1
|
Valenti G, Laise P, Wu F, Takahashi R, Ruan T, Vasciaveo A, Jiang Z, Kobayashi H, Sunagawa M, Middelhoff M, Nienhüser H, Fu N, Malagola E, Companioni O, Hayakawa Y, Iuga AC, Califano A, Wang TC. Regulatory network analysis of Dclk1 gene expression reveals a tuft cell-ILC2 axis that inhibits pancreatic tumor progression. Cell Rep 2025; 44:115734. [PMID: 40408246 DOI: 10.1016/j.celrep.2025.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 05/02/2025] [Indexed: 05/25/2025] Open
Abstract
Doublecortin-like kinase 1 (Dclk1) expression identifies cells that are rare in normal pancreas but occur with an increased frequency in pancreatic neoplasia. The identity of these cells has been a matter of debate. We employed Dclk1 reporter mouse models and single-cell RNA sequencing (scRNA-seq) to define Dclk1-expressing cells. In normal pancreas, Dclk1 identifies subsets of ductal, islet, and acinar cells. In pancreatic neoplasia, Dclk1 identifies several cell populations, among which acinar-to-ductal metaplasia (ADM)-like cells and tuft-like cells are predominant. These two populations play opposing roles, with Dclk1+ ADM-like cells sustaining and Dclk1+ tuft-like cells restraining tumor progression. The generation of Dclk1+ tuft-like cells requires the transcription factor SPIB and is sustained by a paracrine loop involving type 2 innate lymphoid cells (ILC2s) and cancer-associated fibroblasts (CAFs) that provide interleukin (IL)-13 and IL-33, respectively. Dclk1+ tuft-like cells release angiotensinogen to restrain tumor progression. Overall, our study defines pancreatic Dclk1+ cells and unveils a protective tuft cell-ILC2 axis against pancreatic neoplasia.
Collapse
Affiliation(s)
- Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Pasquale Laise
- Department of Systems Biology, Columbia University, New York, NY, USA; DarwinHealth, Inc., New York, NY, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Ryota Takahashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Tuo Ruan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | | | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Masaki Sunagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Henrik Nienhüser
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Na Fu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Osmel Companioni
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Alina C Iuga
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; DarwinHealth, Inc., New York, NY, USA; Chan Zuckerberg Biohub New York, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Dirvin B, Noh H, Tomassoni L, Cao D, Zhou Y, Ke X, Qian J, Jangra S, Schotsaert M, García-Sastre A, Karan C, Califano A, Cardoso WV. Identification and targeting of regulators of SARS-CoV-2-host interactions in the airway epithelium. SCIENCE ADVANCES 2025; 11:eadu2079. [PMID: 40378209 PMCID: PMC12083520 DOI: 10.1126/sciadv.adu2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/11/2025] [Indexed: 05/18/2025]
Abstract
The impact of SARS-CoV-2 in the lung has been extensively studied, yet the molecular regulators of host-cell programs hijacked by the virus in distinct human airway epithelial cell populations remain poorly understood. Some of the reasons include overreliance on transcriptomic profiling and use of nonprimary cell systems. Here we report a network-based analysis of single-cell transcriptomic profiles able to identify master regulator (MR) proteins controlling SARS-CoV-2-mediated reprogramming in pathophysiologically relevant human ciliated, secretory, and basal cells. This underscored chromatin remodeling, endosomal sorting, ubiquitin pathways, as well as proviral factors identified by CRISPR assays as components of the viral-host response in these cells. Large-scale drug perturbation screens revealed 11 candidate drugs able to invert the entire MR signature activated by SARS-CoV-2. Leveraging MR analysis and perturbational profiles of human primary cells represents an innovative approach to investigate pathogen-host interactions in multiple airway conditions for drug prioritization.
Collapse
Affiliation(s)
- Brooke Dirvin
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Heeju Noh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- DarwinHealth Inc., New York, NY 10018, USA
| | - Danting Cao
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiangyi Ke
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Rockefeller University, New York, NY 10065, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Rockefeller University, New York, NY 10065, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charles Karan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- DarwinHealth Inc., New York, NY 10018, USA
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Chan Zuckerberg Biohub New York, New York, NY, USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Li W, Su D, Li X, Lu K, Huang Q, Zheng J, Luo X, Chen G, Fan X. Identification of the core regulatory program driving NEUROD1-induced neuronal reprogramming. Cell Rep 2025; 44:115523. [PMID: 40173039 DOI: 10.1016/j.celrep.2025.115523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
NEUROD1 (ND1)-induced astrocyte-to-neuron (AtN) conversion shows promise for treating neurological disorders. To gain insight into the molecular mechanisms of neuronal reprogramming, we established an in vitro system using primary cortical astrocyte cultures from postnatal rats and employed single-cell and multiomics sequencing. Our findings indicate that the initial cultures primarily consisted of immature astrocytes (ImAs), with potentially a minor presence of radial glial cells. The ImAs initially went through an intermediate state, activating both astrocyte and neural progenitor genes. Subsequently, they mimic in vivo neurogenesis to acquire mature neuronal characteristics. We show that ND1 acted as a pioneer factor that reshapes the chromatin landscape of astrocytes to that of neurons. This restructuring promotes the expression of neurogenic genes via inducing H3K27ac modification. Through integrative analysis of various ND1-induced neuronal specification systems, we identified 25 ND1 targets, including Hes6, as key regulators. Thus, our work highlights the key role of ND1 and its downstream regulators in neuronal reprogramming.
Collapse
Affiliation(s)
- Wen Li
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Dan Su
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; The Bioland Laboratory, Guangzhou 510700, China
| | - Xining Li
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; The Bioland Laboratory, Guangzhou 510700, China
| | - Kang Lu
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Qingpei Huang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; The Bioland Laboratory, Guangzhou 510700, China
| | - Jiajun Zheng
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Xiaopeng Luo
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Gong Chen
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Xiaoying Fan
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; The Bioland Laboratory, Guangzhou 510700, China.
| |
Collapse
|
4
|
Chongtham A, Ramakrishnan A, Farinas M, Broekaart DWM, Seo JH, Zhu CW, Sano M, Shen L, Pereira AC. Neocortical tau propagation is a mediator of clinical heterogeneity in Alzheimer's disease. Mol Psychiatry 2025:10.1038/s41380-025-02998-y. [PMID: 40234685 DOI: 10.1038/s41380-025-02998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025]
Abstract
Heterogeneity in progression of clinical dementia obstructs the general therapeutic potential of current treatments for Alzheimer's disease (AD). Though the mechanisms of this heterogeneity remain unclear, the characterization of bioactive tau species and factors that regulate their seeding behavior might give valuable insight as pathological tau is well correlated with cognitive impairment. Here, we conducted an innovative investigation into the molecular basis of widespread, connectivity-based tau propagation that begins in the inferior temporal gyrus (ITG) and spreads to neocortical areas such as the prefrontal cortex (PFC). Biochemical analysis of human postmortem ITG and PFC tissues revealed individual variability in tau seeding, which correlated with cognitive decline, particularly in the ITG, a region known for promoting accelerated tau propagation. Notably, this study presents the first evidence that site-specific phosphorylation and isoform composition of both aggregation-prone high-molecular-weight (HMW) tau and the relatively unexplored, yet potentially crucial in AD progression low-molecular-weight (LMW) tau significantly contribute to tau propagation and cognitive decline. Our findings underscore the importance of comprehensively considering diverse tau forms including both HMW and LMW tau species in understanding AD progression. Additionally, these results are the first to identify distinct morphological strains within the AD brain associated with differing seeding propensity, potentially enabling patient stratification based on their tau profile. Furthermore, RNA-seq analyses of gene expression patterns in the ITG revealed molecular heterogeneity associated with tau seeding potential. Patients with higher levels of seed-competent tau displayed greater impairments in synaptic and neural plasticity, and increased neuroinflammation. This multidisciplinary study offers novel insights into various molecular mechanisms driving AD progression, suggesting potential molecular targets for early intervention and improved patient subtyping, which is critical for developing precision medicine approaches.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marissa Farinas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diede W M Broekaart
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joon Ho Seo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn W Zhu
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Sano
- James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Sanford Grossman Interdisciplinary Program I Neural Circuitry and Immune Function, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Li BI, Alvarez MJ, Zhao H, Chirathivat N, Califano A, Shen MM. The regulatory architecture of the primed pluripotent cell state. Nat Commun 2025; 16:3351. [PMID: 40204698 PMCID: PMC11982361 DOI: 10.1038/s41467-025-57894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Despite extensive research, the gene regulatory architecture governing mammalian cell states remains poorly understood. Here we present an integrative systems biology approach to elucidate the network architecture of primed state pluripotency. Using an unbiased methodology, we identified and experimentally confirmed 132 transcription factors as master regulators (MRs) of mouse epiblast stem cell (EpiSC) pluripotency, many of which were further validated by CRISPR-mediated functional assays. To assemble a comprehensive regulatory network, we silenced each of the 132 MRs to assess their effects on the other MRs and their transcriptional targets, yielding a network of 1273 MR → MR interactions. Network architecture analyses revealed four functionally distinct MR modules (communities), and identified key Speaker and Mediator MRs based on their hierarchical rank and centrality. Our findings elucidate the de-centralized logic of a "communal interaction" model in which the balanced activities of four MR communities maintain primed state pluripotency.
