1
|
Flint A, Harlow J, McLeod M, Blondin-Brosseau M, Weedmark K, Nasheri N. Genomic characterization of noroviruses from an outbreak associated with oysters. Microbiol Spectr 2025; 13:e0258024. [PMID: 39792002 PMCID: PMC11793256 DOI: 10.1128/spectrum.02580-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Human noroviruses are the leading cause of non-bacterial shellfish-associated gastroenteritis. In 2022, a multi-jurisdictional norovirus outbreak associated with contaminated oysters occurred that involved hundreds of illnesses. Here, we conducted genetic analysis on 30 clinical samples associated with this oyster outbreak. We first determined the capsid genotypes by Sanger sequencing and viral titers by droplet-digital reverse transcription PCR. Multiple genotypes were identified in this outbreak, which could indicate contamination with wastewaters. The majority of samples belonged to GII.3[P12], followed by GII.2[P16], GII.17[P17], and GII.4 Sydney[P16]. We next proceeded with whole-genome sequencing and obtained full genomes for 19 samples. Phylogenetic analysis revealed that some of the isolates showed high similarity with the sequences isolated from the United States related to the same outbreak. We also analyzed amino acid variations in the sequenced genomes and found that overall the GII.3[P12] isolates have lower variations compared to other genotypes.IMPORTANCENorovirus outbreaks associated with contaminated shellfish occur frequently. Whole-genome sequencing (WGS) could play a critical role in understanding and controlling norovirus outbreaks as it allows for source attribution, tracking transmission pathways, and detecting recurrent or linked outbreaks. Here, we described how the data obtained by WGS were employed for understanding transmission patterns and norovirus epidemiology.
Collapse
Affiliation(s)
- Annika Flint
- Genomics Laboratory,
Bureau of Microbial Hazards, Health
Canada, Ottawa,
Ontario, Canada
| | - Jennifer Harlow
- National Food Virology
Reference Center, Bureau of Microbial Hazards, Health
Canada, Ottawa,
Ontario, Canada
| | - Madison McLeod
- National Food Virology
Reference Center, Bureau of Microbial Hazards, Health
Canada, Ottawa,
Ontario, Canada
| | - Madeleine Blondin-Brosseau
- National Food Virology
Reference Center, Bureau of Microbial Hazards, Health
Canada, Ottawa,
Ontario, Canada
| | - Kelly Weedmark
- Genomics Laboratory,
Bureau of Microbial Hazards, Health
Canada, Ottawa,
Ontario, Canada
| | - Neda Nasheri
- National Food Virology
Reference Center, Bureau of Microbial Hazards, Health
Canada, Ottawa,
Ontario, Canada
- Department of
Biochemistry, Microbiology and Immunology, Faculty of Medicine,
University of Ottawa,
Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Alberer M, Moe CL, Hatz C, Kling K, Kirby AE, Lindsay L, Nothdurft HD, Riera-Montes M, Steffen R, Verstraeten T, Wu HM, DuPont HL. Norovirus acute gastroenteritis amongst US and European travellers to areas of moderate to high risk of travellers' diarrhoea: a prospective cohort study. J Travel Med 2024; 31:taad051. [PMID: 37074164 PMCID: PMC11500662 DOI: 10.1093/jtm/taad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Acute gastroenteritis (AGE) is a major medical condition for travellers worldwide, particularly travellers to low- and middle-income countries. Norovirus (NoV) is the most common cause of viral AGE in older children and adults, but data on prevalence and impact amongst travellers is limited. METHODS Prospective, multi-site, observational cohort study conducted 2015-2017, amongst adult international travellers from the US and Europe to areas of moderate to high risk of travel-acquired AGE. Participants provided self-collected pre-travel stool samples and self-reported AGE symptoms whilst travelling. Post-travel stool samples were requested from symptomatic subjects and a sample of asymptomatic travellers within 14 days of return. Samples were tested for NoV by RT-qPCR, genotyped if positive and tested for other common enteric pathogens by Luminex xTAG GPP. RESULTS Of the 1109 participants included, 437 (39.4%) developed AGE symptoms resulting in an overall AGE incidence of 24.7 per 100 person-weeks [95% confidence interval (CI): 22.4; 27.1]. In total, 20 NoV-positive AGE cases (5.2% of those tested) were identified at an incidence of 1.1 per 100 person-weeks (95% CI: 0.7; 1.7). NoV-positive samples belonged mostly to genogroup GII (18, 85.7%); None of the 13 samples sequenced belonged to genotype GII.4. Clinical severity of AGE was higher for NoV-positive than for NoV-negative cases (mean modified Vesikari Score 6.8 vs 4.9) with more cases classified as severe or moderate (25% vs 6.8%). In total, 80% of NoV-positive participants (vs 38.9% in NoV-negative) reported at least moderate impact on travel plans. CONCLUSIONS AGE is a prevalent disease amongst travellers with a small proportion associated with NoV. Post-travel stool sample collection timing might have influenced the low number of NoV cases detected; however, NoV infections resulted in high clinical severity and impact on travel plans. These results may contribute to targeted vaccine development and the design of future studies on NoV epidemiology.
Collapse
Affiliation(s)
- Martin Alberer
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christine L Moe
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Christoph Hatz
- Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Center for Travellers’ Health, University of Zurich, Zurich, Switzerland
| | - Kerstin Kling
- Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Center for Travellers’ Health, University of Zurich, Zurich, Switzerland
| | - Amy E Kirby
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lisa Lindsay
- P95 Pharmacovigilance and Epidemiology Services, Leuven, Belgium
| | - Hans D Nothdurft
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Robert Steffen
- Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Center for Travellers’ Health, University of Zurich, Zurich, Switzerland
- Division of Epidemiology, Human Genetics & Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | | | - Henry M Wu
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Herbert L DuPont
- Kelsey Research Foundation, Houston, TX, USA
- School of Public Health, Center for Infectious Diseases, and McGovern Medical School, Department of Internal Medicine, University of Texas–Houston Health Science Center, Houston, TX, USA
| |
Collapse
|
3
|
Zhou S, Jin M, Yin J, Shi D, Li H, Gao Z, Chen Z, Yang Z, Chen T, Wang H, Li J, Yang D. Graphene-Based Virus Enrichment Protocol Increases the Detection Sensitivity of Human Norovirus in Strawberry and Oyster Samples. Foods 2024; 13:2967. [PMID: 39335897 PMCID: PMC11431745 DOI: 10.3390/foods13182967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Human noroviruses (HuNoVs), the most prevalent viral contaminant in food, account for a substantial proportion of nonbacterial gastroenteritis cases. Extensive work has been focused on the diagnosis of HuNoVs in clinical samples, whereas the availability of sensitive detection methods for their detection in food is lacking. Here, we developed a virus enrichment approach utilizing graphene-based nanocomposites (CTAB-rGO-Fe3O4) that does not rely on large instruments and is suitable for on-site food pretreatment. The recovery efficiency of the developed virus enrichment procedure for serially diluted GII.4 norovirus ranged from 10.06 to 72.67% in strawberries and from 2.66 to 79.65% in oysters. Furthermore, we developed a real-time recombinase polymerase amplification (real-time RPA) assay, which can detect as low as 1.22 genome copies µL-1 of recombinant plasmid standard and has no cross-reactivity with genomes of astrovirus, rotavirus, adenovirus, and MS2 bacteriophage. Notably, the combined virus enrichment and real-time RPA detection assay enhanced the detection limits to 2.84 and 37.5 genome copies g-1 in strawberries and oysters, respectively, compared to those of qPCR. Our strategy, the graphene-based virus enrichment method combined with real-time RPA, presents a promising tool for sensitively detecting HuNoVs in food samples.
Collapse
Affiliation(s)
- Shuqing Zhou
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Min Jin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Jing Yin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Danyang Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Haibei Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Zhixian Gao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Zhengshan Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Zhongwei Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Tianjiao Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Huaran Wang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Junwen Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Dong Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| |
Collapse
|
4
|
Tao L, Wang X, Yu Y, Ge T, Gong H, Yong W, Si J, He M, Ding J. Identifying SNP threshold from P2 sequences for investigating norovirus transmission. Virus Res 2024; 346:199408. [PMID: 38797342 PMCID: PMC11153907 DOI: 10.1016/j.virusres.2024.199408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Noroviruses are a group of non-enveloped single-stranded positive-sense RNA virus belonging to Caliciviridae family. They can be transmitted by the fecal-oral route from contaminated food and water and cause mainly acute gastroenteritis. Outbreaks of norovirus infections could be difficult to detect and investigate. In this study, we developed a simple threshold detection approach based on variations of the P2 domain of the capsid protein. We obtained sequences from the norovirus hypervariable P2 region using Sanger sequencing, including 582 pairs of epidemiologically-related strains from 35 norovirus outbreaks and 6402 pairs of epidemiologically-unrelated strains during the four epidemic seasons. Genetic distances were calculated and a threshold was performed by adopting ROC (Receiver Operating Characteristic) curve which identified transmission clusters in all tested outbreaks with 80 % sensitivity. In average, nucleotide diversity between outbreaks was 67.5 times greater than the diversity within outbreaks. Simple and accurate thresholds for detecting norovirus transmissions of three genotypes obtained here streamlines molecular investigation of norovirus outbreaks, thus enabling rapid and efficient responses for the control of norovirus.
Collapse
Affiliation(s)
- Luqiu Tao
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166 Nanjing, Jiangsu, China
| | - Xuan Wang
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Yan Yu
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Teng Ge
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Hongjin Gong
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Wei Yong
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Jiali Si
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Min He
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Jie Ding
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166 Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Khamrin P, Kumthip K, Yodmeeklin A, Okitsu S, Motomura K, Sato S, Ushijima H, Maneekarn N. Genetic recombination and genotype diversity of norovirus GI in children with acute gastroenteritis in Thailand, 2015-2021. J Infect Public Health 2024; 17:379-385. [PMID: 38237357 DOI: 10.1016/j.jiph.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Human norovirus is a predominant etiological agent responsible for acute gastroenteritis across all age groups. Recently, norovirus recombinant strains have been reported as the cause of norovirus outbreaks in several settings and the strains that cause outbreaks mostly belong to the norovirus GII. However, yet, the norovirus GI recombinant strains have never been reported previously in Thailand. The aims of this study were to investigate the genetic recombination and genotype diversity of norovirus GI strains in children hospitalized with acute gastroenteritis in Chiang Mai, Thailand during a period of seven years from 2015 to 2021. METHODS A total of 2829 stool specimens were screened for norovirus GI by real-time PCR, and the polymerase and capsid genes were sequenced and analyzed. RESULTS Of 2829 specimens tested, 12 (0.4%) were positive for norovirus GI. Of these, 7 out of 12 (58.3%) strains were identified as norovirus GI recombinant strains. Among 7 norovirus GI recombinant strains, 3, 3, and 1 were identified as GI.3[P13], GI.5[P4], and GI.6[P11], respectively. The remaining five strains were identified as non-recombinant strains of the GI.4[P4], GI.5[P5], and GI.6[P6] genotypes. CONCLUSIONS The findings highlight the genetic diversity and multiple intergenotype recombinant strains of norovirus GI circulating in children with acute gastroenteritis in Chiang Mai, Thailand from 2015 to 2021. The detection of multiple intergenotype norovirus GI recombinant strains further underscore the complexity of norovirus GI strains circulating in this region.
