1
|
Alonso-Forn D, Buesa I, Flor L, Sabater A, Medrano H, Escalona JM. Implications of root morphology and anatomy for water deficit tolerance and recovery of grapevine rootstocks. FRONTIERS IN PLANT SCIENCE 2025; 16:1541523. [PMID: 40182539 PMCID: PMC11966617 DOI: 10.3389/fpls.2025.1541523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
The intensification of drought conditions due to climate change poses a major challenge to sustainable grape production. Rootstocks are essential in supporting grapevine water uptake and drought resilience; however, their physiological responses to water stress are not fully understood. Under the hypothesis that root morphology and anatomy may be key traits in grapevine tolerance to water deficit, this study aimed to investigate these traits across diverse rootstocks under progressive water deficit and recovery phases. Thirteen genotypes, including commercial rootstocks and recently bred RG-series and RM2, were evaluated over two seasons in controlled pot-based conditions. Plants were subjected to five distinct watering stages, from well-watered to severe drought. Root traits, such as length, density, and xylem anatomical features, were analyzed alongside stem water potential (Ψstem) to gauge plant water status. Results showed significant genotype-specific differences in root morphology and anatomy, impacting drought tolerance and recovery. Rootstocks with higher root length density (RLD) and a larger proportion of fine roots maintained Ψstem more effectively under severe drought. Additionally, smaller xylem vessel diameters and reduced xylem area relative to root cross-sectional area correlated with improved water transport efficiency and faster recovery post-drought. A trade-off emerged wherein increased root density enhanced water uptake capacity but came at the cost of reduced transport efficiency. Notably, rootstocks 420A, 41B, RM2, and Fercal displayed superior drought resilience, while the RG-series did not outperform established genotypes like 13-5 Evex, 110 Richter, and 140 Ruggeri. These results underscore the role of root morphology and anatomy in grapevine drought tolerance, suggesting that these traits could be incorporated as criteria for future rootstocks breeding programs. Nevertheless, field-testing under non-limiting soil conditions is essential to validate these findings.
Collapse
Affiliation(s)
- David Alonso-Forn
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| | - Ignacio Buesa
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
- Dept. of Ecology and Global Change, Desertification Research Center (CIDE; CSIC-UV-GVA), Valencia, Spain
| | - Luis Flor
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
| | - Antoni Sabater
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
| | - Hipólito Medrano
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| | - José M. Escalona
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| |
Collapse
|
2
|
Huo J, Li C, Zhao Y, Han G, Li X, Zhang Z. Hydraulic mechanism of limiting growth and maintaining survival of desert shrubs in arid habitats. PLANT PHYSIOLOGY 2024; 196:2450-2462. [PMID: 39268873 DOI: 10.1093/plphys/kiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 09/15/2024]
Abstract
The growth and survival of woody plant species is mainly driven by evolutionary and environmental factors. However, little is known about the hydraulic mechanisms that respond to growth limitation and enable desert shrub survival in arid habitats. To shed light on these hydraulic mechanisms, 9-, 31-, and 56-yr-old Caragana korshinskii plants that had been grown under different soil water conditions at the southeast edge of the Tengger Desert, Ningxia, China, were used in this study. The growth of C. korshinskii was mainly limited by soil water rather than shrub age in nonwatered habitats, which indicated the importance of maintaining shrub survival prior to growth under drought. Meanwhile, higher vessel density, narrower vessels, and lower xylem hydraulic conductivity indicated that shrubs enhanced hydraulic safety and reduced their hydraulic efficiency in arid conditions. Importantly, xylem hydraulic conductivity is mediated by variation in xylem hydraulic architecture-regulated photosynthetic carbon assimilation and growth of C. korshinskii. Our study highlights that the synergistic variation in xylem hydraulic safety and hydraulic efficiency is the hydraulic mechanism of limiting growth and maintaining survival in C. korshinskii under drought, providing insights into the strategies for growth and survival of desert shrubs in arid habitats.
Collapse
Affiliation(s)
- Jianqiang Huo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengyi Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environmental of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoling Han
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhishan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Spitzer DB, Ocheltree TW, Gleason SM. Some unique anatomical scaling relationships among genera in the grass subfamily Pooideae. AOB PLANTS 2024; 16:plae059. [PMID: 39512791 PMCID: PMC11538577 DOI: 10.1093/aobpla/plae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
Members of the grass family Poaceae have adapted to a wide range of habitats and disturbance regimes globally. The cellular structure and arrangements of leaves can help explain how plants survive in different climates, but these traits are rarely measured in grasses. Most studies are focussed on individual species or distantly related species within Poaceae. While this focus can reveal broad adaptations, it is also likely to overlook subtle adaptations within more closely related groups (subfamilies, tribes). This study, therefore, investigated the scaling relationships between leaf size, vein length area (VLA) and vessel size in five genera within the subfamily Pooideae. The scaling exponent of the relationship between leaf area and VLA was -0.46 (±0.21), which is consistent with previous studies. In Poa and Elymus, however, minor vein number and leaf length were uncorrelated, whereas in Festuca these traits were positively correlated (slope = 0.82 ± 0.8). These findings suggest there are broad-scale and fine-scale variations in leaf hydraulic traits among grasses. Future studies should consider both narrow and broad phylogenetic gradients.
Collapse
Affiliation(s)
- Daniel B Spitzer
- Graduate Degree Program in Ecology, Colorado State University, 102 Johnson Hall, Fort Collins, CO 80523-1021, USA
| | - Troy W Ocheltree
- Graduate Degree Program in Ecology, Colorado State University, 102 Johnson Hall, Fort Collins, CO 80523-1021, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus Delivery, Fort Collins, CO 80523-1472, USA
| | - Sean M Gleason
- Department of Biological Sciences, Macquarie University, Building E8B, Eastern Road, North Ryde, NSW 2109, Australia
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, 2150 Center Ave, Build D, Suite 320, Fort Collins, CO 80526, USA
| |
Collapse
|
4
|
Rodríguez-Ramírez EC, Arroyo F, Ames-Martínez FN, Andrés-Hernández AR. Tracking climate vulnerability across spatial distribution and functional traits in Magnolia gentryi in the Peruvian tropical montane cloud forest. AMERICAN JOURNAL OF BOTANY 2024; 111:e16400. [PMID: 39238126 DOI: 10.1002/ajb2.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024]
Abstract
PREMISE Understanding the responses of functional traits in tree species to climate variability is essential for predicting the future of tropical montane cloud forest (TMCF) tree species, especially in Andean montane environments where fog pockets act as moisture traps. METHODS We studied the distribution of Magnolia gentryi, measured its spatial arrangement, identified local hotspots, and evaluated the extent to which climate-related factors are associated with its distribution. We then analyzed the variation in 13 functional traits of M. gentryi and the relationship with climate. RESULTS Andean TMCF climatic factors constrain M. gentryi spatial distribution with significant patches or gaps that are associated with high precipitation and mean minimum temperature. The functional traits of M. gentryi are limited by the Andean TMCF climatic factors, resulting in reduced within-species variation in traits associated with water deficit. CONCLUSIONS The association between functional traits and climate oscillation is crucial for understanding the growth conditions of relict-endemic species and is essential for conservation efforts. Forest trait diversity and species composition change because of fluctuations in hydraulic safety-efficiency gradients.
Collapse
Affiliation(s)
| | - Frank Arroyo
- Herbario MOL, Universidad Nacional Agraria La Molina, Av. La Universidad s./n., La Molina, Lima, Peru
| | - Fressia N Ames-Martínez
- Laboratorio de Biotecnología y Biología Molecular, Universidad Continental, Urbanización San Antonio, Huancayo, Peru
- Programa de Investigación en Ecología y Biodiversidad, Asociación ANDINUS, Sicaya, Huancayo, Peru
| | | |
Collapse
|
5
|
Power CC, Normand S, von Arx G, Elberling B, Corcoran D, Krog AB, Bouvin NK, Treier UA, Westergaard-Nielsen A, Liu Y, Prendin AL. No effect of snow on shrub xylem traits: Insights from a snow-manipulation experiment on Disko Island, Greenland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169896. [PMID: 38185160 DOI: 10.1016/j.scitotenv.2024.169896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more long-term species- and site- specific studies are needed.