Collapse
Affiliation(s)
- Bo I Li
- Department of Medicine, New York, NY, USA
- Systems Biology, New York, NY, USA
- Genetics and Development, New York, NY, USA
- Urology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariano J Alvarez
- Systems Biology, New York, NY, USA
- DarwinHealth, Inc., New York, NY, USA
| | - Hui Zhao
- Department of Medicine, New York, NY, USA
- Systems Biology, New York, NY, USA
- Genetics and Development, New York, NY, USA
- Urology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Napon Chirathivat
- Department of Medicine, New York, NY, USA
- Systems Biology, New York, NY, USA
- Genetics and Development, New York, NY, USA
- Urology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea Califano
- Department of Medicine, New York, NY, USA.
- Systems Biology, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- DarwinHealth, Inc., New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, New York, NY, USA.
- Biomedical Informatics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Chan Zuckerberg Biohub, New York, NY, USA.
| | - Michael M Shen
- Department of Medicine, New York, NY, USA.
- Systems Biology, New York, NY, USA.
- Genetics and Development, New York, NY, USA.
- Urology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Zhang Y, Wu Q, Bai F, Hu Y, Xu B, Tang Y, Wu J. Granulosa cell-specific FOXJ2 overexpression induces premature ovarian insufficiency by triggering apoptosis via mitochondrial calcium overload. J Ovarian Res 2025; 18:75. [PMID: 40205506 PMCID: PMC11984056 DOI: 10.1186/s13048-025-01651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Follicle development is a complicated biological process that produces mature oocytes, and requires nutrients, growth factors, and steroids produced by ovarian granulosa cells (GCs). High fork head box J2 (FOXJ2) expression might negatively regulate ovarian function; however, the mechanism is unclear. This study aimed to investigate the effect and mechanism of FOXJ2 overexpression in GCs on regulating follicle development and fertility. METHODS A GC-specific conditional Foxj2 knock-in mouse model (Amh-cre; Foxj2tg/tg mouse) was generated. Reproductive phenotypes were compared between Amh-cre; Foxj2tg/tg and control mice using fertility evaluation, oocyte collection, estrus cycle analysis, hormone evaluation, and ovarian follicle assessment. Then, RNA sequencing and bioinformatic analyses were used to detect the altered transcriptome of GCs collected from the Amh-cre; Foxj2tg/tg and wild-type mice. Western blotting, transmission electron microscopy, immunofluorescence staining, and flow cytometry were used to explore apoptosis and mitochondrial calcium homeostasis. Furthermore, Chromatin immunoprecipitation-PCR and dual-luciferase reporter assays were used to detect the target gene of FOXJ2. Moreover, short hairpin RNA interference was performed on primary GCs and human ovarian granulosa-like tumor (KGN) cells to explore the relationship between FOXJ2 and its target gene in apoptosis and mitochondrial calcium overload. RESULTS FOXJ2 overexpression in GCs led to reduced fertility, hormonal abnormalities, and follicle atresia, starting at the initiation of sexual maturity, resulting in a premature ovarian insufficiency (POI)-like phenotype. Increased apoptosis and mitochondrial calcium overload were detected in the GCs of Amh-cre; Foxj2tg/tg mice. Mcu (encoding a mitochondrial calcium uniporter) was observed to be upregulated in the GCs of the Amh-cre; Foxj2tg/tg mice and was a direct target of FOXJ2. Moreover, Mcu knockdown restored mitochondrial calcium homeostasis and reduced the apoptosis in the GCs of the Amh-cre; Foxj2tg/tg mice and in KGN cells transfected with FOXJ2-overexpression lentivirus.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Qiqian Wu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Furong Bai
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China
| | - Yanqin Hu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Bufang Xu
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Shanghai General Hospital, Urologic Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Yujie Tang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China.
| | - Jingwen Wu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China.
| |
Collapse
|
7
|
Marshe VS, Tuddenham JF, Chen K, Chiu R, Haage VC, Ma Y, Lee AJ, Shneider NA, Agin-Liebes JP, Alcalay RN, Teich AF, Canoll P, Riley CS, Keene D, Schneider JA, Bennett DA, Menon V, Taga M, Klein HU, Olah M, Fujita M, Zhang Y, Sims PA, De Jager PL. A factor-based analysis of individual human microglia uncovers regulators of an Alzheimer-related transcriptional signature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.641500. [PMID: 40196633 PMCID: PMC11974870 DOI: 10.1101/2025.03.27.641500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Human microglial heterogeneity is only beginning to be appreciated at the molecular level. Here, we present a large, single-cell atlas of expression signatures from 441,088 live microglia broadly sampled across a diverse set of brain regions and neurodegenerative and neuroinflammatory diseases obtained from 161 donors sampled at autopsy or during a neurosurgical procedure. Using single-cell hierarchical Poisson factorization (scHPF), we derived a 23-factor model for continuous gene expression signatures across microglia which capture specific biological processes (e.g., metabolism, phagocytosis, antigen presentation, inflammatory signaling, disease-associated states). Using external datasets, we evaluated the aspects of microglial phenotypes that are encapsulated in various in vitro and in vivo microglia models and identified and replicated the role of two factors in human postmortem tissue of Alzheimer's disease (AD). Further, we derived a complex network of transcriptional regulators for all factors, including regulators of an AD-related factor enriched for the mouse disease-associated microglia 2 (DAM2) signature: ARID5B, CEBPA, MITF, and PPARG. We replicated the role of these four regulators in the AD-related factor and then designed a multiplexed MERFISH panel to assess our microglial factors using spatial transcriptomics. We find that, unlike cells with high expression of the interferon-response factor, cells with high expression of the AD DAM2-like factor are widely distributed in neocortical tissue. We thus propose a novel analytic framework that provides a taxonomic approach for microglia that is more biologically interpretable and use it to uncover new therapeutic targets for AD.
Collapse
Affiliation(s)
- Victoria S. Marshe
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - John F. Tuddenham
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, USA
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, NY, 10029, USA
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, 10029, USA
| | - Kevin Chen
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Rebecca Chiu
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Verena C. Haage
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Yiyi Ma
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
| | - Neil A. Shneider
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Eleanor and Lou Gehrig ALS Center, Columbia University Medical Center, New York, NY, USA
| | - Julian P. Agin-Liebes
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Andrew F. Teich
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Claire S. Riley
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Dirk Keene
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Hans-Ulrich Klein
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Marta Olah
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Ya Zhang
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, USA
- Dept. of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, USA
- Chan Zuckerberg Biohub, New York, New York, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
8
|
Wang B, Huang C, Liu X, Liu Z, Zhang Y, Zhao W, Xu Q, Ho PC, Xiao Z. iMetAct: An integrated systematic inference of metabolic activity for dissecting tumor metabolic preference and tumor-immune microenvironment. Cell Rep 2025; 44:115375. [PMID: 40053454 DOI: 10.1016/j.celrep.2025.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/03/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
Metabolic enzymes play a central role in cancer metabolic reprogramming, and their dysregulation creates vulnerabilities that can be exploited for therapy. However, accurately measuring metabolic enzyme activity in a high-throughput manner remains challenging due to the complex, multi-layered regulatory mechanisms involved. Here, we present iMetAct, a framework that integrates metabolic-transcription networks with an information propagation strategy to infer enzyme activity from gene expression data. iMetAct outperforms expression-based methods in predicting metabolite conversion rates by accounting for the effects of post-translational modifications. With iMetAct, we identify clinically significant subtypes of hepatocellular carcinoma with distinct metabolic preferences driven by dysregulated enzymes and metabolic regulators acting at both the transcriptional and non-transcriptional levels. Moreover, applying iMetAct to single-cell RNA sequencing data allows for the exploration of cancer cell metabolism and its interplay with immune regulation in the tumor microenvironment. An accompanying online platform further facilitates tumor metabolic analysis, patient stratification, and immune microenvironment characterization.