Collapse
Affiliation(s)
- Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand; Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazushi Motomura
- Epidemiology Section, Division of Public Health, Osaka Institute of Public Health, Osaka, Japan
| | - Shintaro Sato
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Fumian TM, Malta FC, Sarmento SK, Fernandes SB, Negri CM, Belettini SADA, Machado MH, Guimarães MAAM, de Assis RMS, Baduy GA, Fialho AM, Burlandy FM. Acute gastroenteritis outbreak associated with multiple and rare norovirus genotypes after storm events in Santa Catarina, Brazil. J Med Virol 2023; 95:e29205. [PMID: 37933896 DOI: 10.1002/jmv.29205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Norovirus is a major cause of acute diarrheal disease (ADD) outbreaks worldwide. In the present study, we investigated an ADD outbreak caused by norovirus in several municipalities of Santa Catarina state during the summer season, southern Brazil in 2023. As of the 10th epidemiological week of 2023, approximately 87 000 ADD cases were reported, with the capital, Florianópolis, recording the highest number of cases throughout the weeks. By using RT-qPCR and sequencing, we detected 10 different genotypes, from both genogroups (G) I and II. Some rare genotypes were also identified. Additionally, rotavirus and human adenovirus were sporadically detected among the ADD cases. Several features of the outbreak suggest that sewage-contaminated water could played a role in the surge of ADD cases. Storm events in Santa Catarina state that preceded the outbreak likely increased the discharge of contaminated wastewater and stormwater into water bodies, such as rivers and beaches during a high touristic season in the state. Climate change-induced extreme weather events, including intensified rainfall and frequent floods, can disturb healthcare and sanitation systems. Implementing public policies for effective sanitation, particularly during peak times, is crucial to maintain environmental equilibrium and counter marine pollution.
Collapse
Affiliation(s)
- Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fábio Correia Malta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Infectious and Parasitic Diseases, School of Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sylvia Kahwage Sarmento
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Cynthia Maria Negri
- Central Laboratory of Public Health-LACEN, Florianópolis, Santa Catarina, Brazil
| | | | | | - Maria Angelica Arpon Marandino Guimarães
- Department of Infectious and Parasitic Diseases, School of Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriel Assad Baduy
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alexandre Madi Fialho
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernanda Marcicano Burlandy
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Khumela R, Kabue JP, de Moraes MTB, Traore AN, Potgieter N. Prevalence of Human Norovirus GII.4 Sydney 2012 [P31] between 2019 and 2021 among Young Children from Rural Communities in South Africa. Viruses 2023; 15:1682. [PMID: 37632024 PMCID: PMC10458076 DOI: 10.3390/v15081682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Acute gastroenteritis (AGE) accounts for considerable morbidity and mortality in the paediatric population worldwide, especially in low-income countries. Human norovirus (HNoV), particularly GII.4 strains, are important agents of AGE. This study aimed to detect and characterise HNoV in children with and without AGE. Between 2019 and 2021, 300 stool samples (200 AGE and 100 without AGE) were collected from children below 5 years of age referred to the healthcare facilities of the rural communities of Vhembe District, South Africa. After detection using real-time RT-PCR, HNoV positive samples were subjected to RT-PCR and Sanger sequencing. Partial nucleotide sequences (capsid/RdRp) were aligned using the Muscle tool, and phylogenetic analysis was performed using MEGA 11. The nucleotides' percent identity among HNoV strains was compared using ClustalW software. A significant difference in HNoV prevalence between AGE children (37%; 74/200) and non-AGE (14%; 14/100) was confirmed (p < 0.0001). Genogroup II (GII) HNoV was predominant in AGE children (80%; 59/74), whereas most non-AGE children were infected by the GI norovirus genogroup (64%; 9/14). GII.4 Sydney 2012 [P31] strains were dominant (59%; 19/32) during the study period. A phylogenetic analysis revealed a close relationship between the HNoV strains identified in this study and those circulating worldwide; however, ClustalW showed less than 50% nucleotide similarity between strains from this study and those from previously reported norovirus studies in the same region. Our findings indicate significant changes over time in the circulation of HNoV strains, as well as the association between high HNoV prevalence and AGE symptoms within the study area. The monitoring of HuNoV epidemiology, along with stringent preventive measures to mitigate the viral spread and the burden of AGE, are warranted.
Collapse
Affiliation(s)
- Ronewa Khumela
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (J.-P.K.); (A.N.T.); (N.P.)
| | - Jean-Pierre Kabue
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (J.-P.K.); (A.N.T.); (N.P.)
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brazil, 4365-Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Afsatou Ndama Traore
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (J.-P.K.); (A.N.T.); (N.P.)
| | - Natasha Potgieter
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (J.-P.K.); (A.N.T.); (N.P.)
| |
Collapse
|
8
|
Epifanova NV, Sashina TA, Morozova OV, Oparina SV, Novikova NA. An increase in prevalence of recombinant GII.3[P12] norovirus in sporadic acute diarrhea in children in Nizhny Novgorod, Russia, 2018-2021. Virus Genes 2022; 58:467-472. [PMID: 35680691 DOI: 10.1007/s11262-022-01919-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
Noroviruses are important etiological agents causing acute intestinal infection in humans. In the last decades, the most common norovirus genotype was GII.4 despite a significant genetic diversity among strains, while the active circulation of noroviruses with other genotypes was observed periodically. This study shows an increase in the detection rate of recombinant GII.3[P12] norovirus in Nizhny Novgorod, Russia, from 6.8% in 2018-2019 to 34.9% in 2020-2021. We performed a phylogenetic analysis based on the nucleotide sequences of noroviruses possessing this genotype obtained in this work, as well as presented in the GenBank database. It has been shown that the circulation of GII.3[P12] noroviruses in the study area was the result of several independent introductions, either directly from the Western Pacific region, or through the Asian part of Russia. The polyphyletic origin, the geographical expansion, and the growth of the epidemic significance of the recombinant GII.3[P12] noroviruses were noted.
Collapse
Affiliation(s)
- N V Epifanova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - T A Sashina
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - O V Morozova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia.
| | - S V Oparina
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - N A Novikova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| |
Collapse
|
9
|
Persistence of Antibiotic-Resistant Escherichia coli Strains Belonging to the B2 Phylogroup in Municipal Wastewater under Aerobic Conditions. Antibiotics (Basel) 2022; 11:antibiotics11020202. [PMID: 35203805 PMCID: PMC8868233 DOI: 10.3390/antibiotics11020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli is classified into four major phylogenetic groups (A, B1, B2, and D) that are associated with antibiotic resistance genes. Although antibiotic-resistant E. coli is commonly detected in municipal wastewater, little is known about the relationship between the phylogenetic groups and antibiotic-resistant E. coli in wastewater. In this study, the survival of E. coli in wastewater and the changes to the relationships between each phylogroup and the antibiotic-resistant profiles of E. coli isolates from wastewater were investigated under aerobic conditions for 14 days. The isolates were classified into the phylogroups A, B1, B2, and D or others by multiplex PCR. In addition, the susceptibility of the isolates to 11 antibiotics was assessed with the minimum inhibitory concentration (MIC) assay. While E. coli counts decreased in the wastewater with time under aerobic conditions, the prevalence of phylogroup B2 had increased to 73% on day 14. Furthermore, the MIC assay revealed that the abundance of antibiotic-resistant E. coli also increased on day 14. After batch-mixing the experiments under aerobic conditions, the surviving antibiotic-resistant E. coli included mainly multidrug-resistant and beta-lactamase-producing isolates belonging to phylogroup B2. These results suggest that the phylogroup B2 isolates that have acquired antibiotic resistance had a high survivability in the treated wastewater.
Collapse
|
10
|
Li W, Yan H, Liu B, Tian Y, Chen Y, Jia L, Gao Z, Wang Q. Epidemiological characteristics and genetic diversity of norovirus infections among outpatient children with diarrhea under 5 years of age in Beijing, China, 2011-2018. Gut Pathog 2021; 13:77. [PMID: 34952625 PMCID: PMC8709959 DOI: 10.1186/s13099-021-00473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Human noroviruses are the leading cause of sporadic cases and outbreaks of viral acute gastroenteritis in all age groups worldwide. Methods Epidemiological data and fecal specimens were collected between January 2011 and December 2018 from 4911 children < 5 years of age with diarrhea in three districts of Beijing. From 2011 to 2013, One-Step Reverse Transcription Polymerase Chain Reaction (RT-PCR) was used to detect noroviruses, and from January 2014 to December 2018, norovirus GI and GII were screened using duplex quantitative real-time RT-PCR (qRT-PCR). One-Step RT-PCR and RT-seminested PCR were performed to amplify the RNA-dependent polymerase and capsid genes of noroviruses in positive sample. Amplified products were sequenced directly; norovirus was typed using the online Norovirus Genotyping Tool v2.0 and phylogenetic analyses were conducted using MEGA-X. Results From 2011 to 2018, noroviruses were detected in 16.5% of specimens from children with diarrhea. The highest prevalence was observed in children aged 12 to 23 months (22.4%, 319/1421), followed by children aged 6 to 11 months (17.6%, 253/1441). The highest prevalence of norovirus infections occurred in autumn followed by winter, spring, and summer. From 2011 to 2018, the most prevalent dual types (genotype and polymerase type) were GII.4 Sydney[P31] (51.6%, 239/463), followed by GII.3[P12] (24.0%, 111/463), GII.4 2006b[P4 2006b] (7.3%, 34/463), GII.2[P16] (5.0%, 23/463), GII.17[P17] (2.6%, 12/463) and GII.6[P7] (2.6%, 12/463). GII.4 2006b[P4 2006b] predominated in 2011 and 2012. GII.4 Sydney[P31] predominated from 2013 to 2018. In total, 15 genotypes, 15 P-types and 19 dual types were detected in this study, reflecting the genetic diversity. Conclusions There were significant epidemiological characteristics and genetic diversity among outpatient children with norovirus infections < 5 years of age in Beijing from 2011 to 2018. These characteristics differ from those of norovirus outbreaks in Beijing. The complete genome sequences of each genotype are needed to better understand norovirus evolutionary mechanisms.
Collapse
Affiliation(s)
- Weihong Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Hanqiu Yan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Baiwei Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yi Tian
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yanwei Chen
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Lei Jia
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Zhiyong Gao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China.
