beverage intake among the shift workers which it is a potential risk of some related chronic diseases such as metabolic syndrome with high triglyceride level in the future.
Collapse
Affiliation(s)
| | - Saeed Saadat
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Reza Afsharmanesh
- Hyperlipidemia Research Center, Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Shirali
- Hyperlipidemia Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box: 61375-15794, Iran.
| |
Collapse
|
47
|
Goff LM, Whyte MB, Samuel M, Harding SV. Significantly greater triglyceridemia in Black African compared to White European men following high added fructose and glucose feeding: a randomized crossover trial. Lipids Health Dis 2016; 15:145. [PMID: 27590876 PMCID: PMC5009494 DOI: 10.1186/s12944-016-0315-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Black African (BA) populations are losing the cardio-protective lipid profile they historically exhibited, which may be linked with increasing fructose intakes. The metabolic effects of high fructose diets and how they relate to blood lipids are documented for Caucasians, but have not been described in BA individuals. OBJECTIVE The principle objective of this pilot study was to assess the independent impacts of high glucose and fructose feeding in men of BA ancestry compared to men of White European (WE) ancestry on circulating triglyceride (TG) concentrations. METHODS Healthy males, aged 25-60 years, of BA (n = 9) and WE (n = 11) ethnicity were randomly assigned to 2 feeding days in a crossover design, providing mixed nutrient meals with 20 % total daily caloric requirements from either added glucose or fructose. Circulating TG, non-esterified fatty acids (NEFA), glucose, insulin and C-peptide were measured over two 24-h periods. RESULTS Fasting TGs were lower in BAs than WEs on the fructose feeding day (p < 0.05). There was a trend for fasting TG concentrations 24 h following fructose feeding to increase in both BA (baseline median fasting: 0.80, IQR 0.6-1.1 vs 24-h median post-fructose: 1.09, 0.8-1.4 mmol/L; p = 0.06) and WE (baseline median fasting 1.10, IQR 0.9-1.5 vs 24-h median post-fructose: 1.16, IQR 0.96-1.73 mmol/L; p = 0.06). Analysis within ethnic group demonstrated that in TG iAUC was significantly higher in BA compared to WE on both glucose (35, IQR 11-56 vs -4, IQR -10-1 mmol/L/min; p = 0.004) and fructose (48, IQR 15-68 vs 13, IQR -7-38 mmol/L/min; p = 0.04). Greater suppression of postprandial NEFA was evident in WE than BA after glucose feeding (-73, IQR -81- -52 vs -26, IQR -48- -3 nmol/L/min; p = 0.001) but there was no ethnic difference following fructose feeding. CONCLUSIONS Understanding the metabolic effects of dietary acculturation and Westernisation that occurs in Black communities is important for developing prevention strategies for chronic disease development. These data show postprandial hypertriglyceridemia following acute feeding of high added fructose and glucose in BA men, compared to WE men, may contribute to metabolic changes observed during dietary acculturation and Westernisation. TRIAL REGISTRATION The study was retrospectively registered on clinicaltrials.gov: NCT02533817 .
Collapse
Affiliation(s)
- Louise M Goff
- Division of Diabetes and Nutritional Sciences, King's College London, Franklin-Wilkins Building, Stamford Street, London, SE1 9NH, UK. .,Division of Diabetes and Nutritional Sciences, King's College London, Henriette Raphael Building, Room 2.29, Guy's Campus, London, SE1 1UL, UK.