Collapse
Affiliation(s)
- Binxian Wang
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chao Huang
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xuan Liu
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhenni Liu
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yilei Zhang
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Epalinges, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Zhengtao Xiao
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
9
|
Ke X, van Soldt B, Vlahos L, Zhou Y, Qian J, George J, Capdevila C, Glass I, Yan K, Califano A, Cardoso WV. Morphogenesis and regeneration share a conserved core transition cell state program that controls lung epithelial cell fate. Dev Cell 2025; 60:819-836.e7. [PMID: 39667932 PMCID: PMC11945641 DOI: 10.1016/j.devcel.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/07/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
Transitional cell states are at the crossroads of crucial developmental and regenerative events, yet little is known about how these states emerge and influence outcomes. The alveolar and airway epithelia arise from distal lung multipotent progenitors, which undergo cell fate transitions to form these distinct compartments. The identification and impact of cell states in the developing lung are poorly understood. Here, we identified a population of Icam1/Nkx2-1 epithelial progenitors harboring a transitional state program remarkably conserved in humans and mice during lung morphogenesis and regeneration. Lineage-tracing and functional analyses reveal their role as progenitors to both airways and alveolar cells and the requirement of this transitional program to make distal lung progenitors competent to undergo airway cell fate specification. The identification of a common progenitor cell state in vastly distinct processes suggests a unified program reiteratively regulating outcomes in development and regeneration.
Collapse
Affiliation(s)
- Xiangyi Ke
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin van Soldt
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pulmonary & Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joel George
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Claudia Capdevila
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ian Glass
- Birth Defects Research Laboratory (BDRL), University of Washington, Seattle, WA 98105, USA
| | - Kelley Yan
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pulmonary & Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
10
|
Cohn GM, Daniel CJ, Eng JR, Sun XX, Pelz C, Chin K, Smith A, Lopez CD, Brody JR, Dai MS, Sears RC. MYC Serine 62 phosphorylation promotes its binding to DNA double strand breaks to facilitate repair and cell survival under genotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644227. [PMID: 40166231 PMCID: PMC11957152 DOI: 10.1101/2025.03.19.644227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Genomic instability is a hallmark of cancer, driving oncogenic mutations that enhance tumor aggressiveness and drug resistance. MYC, a master transcription factor that is deregulated in nearly all human tumors, paradoxically induces replication stress and associated DNA damage while also increasing expression of DNA repair factors and mediating resistance to DNA-damaging therapies. Emerging evidence supports a non-transcriptional role for MYC in preserving genomic integrity at sites of active transcription and protecting stalled replication forks under stress. Understanding how MYC's genotoxic and genoprotective functions diverge may reveal new therapeutic strategies for MYC-driven cancers. Here, we identify a non-canonical role of MYC in DNA damage response (DDR) through its direct association with DNA breaks. We show that phosphorylation at serine 62 (pS62-MYC) is crucial for the efficient recruitment of MYC to damage sites, its interaction with repair factors BRCA1 and RAD51, and effective DNA repair to support cell survival under stress. Mass spectrometry analysis with MYC-BioID2 during replication stress reveals a shift in MYC's interactome, maintaining DDR associations while losing transcriptional regulators. These findings establish pS62-MYC as a key regulator of genomic stability and a potential therapeutic target in cancers.
Collapse
Affiliation(s)
- Gabriel M. Cohn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Colin J. Daniel
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer R. Eng
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Koei Chin
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Smith
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Charles D. Lopez
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R. Brody
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Mu-shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
11
|
Nie J, Zhang S, Guo Y, Liu C, Shi J, Wu H, Na R, Liang Y, Yu S, Quan F, Liu K, Li M, Zhou M, Zhao Y, Li X, Luo S, Zhang Q, Wang G, Zhang Y, Yao Y, Xiao Y, Tai S, Zheng T. Mapping of the T-cell Landscape of Biliary Tract Cancer Unravels Anatomic Subtype-Specific Heterogeneity. Cancer Res 2025; 85:704-722. [PMID: 39570809 DOI: 10.1158/0008-5472.can-24-1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/24/2024] [Accepted: 11/13/2024] [Indexed: 02/18/2025]
Abstract
Biliary tract cancer (BTC), encompassing diseases such as intrahepatic (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancer, is not only increasing but also poses a significant and urgent health threat due to its high malignancy. Genomic differences point to the possibility that these subtypes represent distinct diseases. Elucidation of the specific distribution of T-cell subsets, critical to cancer immunity, across these diseases could provide better insights into the unique biology of BTC subtypes and help identify potential precision medicine strategies. To address this, we conducted single-cell RNA sequencing and T-cell receptor sequencing on CD3+ T cells from 36 samples from 16 patients with BTC across all subtypes and analyzed 355 pathologic slides to examine the spatial distribution of T cells and tertiary lymphoid structures. Compared with ICC and gallbladder cancer, ECC possessed a unique immune profile characterized by T-cell exhaustion, elevated CXCL13 expression in CD4+ T helper-like and CD8+CXCL13+ exhausted T cells, more mature tertiary lymphoid structures, and fewer desert immunophenotypes. Conversely, ICC displayed an inflamed immunophenotype with an enrichment of IFN-related pathways and high expression of LGALS1 in activated regulatory T cells, associated with immunosuppression. Inhibition of LGALS1 reduced tumor growth and regulatory T-cell prevalence in ICC mouse models. Overall, this study unveils T-cell diversity across BTC subtypes at the single-cell and spatial level that could open paths for tailored immunotherapies. Significance: Single-cell and spatial analyses detailed the T-cell characteristics specific to anatomic subtypes of biliary tract cancer, identifying unique immunologic features that could potentially be harnessed to improve patient outcomes.
Collapse
Affiliation(s)
- Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Shuyuan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Ying Guo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Jiaqi Shi
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haotian Wu
- Department of Hepatic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruisi Na
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Yingjian Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fei Quan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kun Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Meng Zhou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Ying Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Xuehan Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Shengnan Luo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Qian Zhang
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
12
|
Worley J, Noh H, You D, Turunen MM, Ding H, Paull E, Griffin AT, Grunn A, Zhang M, Guillan K, Bush EC, Brosius SJ, Hibshoosh H, Mundi PS, Sims P, Dalerba P, Dela Cruz FS, Kung AL, Califano A. Identification and Pharmacological Targeting of Treatment-Resistant, Stem-like Breast Cancer Cells for Combination Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.08.562798. [PMID: 38798673 PMCID: PMC11118419 DOI: 10.1101/2023.11.08.562798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of albendazole and paclitaxel-a commonly used chemotherapeutic -displayed significant synergy in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based approaches can help develop mechanism-based combinatorial therapies targeting complementary subpopulations. Statement of significance Network-based approaches, as shown in a study on metastatic breast cancer, can develop effective combinatorial therapies targeting complementary subpopulations. By analyzing scRNA-seq data and using clinically relevant drugs, researchers identified and depleted chemoresistant Cancer Stem-Like Cells, enhancing the efficacy of standard chemotherapies.
Collapse
Affiliation(s)
- Jeremy Worley
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Heeju Noh
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mikko M Turunen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Hongxu Ding
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA 85721
| | - Evan Paull
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Aaron T Griffin
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Adina Grunn
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Mingxuan Zhang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Kristina Guillan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin C Bush
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Samantha J Brosius
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
| | - Prabhjot S Mundi
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
| | - Peter Sims
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Piero Dalerba
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
13
|
Szabo PA, Levitin HM, Connors TJ, Chen D, Jin J, Thapa P, Guyer R, Caron DP, Gray JI, Matsumoto R, Kubota M, Brusko M, Brusko TM, Farber DL, Sims PA. Transcriptional control of T cell tissue adaptation and effector function in infants and adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636039. [PMID: 39974963 PMCID: PMC11838503 DOI: 10.1101/2025.02.01.636039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The first years of life are essential for the development of memory T cells, which rapidly populate the body's diverse tissue sites during infancy. However, the degree to which tissue memory T cell responses in early life reflect those during adulthood is unclear. Here, we use single cell RNA-sequencing of resting and ex vivo activated T cells from lymphoid and mucosal tissues of infant (aged 2-9 months) and adult (aged 40-65 years) human organ donors to dissect the transcriptional programming of memory T cells over age. Infant memory T cells demonstrate a unique stem-like transcriptional profile and tissue adaptation program, yet exhibit reduced activation capacity and effector function relative to adults. Using CRISPR-Cas9 knockdown, we define Helios (IKZF2) as a critical transcriptional regulator of the infant-specific tissue adaptation program and restricted effector state. Our findings reveal key transcriptional mechanisms that control tissue T cell fate and function in early life.