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China.
| |
Collapse
|
11
|
Xie Y, Du X, Li D, Wang X, Xu C, Zhang C, Sun A, Schmidt S, Liu X. Seasonal occurrence and abundance of norovirus in pre- and postharvest lettuce samples in Nanjing, China. Lebensm Wiss Technol 2021; 152:112226. [DOI: 10.1016/j.lwt.2021.112226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Portela AR, Hernandez JM, Bandeira RS, Junior ECS, de Melo TC, Lucena MSS, Teixeira DM, Siqueira JAM, Gabbay YB, Silva LD. Retrospective molecular analysis of norovirus recombinant strains in the amazon region, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105130. [PMID: 34742933 DOI: 10.1016/j.meegid.2021.105130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Noroviruses are enteric viruses that cause acute gastroenteritis worldwide. Over two decades, GII.4 genotype was responsible for most cases. However, recombinant strains have emerged and changed the epidemiological context of these infections. OBJECTIVES The aim of this study was to identify the recombinant genetic strains of norovirus causing gastroenteritis in Brazilian children from the Amazon region. METHODS We analyzed 534 cases of gastroenteritis between 2015 and 2016. Genotypic characterization was performed by partial sequencing of ORF1 and ORF2. Evolutionary history was inferred by Bayesian inference using MrBayes. Recombinant strains were confirmed by Simplot and RDP4 analysis. FINDINGS We performed viral detection tests and identified a norovirus frequency of 31.8% (175/534). Based on viral RdRp and VP1 genes, nine genotypes were identified: GIIP31/GII.4, GII·P16/GII.4, GII·P7/GII.6, GII·P21/GII.13, GII·P33/GII.1, GII·P17/GII.17, GI·P7/GI.7, GII·P4/NT, and GII.7/NT. The phylogenetic tree showed evolutionary relationships among the genotypes, including the recombinant strains. This is the first description of GII·P33/GII.1 and GII·P21/GII.13 genotypes in Brazil. CONCLUSION Norovirus evolution has been characterized by the continuous replacement of variants that have new antigenic properties. In recent years, recombinant strains have displaced GII.4, improving the viral fitness and influencing the viral transmissibility and pathogenicity.
Collapse
Affiliation(s)
| | - Juliana Merces Hernandez
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tan MTH, Ho SX, Chu JJH, Li D. Application of virome capture sequencing in shellfish sold at retail level in Singapore. Lett Appl Microbiol 2021; 73:486-494. [PMID: 34268776 DOI: 10.1111/lam.13540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Abstract
During the period from late 2019 to early 2020, we performed a foodborne virus detection from shellfish collected in Singapore at retail level. Multiple human enteric viruses were included as our targets including human noroviruses (NoVs) GI and GII, hepatitis A virus, hepatitis E virus and rotavirus. Out of the 60 shellfish samples, 23 (38·3%) were detected to be positive by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) with human enteric viruses. Six samples were selected to proceed with virome capture sequencing with positive control samples spiked with serially diluted NoV GII clinical samples in oyster extract. As a result, the natural sample with comparable Ct values (34·0-35·0) of the spiked sample as detected by RT-qPCR generated much lower read counts (>7-log2 cumulative sum scaling difference) and genome coverage (406 nt. vs 3715 nt.), suggesting that the RT-qPCR positive signals detected from the shellfish samples collected at the retail market were likely from degraded RNA derived from inactive virus particles.
Collapse
Affiliation(s)
- M T H Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - S X Ho
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - J J H Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - D Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
14
|
Tan MTH, Li Y, Eshaghi Gorji M, Gong Z, Li D. Fucoidan But Not 2'-Fucosyllactose Inhibits Human Norovirus Replication in Zebrafish Larvae. Viruses 2021; 13:v13030461. [PMID: 33799811 PMCID: PMC8001738 DOI: 10.3390/v13030461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Human noroviruses (hNoVs) cause heavy disease burden worldwide and there is no clinically approved vaccination or antiviral hitherto. In this study, with the use of a zebrafish larva in vivo platform, we investigated the anti-hNoV potentials of fucoidan (from brown algae Fucus vesiculosus) and 2'-Fucosyllactose (2'-FL). As a result, although both fucoidan and 2'-FL were able to block hNoV GII.4 virus-like particle (VLPs) from binding to type A saliva as expected, only fucoidan, but not 2'-FL, was able to inhibit the replication of hNoV GII.P16-GII.4 in zebrafish larvae, indicating the possible needs of higher molecular weights for fucosylated carbohydrates to exert anti-hNoV effect.
Collapse
Affiliation(s)
- Malcolm Turk Hsern Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (M.T.H.T.); (M.E.G.)
| | - Yan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (Y.L.); (Z.G.)
| | - Mohamad Eshaghi Gorji
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (M.T.H.T.); (M.E.G.)
| | - Zhiyuan Gong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (Y.L.); (Z.G.)
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (M.T.H.T.); (M.E.G.)
- Correspondence:
| |
Collapse
|
15
|
Jeon EB, Choi MS, Kim JY, Choi EH, Lim JS, Choi J, Ha KS, Kwon JY, Jeong SH, Park SY. Assessment of potential infectivity of human norovirus in the traditional Korean salted clam product "Jogaejeotgal" by floating electrode-dielectric barrier discharge plasma. Food Res Int 2021; 141:110107. [PMID: 33641974 DOI: 10.1016/j.foodres.2021.110107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 11/25/2022]
Abstract
This study investigated the antiviral effects of floating electrode-dielectric barrier discharge (FE-DBD) plasma treatment (1.1 kV, 43 kHz, N2 1.5 m/s, 5-30 min) against human norovirus (HuNoV) GII.4 in Jogaejeotgal Infectivity was assessed using real-time quantitative-PCR (RT-qPCR) following treatment of samples with propidium monoazide (PMA) and sodium lauroyl sarcosinate (Sarkosyl). This study also investigated the effects of FE-DBD plasma treatment on Jogaejeotgal quality (assessed using pH value and Hunter colors). Following inoculation, the average titers of HuNoV GII.4 in Jogaejeotgal significantly (P < 0.05) decreased with increases in the FE-DBD plasma treatment time in both the non-PMA-treated and PMA + Sarkosyl-treated samples; in the non-PMA and PMA + Sarkosyl treated Jogaejeotgal, HuNoV GII.4 titers (log10 copy number/µL) were to: 3.16 and 2.95 (5 min), 2.90 and 2.48 (10 min), 2.82 and 2.40 (15 min), 2.58 and 2.26 (20 min), 2.48 and 2.06 (25 min), and 2.23 and 1.91 (30 min), respectively. The average titers of HuNoV demonstrated significant (P < 0.05) reductions of 0.35 log10 (55.3%) in PMA + Sarkosyl-treated samples compared with the non-PMA treated samples following exposure to 5-30 min of FE-DBD plasma. Reductions of >1-log for HuNoV in PMA + Sarkosyl- treated Jogaejeotgal required treatments of FE-DBD of 5-30 min. Using the first order kinetic model (R2 = 0.95), GII.4 decimal reduction time (D-value) resulting from FE-DBD plasma was 23.75 min. The pH and Hunter colors ("L", "a", and "b") were not significantly different (P > 0.05) between the untreated and FE-DBD plasma-treated Jogaejeotgal. Based on these results, the PMA + Sarkosyl/RT-qPCR method could be assessing HuNoV viability following 5-30 min treatment of FE-DBD plasma. Furthermore, may be an optimal treatment for Jogaejeotgal without altering the food quality (color and pH).
Collapse
Affiliation(s)
- Eun Bi Jeon
- Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Man-Seok Choi
- Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Ji Yoon Kim
- Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea
| | - Jinsung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea
| | - Kwang Soo Ha
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Ji Young Kwon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Sang Hyeon Jeong
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Shin Young Park
- Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
16
|
Kim JG, Kim JS, Kim JG. Characteristics of Norovirus Food Poisoning Outbreaks in Korea in the 2000s. J Food Prot 2021; 84:472-480. [PMID: 33108448 DOI: 10.4315/jfp-20-093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 10/18/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Norovirus food poisoning outbreaks in Korea (South) appeared in the 2000s and have been increasing since then. We aimed to investigate the epidemiological features of norovirus food poisoning outbreaks in Korea from 2002 to 2017, on the basis of official food poisoning statistics and publically reliable reports, and to find any associations with climate factors. Norovirus was the most common cause of food poisoning among known causative substances in Korea during the study period. More than one-third of the outbreaks occurred in group meal service facilities, including school lunch programs. A few of these facilities used groundwater contaminated with noroviruses to wash or cook food, which contributed to outbreaks. Norovirus occurrences showed strong seasonality: cold and relatively dry winter air may help norovirus to flourish. Both norovirus genotypes GI and GII that are infectious to humans were detected, with GII becoming more prevalent than GI. According to our correlation analysis in connection with climate factors, average temperatures, the highest and lowest temperatures, precipitation, the number of rain days, and humidity showed a significant negative correlation with a monthly norovirus occurrence (P < 0.05). The lowest temperature and average temperature had higher coefficients of correlation, -0.377 and -0.376, respectively. The norovirus outbreaks in Korea showed complex etiological characteristics, although more prevailed in wintertime, and are now a major public health problem. The use of groundwater in group meal service settings is a public health issue, as well as a norovirus concern; therefore, groundwater used in food service facilities and businesses should be treated for safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Jong-Gyu Kim
- Faculty of Food and Health Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea (ORCID: https://orcid.org/0000-0001-7310-1492 [Jong-Gyu Kim])
| | - Joong-Soon Kim
- Department of Industrial and Management Engineering, Keimyung University, Daegu 42601, Republic of Korea
| | - Jeong-Gyoo Kim
- School of Games (Software), Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
17
|
Eshaghi Gorji M, Tan MTH, Li D. Influence of fucosidase-producing bifidobacteria on the HBGA antigenicity of oyster digestive tissue and the associated norovirus binding. Int J Food Microbiol 2021; 340:109058. [PMID: 33461001 DOI: 10.1016/j.ijfoodmicro.2021.109058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023]
Abstract
Bivalve molluscan shellfish such as oysters are filter feeders and are able to accumulate human noroviruses (NoVs) largely due to the presence of human histo-blood group antigens (HBGAs)-like carbohydrates in their intestine. Since the fucose contents play a key role in the binding of NoVs to HBGAs, this study intended to investigate the influence of fucosidase-producing bifidobacteria on the HBGA antigenicity of oyster digestive tissue and the associated NoV binding. On the contrary to the expected, after a treatment of the oyster digestive tissue extracts with Bifidobacterium bifidum strain JCM 1254, the binding of human NoV GII.4 virus like particles (VLPs) to the oyster digestive tissue extracts enhanced significantly (OD450 from 1.15 ± 0.05 to 1.51 ± 0.02, P < 0.001) in an in vitro direct binding assay. The accumulation of human NoV GII·P16-GII.4 also enhanced significantly in the intestine of B. bifidum JCM 1254 treated oysters from 4.27 ± 0.25 log genomic copies/g oyster digestive tissue to 5.25 ± 0.29 log genomic copies/g oyster digestive tissue (P < 0.005) as observed in an in vivo test. Correspondingly, the type A antigenicity of the oyster digestive tissue extracts enhanced (OD450 from 0.77 ± 0.04 to 1.06 ± 0.05, P < 0.01) after the treatment with B. bifidum JCM 1254. These results could be explained by the substrate specificity of the B. bifidum JCM 1254 associated fucosidases. This study identified an indirect interaction possibly happening between the bacterial microbiota with human NoVs during their transmission in the food systems. We also supplied a potential strategy to mitigate the NoV contamination from shellfish, suppose bacterial strains with specified fucosidase production could be obtained in the future.