| | - Martin B Whyte
- Department of Diabetes and Metabolic Medicine, University of Surrey, Wolfson Unit for Translational Research, Postgraduate Medical School, Daphne Jackson Road, Guildford, GU2 7WG, UK
| | - Miriam Samuel
- Division of Diabetes and Nutritional Sciences, King's College London, Franklin-Wilkins Building, Stamford Street, London, SE1 9NH, UK
| | - Scott V Harding
- Division of Diabetes and Nutritional Sciences, King's College London, Franklin-Wilkins Building, Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
48
|
Clemens RA, Jones JM, Kern M, Lee SY, Mayhew EJ, Slavin JL, Zivanovic S. Functionality of Sugars in Foods and Health. Compr Rev Food Sci Food Saf 2016; 15:433-470. [DOI: 10.1111/1541-4337.12194] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Roger A. Clemens
- USC School of Pharmacy; Intl. Center for Regulatory Science; 1540 Alcazar St., CHP 140 Los Angeles CA 90089 U.S.A
| | - Julie M. Jones
- St. Catherine Univ; 4030 Valentine Court; Arden Hills Minnesota 55112 U.S.A
| | - Mark Kern
- San Diego State Univ; School of Exercise and Nutritional Sciences; 5500 Campanile Dr. San Diego CA 92182-7251 U.S.A
| | - Soo-Yeun Lee
- Univ. of Illinois at Urbana Champaign; 351 Bevier Hall MC-182, 905 S Goodwin Ave. Urbana IL 61801 U.S.A
| | - Emily J. Mayhew
- Univ. of Illinois at Urbana Champaign; 399A Bevier Hall; 905 S Goodwin Ave. Urbana IL 61801 U.S.A
| | - Joanne L. Slavin
- Univ. of Minnesota; 166 Food Science & Nutrition; 1354 Eckles Ave. Saint Paul MN 55108-1038 U.S.A
| | - Svetlana Zivanovic
- Mars Petcare; Global Applied Science and Technology; 315 Cool Springs Boulevard Franklin TN 37067 U.S.A
| |
Collapse
|
49
|
Angelopoulos TJ, Lowndes J, Sinnett S, Rippe JM. Fructose Containing Sugars at Normal Levels of Consumption Do Not Effect Adversely Components of the Metabolic Syndrome and Risk Factors for Cardiovascular Disease. Nutrients 2016; 8:179. [PMID: 27023594 PMCID: PMC4848648 DOI: 10.3390/nu8040179] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 03/10/2016] [Indexed: 02/07/2023] Open
Abstract
The objective of the current study was to explore our hypothesis that average consumption of fructose and fructose containing sugars would not increase risk factors for cardiovascular disease (CVD) and the metabolic syndrome (MetS). A randomized, double blind, parallel group study was conducted where 267 individuals with BMI between 23 and 35 kg/m2 consumed low fat sugar sweetened milk, daily for ten weeks as part of usual weight-maintenance diet. One group consumed 18% of calories from high fructose corn syrup (HFCS), another group consumed 18% of calories from sucrose, a third group consumed 9% of calories from fructose, and the fourth group consumed 9% of calories from glucose. There was a small change in waist circumference (80.9 ± 9.5 vs. 81.5 ± 9.5 cm) in the entire cohort, as well as in total cholesterol (4.6 ± 1.0 vs. 4.7 ± 1.0 mmol/L, p < 0.01), triglycerides (TGs) (11.5 ± 6.4 vs. 12.6 ± 8.9 mmol/L, p < 0.01), and systolic (109.2 ± 10.2 vs. 106.1 ± 10.4 mmHg, p < 0.01) and diastolic blood pressure (69.8 ± 8.7 vs. 68.1 ± 9.7 mmHg, p < 0.01). The effects of commonly consumed sugars on components of the MetS and CVD risk factors are minimal, mixed and not clinically significant.
Collapse
Affiliation(s)
- Theodore J Angelopoulos
- Obesity Research Center, School of Health Sciences, Emory & Henry College, 601 Radio Hill Rd, Marion, VA 24354, USA.
| | - Joshua Lowndes
- Rippe Lifestyle Institute of Florida, 215 Celebration Place, Celebration, FL 34747, USA.
| | - Stephanie Sinnett
- Rippe Lifestyle Institute of Florida, 215 Celebration Place, Celebration, FL 34747, USA.
| | - James M Rippe
- Rippe Lifestyle Institute of Florida, 215 Celebration Place, Celebration, FL 34747, USA.
- Rippe Lifestyle Institute, 21 North Quinsigamond Avenue, Shrewsbury, MA 01545, USA.
- Biomedical Sciences, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA.