Collapse
Affiliation(s)
- Peter A. Szabo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Hanna M. Levitin
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Thomas J. Connors
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032
| | - David Chen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Jenny Jin
- Medical Scientist Training Program, Columbia University Medical Center, New York, NY 10032
| | - Puspa Thapa
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Rebecca Guyer
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Daniel P. Caron
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Joshua I. Gray
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
- Department of Surgery, Columbia University Medical Center, New York, NY 10032
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
- Department of Surgery, Columbia University Medical Center, New York, NY 10032
| | - Maigan Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
- Department of Surgery, Columbia University Medical Center, New York, NY 10032
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
14
|
Boyd SS, Slawson C, Thompson JA. AMEND 2.0: module identification and multi-omic data integration with multiplex-heterogeneous graphs. BMC Bioinformatics 2025; 26:39. [PMID: 39910456 PMCID: PMC11800622 DOI: 10.1186/s12859-025-06063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Multi-omic studies provide comprehensive insight into biological systems by evaluating cellular changes between normal and pathological conditions at multiple levels of measurement. Biological networks, which represent interactions or associations between biomolecules, have been highly effective in facilitating omic analysis. However, current network-based methods lack generalizability to accommodate multiple data types across a range of diverse experiments. RESULTS We present AMEND 2.0, an updated active module identification method which can analyze multiplex and/or heterogeneous networks integrated with multi-omic data in a highly generalizable framework, in contrast to existing methods, which are mostly appropriate for at most two specific omic types. It is powered by Random Walk with Restart for multiplex-heterogeneous networks, with additional capabilities including degree bias adjustment and biased random walk for multi-objective module identification. AMEND was applied to two real-world multi-omic datasets: renal cell carcinoma data from The cancer genome atlas and an O-GlcNAc Transferase knockout study. Additional analyses investigate the performance of various subroutines of AMEND on tasks of node ranking and degree bias adjustment. CONCLUSIONS While the analysis of multi-omic datasets in a network context is poised to provide deeper understanding of health and disease, new methods are required to fully take advantage of this increasingly complex data. The current study combines several network analysis techniques into a single versatile method for analyzing biological networks with multi-omic data that can be applied in many diverse scenarios. Software is freely available in the R programming language at https://github.com/samboyd0/AMEND .
Collapse
Affiliation(s)
- Samuel S Boyd
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Chad Slawson
- Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, 66205, USA
| | - Jeffrey A Thompson
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| |
Collapse
|
15
|
Jia X, Xu Z, Xu L, Frene JP, Gonin M, Wang L, Yu J, Castrillo G, Yi K. Identification of new salicylic acid signaling regulators for root development and microbiota composition in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:345-354. [PMID: 39630058 DOI: 10.1111/jipb.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/15/2024] [Indexed: 02/13/2025]
Abstract
Besides playing a crucial role in plant immunity via the nonexpressor of pathogenesis-related (NPR) proteins, increasing evidence shows that salicylic acid (SA) can also regulate plant root growth. However, the transcriptional regulatory network controlling this SA response in plant roots is still unclear. Here, we found that NPR1 and WRKY45, the central regulators of SA response in rice leaves, control only a reduced sector of the root SA signaling network. We demonstrated that SA attenuates root growth via a novel NPR1/WRKY45-independent pathway. Furthermore, using regulatory network analysis and mutant characterization, we identified a set of new NPR1/WRKY45-independent regulators that conservedly modulate the root development and root-associated microbiota composition in both Oryza sativa (monocot) and Arabidopsis thaliana (dicot) in response to SA. Our results established the SA signaling as a central element regulating plant root functions under ecologically relevant conditions. These results provide new insights to understand how regulatory networks control plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Xianqing Jia
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhuang Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan P Frene
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Mathieu Gonin
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiahong Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
16
|
Anglada-Girotto M, Moakley DF, Zhang C, Miravet-Verde S, Califano A, Serrano L. Exon inclusion signatures enable accurate estimation of splicing factor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.21.600051. [PMID: 38979366 PMCID: PMC11230296 DOI: 10.1101/2024.06.21.600051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Splicing factors control exon inclusion in messenger RNA, shaping transcriptome and proteome diversity. Their catalytic activity is regulated by multiple layers, making single-omic measurements on their own fall short in identifying which splicing factors underlie a phenotype. Here, we propose splicing factor activity can be estimated by interpreting changes in exon inclusion. We benchmark methods to construct splicing factor→exon networks and calculate activity. Combining RNA-seq perturbation-based networks with VIPER (virtual inference of protein activity by enriched regulon analysis) accurately captures splicing factor activation modulated by different regulatory layers. This approach consolidates splicing factor regulation into a single score derived solely from exon inclusion signatures, allowing functional interpretation of heterogeneous conditions. As a proof of concept, we identify recurrent cancer splicing programs, revealing oncogenic- and tumor suppressor-like splicing factors missed by conventional methods. These programs correlate with patient survival and key cancer hallmarks: initiation, proliferation, and immune evasion. Altogether, we show splicing factor activity can be accurately estimated from exon inclusion changes, enabling comprehensive analyses of splicing regulation with minimal data requirements.
Collapse
Affiliation(s)
- Miquel Anglada-Girotto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Daniel F. Moakley
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, USA 10032
| | - Chaolin Zhang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, USA 10032
| | - Samuel Miravet-Verde
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Chan Zuckerberg Biohub New York, New York, NY, USA
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
17
|
Andersen RE, Talukdar M, Sakamoto T, Song JH, Qian X, Lee S, Delgado RN, Zhao S, Eichfeld G, Harms J, Walsh CA. Autism-Associated Genes and Neighboring lncRNAs Converge on Key Gene Regulatory Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.634000. [PMID: 39896631 PMCID: PMC11785016 DOI: 10.1101/2025.01.20.634000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The diversity of genes implicated in autism spectrum disorder (ASD) creates challenges for identifying core pathophysiological mechanisms. Aggregation of seven different classes of genetic variants implicated in ASD, in a database we call Consensus-ASD, reveals shared features across distinct types of ASD variants. Functional interrogation of 19 ASD genes and 9 neighboring long non-coding RNAs (lncRNAs) using CRISPR-Cas13 strikingly revealed differential gene expression profiles that were significantly enriched for other ASD genes. Furthermore, construction of a gene regulatory network (GRN) enabled the identification of central regulators that exhibit convergently altered activity upon ASD gene disruption. Thus, this study reveals how perturbing distinct ASD-associated genes can lead to shared, broad dysregulation of GRNs with critical relevance to ASD. This provides a crucial framework for understanding how diverse genes, including lncRNAs, can play convergent roles in key neurodevelopmental processes and ultimately contribute to ASD.
Collapse
Affiliation(s)
- Rebecca E. Andersen
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Allen Discovery Center for Human Brain Evolution, Boston, MA, USA
| | - Maya Talukdar
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Program in Biomedical Informatics, Boston, MA, USA
| | - Tyler Sakamoto
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Janet H.T. Song
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Allen Discovery Center for Human Brain Evolution, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Xuyu Qian
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Allen Discovery Center for Human Brain Evolution, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Seungil Lee
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Ryan N. Delgado
- Department of Genetics, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Sijing Zhao
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard BBS PhD Program, Boston, MA, USA
| | - Gwenyth Eichfeld
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Colgate University, Hamilton, NY, USA
| | - Julia Harms
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- University of California Berkeley, Berkeley, CA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Allen Discovery Center for Human Brain Evolution, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Long JP, Yang Y, Shimizu S, Pham T, Do KA. Causal models and prediction in cell line perturbation experiments. BMC Bioinformatics 2025; 26:4. [PMID: 39773352 PMCID: PMC11707890 DOI: 10.1186/s12859-024-06027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
In cell line perturbation experiments, a collection of cells is perturbed with external agents and responses such as protein expression measured. Due to cost constraints, only a small fraction of all possible perturbations can be tested in vitro. This has led to the development of computational models that can predict cellular responses to perturbations in silico. A central challenge for these models is to predict the effect of new, previously untested perturbations that were not used in the training data. Here we propose causal structural equations for modeling how perturbations effect cells. From this model, we derive two estimators for predicting responses: a Linear Regression (LR) estimator and a causal structure learning estimator that we term Causal Structure Regression (CSR). The CSR estimator requires more assumptions than LR, but can predict the effects of drugs that were not applied in the training data. Next we present Cellbox, a recently proposed system of ordinary differential equations (ODEs) based model that obtained the best prediction performance on a Melanoma cell line perturbation data set (Yuan et al. in Cell Syst 12:128-140, 2021). We derive analytic results that show a close connection between CSR and Cellbox, providing a new causal interpretation for the Cellbox model. We compare LR and CSR/Cellbox in simulations, highlighting the strengths and weaknesses of the two approaches. Finally we compare the performance of LR and CSR/Cellbox on the benchmark Melanoma data set. We find that the LR model has comparable or slightly better performance than Cellbox.