Collapse
Affiliation(s)
- Mohamad Eshaghi Gorji
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Malcolm Turk Hsern Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.
| |
Collapse
|
18
|
Chhabra P, Browne H, Huynh T, Diez-Valcarce M, Barclay L, Kosek MN, Ahmed T, Lopez MR, Pan CY, Vinjé J. Single-step RT-PCR assay for dual genotyping of GI and GII norovirus strains. J Clin Virol 2020; 134:104689. [PMID: 33260046 PMCID: PMC7816162 DOI: 10.1016/j.jcv.2020.104689] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Noroviruses are the major cause of acute gastroenteritis (AGE) in people of all ages globally. Standardized genotyping is key for outbreak investigations and surveillance networks. OBJECTIVE Here we describe the validation of a one-step conventional RT-PCR assay for sequence-based dual typing of GI and GII noroviruses. This polymerase (P) and capsid (C) dual typing assay uses a combination of previously published oligonucleotide primers amplifying a genomic region spanning the 3'-end of ORF1 and 5'end of ORF2 resulting in a 579 bp product for GI and 570 bp product for GII viruses. RESULTS The limit of detection of the assay ranged from 5 to 50 copies of viral RNA per reaction for GI and GII. To validate the assay, we tested 2,663 noroviruspositive stool samples from outbreaks and sporadic cases of AGE in Bangladesh, Guatemala, Peru, and USA collected between 2010-2019, of which 2,392 (90 %) were genotyped successfully. Most of the known genotypes infecting humans (GI (n = 9) and GII (n = 23)) and P types (GI (n = 15), GII, (n = 20)) could be detected. The remaining 270 samples had low viral load (Ct > 30) by real-time RT-PCR. A panel of 166 samples positive for other enteric viruses (rotavirus, astrovirus, sapovirus, adenovirus type 40/41) tested negative. CONCLUSION The use of broadly reactive genotyping assays greatly strengthens exchange of standardized genotype data globally to monitor trends in genotype diversity which is important for both the development of vaccines and to measure their impact.
Collapse
Affiliation(s)
- Preeti Chhabra
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Hannah Browne
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, USA
| | - Thalia Huynh
- California Department of Public Health, Richmond, CA, USA
| | | | - Leslie Barclay
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Margaret N Kosek
- University of Virginia Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Chao-Yang Pan
- California Department of Public Health, Richmond, CA, USA
| | - Jan Vinjé
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
19
|
Norovirus compared to other relevant etiologies of acute gastroenteritis among families from a semirural county in Chile. Int J Infect Dis 2020; 101:353-360. [PMID: 33059093 DOI: 10.1016/j.ijid.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To determine the dynamics of norovirus disease, a major cause of acute gastroenteritis (AGE), compared to other relevant etiologies, among families living in a lower middle income area. STUDY DESIGN Families with three or more members and with one or more healthy children <24 months of age were followed for 1-2 years to detect any AGE. Stool samples were tested for viral and bacterial pathogens and a questionnaire was completed for those with norovirus or rotavirus AGE. RESULTS Between April and June 2016, 110 families were enrolled, with 103 of them completing ≥12 months of follow-up. A total of 159 family AGE episodes were detected, mostly affecting one individual (92%). At least one pathogen was detected in 56% (94/169) of samples, of which 75/94 (80%) were sole infections. Norovirus was most common (n=26), followed closely by enteropathogenic Escherichia coli (EPEC) (n=25), rotavirus (n=24), and astrovirus (n=23). The annual incidence of family AGE was 0.77, and 0.12 for norovirus. Most norovirus AGE occurred in children <4 years old (96%). Only 13/159 (8%) index AGE cases resulted in a secondary case, of which four were associated with norovirus. The majority of norovirus strains were GII (85%), with a mild predominance of GII.4 (9/26; 35%); most norovirus isolates (69%) were recombinants. CONCLUSIONS The family incidence of AGE in this lower middle income community was nearly one episode per year, mostly caused by viruses, specifically norovirus closely followed by rotavirus and astrovirus. Norovirus infections primarily affected children <4 years old and secondary cases were uncommon.
Collapse
|
20
|
Li M, Yang Y, Lu Y, Zhang D, Liu Y, Cui X, Yang L, Liu R, Liu J, Li G, Qu J. Natural Host-Environmental Media-Human: A New Potential Pathway of COVID-19 Outbreak. ENGINEERING (BEIJING, CHINA) 2020; 6:1085-1098. [PMID: 33520330 PMCID: PMC7834166 DOI: 10.1016/j.eng.2020.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Identifying the first infected case (patient zero) is key in tracing the origin of a virus; however, doing so is extremely challenging. Patient zero for coronavirus disease 2019 (COVID-19) is likely to be permanently unknown. Here, we propose a new viral transmission route by focusing on the environmental media containing viruses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or RaTG3-related bat-borne coronavirus (Bat-CoV), which we term the "environmental quasi-host." We reason that the environmental quasi-host is likely to be a key node in helping recognize the origin of SARS-CoV-2; thus, SARS-CoV-2 might be transmitted along the route of natural host-environmental media-human. Reflecting upon viral outbreaks in the history of humanity, we realize that many epidemic events are caused by direct contact between humans and environmental media containing infectious viruses. Indeed, contacts between humans and environmental quasi-hosts are greatly increasing as the space of human activity incrementally overlaps with animals' living spaces, due to the rapid development and population growth of human society. Moreover, viruses can survive for a long time in environmental media. Therefore, we propose a new potential mechanism to trace the origin of the COVID-19 outbreak.
Collapse
Affiliation(s)
- Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cui
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Chen C, Wu B, Zhang H, Li KF, Liu R, Wang HL, Yan JB. Molecular evolution of GII.P17-GII.17 norovirus associated with sporadic acute gastroenteritis cases during 2013-2018 in Zhoushan Islands, China. Virus Genes 2020; 56:279-287. [PMID: 32065329 DOI: 10.1007/s11262-020-01744-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
In this study, we investigated the molecular characteristics and spatio-temporal dynamics of GII.P17-GII.17 norovirus in Zhoushan Islands during 2013-2018. We collected 1849 samples from sporadic acute gastroenteritis patients between January 2013 and August 2018 in Zhoushan Islands, China. Among the 1849 samples, 134 (7.24%) samples were positive for human norovirus (HuNoV). The complete sequence of GII.17 VP1 gene was amplified from 31 HuNoV-positive samples and sequenced. A phylogenetic tree was constructed based on the full-length sequence of the VP1 gene. Phylogenetic analysis revealed that the GII.17 genotype detected during 2014-2018 belongs to the new GII.17 Kawasaki variant. Divergence analysis revealed that the time of the most recent common ancestor (TMRCA) of GII.17 in Zhoushan Islands was estimated to be between 1997 and 1998. The evolutionary rate of the VP1 gene of the GII.17 genotype norovirus was 1.14 × 10-3 (95% HPD: 0.62-1.73 × 10-3) nucleotide substitutions/site/year. The spatio-temporal diffusion analysis of the GII.17 genotype identified Hong Kong as the epicenter for GII.17 dissemination. The VP1 gene sequence of Zhoushan Island isolates correlated with that of Hong Kong and Japan isolates.
Collapse
Affiliation(s)
- Can Chen
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affifiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Wu
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Hui Zhang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Ke-Feng Li
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Rong Liu
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Ling Wang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.
| | - Jian-Bo Yan
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
22
|
Li B, Xiao D, Li Y, Wu X, Qi L, Tang W, Li Q. Epidemiological analysis of norovirus infectious diarrhea outbreaks in Chongqing, China, from 2011 to 2016. J Infect Public Health 2019; 13:46-50. [PMID: 31548166 DOI: 10.1016/j.jiph.2019.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We investigated the epidemiological characteristics of norovirus infection from 2011 to 2016 in Chongqing, China, in order to provide evidence for strategies on epidemic prevention and control. METHODS We collected data on norovirus infectious diarrhea epidemics in 38 districts and counties, and analyzed the information using descriptive epidemiological methods. RESULTS In 2011, the first case of norovirus infectious diarrhea in Chongqing was reported. From 2011 to 2015, 38 districts and counties in Chongqing reported a total of 4 epidemics. In 2016, however, the city reported 117 outbreaks. From 2011 to 2016, there were 1637 cases of norovirus infection but no deaths. In 2016, most outbreaks occurred over a 5-month period with a clear peak in December and higher incidence in major urban areas than smaller communities (83.61% vs. 16.39%). Of these 1637 cases, 99.18% occurred in urban schools and nurseries, and 80% were transmitted person-to-person. Infection by genogroup II genotype 2 (GII.2) viruses accounted for 98.71% of cases. Leukocytes were increased in 67.81% of patients, neutrophils in 65%, and lymphocytes in 50%. Medical treatment was sought by 70% of patients or guardians but only 3.66% of cases were hospitalized. The most frequent misdiagnosis was "suspected food poisoning". CONCLUSION The frequency of norovirus infectious diarrhea epidemics increased over 20-fold from 2011 to 2016 in Chongqing, China. These epidemics occurred predominantly in urban schools and nurseries. However, epidemics showed little spread to outlying districts and counties, so prevention and control pressures were relatively high. SUGGESTIONS Healthcare professionals and institutions should strengthen health education for groups at high-risk of norovirus infection, such as school children, and increase norovirus testing capacity to further improve emergency investigation. Prevention and control knowledge should be disseminated to the general public to reduce transmission risk and total disease burden. Finally, governments and health administrative departments should invest special funds to prevent and control norovirus epidemics.
Collapse
Affiliation(s)
- Baisong Li
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China
| | - Dayong Xiao
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China
| | - Yanlin Li
- Hainan Medical University, Haikou 570100, China
| | - Xianlan Wu
- The Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Li Qi
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China
| | - Wenge Tang
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China
| | - Qin Li
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China.
| |
Collapse
|
23
|
Norovirus outbreaks in Beijing, China, from 2014 to 2017. J Infect 2019; 79:159-166. [DOI: 10.1016/j.jinf.2019.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/15/2019] [Accepted: 05/26/2019] [Indexed: 11/21/2022]
|
24
|
de Deus DR, Teixeira DM, Dos Santos Alves JC, Smith VC, da Silva Bandeira R, Siqueira JAM, de Sá Morais LLC, Resque HR, Gabbay YB. Occurrence of norovirus genogroups I and II in recreational water from four beaches in Belém city, Brazilian Amazon region. JOURNAL OF WATER AND HEALTH 2019; 17:442-454. [PMID: 31095519 DOI: 10.2166/wh.2019.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the presence of norovirus (NoV) in recreational waters of four estuarine beaches located in Mosqueiro Island, Belém city, Brazilian Amazon, during two years of monitoring (2012 and 2013). NoV particles were concentrated on filtering membrane by the adsorption-elution method and detected by semi-nested RT-PCR (reverse transcription polymerase chain reaction) and sequencing. NoV positivity was observed in 37.5% (39/104) of the surface water samples, with genogroup GI (69.2%) occurring at a higher frequency than GII (25.7%), with a cocirculation of both genogroups in two samples (5.1%). This virus was detected in all sampling points analyzed, showing the highest detection rate at the Paraíso Beach (46.2%). Statistically, there was a dependence relationship between tide levels and positive detection, with a higher frequency at high tide (46.7%) than at low tide (25%) periods. Months with the highest detection rates (April 2012 and April/May 2013) were preceded by periods of higher precipitation (March 2012 and February/March 2013). Phylogenetic analysis showed the circulation of the old pandemic variant (GII.4-US_95-96) and GI.8. The NoV detection demonstrated viral contamination on the beaches and evidenced the health risk to bathers, mainly through recreational activities such as bathing, and highlighted the importance of including enteric viruses research in the recreational water quality monitoring.