Collapse
Affiliation(s)
- Candice C Power
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark.
| | - Signe Normand
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; SustainScapes - Center for Sustainable Landscapes under Global Change, Aarhus University, Denmark
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Derek Corcoran
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; SustainScapes - Center for Sustainable Landscapes under Global Change, Aarhus University, Denmark
| | - Amanda B Krog
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark
| | | | - Urs Albert Treier
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; SustainScapes - Center for Sustainable Landscapes under Global Change, Aarhus University, Denmark
| | - Andreas Westergaard-Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Yijing Liu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Angela L Prendin
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; Department of Land Environment Agriculture and Forestry (TeSAF), University of Padova, Legnaro, Italy
| |
Collapse
|
6
|
Belokopytova LV, Zhirnova DF, Yang B, Babushkina EA, Vaganov EA. Modeling of the Statistical Distribution of Tracheids in Conifer Rings: Finding Universal Criterion for Earlywood-Latewood Distinction. PLANTS (BASEL, SWITZERLAND) 2023; 12:3454. [PMID: 37836196 PMCID: PMC10574559 DOI: 10.3390/plants12193454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The quantitative description of growth rings is yet incomplete, including the functional division into earlywood and latewood. Methods developed to date, such as the Mork criterion for conifers, can be biased and arbitrary depending on species and growth conditions. We proposed the use of modeling of the statistical distribution of tracheids to determine a universal criterion applicable to all conifer species. Thisstudy was based on 50-year anatomical measurements of Pinus sylvestris L., Pinus sibirica Du Tour, and Picea obovata Ledeb. near the upper tree line in the Western Sayan Mountains (South Siberia). Statistical distributions of the cell wall thickness (CWT)-to-radial-diameter (D) ratio and its slope were investigated for raw and standardized data (divided by the mean). The bimodal distribution of the slope for standardized CWT and D was modeled with beta distributions for earlywood and latewood tracheids and a generalized normal distribution for transition wood to account for the gradual shift in cell traits. The modelcan describe with high accuracy the growth ring structure for species characterized by various proportions of latewood, histometric traits, and gradual or abrupt transition. The proportion of two (or three, including transition wood) zones in the modeled distribution is proposed as a desired criterion.
Collapse
Affiliation(s)
- Liliana V. Belokopytova
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia; (D.F.Z.); (E.A.B.)
- Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia;
| | - Dina F. Zhirnova
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia; (D.F.Z.); (E.A.B.)
- Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia;
| | - Bao Yang
- School of Geographic and Oceanographic Science, Nanjing University, Nanjing 210093, China;
| | - Elena A. Babushkina
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia; (D.F.Z.); (E.A.B.)
- Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia;
| | - Eugene A. Vaganov
- Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia;
- Department of Dendroecology, V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia
| |
Collapse
|
7
|
Feng F, Wagner Y, Klein T, Hochberg U. Xylem resistance to cavitation increases during summer in Pinus halepensis. PLANT, CELL & ENVIRONMENT 2023; 46:1849-1859. [PMID: 36793149 DOI: 10.1111/pce.14573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Cavitation resistance has often been viewed as a relatively static trait, especially for stems of forest trees. Meanwhile, other hydraulic traits, such as turgor loss point (Ψtlp ) and xylem anatomy, change during the season. In this study, we hypothesized that cavitation resistance is also dynamic, changing in coordination with Ψtlp . We began with a comparison of optical vulnerability (OV), microcomputed tomography (µCT) and cavitron methods. All three methods significantly differed in the slope of the curve,Ψ12 and Ψ88 , but not in Ψ50 (xylem pressures that cause 12%, 88%, 50% cavitation, respectively). Thus, we followed the seasonal dynamics (across 2 years) of Ψ50 in Pinus halepensis under Mediterranean climate using the OV method. We found that Ψ50 is a plastic trait with a reduction of approximately 1 MPa from the end of the wet season to the end of the dry season, in coordination with the dynamics of the midday xylem water potential (Ψmidday ) and the Ψtlp . The observed plasticity enabled the trees to maintain a stable positive hydraulic safety margin and avoid cavitation during the long dry season. Seasonal plasticity is vital for understanding the actual risk of cavitation to plants and for modeling species' ability to tolerate harsh environments.
Collapse
Affiliation(s)
- Feng Feng
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Yael Wagner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
8
|
Soheili F, Heydari M, Woodward S, Naji HR. Adaptive mechanism in Quercus brantii Lindl. leaves under climatic differentiation: morphological and anatomical traits. Sci Rep 2023; 13:3580. [PMID: 36869142 PMCID: PMC9984455 DOI: 10.1038/s41598-023-30762-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Leaf traits, which vary across different climatic conditions, can reveal evolutionary changes within a species made to adapt to the environment. Leaf traits play major roles in a plant functions under varying climatic conditions. To examine adaptive modes and mechanisms applied by plants in different climates, we analyzed leaf morphology and anatomical structures in Quercus brantii in the Zagros forests, Western Iran. The plants adapted to the environmental differences with increased dry matter content in a Mediterranean climate, and increasing leaf length, specific leaf area, stomata length (SL), stomata width, stomatal density (SD), stomatal pore index (SPI), trichome length, and width in a sub-humid climate; trichome density was increased in a semi-arid climate. There were strong, positive correlations between SPI with SL and SD. Correlations for other leaf traits were weakly significant. Such morphological and anatomical plasticity probably leads to lower transpiration rates, control of internal temperature and water status, and improved photosynthetic capability under stressing conditions. These findings provide new insights into the adaptive strategies of plants to environmental changes at the morphological and anatomical levels.
Collapse
Affiliation(s)
- Forough Soheili
- Department of Forest Sciences, Ilam University, Ilam, 69315-516, Iran
| | - Mehdi Heydari
- Department of Forest Sciences, Ilam University, Ilam, 69315-516, Iran
| | - Stephen Woodward
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Hamid Reza Naji
- Department of Forest Sciences, Ilam University, Ilam, 69315-516, Iran.
| |
Collapse
|
9
|
Piccinelli S, Francon L, Corona C, Stoffel M, Slamova L, Cannone N. Vessels in a Rhododendron ferrugineum (L.) population do not trace temperature anymore at the alpine shrubline. FRONTIERS IN PLANT SCIENCE 2023; 13:1023384. [PMID: 36714740 PMCID: PMC9879627 DOI: 10.3389/fpls.2022.1023384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Mean xylem vessel or tracheid area have been demonstrated to represent powerful proxies to better understand the response of woody plants to changing climatic conditions. Yet, to date, this approach has rarely been applied to shrubs. METHODS Here, we developed a multidecadal, annually-resolved chronology of vessel sizes for Rhododendron ferrugineum shrubs sampled at the upper shrubline (2,550 m asl) on a north-facing, inactive rock glacier in the Italian Alps. RESULTS AND DISCUSSION Over the 1960-1989 period, the vessel size chronology shares 64% of common variability with summer temperatures, thus confirming the potential of wood anatomical analyses on shrubs to track past climate variability in alpine environments above treeline. The strong winter precipitation signal recorded in the chronology also confirms the negative effect of long-lasting snow cover on shrub growth. By contrast, the loss of a climate-growth relation signal since the 1990s for both temperature and precipitation, significantly stronger than the one found in radial growth, contrasts with findings in other QWA studies according to which stable correlations between series of anatomical features and climatic parameters have been reported. In a context of global warming, we hypothesize that this signal loss might be induced by winter droughts, late frost, or complex relations between increasing air temperatures, permafrost degradation, and its impacts on shrub growth. We recommend future studies to validate these hypotheses on monitored rock glaciers.