Collapse
Affiliation(s)
- James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Yumeng Yang
- Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shohei Shimizu
- Faculty of Data Science, Shiga University, Hikone, Shiga, Japan
| | - Thong Pham
- Faculty of Data Science, Shiga University, Hikone, Shiga, Japan
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Link JM, Eng JR, Pelz C, MacPherson-Hawthorne K, Worth PJ, Sivagnanam S, Keith DJ, Owen S, Langer EM, Grossblatt-Wait A, Salgado-Garza G, Creason AL, Protzek S, Egger J, Holly H, Heskett MB, Chin K, Kirchberger N, Betre K, Bucher E, Kilburn D, Hu Z, Munks MW, English IA, Tsuda M, Goecks J, Demir E, Adey AC, Kardosh A, Lopez CD, Sheppard BC, Guimaraes A, Brinkerhoff B, Morgan TK, Mills GB, Coussens LM, Brody JR, Sears RC. Ongoing replication stress tolerance and clonal T cell responses distinguish liver and lung recurrence and outcomes in pancreatic cancer. NATURE CANCER 2025; 6:123-144. [PMID: 39789181 PMCID: PMC11779630 DOI: 10.1038/s43018-024-00881-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/15/2024] [Indexed: 01/12/2025]
Abstract
Patients with metastatic pancreatic ductal adenocarcinoma survive longer if disease spreads to the lung but not the liver. Here we generated overlapping, multi-omic datasets to identify molecular and cellular features that distinguish patients whose disease develops liver metastasis (liver cohort) from those whose disease develops lung metastasis without liver metastases (lung cohort). Lung cohort patients survived longer than liver cohort patients, despite sharing the same tumor subtype. We developed a primary organotropism (pORG) gene set enriched in liver cohort versus lung cohort primary tumors. We identified ongoing replication stress response pathways in high pORG/liver cohort tumors, whereas low pORG/lung cohort tumors had greater densities of lymphocytes and shared T cell clonal responses. Our study demonstrates that liver-avid pancreatic ductal adenocarcinoma is associated with tolerance to ongoing replication stress, limited tumor immunity and less-favorable outcomes, whereas low replication stress, lung-avid/liver-averse tumors are associated with active tumor immunity that may account for favorable outcomes.
Collapse
Affiliation(s)
- Jason M Link
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA.
| | - Jennifer R Eng
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Carl Pelz
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | | | - Patrick J Worth
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Shamaline Sivagnanam
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Dove J Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Sydney Owen
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
| | - Alison Grossblatt-Wait
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
| | | | - Allison L Creason
- Knight Cancer Institute, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Sara Protzek
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Julian Egger
- Knight Cancer Institute, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Hannah Holly
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | - Koei Chin
- Knight Cancer Institute, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Nell Kirchberger
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Konjit Betre
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - David Kilburn
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Zhi Hu
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Michael W Munks
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Isabel A English
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Motoyuki Tsuda
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Jeremy Goecks
- Knight Cancer Institute, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Emek Demir
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
| | - Adel Kardosh
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Charles D Lopez
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Brett C Sheppard
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Alex Guimaraes
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Brian Brinkerhoff
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Terry K Morgan
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Gordon B Mills
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Lisa M Coussens
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R Brody
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA.
- Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
20
|
Prip F, Lamy P, Lindskrog SV, Strandgaard T, Nordentoft I, Birkenkamp-Demtröder K, Birkbak NJ, Kristjánsdóttir N, Kjær A, Andreasen TG, Ahrenfeldt J, Pedersen JS, Rasmussen AM, Hermann GG, Mogensen K, Petersen AC, Hartmann A, Grimm MO, Horstmann M, Nawroth R, Segersten U, Sikic D, van Kessel KEM, Zwarthoff EC, Maurer T, Simic T, Malmström PU, Malats N, Jensen JB, Real FX, Dyrskjøt L. Comprehensive genomic characterization of early-stage bladder cancer. Nat Genet 2025; 57:115-125. [PMID: 39753772 PMCID: PMC11735393 DOI: 10.1038/s41588-024-02030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/31/2024] [Indexed: 01/18/2025]
Abstract
Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes. Frequent loss of heterozygosity in FGFR3 and 17p (affecting TP53) was found in tumors with mutations in FGFR3 and TP53, respectively. Whole-genome doubling (WGD) was observed in 15% of the tumors and was associated with worse outcomes. Tumors with WGD were genomically unstable, with alterations in cell-cycle-related genes and an altered immune composition. Finally, integrative clustering of multi-omics data highlighted the important role of genomic instability and immune cell exhaustion in disease aggressiveness. These findings advance our understanding of genomic differences associated with disease aggressiveness in NMIBC and may ultimately improve patient stratification.
Collapse
Affiliation(s)
- Frederik Prip
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sia Viborg Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Trine Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Birkenkamp-Demtröder
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nicolai Juul Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nanna Kristjánsdóttir
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Asbjørn Kjær
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tine G Andreasen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johanne Ahrenfeldt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Skou Pedersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Asta Mannstaedt Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers G Hermann
- Department of Urology, Herlev Hospital, Copenhagen University, Copenhagen, Denmark
| | - Karin Mogensen
- Department of Urology, Herlev Hospital, Copenhagen University, Copenhagen, Denmark
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center EMN, Erlangen, Germany
| | | | - Marcus Horstmann
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Roman Nawroth
- Department of Urology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Ulrika Segersten
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Kim E M van Kessel
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Amphia Ziekenhuis, Breda, the Netherlands
| | - Ellen C Zwarthoff
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tobias Maurer
- Department of Urology and Martini-Klinik, University of Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Center for Redox Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Per-Uno Malmström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO) and CIBERONC, Madrid, Spain
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Center (CNIO) and CIBERONC, Madrid, Spain
- Medicine and Life Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
21
|
Ganguli P, Basanta CC, Acha-Sagredo A, Misetic H, Armero M, Mendez A, Zahra A, Devonshire G, Kelly G, Freeman A, Green M, Nye E, Bichisecchi A, Bonfanti P, Rodriguez-Justo M, Spencer J, Fitzgerald RC, Ciccarelli FD. Context-dependent effects of CDKN2A and other 9p21 gene losses during the evolution of esophageal cancer. NATURE CANCER 2025; 6:158-174. [PMID: 39753721 PMCID: PMC11779637 DOI: 10.1038/s43018-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/07/2024] [Indexed: 01/31/2025]
Abstract
CDKN2A is a tumor suppressor located in chromosome 9p21 and frequently lost in Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). How CDKN2A and other 9p21 gene co-deletions affect EAC evolution remains understudied. We explored the effects of 9p21 loss in EACs and cancer progressor and non-progressor BEs with matched genomic, transcriptomic and clinical data. Despite its cancer driver role, CDKN2A loss in BE prevents EAC initiation by counterselecting subsequent TP53 alterations. 9p21 gene co-deletions predict poor patient survival in EAC but not BE through context-dependent effects on cell cycle, oxidative phosphorylation and interferon response. Immune quantifications using bulk transcriptome, RNAscope and high-dimensional tissue imaging showed that IFNE loss reduces immune infiltration in BE, but not EAC. Mechanistically, CDKN2A loss suppresses the maintenance of squamous epithelium, contributing to a more aggressive phenotype. Our study demonstrates context-dependent roles of cancer genes during disease evolution, with consequences for cancer detection and patient management.
Collapse
Affiliation(s)
- Piyali Ganguli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- Barts Cancer Institute - Centre for Cancer Evolution, Queen Mary University of London, London, UK
| | - Celia C Basanta
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- Barts Cancer Institute - Centre for Cancer Evolution, Queen Mary University of London, London, UK
| | - Amelia Acha-Sagredo
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- Barts Cancer Institute - Centre for Cancer Evolution, Queen Mary University of London, London, UK
| | - Hrvoje Misetic
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- Barts Cancer Institute - Centre for Cancer Evolution, Queen Mary University of London, London, UK
| | - Maria Armero
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- Barts Cancer Institute - Centre for Cancer Evolution, Queen Mary University of London, London, UK
| | - Akram Mendez
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- Barts Cancer Institute - Centre for Cancer Evolution, Queen Mary University of London, London, UK
| | - Aeman Zahra
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- Barts Cancer Institute - Centre for Cancer Evolution, Queen Mary University of London, London, UK
| | - Ginny Devonshire
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
| | - Gavin Kelly
- Bioinformatics & Biostatistics STP, The Francis Crick Institute, London, UK
| | - Adam Freeman
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
| | - Mary Green
- Experimental Histopathology STP, The Francis Crick Institute, London, UK
| | - Emma Nye
- Experimental Histopathology STP, The Francis Crick Institute, London, UK
| | - Anita Bichisecchi
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, UK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, London, UK
| | | | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Rebecca C Fitzgerald
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK.