Collapse
Affiliation(s)
- Danielle Rodrigues de Deus
- Postgraduate Program in Parasitary Biology in the Amazon, State University of Pará, Tv. Perebebui, 2623, Marco, Belém, PA CEP 66087-662, Brazil
| | - Dielle Monteiro Teixeira
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Jainara Cristina Dos Santos Alves
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Vanessa Cavaleiro Smith
- Postgraduate Program in Virology, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil
| | - Renato da Silva Bandeira
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Jones Anderson Monteiro Siqueira
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Lena Líllian Canto de Sá Morais
- Environment Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil
| | - Hugo Reis Resque
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| |
Collapse
|
25
|
Impact of long-term storage of clinical samples collected from 1996 to 2017 on RT-PCR detection of norovirus. J Virol Methods 2019; 267:35-41. [DOI: 10.1016/j.jviromet.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 02/05/2023]
|
26
|
Bitencurt ELR, Siqueira JAM, Medeiros TB, Bandeira RDS, de Souza Oliveira D, de Paula Souza E Guimarães RJ, da Silva Soares L, Macarenhas JDP, Teixeira DM, Silva RSU, Loureiro ECB, de Moraes Silva MC, da Silva LD, Gabbay YB. Epidemiological and molecular investigation of norovirus and astrovirus infections in Rio Branco, Acre, Northern Brazil: A retrospective study. J Med Virol 2019; 91:997-1007. [PMID: 30624790 DOI: 10.1002/jmv.25395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/06/2018] [Accepted: 12/06/2018] [Indexed: 01/18/2023]
Abstract
Norovirus (NoV) is a major cause of nonbacterial acute gastroenteritis (AGE) outbreaks worldwide, with infections reported in semiclosed environments, particularly in hospitals and nursing homes. Astrovirus (HAstV) is prevalent worldwide, especially in developing countries. We aimed to determine the prevalence, spatial distribution, and genetic diversity of NoV and HAstV in children under 5 years of age in Rio Branco city, Acre State, Amazon Region, Brazil. Stool samples from children with (n = 240) and without (n = 248) AGE were collected from January to December 2012 from seven neighborhoods. The overall NoV prevalence was 12.3% (60 of 488); representing 15.8% (38 of 240) of the symptomatic samples and 8.9% (22 of 248) of the controls. HAstVs infection was observed in 4.7% (23 of 488) of the samples tested, 6.2% (15 of 240) of AGE cases, and 2.4% (6 of 248) of the controls (plus two without information about feces consistency). Infections were found in all age groups with higher frequency in children less than two years of age, for both viruses. NoV was detected in all neighborhoods, with a higher concentration in the fourth (30%; 18 of 60). NoV nucleotide sequencing performed in 86.7% (52 of 60) of the positive samples showed the circulation of the strains GII.4 (57.7%; 30 of 52), GIIPe/GII.4 (19.2%; 10 of 52), GII.7, GII.Pg/GII.1, and GII.Pc (3.8%; 2 of 52 for each), GII.6 and GII.Pg (1.9%; 1 of 52 for each), and GI.3 (7.7%; 4 of 52). Three GII.4 variants were detected: Den Haag_2006b (n = 1), New Orleans_2009 (n = 1), and Sydney_2012 (n = 14). HAstV types HAstV-1a (81.8%; 9 of 11) and HAstV-2c (18.2%; 2 of 11) were observed in the 47.8% (11 of 23) of characterized samples. This is the first data obtained in Acre State regarding the prevalence of these viruses and provides epidemiological and molecular information for a better understanding of their role among children with and without AGE.
Collapse
Affiliation(s)
| | | | - Tallyta Barros Medeiros
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Renato da Silva Bandeira
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Darleise de Souza Oliveira
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | | | - Luana da Silva Soares
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | | | - Dielle Monteiro Teixeira
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Rita S U Silva
- Municipality Secretary of Health of Rio Branco, Acre, Brazil
| | | | | | - Luciana Damascena da Silva
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Yvone Benchimol Gabbay
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| |
Collapse
|
27
|
Chen C, Yan JB, Wang HL, Li P, Li KF, Wu B, Zhang H. Molecular epidemiology and spatiotemporal dynamics of norovirus associated with sporadic acute gastroenteritis during 2013-2017, Zhoushan Islands, China. PLoS One 2018; 13:e0200911. [PMID: 30021022 PMCID: PMC6051660 DOI: 10.1371/journal.pone.0200911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/04/2018] [Indexed: 11/28/2022] Open
Abstract
A total of 1 590 fecal swabs and stool samples from sporadic acute gastroenteritis patients of all ages were collected from January 2013 to March 2018 in the Zhoushan Islands, China, with 99 (6.23%) samples subsequently identified as human norovirus (HuNoV) positive. Phylogenetic analysis of partial RdRp and VP1 gene regions identified 10 genotypes of the GII genogroup and 3 genotypes of the GI genogroup. The predominant genotype was GII.P17-GII.17 (42.86%, 33/77), followed by GII.Pe-GII.4_Sydney 2012 (24.68%, 19/77) and GII.P16-GII.2 (12.96%, 10/77). However, the prevailing genotype in the Zhoushan Islands has shifted on three separate occasions. The GII.Pe-GII.4_Sydney_2012 strain was dominant in 2013-2014, the GII.P17-17 strain was dominant in 2015-2016, and the GII.P16-GII.2 strain was dominant in 2017. Divergence analysis showed that the re-emerging GII.P16-GII.2 strains clustered with the Japanese 2010-2012 GII.P16-GII.2 strains, and the time of the most recent common ancestor was estimated to have occurred in 2012 to 2013. The evolutionary rates of the RdRp gene region of the GII.P16 genotype and the VP1 gene region of the GII.2 genotype were 2.64 × 10(-3) (95% HPD interval, 2.17-3.08 × 10(-3)) and 3.36 × 10(-3) (95% HPD interval, 2.66-4.04 × 10(-3)) substitutions/site/year, respectively. The migration pattern of the HuNoV GII.2 genotype in China demonstrated that the re-emerging GII.P16-GII.2 strains were first introduced into Hong Kong from Japan, and then spread from Hong Kong to other coastal areas. Our results also showed that the GII.P16-GII.2 strains in the Zhoushan Islands were likely introduced from Jiangsu Province, China, in 2016.
Collapse
Affiliation(s)
- Can Chen
- Department of Public Health, Nanchang University, Nanchang, Jiangxi Province, China
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Jian-Bo Yan
- Department of Public Health, Nanchang University, Nanchang, Jiangxi Province, China
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Hong-Ling Wang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Peng Li
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Ke-Feng Li
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Bing Wu
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Hui Zhang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| |
Collapse
|
28
|
Summa M, Maunula L. Rapid Detection of Human Norovirus in Frozen Raspberries. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:51-60. [PMID: 29019092 DOI: 10.1007/s12560-017-9321-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Raspberries have lately caused several human norovirus (HuNoV) outbreaks in Europe. In this study, we developed and evaluated for HuNoV reverse transcription (RT)-PCR detection in frozen raspberries extraction methods that have equal sensitivity but are less time-consuming than widely used methods based on polyethylene glycol (PEG) precipitation and chloroform-butanol purification. One method was applied to stored frozen raspberries linked to previous HuNoV outbreaks and berries on sale. In the virus elution-based Method 1, sparkling water eluted viruses most efficiently from the berries. Method 2, based on direct nucleic acid extraction with minor PEG supplement, yielded the highest number of positive findings (4 out of 9) at low virus concentration level of 100 genome copies HuNoV genogroup II per 25 g raspberries. Both methods showed approximately equal sensitivity to a method including PEG precipitation and chloroform-butanol purification. Two naturally contaminated berry samples linked to HuNoV outbreaks in 2006 and 2009 were still positive for HuNoV genogroup I, but all berry products purchased from a local store remained negative for HuNoV. In conclusion, this study presents two efficient and rapid methods which can be used in urgent HuNoV outbreak investigations, since the results of the virus analysis are available in a few hours.
Collapse
Affiliation(s)
- Maija Summa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, PO Box 66, 00014, Helsinki, Finland.
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, PO Box 66, 00014, Helsinki, Finland
| |
Collapse
|
29
|
Costa STPD, Fumian TM, Lima ICGD, Siqueira JAM, Silva LDD, Hernández JDM, Lucena MSSD, Reymão TKA, Soares LDS, Mascarenhas JDP, Gabbay YB. High prevalence of norovirus in children with sporadic acute gastroenteritis in Manaus, Amazon Region, northern Brazil. Mem Inst Oswaldo Cruz 2017; 112:391-395. [PMID: 28591398 PMCID: PMC5446227 DOI: 10.1590/0074-02760160357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/10/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Norovirus (NoV) is a major cause of acute gastroenteritis (AGE) worldwide, especially in children under five years. Studies involving the detection and molecular characterisation of NoV have been performed in Brazil, demonstrating its importance as an etiological agent of AGE. OBJECTIVES The objectives of this study were to investigate the frequency of human NoV and to genotype the strains isolated from 0-14-year-old patients of AGE in Manaus, Brazil, over a period of two years. METHODS A total of 426 faecal samples were collected between January 2010 and December 2011. All samples were tested for the presence of NoV antigens using a commercial enzyme immunoassay kit. RNA was extracted from all faecal suspensions and reverse transcription-polymerase chain reaction (RT-PCR) for the NoV-polymerase partial region was performed as a trial test. Positive samples were then subjected to PCR with specific primers for partial capsid genes, which were then sequenced. FINDINGS NoV was detected in 150 (35.2%) faecal samples, for at least one of the two techniques used. NoV was detected in children from all age groups, with the highest positivity observed among the group of 1-2 years old. Clinically, fever was verified in 43% of the positive cases and 46.3% of the negative cases, and vomiting was observed in 75.8% and 70.8% cases in these groups, respectively. Monthly distribution showed that the highest positivity was observed in January 2010 (81.2%), followed by February and April 2010 and March 2011, when the positivity rate reached almost 50%. Phylogenetic analyses performed with 65 positive strains demonstrated that 58 (89.2%) cases of NoV belonged to genotype GII.4, five (7.7%) to GII.6, and one (1.5%) each to GII.7 and GII.3. MAIN CONCLUSIONS This research revealed a high circulation of NoV GII.4 in Manaus and contributed to the understanding of the importance of this virus in the aetiology of AGE cases, especially in a region with such few studies available.