Collapse
Affiliation(s)
- Silvia Piccinelli
- Department Science and High Technology, Insubria University, Como, Italy
| | - Loïc Francon
- Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Christophe Corona
- Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
- Geolab, Université Clermont Auvergne, Centre National de la Recherche Scientifique (CNRS), Clermont-Ferrand, France
| | - Markus Stoffel
- Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
- Dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland
- Department of Forel for Environmental and Aquatic Sciences (F.A.), University of Geneva, Geneva, Switzerland
| | - Lenka Slamova
- Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Nicoletta Cannone
- Department Science and High Technology, Insubria University, Como, Italy
- Climate Change Research Centre, Insubria University, Como, Italy
| |
Collapse
|
10
|
Chen Y, Dong Y, Liu J, Li Z, Wang X, Keyimu M, Wang C, Gao G, Feng X. Spatial Heterogeneity of Root Water Conduction Strategies of Zygophyllaceae Plants in Arid Regions of China. BIOLOGY 2022; 11:biology11101502. [PMID: 36290406 PMCID: PMC9598920 DOI: 10.3390/biology11101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
Abstract
Desert plants are the main component of species diversity in desert ecosystems, and studying the anatomy and function of desert plant xylem is of great significance for understanding climate sensitivity and adaptation mechanisms to arid ecosystems. In this study, 11 sampling points were selected in the region starting from the Loess Plateau to the Jungar Basin, the taproot anatomy materials of 9 samples of Zygophyllaceae plants were collected, and the water conduction strategies and spatial distribution characteristics of these species were analyzed. The age, growth rate, vessel number, vessel fraction, vessel area within a fixed measurement range (TVA), MVA, water conductivity (TKp, MKp) and vessel diameter ranged between 1 and 27 years, 43.67 and 678.10 μm/year, 20 and 1952, 4.43 and 26.58%, 8009.62 and 192069.12 μm², 27.63 and 2164.33 μm², 0.417 and 364.97 kg m−1 MPa−1 s−1, 0.000624 and 7.60 kg m−1 Mpa−1 s−1, and 5.57 and 73.87 μm, respectively. The number of root vessels (R = 0.27, p > 0.05) of Zygophyllaceae plants decreased with the decrease in precipitation, and the average vessel area (R = −0.28, p > 0.05) and hydraulic diameter (R = −0.29, p > 0.05) showed an upward trend. This shows that the water hydraulic efficiency priority strategy may be adopted in the root system of Zygophyllaceae plants in severe drought stress condition, and the water hydraulic safety priority strategy may be used in mild drought stress conditions. With the increase in temperature, the root age of Zygophyllaceae plants showed an increasing trend, and the growth rate showed a downward trend, indicating that the radial growth of the roots of Zygophyllaceae plants is mainly affected by temperature. Altitude influences plant growth by affecting temperature and precipitation in arid habitats. The findings of the present study on root xylem anatomical characteristics and life history strategies provides a scientific basis for the ecological restoration of vegetation in arid and semi-arid areas of China.
Collapse
Affiliation(s)
- Ying Chen
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanjun Dong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi’an 710061, China
- Correspondence: (Z.L.); (X.W.); Tel.: +86-1520-1157-915 (Z.L.); +86-1390-4510-937 (X.W.)
| | - Xiaochun Wang
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
- Correspondence: (Z.L.); (X.W.); Tel.: +86-1520-1157-915 (Z.L.); +86-1390-4510-937 (X.W.)
| | - Maierdang Keyimu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi’an 710061, China
| | - Guangyao Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi’an 710061, China
| | - Xiaoming Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Dutta S, Chen Z, Kaiser E, Matamoros PM, Steeneken PG, Verbiest GJ. Ultrasound Pulse Emission Spectroscopy Method to Characterize Xylem Conduits in Plant Stems. Research (Wash D C) 2022; 2022:9790438. [PMID: 36204251 PMCID: PMC9513830 DOI: 10.34133/2022/9790438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Although it is well known that plants emit acoustic pulses under drought stress, the exact origin of the waveform of these ultrasound pulses has remained elusive. Here, we present evidence for a correlation between the characteristics of the waveform of these pulses and the dimensions of xylem conduits in plants. Using a model that relates the resonant vibrations of a vessel to its dimension and viscoelasticity, we extract the xylem radii from the waveforms of ultrasound pulses and show that these are correlated and in good agreement with optical microscopy. We demonstrate the versatility of the method by applying it to shoots of ten different vascular plant species. In particular, for Hydrangea quercifolia, we further extract vessel element lengths with our model and compare them with scanning electron cryomicroscopy. The ultrasonic, noninvasive characterization of internal conduit dimensions enables a breakthrough in speed and accuracy in plant phenotyping and stress detection.
Collapse
Affiliation(s)
- Satadal Dutta
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, 2628CD Delft, Netherlands
| | - Zhiyi Chen
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | - Priscilla Malcolm Matamoros
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | - Peter G. Steeneken
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, 2628CD Delft, Netherlands
| | - Gerard J. Verbiest
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, 2628CD Delft, Netherlands
| |
Collapse
|
12
|
Miranda JC, Calderaro C, Cocozza C, Lasserre B, Tognetti R, von Arx G. Wood Anatomical Responses of European Beech to Elevation, Land Use Change, and Climate Variability in the Central Apennines, Italy. FRONTIERS IN PLANT SCIENCE 2022; 13:855741. [PMID: 35401623 PMCID: PMC8983936 DOI: 10.3389/fpls.2022.855741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
European beech (Fagus sylvatica L.) is a widespread and economically important temperate tree species in Europe. The warmer temperatures and severe drought events expected in the future, especially in Mediterranean areas, could affect the vitality and productivity of beech stands that have been intensively used in these areas in the past. Here, we aim to assess the wood anatomical responses of beech to environmental variability and silvicultural practices by investigating three beech stands along an elevational gradient (1,200 to 1,950 m a.s.l.) in the Apennines (Italy). Therefore, we quantified several anatomical traits of the xylem vessels related to tree hydraulics from five trees per stand and investigated variability between and within tree rings. Our results suggest generally limited trait plasticity, with higher plasticity of mean vessel lumen area and theoretical hydraulic conductivity, while maximum vessel size and mean hydraulic diameter were less plastic, likely because of the stronger determination by tree height. High-elevation trees were hydraulically more limited than trees at a mid and lower elevation as indicated by the more conservative anatomical configuration, i.e., comparatively smaller vessels and a 50% tighter trait coordination. Cessation of coppicing resulted in a hydraulically safer anatomy with comparatively smaller vessels at the most intensively used site (1,200 m), triggered by increased water demand due to an increase in canopy density, and thus, an increase in stand transpiration. Furthermore, maximum vessel size at the beginning showed different climate sensitivity compared to the rest of the tree ring, while intra-ring anatomical profiles showed little difference between normal and the 5 years with the highest and lowest mean temperature and precipitation. Overall, this study highlights the challenges to separate the externally induced medium- to longer-term responses from ontogenetically determined patterns. We, therefore, call for more comprehensive studies to further explore and verify the plasticity of wood anatomical traits in European beech in response to short- to long-term environmental fluctuations to gain a mechanistic understanding useful for sustainable forest ecosystems.
Collapse
Affiliation(s)
- Jose Carlos Miranda
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Chiara Calderaro
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche, Italy
| | - Claudia Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali, Università di Firenze, Firenze, Italy
| | - Bruno Lasserre
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche, Italy
| | - Roberto Tognetti
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China. FORESTS 2022. [DOI: 10.3390/f13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(1) Background: Water transport systems play an important role in maintaining plant growth and development. The plasticity responses of the xylem anatomical traits of different species to the environment are different. Studies have shown that there are annual growth rings in the secondary root xylem of perennial herbaceous species. Studies on xylem anatomical traits, however, have mainly focused on woody species, with little attention given to herbaceous species. (2) Methods: We set 14 sampling sites along a rainfall gradient in arid and semiarid regions, and collected the main roots of native (Potentilla) and non-native (Medicago) perennial forbs. The xylem anatomical traits of the plant roots were obtained by paraffin section, and the relationships between the xylem traits of forbs were analyzed by a Pearson correlation. (3) Results: In the fixed measurement area (850 μm × 850 μm), the vessel number (NV) of Potentilla species was higher than that of Medicago species, while the hydraulic diameter (Dh) and mean vessel area (MVA) of Potentilla species were lower than those of Medicago species. With the increase in precipitation along the rainfall gradient, the Dh (R2 = 0.403, p = 0.03) and MVA (R2 = 0.489, p = 0.01) of Medicago species increased significantly, and NV (R2 = 0.252, p = 0.09) decreased, while the hydraulic traits of Potentilla species showed no significant trend with regard to the rainfall gradient. (4) Conclusions: The hydraulic efficiency of non-native Medicago forbs was higher than that of native Potentilla forbs, and the hydraulic safety of native Potentilla forbs was higher than that of non-native Medicago forbs. With the decrease in precipitation, the hydraulic strategies of non-native Medicago forbs changed from efficiency to safety, while native Potentilla forbs were not sensitive to variations in precipitation.