| |
Collapse
|
50
|
Stepien M, Duarte-Salles T, Fedirko V, Trichopoulou A, Lagiou P, Bamia C, Overvad K, Tjønneland A, Hansen L, Boutron-Ruault MC, Fagherazzi G, Severi G, Kühn T, Kaaks R, Aleksandrova K, Boeing H, Klinaki E, Palli D, Grioni S, Panico S, Tumino R, Naccarati A, Bueno-de-Mesquita HB, Peeters PH, Skeie G, Weiderpass E, Parr CL, Quirós JR, Buckland G, Molina-Montes E, Amiano P, Chirlaque MD, Ardanaz E, Sonestedt E, Ericson U, Wennberg M, Nilsson LM, Khaw KT, Wareham N, Bradbury KE, Ward HA, Romieu I, Jenab M. Consumption of soft drinks and juices and risk of liver and biliary tract cancers in a European cohort. Eur J Nutr 2016; 55:7-20. [PMID: 25528243 PMCID: PMC6284800 DOI: 10.1007/s00394-014-0818-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of the study was to assess associations between intake of combined soft drinks (sugar sweetened and artificially sweetened) and fruit and vegetable juices and the risk of hepatocellular carcinoma (HCC), intrahepatic bile duct (IHBC) and biliary tract cancers (GBTC) using data from the European Prospective Investigation into Cancer and Nutrition cohort of 477,206 participants from 10 European countries. METHODS After 11.4 years of follow-up, 191 HCC, 66 IHBC and 236 GBTC cases were identified. Hazard ratios and 95% confidence intervals (HR; 95% CI) were estimated with Cox regression models with multivariable adjustment (baseline total energy intake, alcohol consumption and intake pattern, body mass index, physical activity, level of educational attainment and self-reported diabetes status). RESULTS No risk associations were observed for IHBC or GBTC. Combined soft drinks consumption of >6 servings/week was positively associated with HCC risk: HR 1.83; 95% CI 1.11-3.02, p trend = 0.01 versus non-consumers. In sub-group analyses available for 91% of the cohort artificially sweetened soft drinks increased HCC risk by 6% per 1 serving increment (HR 1.06, 95% CI 1.03-1.09, n cases = 101); for sugar-sweetened soft drinks, this association was null (HR 1.00, 95% CI 0.95-1.06; n cases = 127, p heterogeneity = 0.07). Juice consumption was not associated with HCC risk, except at very low intakes (<1 serving/week: HR 0.60; 95% CI 0.38-0.95; p trend = 0.02 vs. non-consumers). CONCLUSIONS Daily intake of combined soft drinks is positively associated with HCC, but a differential association between sugar and artificially sweetened cannot be discounted. This study provides some insight into possible associations of HCC with sugary drinks intake. Further exploration in other settings is required.
Collapse
Affiliation(s)
- Magdalena Stepien
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Talita Duarte-Salles
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Veronika Fedirko
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- Department of Hygiene, Epidemiology, Medical Statistics, WHO Collaborating Center for Food and Nutrition Policies, University of Athens Medical School, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology, Medical Statistics, WHO Collaborating Center for Food and Nutrition Policies, University of Athens Medical School, Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Christina Bamia
- Department of Hygiene, Epidemiology, Medical Statistics, WHO Collaborating Center for Food and Nutrition Policies, University of Athens Medical School, Athens, Greece
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Louise Hansen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marie-Christine Boutron-Ruault
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, 94805, Villejuif, France
- University Paris Sud, UMRS 1018, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Guy Fagherazzi
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, 94805, Villejuif, France
- University Paris Sud, UMRS 1018, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, 3053, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, 3010, Australia
| | - Tilman Kühn
- Department of Cancer Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartamento di Medicina Clinicae Chirurgias, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civile M.P. Arezzo" Hospital, Ragusa, Italy
| | - Alessio Naccarati
- Molecular and Genetic Epidemiology Unit, Human Genetics Foundation (HuGeF), Torino, Italy
| | - H Bas Bueno-de-Mesquita
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- The School of Public Health, Imperial College London, London, UK
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, University of Tromso, The Arctic University of Norway, Tromsø, Norway
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromso, The Arctic University of Norway, Tromsø, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Samfundet Folkhälsan, Helsinki, Finland
| | - Christine L Parr
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Genevieve Buckland
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | | | - Pilar Amiano
- Public Health Division of Gipuzkoa, Health Department of Basque Region, BioDonostia Research Institute, San Sebastian, Spain
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain
| | - Maria-Dolores Chirlaque
- Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain
| | - Eva Ardanaz
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain
- Navarre Public Health Institute, Pamplona, Spain
| | - Emily Sonestedt
- Department of Clinical Sciences - Malmö, Lund University, Malmö, Sweden
| | - Ulrika Ericson
- Diabetes and Cardiovascular Disease, Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Maria Wennberg
- Public Health and Clinical Medicine, Nutritional Research, and Arctic Research Center, Umeå University, Umeå, Sweden
| | - Lena Maria Nilsson
- Public Health and Clinical Medicine, Nutritional Research, and Arctic Research Center, Umeå University, Umeå, Sweden
| | - Kay-Tee Khaw
- School of Clinical Medicine, Clinical Gerontology Unit, University of Cambridge, Cambridge, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kathryn E Bradbury
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Heather A Ward
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Isabelle Romieu
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France.
| |
Collapse
|