Collapse
Affiliation(s)
| | - Tulio Machado Fumian
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro, RJ, Brasil
| | - Ian Carlos Gomes de Lima
- Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Seção de Virologia, Ananindeua, PA, Brasil
| | | | | | | | | | | | - Luana da Silva Soares
- Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Seção de Virologia, Ananindeua, PA, Brasil
| | | | - Yvone Benchimol Gabbay
- Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Seção de Virologia, Ananindeua, PA, Brasil
| |
Collapse
|
30
|
Siqueira JAM, Júnior ECS, Linhares ADC, Gabbay YB. Molecular analysis of norovirus in specimens from children enrolled in a 1982-1986 study in Belém, Brazil: A community-based longitudinal study. J Med Virol 2017; 89:1894-1903. [PMID: 28321885 DOI: 10.1002/jmv.24812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/08/2017] [Indexed: 01/05/2023]
Abstract
Fecal specimens were collected during a longitudinal, community-based study in the city of Belém, North Brazil, that was conducted over 3 years (October 1982 to March 1986), in which 20 children were included from birth to 3 years of age. A total of 229 fecal samples were screened by real time RT-PCR targeting the junction region (ORF 1/2) of the norovirus (NoV) genome. NoV-positive samples were subjected to PCR and sequencing of the viral polymerase (ORF1) and viral protein 1 (VP1) genes (ORF2). The junction region was also sequenced to assess for recombination when ORF1 and ORF2 genotyping results were dissimilar. Samples classified as GII.P4/GII.4 were further characterized by sequencing the P2 subdomain of the viral capsid to determine possible alterations. An overall positivity of 16.1% (37/229) was observed, including GI (16.2%-6/37) and GII (83.8%-31/37) genogroups. Cases of NoV reinfection in at least 2-month intervals were observed, and 12 children developed at least one case of asymptomatic NoV infection. In total, 48.6% (18/37) NoV-positive samples were subjected to nucleotide sequencing analysis targeting the following polymerase genes: GI.P3 (n = 1), GII.Pa (n = 1), GII.Pc (n = 1), GII.P4 (n = 5), GII.P6 (n = 5), GII.P7 (n = 3), GII.P12 (n = 1), and GII.P22 (n = 1). For the VP1 gene, characterization was performed in 14 (77.8%) samples: GI.3 (n = 1), GII.2 (n = 1), GII.4 (n = 4), GII.6 (n = 4), GII.7 (n = 1), GII.12 (n = 1), GII.14 (n = 1), and GII.23 (n = 1). Recombination events were confirmed in three cases (GII.P12/GII.2, GII.P7/GII.14, and GII.Pa/GII.12), and four samples genotyped as GII.P4/GII.4 were analyzed to identify variants. None had contemporary counterparts. Three children developed consecutive NoV infections by different genotypes. The present report documents the importance of NoV as a cause of childhood infection during a longitudinal study conducted more than 30 years ago.
Collapse
Affiliation(s)
| | | | - Alexandre da Costa Linhares
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health. Ananindeua, Pará, Brazil
| | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health. Ananindeua, Pará, Brazil
| |
Collapse
|
31
|
Siqueira JAM, Bandeira RDS, Oliveira DDS, dos Santos LFP, Gabbay YB. Genotype diversity and molecular evolution of noroviruses: A 30-year (1982-2011) comprehensive study with children from Northern Brazil. PLoS One 2017; 12:e0178909. [PMID: 28604828 PMCID: PMC5467842 DOI: 10.1371/journal.pone.0178909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/19/2017] [Indexed: 01/19/2023] Open
Abstract
A chronologically comprehensive 30-year study was conducted that involved children living in Belém, in the Amazon region of Northern Brazil, who participated in eight different studies from October 1982 to April 2011. The children were followed either in the community or in health units and hospitals in order to identify the norovirus genotypes involved in infections during this time. A total of 2,520 fecal specimens were obtained and subjected to RT-PCR and nucleotide sequencing for regions A, B, C, D and P2 of the viral genome. An overall positivity of 16.9% (n = 426) was observed, and 49% of the positive samples were genotyped (208/426), evidencing the presence of several genotypes as follows: Polymerase gene (GI.P4, GII.Pa, GII.Pc, GII.Pe, GII.Pg, GII.Pj, GII.P3, GII.P4, GII.P6, GII.P7, GII.P8, GII.P12, GII.P13, GII.P14, GII.P21, GII.P22), and VP1 gene (GI.3, GI.7, GII.1, GII.2, GII.3, GII.4, GII.6, GII.7, GII.8, GII.10, GII.12, GII.14, GII.17, GII.23). The GII.P4/GII.4 genotype determined by both open reading frames (ORFs) (partial polymerase and VP1 genes) was found for 83 samples, and analyses of the subdomain P2 region showed 10 different variants: CHDC (1970s), Tokyo (1980s), Bristol_1993, US_95/96, Kaiso_2003, Asia_2003, Hunter_2004, Yerseke_2006a, Den Haag_2006b (subcluster “O”) and New Orleans_2009. Recombination events were confirmed in 47.6% (n = 20) of the 42 samples with divergent genotyping by ORF1 and ORF2 and with probable different breakpoints within the viral genome. The evolutionary analyses estimated a rate of evolution of 1.02 x 10−2 and 9.05 x 10−3 subs./site/year using regions C and D from the VP1 gene, respectively. The present research shows the broad genetic diversity of the norovirus that infected children for 30 years in Belém. These findings contribute to our understanding of noroviruses molecular epidemiology and viral evolution and provide a baseline for vaccine design.
Collapse
Affiliation(s)
- Jones Anderson Monteiro Siqueira
- Laboratório de Norovírus e outros Vírus Gastroentéricos—LNVE, Seção de Virologia—SAVIR, Instituto Evandro Chagas—IEC, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
- * E-mail:
| | - Renato da Silva Bandeira
- Seção de Virologia–SAVIR, Instituto Evandro Chagas—IEC, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Darleise de Souza Oliveira
- Seção de Virologia–SAVIR, Instituto Evandro Chagas—IEC, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Liann Filiphe Pereira dos Santos
- Laboratório de Norovírus e outros Vírus Gastroentéricos—LNVE, Seção de Virologia—SAVIR, Instituto Evandro Chagas—IEC, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Yvone Benchimol Gabbay
- Laboratório de Norovírus e outros Vírus Gastroentéricos—LNVE, Seção de Virologia—SAVIR, Instituto Evandro Chagas—IEC, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| |
Collapse
|
32
|
Genetic and Epidemiologic Trends of Norovirus Outbreaks in the United States from 2013 to 2016 Demonstrated Emergence of Novel GII.4 Recombinant Viruses. J Clin Microbiol 2017; 55:2208-2221. [PMID: 28490488 DOI: 10.1128/jcm.00455-17] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/25/2017] [Indexed: 12/29/2022] Open
Abstract
Noroviruses are the most frequent cause of epidemic acute gastroenteritis in the United States. Between September 2013 and August 2016, 2,715 genotyped norovirus outbreaks were submitted to CaliciNet. GII.4 Sydney viruses caused 58% of the outbreaks during these years. A GII.4 Sydney virus with a novel GII.P16 polymerase emerged in November 2015, causing 60% of all GII.4 outbreaks in the 2015-2016 season. Several genotypes detected were associated with more than one polymerase type, including GI.3, GII.2, GII.3, GII.4 Sydney, GII.13, and GII.17, four of which harbored GII.P16 polymerases. GII.P16 polymerase sequences associated with GII.2 and GII.4 Sydney viruses were nearly identical, suggesting common ancestry. Other common genotypes, each causing 5 to 17% of outbreaks in a season, included GI.3, GI.5, GII.2, GII.3, GII.6, GII.13, and GII.17 Kawasaki 308. Acquisition of alternative RNA polymerases by recombination is an important mechanism for norovirus evolution and a phenomenon that was shown to occur more frequently than previously recognized in the United States. Continued molecular surveillance of noroviruses, including typing of both polymerase and capsid genes, is important for monitoring emerging strains in our continued efforts to reduce the overall burden of norovirus disease.
Collapse
|
33
|
Siqueira JAM, Sousa Júnior EC, Linhares ADC, Gabbay YB. Molecular analysis of norovirus in specimens from children enrolled in a 1982-1986 study in Belém, Brazil: A community-based longitudinal study. J Med Virol 2017; 89:1539-1549. [DOI: 10.1002/jmv.24817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/08/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Alexandre da Costa Linhares
- Virology Section, Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health; Ananindeua Pará Brazil
| | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health; Ananindeua Pará Brazil
| |
Collapse
|
34
|
Siqueira JAM, Bandeira RDS, Justino MCA, Linhares ADC, Gabbay YB. Characterization of novel intragenotype recombination events among norovirus pandemic GII.4 variants. INFECTION GENETICS AND EVOLUTION 2016; 44:361-366. [DOI: 10.1016/j.meegid.2016.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
|
35
|
Portal TM, Siqueira JAM, Costa LCPDN, Lima ICGD, Lucena MSSD, Bandeira RDS, Linhares ADC, Luz CRNED, Gabbay YB, Resque HR. Caliciviruses in hospitalized children, São Luís, Maranhão, 1997-1999: detection of norovirus GII.12. Braz J Microbiol 2016; 47:724-30. [PMID: 27161199 PMCID: PMC4927645 DOI: 10.1016/j.bjm.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023] Open
Abstract
Gastroenteritis is one of the most common diseases during childhood, with norovirus (NoV) and sapovirus (SaV) being two of its main causes. This study reports for the first time the incidence of these viruses in hospitalized children with and without gastroenteritis in São Luís, Maranhão. A total of 136 fecal samples were tested by enzyme immunoassays (EIA) for the detection of NoV and by reverse transcription-polymerase chain reaction (RT-PCR) for detection of both NoV and SaV. Positive samples for both agents were subjected to sequencing. The overall frequency of NoV as detected by EIA and RT-PCR was 17.6% (24/136) and 32.6% (15/46), respectively in diarrheic patients and 10.0% (9/90) in non-diarrheic patients (p<0.01). Of the diarrheic patients, 17% had fever, vomiting and anorexia, and 13% developed fever, vomiting and abdominal pain. Of the 24 NoV-positive samples, 50% (12/24) were sequenced and classified as genotypes GII.3 (n=1), GII.4 (6), GII.5 (1), GII.7 (2), GII.12 (1) and GII.16 (1). SaV frequency was 9.8% (11/112), with 22.6% (7/31) in diarrheic patients and 4.9% (4/81) in nondiarrheic (p=0.04) ones. In diarrheic cases, 27.3% had fever, vomiting and anorexia, whereas 18.2% had fever, anorexia and abdominal pain. One SaV-positive sample was sequenced and classified as GII.1. These results show a high genetic diversity of NoV and higher prevalence of NoV compared to SaV. Our data highlight the importance of NoV and SaV as enteropathogens in São Luís, Maranhão.