Collapse
|
14
|
Shtein I, Wolberg S, Munitz S, Zait Y, Rosenzweig T, Grünzweig JM, Ohana-Levi N, Netzer Y. Multi-seasonal water-stress memory versus temperature-driven dynamic structural changes in grapevine. TREE PHYSIOLOGY 2021; 41:1199-1211. [PMID: 33416079 DOI: 10.1093/treephys/tpaa181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Perennial plants perpetually adapt to environmental changes in complex and yet insufficiently understood manner. We aimed to separate the intra-seasonal temperature effects on structure and function from perennial and annual water stress effects. This study focused on grapevine (Vitis vinifera L. 'Cabernet Sauvignon') petioles, which being a continuously produced organ, represent the current status of the plant. Field-grown mature plants subjected to multi-annual irrigation treatments (severe water stress, mild water stress and non-stressed) throughout the growing season were compared with greenhouse-grown plants under three temperature regimes (22, 28 and 34 °C). Physiological and functional anatomy parameters were measured. A generalized additive model (GAM) based on meteorological and lysimeter-based field data was applied to determine the relative influence of various meteorological parameters on evapotranspiration (ETc) during the growing season in the field experiment. At the beginning of the growing season, in May, petioles in the severe stress treatment showed a stress-related structure (decreased length, safer hydraulic structure and increased lignification), though having high values of stem water potential (SWP). As the season progressed and temperatures increased, all water availability treatments petioles showed similar changes, and at the end of season, in August, were structurally very similar. Those changes were independent of SWP and were comparable to high temperature-induced changes in the greenhouse. In contrast, stems hydraulic structure was strongly influenced by water availability. Regression analyses indicated a relationship between petioles xylem structure and stomatal conductance (gs), whereas gs (but not SWP) was temperature-dependent. The GAM showed that ETc was mainly dependent on temperature. Our results indicate a perennial water-stress memory response, influencing the petiole structure at the beginning of the following season. Intra-seasonally, the petiole's structure becomes independent of water status, whereas temperature drives the structural changes. Thus, ongoing climate change might disrupt plant performance by purely temperature-induced effects.
Collapse
Affiliation(s)
- Ilana Shtein
- Department of Agriculture and Oenology, Eastern Region Research and Development Center, Ariel 40700, Israel
| | - Shunamit Wolberg
- Department of Agriculture and Oenology, Eastern Region Research and Development Center, Ariel 40700, Israel
- The Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | | | - Yotam Zait
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tovit Rosenzweig
- The Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - José M Grünzweig
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | - Yishai Netzer
- Department of Agriculture and Oenology, Eastern Region Research and Development Center, Ariel 40700, Israel
- Department of Chemistry & Biotech Engineering, Ariel University, Ariel 40700, Israel
| |
Collapse
|
15
|
Unterholzner L, Carrer M, Bär A, Beikircher B, Dämon B, Losso A, Prendin AL, Mayr S. Juniperus communis populations exhibit low variability in hydraulic safety and efficiency. TREE PHYSIOLOGY 2020; 40:1668-1679. [PMID: 32785622 DOI: 10.1093/treephys/tpaa103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The performance and distribution of woody species strongly depend on their adjustment to environmental conditions based on genotypic and phenotypic properties. Since more intense and frequent drought events are expected due to climate change, xylem hydraulic traits will play a key role under future conditions, and thus, knowledge of hydraulic variability is of key importance. In this study, we aimed to investigate the variability in hydraulic safety and efficiency of the conifer shrub Juniperus communis based on analyses along an elevational transect and a common garden approach. We studied (i) juniper plants growing between 700 and 2000 m a.s.l. Innsbruck, Austria, and (ii) plants grown in the Innsbruck botanical garden (Austria) from seeds collected at different sites across Europe (France, Austria, Ireland, Germany and Sweden). Due to contrasting environmental conditions at different elevation and provenance sites and the wide geographical study area, pronounced variation in xylem hydraulics was expected. Vulnerability to drought-induced embolisms (hydraulic safety) was assessed via the Cavitron and ultrasonic acoustic emission techniques, and the specific hydraulic conductivity (hydraulic efficiency) via flow measurements. Contrary to our hypothesis, relevant variability in hydraulic safety and efficiency was neither observed across elevations, indicating a low phenotypic variation, nor between provenances, despite expected genotypic differences. Interestingly, the provenance from the most humid and warmest site (Ireland) and the northernmost provenance (Sweden) showed the highest and the lowest embolism resistance, respectively. The hydraulic conductivity was correlated with plant height, which indicates that observed variation in hydraulic traits was mainly related to morphological differences between plants. We encourage future studies to underlie anatomical traits and the role of hydraulics for the broad ecological amplitude of J. communis.
Collapse
Affiliation(s)
| | - Marco Carrer
- Department TeSAF, Università degli Studi di Padova, Legnaro (PD) 35122, Italy
| | - Andreas Bär
- Institut für Botanik, Universität Innsbruck, Innsbruck 6020, Austria
| | | | - Birgit Dämon
- Institut für Botanik, Universität Innsbruck, Innsbruck 6020, Austria
| | - Adriano Losso
- Institut für Botanik, Universität Innsbruck, Innsbruck 6020, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | | | - Stefan Mayr
- Institut für Botanik, Universität Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
16
|
Dolezal J, Kurnotova M, Stastna P, Klimesova J. Alpine plant growth and reproduction dynamics in a warmer world. THE NEW PHYTOLOGIST 2020; 228:1295-1305. [PMID: 32632948 DOI: 10.1111/nph.16790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 05/23/2023]
Abstract
Climate warming may stimulate growth and reproduction in cold-adapted plants, but also reduce their performance due to warming-induced drought limitation. We tested this theory using a unique experiment with the alpine forb Rumex alpinus. We examined how climate warming over the past four decades affected its annual rhizome growth, leaf production and flowering, and whether responses varied between alpine, subalpine and montane populations. Before the period of accelerated warming in the 1970s and 1980s, the primary limitation on growth had been cold temperatures and short growing seasons. Increased summer temperatures in the 1990s and 2000s enhanced rhizome growth and leaf production, but not flowering. Alpine and subalpine plants profit more than montane plants, currently producing three times longer annual rhizome increments and twice as many leaves as 40 yr ago, and achieving nearly the same values as montane plants. During the warmest 2005-2015 period, growth became contingent on summer precipitation and began to decrease across all populations, likely due to an increasing water shortage in dense monospecific stands. Warming releases plants from cold limitations but induces water shortage. Rumex alpinus exceeds its thermal optimum and becomes water-limited as the climate warms. Our results suggest that warming-induced responses in alpine plants will not be one-sided shifts to higher growth and reproduction, but rather multidimensional and spatiotemporally variable.