- Barts Cancer Institute - Centre for Cancer Evolution, Queen Mary University of London, London, UK.
| |
Collapse
|
22
|
Wang J, Zhang L, Cavallini M, Pahlevan A, Sun J, Morshedian A, Fain GL, Sampath AP, Peng YR. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat Commun 2024; 15:10761. [PMID: 39737973 PMCID: PMC11685597 DOI: 10.1038/s41467-024-55019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species. The conservation of cell types indicates their emergence early in vertebrate evolution, highlighting primordial designs of retinal circuits for the rod pathway, ON-OFF discrimination, and direction selectivity. The diversification of amacrine and some ganglion cell types appears, however, to be distinct in the lamprey. We further infer genetic regulators in specifying retinal cell classes and identify ancestral regulatory elements across species, noting decreased conservation in specifying amacrine cells. Altogether, our characterization of the lamprey retina illuminates the evolutionary origin of visual processing in the retina.
Collapse
Affiliation(s)
- Junqiang Wang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lin Zhang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Martina Cavallini
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ali Pahlevan
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Junwei Sun
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ala Morshedian
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Gordon L Fain
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Kramer AE, Berral-González A, Ellwood KM, Ding S, De Las Rivas J, Dutta A. Cross-species regulatory network analysis identifies FOXO1 as a driver of ovarian follicular recruitment. Sci Rep 2024; 14:30787. [PMID: 39730395 DOI: 10.1038/s41598-024-80003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/14/2024] [Indexed: 12/29/2024] Open
Abstract
The transcriptional regulation of gene expression in the latter stages of follicular development in laying hen ovarian follicles is not well understood. Although differentially expressed genes (DEGs) have been identified in pre-recruitment and pre-ovulatory stages, the master regulators driving these DEGs remain unknown. This study addresses this knowledge gap by utilizing Master Regulator Analysis (MRA) combined with the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) for the first time in laying hen research to identify master regulators that are controlling DEGs in pre-recruitment and pre-ovulatory phases. The constructed ARACNe network included 10,466 nodes and 292,391 edges. The ARACNe network was then used in conjunction with the Virtual Inference of Protein-activity by Enriched Regulon (VIPER) for the MRA to identify top up- and down-regulated master regulators. VIPER analysis revealed FOXO1 as a master regulator, influencing 275 DEGs and impacting pathways related to apoptosis, proliferation, and hormonal regulation. Additionally, CLOCK, known as a crucial regulator of circadian rhythm, emerged as an upregulated master regulator in the pre-ovulatory stage. These findings provide new insights into the transcriptional landscape of laying hen ovarian follicles, offering a foundation for further exploration of follicle development and enhancing reproductive efficiency in avian species.
Collapse
Affiliation(s)
- Ashley E Kramer
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Alberto Berral-González
- Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Kathryn M Ellwood
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Shanshan Ding
- Department of Applied Economics and Statistics, University of Delaware, Newark, DE, USA
| | - Javier De Las Rivas
- Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain.
| | - Aditya Dutta
- Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, and Microbiology Graduate Program, University of Delaware, Newark, DE, USA.
| |
Collapse
|
24
|
Yang J, Lim JT, Victor P, Corona MG, Chen C, Khawaja H, Pan Q, Paine-Murrieta GD, Schnellmann RG, Roe DJ, Gokhale PC, DeCaprio JA, Padi M. Integrative analysis reveals therapeutic potential of pyrvinium pamoate in Merkel cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565218. [PMID: 37961132 PMCID: PMC10635082 DOI: 10.1101/2023.11.01.565218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Merkel Cell Carcinoma (MCC) is an aggressive neuroendocrine cutaneous malignancy arising from either ultraviolet-induced mutagenesis or Merkel cell polyomavirus (MCPyV) integration. Despite extensive research, our understanding of the molecular mechanisms driving the transition from normal cells to MCC remains limited. To address this knowledge gap, we assessed the impact of inducible MCPyV T antigens on normal human fibroblasts by performing RNA sequencing. Our data uncovered changes in expression and regulation of Wnt signaling pathway members. Building on this observation, we bioinformatically evaluated various Wnt pathway perturbagens for their ability to reverse the MCC gene expression signature and identified pyrvinium pamoate, an FDA-approved anthelminthic drug known for its anti-tumor activity in other cancers. Leveraging transcriptomic, network, and molecular analyses, we found that pyrvinium targets multiple MCC vulnerabilities. Pyrvinium not only reverses the neuroendocrine features of MCC by modulating canonical and non-canonical Wnt signaling but also inhibits cancer cell growth by activating p53-mediated apoptosis, disrupting mitochondrial function, and inducing endoplasmic reticulum stress. Finally, we demonstrated that pyrvinium reduces tumor growth in an MCC mouse xenograft model. These findings offer a new understanding of the role of Wnt signaling in MCC and highlight the utility of pyrvinium as a potential treatment for MCC.
Collapse
Affiliation(s)
- Jiawen Yang
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - James T. Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Paul Victor
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | | | - Chen Chen
- University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Hunain Khawaja
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Qiong Pan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
- The University of Arizona College of Medicine, Tucson, Arizona, USA
- The University of Arizona, BIO5 Institute, Tucson, Arizona, USA
- Southern Arizona VA Health Care System, USA
| | - Denise J. Roe
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Prafulla C. Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megha Padi
- University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
25
|
Pappalardo XG, Jansen G, Amaradio M, Costanza J, Umeton R, Guarino F, De Pinto V, Oliver SG, Messina A, Nicosia G. Inferring gene regulatory networks of ALS from blood transcriptome profiles. Heliyon 2024; 10:e40696. [PMID: 39687198 PMCID: PMC11648123 DOI: 10.1016/j.heliyon.2024.e40696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
One of the most robust approaches to the prediction of causal driver genes of complex diseases is to apply reverse engineering methods to infer a gene regulatory network (GRN) from gene expression profiles (GEPs). In this work, we analysed 794 GEPs of 1117 human whole-blood samples from Amyotrophic Lateral Sclerosis (ALS) patients and healthy subjects reported in the GSE112681 dataset. GRNs for ALS and healthy individuals were reconstructed by ARACNe-AP (Algorithm for the Reconstruction of Accurate Cellular Networks - Adaptive Partitioning). In order to examine phenotypic differences in the ALS population surveyed, several datasets were built by arranging GEPs according to sex, spinal or bulbar onset, and survival time. The designed reverse engineering methodology identified a significant number of potential ALS-promoting mechanisms and putative transcriptional biomarkers that were previously unknown. In particular, the characterization of ALS phenotypic networks by pathway enrichment analysis has identified a gender-specific disease signature, namely network activation related to the radiation damage response, reported in the networks of bulbar and female ALS patients. Also, focusing on a smaller interaction network, we selected some hub genes to investigate their inferred pathological and healthy subnetworks. The inferred GRNs revealed the interconnection of the four selected hub genes (TP53, SOD1, ALS2, VDAC3) with p53-mediated pathways, suggesting the potential neurovascular response to ALS neuroinflammation. In addition to being well consistent with literature data, our results provide a novel integrated view of ALS transcriptional regulators, expanding information on the possible mechanisms underlying ALS and also offering important insights for diagnostic purposes and for developing possible therapies for a disease yet incurable.
Collapse
Affiliation(s)
- Xena G. Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Jansen
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Matteo Amaradio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jole Costanza
- The National Institute of Molecular Genetics “Romeo and Enrica Invernizzi”, Milano, Italy
| | - Renato Umeton
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | | | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | - Giuseppe Nicosia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Dirvin B, Noh H, Tomassoni L, Cao D, Zhou Y, Ke X, Qian J, Jangra S, Schotsaert M, García-Sastre A, Karan C, Califano A, Cardoso WV. Identification and Targeting of Regulators of SARS-CoV-2-Host Interactions in the Airway Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617898. [PMID: 39464067 PMCID: PMC11507692 DOI: 10.1101/2024.10.11.617898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although the impact of SARS-CoV-2 in the lung has been extensively studied, the molecular regulators and targets of the host-cell programs hijacked by the virus in distinct human airway epithelial cell populations remain poorly understood. This is in part ascribed to the use of nonprimary cell systems, overreliance on single-cell gene expression profiling that does not ultimately reflect protein activity, and bias toward the downstream effects rather than their mechanistic determinants. Here we address these issues by network-based analysis of single cell transcriptomic profiles of pathophysiologically relevant human adult basal, ciliated and secretory cells to identify master regulator (MR) protein modules controlling their SARS-CoV-2-mediated reprogramming. This uncovered chromatin remodeling, endosomal sorting, ubiquitin pathways, as well as proviral factors identified by CRISPR analyses as components of the host response collectively or selectively activated in these cells. Large-scale perturbation assays, using a clinically relevant drug library, identified 11 drugs able to invert the entire MR signature activated by SARS-CoV-2 in these cell types. Leveraging MR analysis and perturbational profiles of human primary cells represents a novel mechanism-based approach and resource that can be directly generalized to interrogate signatures of other airway conditions for drug prioritization.