Collapse
Affiliation(s)
- Thayara Morais Portal
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | | - Hugo Reis Resque
- Seção de Virologia, Instituto Evandro Chagas/SVS/MS, Ananindeua, Pará, Brazil.
| |
Collapse
|
36
|
Fischer SA. Emerging and Rare Viral Infections in Transplantation. TRANSPLANT INFECTIONS 2016. [PMCID: PMC7122901 DOI: 10.1007/978-3-319-28797-3_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunocompromised patients such as those undergoing solid organ or hematopoietic stem cell transplantation are at substantial risk for infection with numerous pathogens. Infections with cytomegalovirus (CMV), herpes simplex virus (HSV), Epstein–Barr virus (EBV), and human herpesvirus-6 (HHV-6) are well-described complications of transplantation. As viruses previously believed to be quiescent through widespread vaccination (e.g., measles and mumps) reemerge and molecular diagnostic techniques are refined, rare and emerging viral infections are increasingly diagnosed in transplant recipients. This chapter will review the clinical manifestations, diagnosis, and potential antiviral therapies for these viruses in the transplant population.
Collapse
|
37
|
Minor T, Lasher A, Klontz K, Brown B, Nardinelli C, Zorn D. The Per Case and Total Annual Costs of Foodborne Illness in the United States. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:1125-1139. [PMID: 25557397 DOI: 10.1111/risa.12316] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present an economic welfare-based method to estimate the health costs associated with foodborne illness caused by known viruses, bacteria, parasites, allergens, two marine biotoxins, and unspecified agents. The method generates health costs measured in both quality-adjusted life years and in dollars. We calculate the reduction in quality-adjusted life days caused by the illness and add reductions in quality-adjusted life years from any secondary effects that are estimated to occur. For fatal cases, we calculate the life years lost due to premature death. We add direct medical expenses to the monetary costs as derived from estimates of willingness to pay to reduce health risks. In total, we estimate that foodborne illness represents an annual burden to society of approximately $36 billion, with an average identified illness estimated to reduce quality-adjusted life days by 0.84, which is monetized and included in the average cost burden per illness of $3,630.
Collapse
Affiliation(s)
- Travis Minor
- U.S. Food and Drug Administration, College Park, MD, USA
| | - Angela Lasher
- U.S. Food and Drug Administration, College Park, MD, USA
| | - Karl Klontz
- U.S. Food and Drug Administration, College Park, MD, USA
| | - Bradley Brown
- U.S. Food and Drug Administration, College Park, MD, USA
| | | | - David Zorn
- U.S. Food and Drug Administration, Springfield, VA, USA
| |
Collapse
|
38
|
Karst SM, Zhu S, Goodfellow IG. The molecular pathology of noroviruses. J Pathol 2015; 235:206-16. [PMID: 25312350 DOI: 10.1002/path.4463] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022]
Abstract
Norovirus infection in humans typically results in acute gastroenteritis but may also occur in many animal species. Noroviruses are recognized as one of the most common causes of acute gastroenteritis in the world, being responsible for almost 20% of all cases. Despite their prevalence and impact, our knowledge of the norovirus life cycle and the pathological processes associated with norovirus-induced disease is limited. Whilst infection of the intestine is the norm, extraintestinal spread and associated pathologies have also been described. In addition, long-term chronic infections are now recognized as a significant cause of morbidity and mortality in the immunocompromised. This review aims to summarize the current state of knowledge with respect to norovirus pathology and the underlying mechanisms that have been characterized to date.
Collapse
Affiliation(s)
- Stephanie M Karst
- College of Medicine, Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | | | | |
Collapse
|
39
|
Silva LDD, Rodrigues EL, Lucena MSSD, Lima ICGD, Oliveira DDS, Soares LS, Mascarenhas JDP, Linhares ADC, Gabbay YB. Detection of the pandemic norovirus variant GII.4 Sydney 2012 in Rio Branco, state of Acre, northern Brazil. Mem Inst Oswaldo Cruz 2015; 108:1068-70. [PMID: 24141954 PMCID: PMC4005546 DOI: 10.1590/0074-0276130293] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/16/2013] [Indexed: 11/22/2022] Open
Abstract
Noroviruses (NoVs) are important cause of gastroenteritis in humans worldwide.
Genotype GII.4 is responsible for the majority of outbreaks reported to date. This
study describes, for the first time in Brazil, the circulation of NoV GII.4 variant
Sydney 2012 in faecal samples collected from children aged less than or equal to
eight years in Rio Branco, state of Acre, northern Brazil, during July-September
2012.
Collapse
|
40
|
|
41
|
Abstract
Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management.
Collapse
Affiliation(s)
- Elizabeth Robilotti
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Stan Deresinski
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
42
|
Siqueira JAM, Linhares ADC, Gonçalves MDS, Carvalho TCND, Justino MCA, Mascarenhas JDP, Gabbay YB. Group A rotavirus and norovirus display sharply distinct seasonal profiles in Belém, northern Brazil. Mem Inst Oswaldo Cruz 2014; 108:661-4. [PMID: 23903985 DOI: 10.1590/s0074-02762013000500020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/14/2013] [Indexed: 11/22/2022] Open
Abstract
Several viruses have been associated with acute gastroenteritis (AGE), and group A rotavirus (RVA) and norovirus (NoV) are the most prevalent. This study aimed to assess their prevalence among children hospitalised for diarrhoea during a three-year surveillance study. From May 2008-April 2011, overall positivity rates of 21.6% (628/2904) and 35.4% (171/483) were observed for RVA and NoV, respectively. The seasonality observed indicated distinct patterns when both viruses were compared. This finding may explain why hospitalisation for AGE remains constant throughout the year. Continuous AGE monitoring is needed to better assess the patterns of infection.
Collapse
|
43
|
Ajami NJ, Kavanagh OV, Ramani S, Crawford SE, Atmar RL, Jiang ZD, Okhuysen PC, Estes MK, DuPont HL. Seroepidemiology of norovirus-associated travelers' diarrhea. J Travel Med 2014; 21:6-11. [PMID: 24383649 PMCID: PMC3904865 DOI: 10.1111/jtm.12092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/06/2013] [Accepted: 07/15/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND Noroviruses (NoVs) are the most common cause of epidemic gastroenteritis, responsible for at least 50% of all gastroenteritis outbreaks worldwide and were recently identified as a leading cause of travelers' diarrhea (TD) in US and European travelers to Mexico, Guatemala, and India. METHODS Serum and diarrheic stool samples were collected from 75 US student travelers to Cuernavaca, Mexico, who developed TD. NoV RNA was detected in acute diarrheic stool samples using reverse transcription-polymerase chain reaction (RT-PCR). Serology assays were performed using GI.1 Norwalk virus (NV) and GII.4 Houston virus (HOV) virus-like particles (VLPs) to measure serum levels of immunoglobulin A (IgA) and IgG by dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA); serum IgM was measured by capture enzyme-linked immunosorbent assay (ELISA), and the 50% antibody-blocking titer (BT50 ) was determined by a carbohydrate-blocking assay. RESULTS NoV infection was identified in 12 (16%; 9 GI-NoV and 3 GII-NoV) of 75 travelers by either RT-PCR or fourfold or more rise in antibody titer. Significantly more individuals had detectable preexisting IgA antibodies against HOV (62/75, 83%) than against NV (49/75, 65%) (p = 0.025) VLPs. A significant difference was observed between NV- and HOV-specific preexisting IgA antibody levels (p = 0.0037), IgG (p = 0.003), and BT50 (p = <0.0001). None of the NoV-infected TD travelers had BT50 > 200, a level that has been described previously as a possible correlate of protection. CONCLUSIONS We found that GI-NoVs are commonly associated with TD cases identified in US adults traveling to Mexico, and seroprevalence rates and geometric mean antibody levels to a GI-NoV were lower than to a GII-NoV strain.
Collapse
Affiliation(s)
- Nadim J Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; School of Public Health, Center for Infectious Diseases, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Gastroenteritis (GE) and its associated diarrheal diseases remain as one of the top causes of death in the world. Noroviruses (NoVs) are a group of genetically diverse RNA viruses that cause the great majority of nonbacterial gastroenteritis in humans. However, there is still no vaccine licensed for human use to prevent NoV GE. The lack of a tissue culture system and a small animal model further hinders the development of NoV vaccines. Virus-like particles (VLPs) that mimic the antigenic architecture of authentic virions, however, can be produced in insect, mammalian, and plant cells by the expression of the capsid protein. The particulate nature and high-density presentation of viral structure proteins on their surface render VLPs as a premier vaccine platform with superior safety, immunogenicity, and manufacturability. Therefore, this chapter focuses on the development of effective NoV vaccines based on VLPs of capsid proteins. The expression and structure of NoV VLPs, especially VLPs of Norwalk virus, the prototype NoV, are extensively discussed. The ability of NoV VLPs in stimulating a potent systemic and mucosal anti-NoV immunity through oral and intranasal delivery in mice is presented. The advantages of plant expression systems as a novel production platform for VLP-based NoV vaccines are discussed in light of their cost-effectiveness, production speed, and scalability. Recent achievements from the first successful demonstration of NoV VLP production in plant expression system under the current Good Manufacture Practice (cGMP) regulation by the US Food and Drug Administration (FDA) are detailed. Moreover, results of human clinical trials demonstrating the safety and efficacy of insect and plant-derived NoV VLPs are also presented. Due to the diversity of capsid protein among different NoV strains and its rapid antigenic drift, we speculate that vaccine development should focus on multivalent VLP vaccines derived from capsid proteins of the most prevalent strains. With the very recent approval of the first plant-made biologics by the FDA, we also speculate that plant-based production systems will play an important role in manufacturing such multivalent VLP-based NoV vaccines.