Collapse
Affiliation(s)
- Jiri Dolezal
- Institute of Botany of the Czech Academy of Science, Dukelská 135, Třeboň, CZ-379 01, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-370 05, Czech Republic
| | - Margareta Kurnotova
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-370 05, Czech Republic
| | - Petra Stastna
- Krkonoše Mts. National Park Administration, Dobrovského 3, Vrchlabí, CZ-543 01, Czech Republic
| | - Jitka Klimesova
- Institute of Botany of the Czech Academy of Science, Dukelská 135, Třeboň, CZ-379 01, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-120 01, Czech Republic
| |
Collapse
|
17
|
Rudgers JA, Hallmark A, Baker SR, Baur L, Hall KM, Litvak ME, Muldavin EH, Pockman WT, Whitney KD. Sensitivity of dryland plant allometry to climate. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13463] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Alesia Hallmark
- Department of Biology University of New Mexico Albuquerque NM USA
| | | | - Lauren Baur
- Department of Biology University of New Mexico Albuquerque NM USA
| | | | - Marcy E. Litvak
- Department of Biology University of New Mexico Albuquerque NM USA
| | | | | | | |
Collapse
|
18
|
Origin, activity and environmental acclimation of stem secondary tissues of the polar willow (Salix polaris) in high-Arctic Spitsbergen. Polar Biol 2019. [DOI: 10.1007/s00300-019-02469-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Kiorapostolou N, Petit G. Similarities and differences in the balances between leaf, xylem and phloem structures in Fraxinus ornus along an environmental gradient. TREE PHYSIOLOGY 2019; 39:234-242. [PMID: 30189046 DOI: 10.1093/treephys/tpy095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/10/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
The plant carbon balance depends on the coordination between photosynthesis and the long-distance transport of water and sugars. How plants modify the allocation to the different structures affecting this coordination under different environmental conditions has been poorly investigated. In this study, we evaluated the effect of soil water availability on the allocation to leaf, xylem and phloem structures in Fraxinus ornus L. We selected small individuals of F. ornus (height ~2 m) from sites contrasting in soil water availability (wet vs dry). We measured how the leaf (LM) and stem + branch biomass (SBM) are cumulated along the stem. Moreover, we assessed the axial variation in xylem (XA) and phloem tissue area (PA), and in lumen area of xylem vessels (CAxy) and phloem sieve elements (CAph). We found a higher ratio of LM:SBM in the trees growing under drier conditions. The long-distance transport tissues of xylem and phloem followed axial patterns with scaling exponents (b) independent of site conditions. PA scaled isometrically with XA (b ~ 1). While CAxy was only marginally higher at the wet sites, CAph was significantly higher at the drier sites. Our results showed that under reduced soil water availability, F. ornus trees allocate relatively more to the leaf biomass and produce more conductive phloem, which is likely to compensate for the drought-related hydraulic limitations to the leaf gas exchanges and the phloem sap viscosity.
Collapse
Affiliation(s)
- Natasa Kiorapostolou
- Dipartimento Territorio e Sistemi Agro-Forestali, Università degli studi di Padova, Viale dell'Università 16, Legnaro (PD), Italy
| | - Giai Petit
- Dipartimento Territorio e Sistemi Agro-Forestali, Università degli studi di Padova, Viale dell'Università 16, Legnaro (PD), Italy
| |
Collapse
|
20
|
Anadon-Rosell A, Dawes MA, Fonti P, Hagedorn F, Rixen C, von Arx G. Xylem anatomical and growth responses of the dwarf shrub Vaccinium myrtillus to experimental CO 2 enrichment and soil warming at treeline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1172-1183. [PMID: 30045499 DOI: 10.1016/j.scitotenv.2018.06.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Plant growth responses to environmental changes may be linked to xylem anatomical adjustments. The study of such links is essential for improving our understanding of plant functioning under global change. We investigated the xylem anatomy and above-ground growth of the dwarf shrub Vaccinium myrtillus in the understorey of Larix decidua and Pinus uncinata at the Swiss treeline after 9 years of free-air CO2 enrichment (+200 ppm) and 6 years of soil warming (+4 °C). We aimed to determine the responses of xylem anatomical traits and growth to these treatments, and to analyse xylem anatomy-growth relationships. We quantified anatomical characteristics of vessels and ray parenchyma and measured xylem ring width (RW), above-ground biomass and shoot elongation as growth parameters. Our results showed strong positive correlations between theoretical hydraulic conductivity (Kh) and shoot increment length or total biomass across all treatments. However, while soil warming stimulated shoot elongation and RW, it reduced vessel size (Dh) by 14%. Elevated CO2 had smaller effects than soil warming: it increased Dh (5%) in the last experimental years and only influenced growth by increasing basal stem size. The abundance of ray parenchyma, representing storage capacity, did not change under any treatment. Our results demonstrate a link between growth and stem Kh in V. myrtillus, but its growth responses to warming were not explained by the observed xylem anatomical changes. Smaller Dh under warming may increase resistance to freezing events frequently occurring at treeline and suggests that hydraulic efficiency is not limiting for V. myrtillus growing on moist soils at treeline. Our findings suggest that future higher atmospheric CO2 concentrations will have smaller effects on V. myrtillus growth and functioning than rising temperatures at high elevations; further, growth stimulation of this species under future warmer conditions may not be synchronized with xylem adjustments favouring hydraulic efficiency.
Collapse
Affiliation(s)
- Alba Anadon-Rosell
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany; Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, E-08028 Barcelona, Catalonia, Spain; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland.
| | - Melissa A Dawes
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland; WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260 Davos, Switzerland
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260 Davos, Switzerland
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland; Climatic Change and Climate Impacts, Institute for Environmental Sciences, 66 Blvd Carl Vogt, CH-1205 Geneva, Switzerland
| |
Collapse
|
21
|
Abstract
The general aim of this research was to determine whether the cherry root cambium possesses similar water-stress adaptation abilities as the scion. Specifically, this study aimed to determine whether there is a shift in root xylem structure due to precipitation fluctuations and temperature increase during the growing season in two cherry species. Oblačinska sour cherry and European ground cherry roots with secondary structure were anatomically surveyed in detail, and correlated with meteorological conditions occurring during the vegetation when the roots were formed. Under environmental signals, both investigated species altered their radial root growth imprinting stops and starts in a cambial activity that resulted in the occurrence of intra-annual false growth rings. Changing environmental conditions triggered the shifts of large and small vessels throughout the false growth rings, but their size seemed to be mainly genetically controlled. Taking into consideration all the above, genotypes with moderate vessel lumen area—lesser or around 1200 μm2 in the inner zone, as well as no greater than 1500 μm2 in the outer zone—are presumed to be both size-controlling and stable upon the drought events. Thus, further field trials will be focused on the SV2 European ground cherry genotype, and OV13, OV32, and OV34 Oblačinska sour cherry genotypes.
Collapse
|
22
|
García-Cervigón AI, Olano JM, von Arx G, Fajardo A. Xylem adjusts to maintain efficiency across a steep precipitation gradient in two coexisting generalist species. ANNALS OF BOTANY 2018; 122:461-472. [PMID: 29800073 PMCID: PMC6110345 DOI: 10.1093/aob/mcy088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/07/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Trees adjust the configuration of their conductive system in response to changes in water availability, maximizing efficiency in wet environments and increasing safety in dry habitats. However, evidence of this general trend is not conclusive. Generalist species growing across broad climatic gradients provide an ideal framework to assess intra-specific xylem adjustments under contrasting environmental conditions. Our aims were to compare the response of xylem traits to variations in precipitation of two co-occurring generalist tree species, and to assess climate control on xylem trait variability and co-ordination. METHODS We evaluated xylem traits of Embothrium coccineum (Proteaceae, evergreen) and Nothofagus antarctica (Nothofagaceae, deciduous) in three areas across an abrupt precipitation gradient, from 500 to 2500 mm, in southern Chile. We measured wood density, vessel lumen area and density, percentage of conductive area and vessel grouping, and estimated the hydraulic function from anatomical measurements in 60 individuals per species. KEY RESULTS Both species shared a common pattern of response along the precipitation gradient, with an increase in vessel density with dryness, but without changes in estimated hydraulic conductivity. Xylem traits in E. coccineum were more variable and more responsive to the climate gradient, decreasing vessel lumen area and increasing wood density, whereas vessel grouping showed contrasting patterns between species. Additionally, the analysis of trait co-ordination at the individual level revealed a tighter co-ordination among xylem traits in E. coccineum. CONCLUSIONS Estimated xylem efficiency was maintained in combination with different levels of expected xylem safety within species. Reduction in vessel lumen area was compensated through large increases in vessel density, thus breaking the trade-off between xylem efficiency and safety. Otherwise, the existence of alternative internal adjustments in coexisting species to face similar climatic constraints might increase resilience of temperate forests against unpredictable changes in climatic conditions.