Collapse
Affiliation(s)
- Brooke Dirvin
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Heeju Noh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
- Institute for Systems Biology, Seattle, WA, USA
| | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
- DarwinHealth Inc., New York, NY USA
| | - Danting Cao
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Xiangyi Ke
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, USA 1003
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Charles Karan
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Andrea Califano
- Department of Systems Biology, J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
- DarwinHealth Inc., New York, NY USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA 10032
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
27
|
Dimitrieva S, Harrison JM, Chang J, Piquet M, Mino-Kenudson M, Gabriel M, Sagar V, Horn H, Lage K, Kim J, Li G, Weng S, Harris C, Kulkarni AS, Ting DT, Qadan M, Fagenholz PJ, Ferrone CR, Grauel AL, Laszewski T, Raza A, Riester M, Somerville T, Wagner JP, Dranoff G, Engelman JA, Kauffmann A, Leary R, Warshaw AL, Lillemoe KD, Fernández-del Castillo C, Ruddy DA, Liss AS, Cremasco V. Dynamic Evolution of Fibroblasts Revealed by Single-Cell RNA Sequencing of Human Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:3049-3066. [PMID: 39485038 PMCID: PMC11609929 DOI: 10.1158/2767-9764.crc-23-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
SIGNIFICANCE Pancreatic cancer remains a high unmet medical need. Understanding the interactions between stroma and cancer cells in this disease may unveil new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jon M. Harrison
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Chang
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Michelle Piquet
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Millicent Gabriel
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Vivek Sagar
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Heiko Horn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie Kim
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Gang Li
- Oncology Data Science, Novartis Biomedical Research, Basel, Switzerland
| | - Shaobu Weng
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Cynthia Harris
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter J. Fagenholz
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R. Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Angelo L. Grauel
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Tyler Laszewski
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Alina Raza
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Markus Riester
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Tim Somerville
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Joel P. Wagner
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Glenn Dranoff
- Oncology, Novartis Biomedical Research, Cambridge, Massachusetts
| | | | - Audrey Kauffmann
- Oncology Data Science, Novartis Biomedical Research, Basel, Switzerland
| | - Rebecca Leary
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Andrew L. Warshaw
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith D. Lillemoe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - David A. Ruddy
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viviana Cremasco
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| |
Collapse
|
28
|
Liu H, Xiong W, Zhong W, Hu Y. NOVEL ACTIVE PROTEINS FOR SEPSIS PROGNOSIS REVEALED THROUGH ScRNA-seq AND QUANTITATIVE PROTEOMICS. Shock 2024; 62:738-745. [PMID: 38888471 DOI: 10.1097/shk.0000000000002408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Objective: To uncover critical active proteins influencing sepsis outcomes through multiomics analysis. Methods: This study collected peripheral blood from sepsis patients (NS = 26, SV = 27) and controls (Con = 16). Cellular heterogeneity was assessed using scRNA-seq. Cellular populations were identified through clustering and annotation. Gene set variation analysis was employed to detect pathway alterations in sepsis, while the Viper algorithm estimated protein activity at the single-cell level. Signaling networks were investigated via cell-cell communication analysis. Differentially expressed proteins were identified by DIA proteomics and confirmed through integrated analysis. Prognostic value was evaluated via meta and survival analyses. Results: scRNA-seq of 22,673 features within 34,228 cells identified five cellular clusters and 253 active proteins via Viper, validated by DIA (FC > 2, P < 0.05). Four proteins (SPI1, MEF2A, CBX3, UBTF) with prognostic significance were discovered and mapped onto the cellular landscape. Gene set variation analysis enrichment analysis revealed that the NS group exhibited significant alterations in pathways related to cellular apoptosis and inflammatory responses, while the SV group displayed increased activity in DNA repair and cellular survival pathways. Conclusion: The study's findings advance the understanding of sepsis pathophysiology by linking differentially active proteins to patient prognosis, paving the way for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Xiong
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
29
|
Song KJ, Choi S, Kim K, Hwang HS, Chang E, Park JS, Shim SB, Choi S, Heo YJ, An WJ, Yang DY, Cho KC, Ji W, Choi CM, Lee JC, Kim HR, Yoo J, Ahn HS, Lee GH, Hwa C, Kim S, Kim K, Kim MS, Paek E, Na S, Jang SJ, An JY, Kim KP. Proteogenomic analysis reveals non-small cell lung cancer subtypes predicting chromosome instability, and tumor microenvironment. Nat Commun 2024; 15:10164. [PMID: 39580524 PMCID: PMC11585665 DOI: 10.1038/s41467-024-54434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is histologically classified into lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LSCC). However, some tumors are histologically ambiguous and other pathophysiological features or microenvironmental factors may be more prominent. Here we report integrative multiomics analyses using data for 229 patients from a Korean NSCLC cohort and 462 patients from previous multiomics studies. Histological examination reveals five molecular subtypes, one of which is a NSCLC subtype with PI3K-Akt pathway upregulation, showing a high proportion of metastasis and poor survival outcomes regardless of any specific NSCLC histology. Proliferative subtypes are present in LUAD and LSCC, which show strong associations with whole genome doubling (WGD) events. Comprehensive characterization of the immune microenvironment reveals various immune cell compositions and neoantigen loads across molecular subtypes, which predicting different prognoses. Immunological subtypes exhibit a hot tumor-enriched state and a higher efficacy of adjuvant therapy.
Collapse
Affiliation(s)
- Kyu Jin Song
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02454, Republic of Korea
| | - Seunghyuk Choi
- Department of Computer Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kwoneel Kim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hee Sang Hwang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Eunhyong Chang
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Soo Park
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seok Bo Shim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seunghwan Choi
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yong Jin Heo
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Woo Ju An
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02454, Republic of Korea
| | - Dae Yeol Yang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung-Cho Cho
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02454, Republic of Korea
| | - Wonjun Ji
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyeong-Ryul Kim
- Department of Thoracic and Cardiovascular Surgery, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiyoung Yoo
- Department of Digital Medicine, BK21 Project, University of Ulsan Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Hee-Sung Ahn
- Department of Digital Medicine, BK21 Project, University of Ulsan Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Gang-Hee Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Chanwoong Hwa
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Seoyeon Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Kyunggon Kim
- Department of Digital Medicine, BK21 Project, University of Ulsan Asan Medical Center, Seoul, 05505, Republic of Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, 42988, Republic of Korea
| | - Eunok Paek
- Department of Computer Science, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Artificial Intelligence, Hanyang University, Seoul, 04763, Republic of Korea
- Institute for Artificial Intelligence Research, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seungjin Na
- Department of Computer Science, Hanyang University, Seoul, 04763, Republic of Korea
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
- SG Medical, Inc., 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02454, Republic of Korea.