Collapse
|
45
|
Aragão GC, Mascarenhas JDP, Kaiano JHL, de Lucena MSS, Siqueira JAM, Fumian TM, Hernandez JDM, de Oliveira CS, Oliveira DDS, Araújo EDC, Soares LDS, Linhares AC, Gabbay YB. Norovirus diversity in diarrheic children from an African-descendant settlement in Belém, Northern Brazil. PLoS One 2013; 8:e56608. [PMID: 23457593 PMCID: PMC3574080 DOI: 10.1371/journal.pone.0056608] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
Norovirus (NoV), sapovirus (SaV) and human astrovirus (HAstV) are viral pathogens that are associated with outbreaks and sporadic cases of gastroenteritis. However, little is known about the occurrence of these pathogens in relatively isolated communities, such as the remnants of African-descendant villages ("Quilombola"). The objective of this study was the frequency determination of these viruses in children under 10 years, with and without gastroenteritis, from a "Quilombola" Community, Northern Brazil. A total of 159 stool samples were obtained from April/2008 to July/2010 and tested by an enzyme immunoassay (EIA) and reverse transcription-polymerase chain reaction (RT-PCR) to detect NoV, SaV and HAstV, and further molecular characterization was performed. These viruses were detected only in the diarrheic group. NoV was the most frequent viral agent detected (19.7%-16/81), followed by SaV (2.5%-2/81) and HAstV (1.2%-1/81). Of the 16 NoV-positive samples, 14 were sequenced with primers targeting the B region of the polymerase (ORF1) and the D region of the capsid (ORF2). The results showed a broad genetic diversity of NoV, with 12 strains being classified as GII-4 (5-41.7%), GII-6 (3-25%), GII-7 (2-16.7%), GII-17 (1-8.3%) and GI-2 (1-8.3%), as based on the polymerase region; 12 samples were classified, based on the capsid region, as GII-4 (6-50%, being 3-2006b variant and 3-2010 variant), GII-6 (3-25%), GII-17 (2-16.7%) and GII-20 (1-8.3%). One NoV-strain showed dual genotype specificity, based on the polymerase and capsid region (GII-7/GII-20). This study provides, for the first time, epidemiological and molecular information on the circulation of NoV, SaV and HAstV in African-descendant communities in Northern Brazil and identifies NoV genotypes that were different from those detected previously in studies conducted in the urban area of Belém. It remains to be determined why a broader NoV diversity was observed in such a semi-isolated community.
Collapse
|
46
|
Multiple outbreaks of a novel norovirus GII.4 linked to an infected post-symptomatic food handler. Epidemiol Infect 2013; 141:1585-97. [DOI: 10.1017/s0950268813000095] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
SUMMARYMultiple norovirus outbreaks following catered events in Auckland, New Zealand, in September 2010 were linked to the same catering company and investigated. Retrospective cohort studies were undertaken with attendees of two events: 38 (24·1%) of 158 surveyed attendees developed norovirus-compatible illness. Attendees were at increased risk of illness if they had consumed food that had received manual preparation following cooking or that had been prepared within 45 h following end of symptoms in a food handler with prior gastroenteritis. All food handlers were tested for norovirus. A recombinant norovirus GII.e/GII.4 was detected in specimens from event attendees and the convalescent food handler. All catering company staff were tested; no asymptomatic norovirus carriers were detected. This investigation improved the characterization of norovirus risk from post-symptomatic food handlers by narrowing the potential source of transmission to one individual. Food handlers with gastroenteritis should be excluded from the workplace for 45 h following resolution of symptoms.
Collapse
|
47
|
Siqueira JAM, Linhares ADC, de Carvalho TCN, Aragão GC, Oliveira DDS, Dos Santos MC, de Sousa MS, Justino MCA, Mascarenhas JDP, Gabbay YB. Norovirus infection in children admitted to hospital for acute gastroenteritis in Belém, Pará, Northern Brazil. J Med Virol 2013; 85:737-44. [PMID: 23359323 DOI: 10.1002/jmv.23506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2012] [Indexed: 11/05/2022]
Abstract
Noroviruses are the leading cause of epidemic, non-bacterial outbreaks of acute gastroenteritis, and are also a major cause of sporadic acute gastroenteritis in infants. The aim of the present study was to identify norovirus infections in children not infected by rotavirus admitted to hospital for acute gastroenteritis in Belém. A total of 348 fecal specimens were obtained from children with diarrhea aged less than 5 years, all of whom had tested negative for rotavirus, between May 2008 and April 2010. Fecal samples were screened for norovirus antigen using enzyme-immunoassay (EIA). Specimens were subjected to reverse-transcription polymerase chain reaction (RT-PCR) using the primers Mon432/434-Mon431/433 for detection of the GI and GII norovirus strains, respectively. Based on both methods, the overall norovirus positivity rate was 36.5% (127/348). Of the 169 samples collected in the first year, 44.4% (n = 75) tested positive for norovirus using both methods, 35.5% (n = 60) by EIA and 40.8% (n = 69) by RT-PCR. Using RT-PCR as a reference standard, a sensitivity of 78.3%, specificity of 94%, and agreement of 87.6% were recorded. Genome sequencing was obtained for 22 (31.9%) of the 69 positive samples, of which 90.9% (20/22) were genotype GII.4d and 9.1% (2/22) were genotype GII.b. Norovirus infection was most frequent in children under 2 years of age (41.5%-115/277). The peak incidence (62.1%) of norovirus-related acute gastroenteritis in these patients (not infected by rotavirus) was observed in February 2010. These findings emphasize the importance of norovirus as a cause of severe acute gastroenteritis among children in Belém, Pará, Northern Brazil.
Collapse
|
48
|
Mathijs E, Stals A, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Uyttendaele M, Thiry E. A review of known and hypothetical transmission routes for noroviruses. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:131-52. [PMID: 23412887 DOI: 10.1007/s12560-012-9091-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 10/06/2012] [Indexed: 05/04/2023]
Abstract
Human noroviruses (NoVs) are considered a worldwide leading cause of acute non-bacterial gastroenteritis. Due to a combination of prolonged shedding of high virus levels in feces, virus particle shedding during asymptomatic infections, and a high environmental persistence, NoVs are easily transmitted pathogens. Norovirus (NoV) outbreaks have often been reported and tend to affect a lot of people. NoV is spread via feces and vomit, but this NoV spread can occur through several transmission routes. While person-to-person transmission is without a doubt the dominant transmission route, human infective NoV outbreaks are often initiated by contaminated food or water. Zoonotic transmission of NoV has been investigated, but has thus far not been demonstrated. The presented review aims to give an overview of these NoV transmission routes. Regarding NoV person-to-person transmission, the NoV GII.4 genotype is discussed in the current review as it has been very successful for several decades but reasons for its success have only recently been suggested. Both pre-harvest and post-harvest contamination of food products can lead to NoV food borne illness. Pre-harvest contamination of food products mainly occurs via contact with polluted irrigation water in case of fresh produce or with contaminated harvesting water in case of bivalve molluscan shellfish. On the other hand, an infected food handler is considered as a major cause of post-harvest contamination of food products. Both transmission routes are reviewed by a summary of described NoV food borne outbreaks between 2000 and 2010. A third NoV transmission route occurs via water and the spread of NoV via river water, ground water, and surface water is reviewed. Finally, although zoonotic transmission remains hypothetical, a summary on the bovine and porcine NoV presence observed in animals is given and the presence of human infective NoV in animals is discussed.
Collapse
Affiliation(s)
- Elisabeth Mathijs
- Department of Infectious and Parasitic diseases, Virology and Viral diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard du Colonster 20, 4000, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Horm KM, Davidson PM, Harte FM, D'Souza DH. Survival and inactivation of human norovirus surrogates in blueberry juice by high-pressure homogenization. Foodborne Pathog Dis 2012; 9:974-9. [PMID: 23113725 DOI: 10.1089/fpd.2012.1171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human noroviruses (HNoV) have been implicated in gastrointestinal outbreaks associated with fresh produce, juices, and ready-to-eat foods. In order to determine the risk of HNoV transmission by contaminated blueberry juice, survival characteristics of cultivable HNoV surrogates (murine norovirus, MNV-1; feline calicivirus, FCV-F9; and bacteriophage MS2) in blueberry juice (pH = 2.77) after 0, 1, 2, 7, 14, and 21 days at refrigeration temperatures (4°C) were studied. High-pressure homogenization (HPH) was studied as a novel processing method for noroviral surrogate inactivation in blueberry juice. Blueberry juice or phosphate-buffered saline (PBS; pH 7.2 as control) was inoculated with each virus, stored over 21 days at 4°C or subjected to HPH, and plaque assayed. FCV-F9 (∼5 log(10) PFU/mL) was undetectable after 1 day in blueberry juice at 4°C. MNV-1 (∼4 log(10) PFU/ml) showed minimal reduction (1 log(10) PFU/mL) after 14 days, with greater reduction (1.95 log(10) PFU/mL; p < 0.05) after 21 days in blueberry juice at 4°C. Bacteriophage MS2 (∼6 log(10) PFU/mL) showed significant reduction (1.93 log(10) PFU/mL; p < 0.05) after 2 days and was undetectable after 7 days in blueberry juice at 4°C. FCV-F9 remained viable in PBS for up to 21 days (2.28 log(10) PFU/mL reduction), while MNV-1 and MS2 survived after 21 days (1.08 and 0.56 log(10) PFU/mL reduction, respectively). Intriguingly, FCV-F9 and bacteriophage MS2 showed reduction after minimal homogenization pressures in blueberry juice (pH = 2.77), possibly due to the combination of juice pH, juice components, and mechanical effects. MNV-1 in blueberry juice was only slightly reduced at 250 (0.33 log(10) PFU/mL) and 300 MPa (0.71 log(10) PFU/mL). Virus surrogate survival in blueberry juice at 4°C correlates well with the ease of HNoV transmission via juices. HPH for viral inactivation in juices is dependent on virus type, and higher homogenization pressures may be needed for MNV-1 inactivation.
Collapse
Affiliation(s)
- Katie Marie Horm
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996-4591, USA
| | | | | | | |
Collapse
|
50
|
McINTYRE LORRAINE, GALANIS ELENI, MATTISON KIRSTEN, MYKYTCZUK OKSANA, BUENAVENTURA ENRICO, WONG JULIE, PRYSTAJECKY NATALIE, RITSON MARK, STONE JASON, MOREAU DAN, YOUSSEF ANDRÉ. Multiple Clusters of Norovirus among Shellfish Consumers Linked to Symptomatic Oyster Harvesters. J Food Prot 2012; 75:1715-20. [DOI: 10.4315/0362-028x.jfp-12-113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the investigation of a norovirus outbreak associated with raw oyster consumption affecting 36 people in British Columbia, Canada, in 2010. Several genotypes were found in oysters, including an exact sequence match to clinical samples in regions B and C of the norovirus genome (genogroup I genotype 4). Traceback implicated a single remotely located harvest site probably contaminated by ill shellfish workers during harvesting activities. This outbreak resulted in three recalls, one public advisory, and closure of the harvest site.
Collapse
Affiliation(s)
- LORRAINE McINTYRE
- 1British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - ELENI GALANIS
- 1British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | | | | | | | - JULIE WONG
- 4British Columbia Centre for Disease Control Public Health Microbiology and Reference Laboratory, Vancouver, British Columbia, Canada
| | - NATALIE PRYSTAJECKY
- 4British Columbia Centre for Disease Control Public Health Microbiology and Reference Laboratory, Vancouver, British Columbia, Canada
- 5Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - MARK RITSON
- 6Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| | - JASON STONE
- 7Fraser Health Authority, Surrey, British Columbia, Canada
| | - DAN MOREAU
- 8Vancouver Island Health Authority, Victoria, British Columbia, Canada
| | - ANDRÉ YOUSSEF
- 9Canadian Food Inspection Agency, Burnaby, British Columbia, Canada
| | | |
Collapse
|