Collapse
Affiliation(s)
- Ana I García-Cervigón
- Departamento de Biología, Universidad de Cádiz, Campus Universitario de Puerto Real, Puerto Real, Spain
- For correspondence. E-mail
| | - José M Olano
- Departamento de Ciencias Agroforestales, EiFAB, Universidad de Valladolid, Soria, Spain
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alex Fajardo
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| |
Collapse
|
23
|
Sampaio Filho IDJ, Jardine KJ, de Oliveira RCA, Gimenez BO, Cobello LO, Piva LRDO, Candido LA, Higuchi N, Chambers JQ. Below versus above Ground Plant Sources of Abscisic Acid (ABA) at the Heart of Tropical Forest Response to Warming. Int J Mol Sci 2018; 19:E2023. [PMID: 30002274 PMCID: PMC6073271 DOI: 10.3390/ijms19072023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
Abstract
Warming surface temperatures and increasing frequency and duration of widespread droughts threaten the health of natural forests and agricultural crops. High temperatures (HT) and intense droughts can lead to the excessive plant water loss and the accumulation of reactive oxygen species (ROS) resulting in extensive physical and oxidative damage to sensitive plant components including photosynthetic membranes. ROS signaling is tightly integrated with signaling mechanisms of the potent phytohormone abscisic acid (ABA), which stimulates stomatal closure leading to a reduction in transpiration and net photosynthesis, alters hydraulic conductivities, and activates defense gene expression including antioxidant systems. While generally assumed to be produced in roots and transported to shoots following drought stress, recent evidence suggests that a large fraction of plant ABA is produced in leaves via the isoprenoid pathway. Thus, through stomatal regulation and stress signaling which alters water and carbon fluxes, we highlight the fact that ABA lies at the heart of the Carbon-Water-ROS Nexus of plant response to HT and drought stress. We discuss the current state of knowledge of ABA biosynthesis, transport, and degradation and the role of ABA and other isoprenoids in the oxidative stress response. We discuss potential variations in ABA production and stomatal sensitivity among different plant functional types including isohydric/anisohydric and pioneer/climax tree species. We describe experiments that would demonstrate the possibility of a direct energetic and carbon link between leaf ABA biosynthesis and photosynthesis, and discuss the potential for a positive feedback between leaf warming and enhanced ABA production together with reduced stomatal conductance and transpiration. Finally, we propose a new modeling framework to capture these interactions. We conclude by discussing the importance of ABA in diverse tropical ecosystems through increases in the thermotolerance of photosynthesis to drought and heat stress, and the global importance of these mechanisms to carbon and water cycling under climate change scenarios.
Collapse
Affiliation(s)
- Israel de Jesus Sampaio Filho
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Kolby Jeremiah Jardine
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Building 64-241, Berkeley, CA 94720, USA.
| | | | - Bruno Oliva Gimenez
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Leticia Oliveira Cobello
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Luani Rosa de Oliveira Piva
- Federal University of Paraná (UFPR), Ave. Pref. Lothario Meissner 632, Campus III, Forest Sciences Department, Curitiba, PR 80210-170, Brazil.
| | - Luiz Antonio Candido
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Niro Higuchi
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Jeffrey Quintin Chambers
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Building 64-241, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Klein T, Zeppel MJB, Anderegg WRL, Bloemen J, De Kauwe MG, Hudson P, Ruehr NK, Powell TL, von Arx G, Nardini A. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol Res 2018. [DOI: 10.1007/s11284-018-1588-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Cosme LHM, Schietti J, Costa FRC, Oliveira RS. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. THE NEW PHYTOLOGIST 2017; 215:113-125. [PMID: 28369998 DOI: 10.1111/nph.14508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/18/2017] [Indexed: 05/18/2023]
Abstract
Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios.
Collapse
Affiliation(s)
- Luiza H M Cosme
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. Ephigênio Sales 2239, 69060-20, Manaus, AM, Brazil
| | - Juliana Schietti
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. Ephigênio Sales 2239, 69060-20, Manaus, AM, Brazil
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. Ephigênio Sales 2239, 69060-20, Manaus, AM, Brazil
| | - Flávia R C Costa
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. Ephigênio Sales 2239, 69060-20, Manaus, AM, Brazil
| | - Rafael S Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-862, Brazil
| |
Collapse
|
26
|
Growth ring analysis of multiple dicotyledonous herb species—A novel community-wide approach. Basic Appl Ecol 2017. [DOI: 10.1016/j.baae.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
von Arx G, Arzac A, Fonti P, Frank D, Zweifel R, Rigling A, Galiano L, Gessler A, Olano JM. Responses of sapwood ray parenchyma and non‐structural carbohydrates of
Pinus sylvestris
to drought and long‐term irrigation. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12860] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Georg von Arx
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Alberto Arzac
- School of Ecology and Geography Siberian Federal University 79 Svobodny pr 660041 Krasnoyarsk Russia
- Departamento de Biología Vegetal y Ecología Facultad de Ciencia y Tecnología Universidad del País Vasco Barrio Sarriena s/n E–48940 Leioa Spain
| | - Patrick Fonti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - David Frank
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- Laboratory of Tree‐Ring Research University of Arizona Tucson AZ85721 USA
| | - Roman Zweifel
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Lucia Galiano
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - José Miguel Olano
- Departamento de Ciencias Agroforestales EU de Ingenierías Agrarias iuFOR‐Universidad de Valladolid Campus Duques de Soria 42004 Soria Spain
| |
Collapse
|
28
|
Guo C, Ma L, Yuan S, Wang R. Morphological, physiological and anatomical traits of plant functional types in temperate grasslands along a large-scale aridity gradient in northeastern China. Sci Rep 2017; 7:40900. [PMID: 28106080 PMCID: PMC5247725 DOI: 10.1038/srep40900] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/14/2016] [Indexed: 11/09/2022] Open
Abstract
At the species level, plants can respond to climate changes by changing their leaf traits; however, there is scant information regarding the responses of morphological, physiological and anatomical traits of plant functional types (PFTs) to aridity. Herein, the leaf traits of five PFTs representing 17 plant species in temperate grasslands were examined along a large-scale aridity gradient in northeastern China. The results show that leaf thickness in shrubs, perennial grasses and forbs increased with heightened aridity. Trees increased soluble sugar content, but shrubs, perennials and annual grasses enhanced proline accumulation due to increasing aridity. Moreover, vessel diameter and stomatal index in shrubs and perennial grasses decreased with increasing aridity, but stomatal density and vascular diameter of five PFTs were not correlated with water availability. In conclusion, divergences in adaptive strategies to aridity among these PFTs in temperate grasslands were likely caused by differences in their utilization of water resources, which have different temporal and spatial distribution patterns. Leaf traits of shrubs and perennial grasses had the largest responses to variability of aridity through regulation of morphological, physiological and anatomical traits, which was followed by perennial forbs. Trees and annual grasses endured aridity only by adjusting leaf physiological processes.
Collapse
Affiliation(s)
- Chengyuan Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Linna Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Shan Yuan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Renzhong Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
29
|
Fazlioglu F, Bonser SP. Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2016. [DOI: 10.1016/j.actao.2016.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Ziaco E, Biondi F, Heinrich I. Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine. FRONTIERS IN PLANT SCIENCE 2016; 7:1602. [PMID: 27826315 PMCID: PMC5078726 DOI: 10.3389/fpls.2016.01602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 05/28/2023]
Abstract
Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870-2013) time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g., lumen area; lumen diameter) for the period 1950-2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters) were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring-width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g., tracheid lumen area and radial lumen diameter) showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e., lumen and cell diameter) with monthly (i.e., March) and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March-August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological adaptations to external stressors. Integrating xylem cellular features with ring-width chronologies can widen our understanding of past climatic variability (including annual extreme events) and improve the evaluation of long-term plant response to drought, especially in connection with future warming scenarios.
Collapse
Affiliation(s)
| | | | - Ingo Heinrich
- GFZ German Research Centre for GeosciencesPotsdam, Germany
- Institute of Geography, Humboldt-UniversityBerlin, Germany
| |
Collapse
|
31
|
Hiebert-Giesbrecht MR, Escalante-Erosa F, García-Sosa K, Dzib GR, Calvo-Irabien LM, Peña-Rodríguez LM. Spatio-Temporal Variation of Terpenoids in Wild Plants ofPentalinon andrieuxii. Chem Biodivers 2016; 13:1521-1526. [DOI: 10.1002/cbdv.201600085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/07/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Mickel R. Hiebert-Giesbrecht
- Centro de Investigación Científica de Yucatán; Unidad de Biotecnología; Calle 43 No. 130, CP 97205, Colonia Chuburná de Hidalgo Mérida Yucatán México
| | - Fabiola Escalante-Erosa
- Centro de Investigación Científica de Yucatán; Unidad de Biotecnología; Calle 43 No. 130, CP 97205, Colonia Chuburná de Hidalgo Mérida Yucatán México
| | - Karlina García-Sosa
- Centro de Investigación Científica de Yucatán; Unidad de Biotecnología; Calle 43 No. 130, CP 97205, Colonia Chuburná de Hidalgo Mérida Yucatán México
| | - Gabriel R. Dzib
- Centro de Investigación Científica de Yucatán; Unidad de Recursos Naturales; Calle 43 No. 130, CP 97205, Colonia Chuburná de Hidalgo Mérida Yucatán México
| | - Luz M. Calvo-Irabien
- Centro de Investigación Científica de Yucatán; Unidad de Recursos Naturales; Calle 43 No. 130, CP 97205, Colonia Chuburná de Hidalgo Mérida Yucatán México
| | - Luis M. Peña-Rodríguez
- Centro de Investigación Científica de Yucatán; Unidad de Biotecnología; Calle 43 No. 130, CP 97205, Colonia Chuburná de Hidalgo Mérida Yucatán México
| |
Collapse
|
32
|
Maseda PH, Fernández RJ. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances. TREE PHYSIOLOGY 2016; 36:243-51. [PMID: 26786540 DOI: 10.1093/treephys/tpv137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 12/01/2015] [Indexed: 05/22/2023]
Abstract
Water stress modifies plant above- vs belowground biomass allocation, i.e., morphological plasticity. It is known that all species and genotypes reduce their growth rate in response to stress, but in the case of water stress it is unclear whether the magnitude of such reduction is linked to the genotype's growth potential, and whether the reduction can be largely attributed to morphological adjustments such as plant allocation and leaf and root anatomy. We subjected seedlings of six seed sources, three from each of Eucalyptus camaldulensis (potentially fast growing) and E. globulus (inherently slow growing), to three experimental water regimes. Biomass, leaf area and root length were measured in a 6-month glasshouse experiment. We then performed functional growth analysis of relative growth rate (RGR), and aboveground (leaf area ratio (LAR), specific leaf area (SLA) and leaf mass ratio (LMR)) and belowground (root length ratio (RLR), specific root length (SRL) and root mass ratio (RMR)) morphological components. Total biomass, root biomass and leaf area were reduced for all Eucalyptus provenances according to drought intensity. All populations exhibited drought plasticity, while those of greater growth potential (RGRmax) had a larger reduction in growth (discounting the effect of size). A positive correlation was observed between drought sensitivity and RGRmax. Aboveground, drought reduced LAR and LMR; under severe drought a negative correlation was found between LMR and RGRmax. Belowground, drought reduced SRL but increased RMR, resulting in no change in RLR. Under severe drought, a negative correlation was found between RLR, SRL and RGRmax. Our evidence strongly supports the classic ecophysiological trade-off between growth potential and drought tolerance for woody seedlings. It also suggests that slow growers would have a low capacity to adjust their morphology. For shoots, this constraint on plasticity was best observed in partition (i.e., LMR) whereas for roots it was clearest in morphology/anatomy (i.e., SRL). Thus, a low RGRmax would limit plastic response to drought not only at the whole plant level but also at the organ and even the tissue level.
Collapse
Affiliation(s)
- Pablo H Maseda
- IFEVA-CONICET and Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSQ, Argentina
| | | |
Collapse
|
33
|
von Arx G, Crivellaro A, Prendin AL, Čufar K, Carrer M. Quantitative Wood Anatomy-Practical Guidelines. FRONTIERS IN PLANT SCIENCE 2016; 7:781. [PMID: 27375641 PMCID: PMC4891576 DOI: 10.3389/fpls.2016.00781] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/20/2016] [Indexed: 05/04/2023]
Abstract
Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics.
Collapse
Affiliation(s)
- Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
- *Correspondence: Georg von Arx
| | - Alan Crivellaro
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| | - Angela L. Prendin
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| | - Katarina Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Marco Carrer
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| |
Collapse
|
34
|
von Arx G, Arzac A, Olano JM, Fonti P. Assessing Conifer Ray Parenchyma for Ecological Studies: Pitfalls and Guidelines. FRONTIERS IN PLANT SCIENCE 2015; 6:1016. [PMID: 26635842 PMCID: PMC4649045 DOI: 10.3389/fpls.2015.01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/03/2015] [Indexed: 05/09/2023]
Abstract
Ray parenchyma is an essential tissue for tree functioning and survival. This living tissue plays a major role for storage and transport of water, nutrients, and non-structural carbohydrates (NSC), thus regulating xylem hydraulics and growth. However, despite the importance of rays for tree carbon and water relations, methodological challenges hamper knowledge about ray intra- and inter-tree variability and its ecological meaning. In this study we provide a methodological toolbox for soundly quantifying spatial and temporal variability of different ray features. Anatomical ray features were surveyed in different cutting planes (cross-sectional, tangential, and radial) using quantitative image analysis on stem-wood micro-sections sampled from 41 mature Scots pines (Pinus sylvestris). The percentage of ray surface (PERPAR), a proxy for ray volume, was compared among cutting planes and between early- and latewood to assess measurement-induced variability. Different tangential ray metrics were correlated to assess their similarities. The accuracy of cross-sectional and tangential measurements for PERPAR estimates as a function of number of samples and the measured wood surface was assessed using bootstrapping statistical technique. Tangential sections offered the best 3D insight of ray integration into the xylem and provided the most accurate estimates of PERPAR, with 10 samples of 4 mm(2) showing an estimate within ±6.0% of the true mean PERPAR (relative 95% confidence interval, CI95), and 20 samples of 4 mm(2) showing a CI95 of ±4.3%. Cross-sections were most efficient for establishment of time series, and facilitated comparisons with other widely used xylem anatomical features. Earlywood had significantly lower PERPAR (5.77 vs. 6.18%) and marginally fewer initiating rays than latewood. In comparison to tangential sections, PERPAR was systematically overestimated (6.50 vs. 4.92%) and required approximately twice the sample area for similar accuracy. Radial cuttings provided the least accurate PERPAR estimates. This evaluation of ray parenchyma in conifers and the presented guidelines regarding data accuracy as a function of measured wood surface and number of samples represent an important methodological reference for ray quantification, which will ultimately improve the understanding of the fundamental role of ray parenchyma tissue for the performance and survival of trees growing in stressed environments.
Collapse
Affiliation(s)
- Georg von Arx
- Landscape Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Alberto Arzac
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País VascoLeioa, Spain
| | - José M. Olano
- Departamento de Ciencias Agroforestales, Escuela Universitaria de Ingenierías Agrarias, Instituto Universitario de Investigación en Gestión Forestal Sostenible-Universidad de ValladolidSoria, Spain
| | - Patrick Fonti
- Landscape Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| |
Collapse
|
35
|
Matzner SL, Rettedal DD, Harmon DA, Beukelman MR. Constraints to hydraulic acclimation under reduced light in two contrasting Phaseolus vulgaris cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4409-4418. [PMID: 24863433 DOI: 10.1093/jxb/eru212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two cultivars of Phaseolus vulgaris L. were grown under three light levels to determine if hydraulic acclimation to light occurs in herbaceous annuals and whether intraspecific trade-offs constrain hydraulic traits. Acclimation occurred in response to reduced light and included decreased stomatal density (SD) and increased specific leaf area (SLA). Reduced light resulted in lower wood density (WD); decreased cavitation resistance, measured as the xylem pressure causing a 50 % reduction in stem conductivity (P50); and increased hydraulic capacity, measured as average leaf mass specific transpiration (E(LM)). Significant or marginally significant trade-offs between P50 and WD, WD and E(LM), and E(LM) and P50 reflected variation due to both genotype and environmental effects. A trade-off between WD and P50 within one cultivar indicated that morphological adjustment was constrained. Coordinated changes in WD, P50, and E(LM) within each cultivar in response to light were consistent with trade-offs constraining plasticity. A water-use efficiency (WUE, measured as δ(13)C) versus hydraulic capacity (E(LM)) trade-off was observed within each cultivar, further indicating that hydraulic trade-offs can constrain acclimation. Larger plants had lower hydraulic capacity (E(LM)) but greater cavitation resistance, WD, and WUE. Distinct hydraulic strategies were observed with the cultivar adapted to irrigated conditions having higher stomatal conductance and stem flow rates. The cultivar adapted to rain-fed conditions had higher leaf area and greater cavitation resistance. Hydraulic trade-offs were observed within the herbaceous P. vulgaris resulting from both genotype and environmental effects. Trade-offs within a cultivar reflected constraints to hydraulic acclimation in response to changing light.
Collapse
Affiliation(s)
- Steven L Matzner
- Department of Biology, Augustana College, Sioux Falls, SD 57197, USA
| | - David D Rettedal
- Department of Biology, Augustana College, Sioux Falls, SD 57197, USA
| | - Derek A Harmon
- Department of Biology, Augustana College, Sioux Falls, SD 57197, USA
| | | |
Collapse
|
36
|
Olano JM, Almería I, Eugenio M, von Arx G. Under pressure: how a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12144] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jose Miguel Olano
- Departamento de Ciencias Agroforestales; EU de Ingenierías Agrarias; Universidad de Valladolid; Los Pajaritos s/n Soria E-42004 Spain
| | - Iván Almería
- Departamento de Ciencias Agroforestales; EU de Ingenierías Agrarias; Universidad de Valladolid; Los Pajaritos s/n Soria E-42004 Spain
| | - Màrcia Eugenio
- Departamento de Ciencias Agroforestales; EU de Ingenierías Agrarias; Universidad de Valladolid; Los Pajaritos s/n Soria E-42004 Spain
| | - Georg von Arx
- Swiss Federal Institute for Forest; Snow and Landscape Research WSL; Zuercherstrasse 111 CH-8903 Birmensdorf Switzerland
| |
Collapse
|
37
|
Scholz A, Rabaey D, Stein A, Cochard H, Smets E, Jansen S. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. TREE PHYSIOLOGY 2013; 33:684-694. [PMID: 23933827 DOI: 10.1093/treephys/tpt050] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Various structure-function relationships regarding drought-induced cavitation resistance of secondary xylem have been postulated. These hypotheses were tested on wood of 10 Prunus species showing a range in P50 (i.e., the pressure corresponding to 50% loss of hydraulic conductivity) from -3.54 to -6.27 MPa. Hydraulically relevant wood characters were quantified using light and electron microscopy. A phylogenetic tree was constructed to investigate evolutionary correlations using a phylogenetically independent contrast (PIC) analysis. Vessel-grouping characters were found to be most informative in explaining interspecific variation in P50, with cavitation-resistant species showing more solitary vessels than less resistant species. Co-evolution between vessel-grouping indices and P50 was reported. P50 was weakly correlated with the shape of the intervessel pit aperture, but not with the total intervessel pit membrane area per vessel. A negative correlation was found between P50 and intervessel pit membrane thickness, but this relationship was not supported by the PIC analysis. Cavitation resistance has co-evolved with vessel grouping within Prunus and was mainly influenced by the spatial distribution of the vessel network.
Collapse
Affiliation(s)
- Alexander Scholz
- Institute for Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Fonti P, Bryukhanova MV, Myglan VS, Kirdyanov AV, Naumova OV, Vaganov EA. Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. AMERICAN JOURNAL OF BOTANY 2013; 100:1332-43. [PMID: 23660567 DOI: 10.3732/ajb.1200484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
PREMISE OF THE STUDY Xylem structure determines the hydraulic and mechanical properties of a stem, and its plasticity is fundamental for maintaining tree performance under changing conditions. Unveiling the mechanism and the range of xylem adjustment is thus necessary to anticipate climate change impacts on vegetation. METHODS To understand the mechanistic process and the functional impact of xylem responses to warming in a cold-limited environment, we investigated the relationship between temperature and tracheid anatomy along a 312-yr tree-ring chronology of Larix sibirica trees from the Altay Mountains in Russia. KEY RESULTS Climate-growth analyses indicated that warming favors wider earlywood cell lumen, thicker latewood walls, denser maximum latewood, and wider rings. The temperature signal of the latewood was stronger (r > 0.7) and covered a longer and more stable period (from June to August) than that of earlywood and tree-ring width. Long-term analyses indicated a diverging trend between lumen and cell wall of early- and latewood. CONCLUSIONS Xylem anatomy appears to respond to warming temperatures. A warmer early-growing season raises water conduction capacity by increasing the number and size of earlywood tracheids. The higher-performing earlywood tracheids promote more carbon fixation of the latewood cells by incrementing the rate of assimilation when summer conditions are favorable for growth. The diverging long-term variation of lumen and cell wall in earlywood vs. latewood suggests that xylem adjustments in latewood increase mechanical integrity and support increasing tree size under the ameliorated growing conditions.
Collapse
Affiliation(s)
- Patrick Fonti
- WSL Swiss Federal Research Institute, Landscape Dynamics, Zürcherstr 111, CH-8903 Birmensdorf, Switzerland.
| | | | | | | | | | | |
Collapse
|
39
|
Olano JM, Arzac A, García-Cervigón AI, von Arx G, Rozas V. New star on the stage: amount of ray parenchyma in tree rings shows a link to climate. THE NEW PHYTOLOGIST 2013; 198:486-495. [PMID: 23316689 DOI: 10.1111/nph.12113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/28/2012] [Indexed: 05/04/2023]
Abstract
Tree-ring anatomy reflects the year-by-year impact of environmental factors on tree growth. Up to now, research in this field has mainly focused on the hydraulic architecture, with ray parenchyma neglected despite the growing recognition of its relevance for xylem function. Our aim was to address this gap by exploring the potential of the annual patterns of xylem parenchyma as a climate proxy. We constructed ring-width and ray-parenchyma chronologies from 1965 to 2004 for 20 Juniperus thurifera trees growing in a Mediterranean continental climate. Chronologies were related to climate records by means of correlation, multiple regression and partial correlation analyses. Ray parenchyma responded to climatic conditions at critical stages during the xylogenetic process; namely, at the end of the previous year's xylogenesis (October) and at the onset of earlywood (May) and latewood formation (August). Ray parenchyma-based chronologies have potential to complement ring-width chronologies as a tool for climate reconstructions. Furthermore, medium- and low-frequency signals in the variation of ray parenchyma may improve our understanding of how trees respond to environmental fluctuations and to global change.
Collapse
Affiliation(s)
- José Miguel Olano
- Departamento de Ciencias Agroforestales, EU de Ingenierías Agrarias, Universidad de Valladolid, Los Pajaritos s/n, Soria, E-42004, Spain
| | - Alberto Arzac
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena s/n, E-48940, Leioa, Spain
| | - Ana I García-Cervigón
- Departamento de Ciencias Agroforestales, EU de Ingenierías Agrarias, Universidad de Valladolid, Los Pajaritos s/n, Soria, E-42004, Spain
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Vicente Rozas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Spain
| |
Collapse
|
40
|
Scholz A, Klepsch M, Karimi Z, Jansen S. How to quantify conduits in wood? FRONTIERS IN PLANT SCIENCE 2013; 4:56. [PMID: 23507674 PMCID: PMC3600434 DOI: 10.3389/fpls.2013.00056] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/28/2013] [Indexed: 05/02/2023]
Abstract
Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considered. This paper aims to provide an overview of various techniques, although there is no standard protocol to quantify conduits due to high anatomical variation and a wide range of techniques available. Despite recent progress in image analysis programs and automated methods for measuring cell dimensions, density, and spatial distribution, various characters remain time-consuming and tedious. Quantification of vessels and tracheids is not only important to better understand functional adaptations of tracheary elements to environment parameters, but will also be essential for linking wood anatomy with other fields such as wood development, xylem physiology, palaeobotany, and dendrochronology.
Collapse
Affiliation(s)
- Alexander Scholz
- Institute for Systematic Botany and Ecology, Ulm UniversityUlm, Germany
| | - Matthias Klepsch
- Institute for Systematic Botany and Ecology, Ulm UniversityUlm, Germany
| | - Zohreh Karimi
- Institute for Systematic Botany and Ecology, Ulm UniversityUlm, Germany
- Golestan UniversityGorgan, Iran
| | - Steven Jansen
- Institute for Systematic Botany and Ecology, Ulm UniversityUlm, Germany
| |
Collapse
|
41
|
Going Back to the Roots: The Need to Link Plant Functional Biology with Vadose Zone Processes. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proenv.2013.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Affiliation(s)
- Patrick Fonti
- Swiss Federal Research Institute WSL, Landscape Dynamics, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- (Author for correspondence: tel +41 44 7392285; email )
| | - Steven Jansen
- Institute for Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|