| |
Collapse
|
30
|
Grisolia P, Tufano R, Iannarone C, De Falco A, Carlino F, Graziano C, Addeo R, Scrima M, Caraglia F, Ceccarelli A, Nuzzo PV, Cossu AM, Forte S, Giuffrida R, Orditura M, Caraglia M, Ceccarelli M. Differential methylation of circulating free DNA assessed through cfMeDiP as a new tool for breast cancer diagnosis and detection of BRCA1/2 mutation. J Transl Med 2024; 22:938. [PMID: 39407254 PMCID: PMC11476115 DOI: 10.1186/s12967-024-05734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Recent studies have highlighted the importance of the cell-free DNA (cfDNA) methylation profile in detecting breast cancer (BC) and its different subtypes. We investigated whether plasma cfDNA methylation, using cell-free Methylated DNA Immunoprecipitation and High-Throughput Sequencing (cfMeDIP-seq), may be informative in characterizing breast cancer in patients with BRCA1/2 germline mutations for early cancer detection and response to therapy. METHODS We enrolled 23 BC patients with germline mutation of BRCA1 and BRCA2 genes, 19 healthy controls without BRCA1/2 mutation, and two healthy individuals who carried BRCA1/2 mutations. Blood samples were collected for all study subjects at the diagnosis, and plasma was isolated by centrifugation. Cell-free DNA was extracted from 1 mL of plasma, and cfMeDIP-seq was performed for each sample. Shallow whole genome sequencing was performed on the immuno-precipitated samples. Then, the differentially methylated 300-bp regions (DMRs) between 25 BRCA germline mutation carriers and 19 non-carriers were identified. DMRs were compared with tumor-specific regions from public datasets to perform an unbiased analysis. Finally, two statistical classifiers were trained based on the GLMnet and random forest model to evaluate if the identified DMRs could discriminate BRCA-positive from healthy samples. RESULTS We identified 7,095 hypermethylated and 212 hypomethylated regions in 25 BRCA germline mutation carriers compared to 19 controls. These regions discriminate tumors from healthy samples with high accuracy and sensitivity. We show that the circulating tumor DNA of BRCA1/2 mutant breast cancers is characterized by the hypomethylation of genes involved in DNA repair and cell cycle. We uncovered the TFs associated with these DRMs and identified that proteins of the Erythroblast Transformation Specific (ETS) family are particularly active in the hypermethylated regions. Finally, we assessed that these regions could discriminate between BRCA positives from healthy samples with an AUC of 0.95, a sensitivity of 88%, and a specificity of 94.74%. CONCLUSIONS Our study emphasizes the importance of tumor cell-derived DNA methylation in BC, reporting a different methylation profile between patients carrying mutations in BRCA1, BRCA2, and wild-type controls. Our minimally invasive approach could allow early cancer diagnosis, assessment of minimal residual disease, and monitoring of response to therapy.
Collapse
Affiliation(s)
- Piera Grisolia
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
- Laboratory of Molecular and Precision Oncology, Biogem, IRGS, Ariano Irpino, Italy
| | - Rossella Tufano
- Laboratory of Computational Biology, IRGS, Ariano Irpino, Italy
| | - Clara Iannarone
- Laboratory of Molecular and Precision Oncology, Biogem, IRGS, Ariano Irpino, Italy
| | | | - Francesca Carlino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
- Oncology Unit, San Felice a Cancello Hospital, ASL Caserta, Sanfelice a Cancello, Italy
| | - Cinzia Graziano
- Laboratory of Molecular and Precision Oncology, Biogem, IRGS, Ariano Irpino, Italy
| | - Raffaele Addeo
- Oncology Unit, S. Giovanni di Dio Hospital, ASL Napoli2 Nord, Frattamaggiore, Italy
| | - Marianna Scrima
- Laboratory of Molecular and Precision Oncology, Biogem, IRGS, Ariano Irpino, Italy
| | - Francesco Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Anna Ceccarelli
- Medical Oncology, Catholic University of the Sacred Heart, 00168, Rome, RM, Italy
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alessia Maria Cossu
- Laboratory of Molecular and Precision Oncology, Biogem, IRGS, Ariano Irpino, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | | | | | - Michele Orditura
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Michele Caraglia
- Laboratory of Molecular and Precision Oncology, Biogem, IRGS, Ariano Irpino, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
31
|
Valenti G, Laise P, Takahashi R, Wu F, Ruan T, Vasciaveo A, Jiang Z, Sunagawa M, Middelhoff M, Nienhüser H, Fu N, Malagola E, Hayakawa Y, Iuga AC, Califano A, Wang TC. Regulatory network analysis of Dclk1 gene expression reveals a tuft cell-ILC2 axis that inhibits pancreatic tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610508. [PMID: 39257805 PMCID: PMC11383664 DOI: 10.1101/2024.08.30.610508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dclk1 expression defines a rare population of cells in the normal pancreas whose frequency is increased at early stages of pancreatic tumorigenesis. The identity and the precise roles of Dclk1 expressing cells in pancreas have been matter of debate, although evidence suggests their involvement in a number of key functions, including regeneration and neoplasia. We employed a recently developed Dclk1 reporter mouse model and single cell RNAseq analysis to define Dclk1 expressing cells in normal pancreas and pancreatic neoplasia. In normal pancreas, Dclk1 epithelial expression identifies subsets of ductal, islet and acinar cells. In pancreatic neoplasia, Dclk1 expression identifies five epithelial cell populations, among which acinar-to-ductal metaplasia (ADM)-like cells and tuft-like cells are predominant. These two cell populations play opposing roles in pancreatic neoplasia, with Dclk1+ ADM-like cells sustaining tumor growth while Dclk1+ tuft-like cells restraining tumor progression. The differentiation of Kras mutant acinar cells into Dclk1+ tuft-like cells requires the activation of the transcription factor SPIB and is further supported by a cellular paracrine loop involving cancer group 2 innate lymphoid cells (ILC2) and cancer activated fibroblasts (CAFs) that provide IL13 and IL33, respectively. In turn, Dclk1+ tuft-like cells release angiotensinogen that plays protective roles against pancreatic neoplasia. Overall, our study provides novel insights on the biology of Dclk1+ cells in normal pancreas and unveils a protective axis against pancreatic neoplasia, involving CAFs, ILC2 and Dclk1+ tuft-like cells, which ultimately results in angiotensinogen release.
Collapse
Affiliation(s)
- Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- These authors contributed equally
| | - Pasquale Laise
- Department of Systems Biology, Columbia University, New York, New York, USA
- DarwinHealth Inc., New York, New York, USA
- These authors contributed equally
| | - Ryota Takahashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Tuo Ruan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | | | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Masaki Sunagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, TU Munich, Germany
| | - Henrik Nienhüser
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Na Fu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Alina C. Iuga
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- Lead Contact
| |
Collapse
|
32
|
Paik H, Oh C, Hussain S, Seo S, Park SW, Ko TL, Lee A. ELiAH: the atlas of E3 ligases in human tissues for targeted protein degradation with reduced off-target effect. Database (Oxford) 2024; 2024:baae111. [PMID: 39395186 PMCID: PMC11470751 DOI: 10.1093/database/baae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
The development of therapeutic agents has mainly focused on designing small molecules to modulate target proteins or genes which are conventionally druggable. Therefore, targeted protein degradation (TPD) for undruggable cases has emerged as promising pharmaceutical approach. TPD, often referred PROTACs (PROteolysis TArgeting Chimeras), uses a linker to degrade target proteins by hijacking the ubiquitination system. Therefore, unravel the relationship including reversal and co-expression between E3 ligands and other possible target genes in various human tissues is essential to mitigate off-target effects of TPD. Here, we developed the atlas of E3 ligases in human tissues (ELiAH), to prioritize E3 ligase-target gene pairs for TPD. Leveraging over 2900 of RNA-seq profiles consisting of 11 human tissues from the GTEx (genotype-tissue expression) consortium, users of ELiAH can identify tissue-specific genes and E3 ligases (FDR P-value of Mann-Whitney test < .05). ELiAH unravels 933 830 relationships consisting of 614 E3 ligases and 20 924 of expressed genes considering degree of tissue specificity, which are indispensable for ubiquitination based TPD development. In addition, docking properties of those relationships are also modeled using RosettaDock. Therefore, ELiAH presents comprehensive repertoire of E3 ligases for ubiquitination-based TPD drug development avoiding off-target effects. Database URL: https://eliahdb.org.
Collapse
Affiliation(s)
- Hyojung Paik
- Center for Supercomputing Application, Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Daejeon 34141, South Korea
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Daejeon 34141, South Korea
- Department of Data and HPC Science, University of Science and Technology (UST), 245 Daehak-ro, Daejeon 34141, South Korea
| | - Chunryong Oh
- Center for Supercomputing Application, Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Daejeon 34141, South Korea
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Daejeon 34141, South Korea
- Department of Data and HPC Science, University of Science and Technology (UST), 245 Daehak-ro, Daejeon 34141, South Korea
| | - Sajid Hussain
- Department of Applied AI, University of Science and Technology (UST), 245 Daehak-ro, Daejeon 34141, South Korea
| | - Sangjae Seo
- Center for Supercomputing Application, Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Daejeon 34141, South Korea
| | - Soon Woo Park
- Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, South Korea
| | - Tae Lyun Ko
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Daejeon 34141, South Korea
- Department of Data and HPC Science, University of Science and Technology (UST), 245 Daehak-ro, Daejeon 34141, South Korea
| | - Ari Lee
- Center for Supercomputing Application, Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Daejeon 34141, South Korea
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Daejeon 34141, South Korea
| |
Collapse
|
33
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
34
|
Bustad E, Petry E, Gu O, Griebel BT, Rustad TR, Sherman DR, Yang JH, Ma S. Predicting bacterial fitness in Mycobacterium tuberculosis with transcriptional regulatory network-informed interpretable machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614645. [PMID: 39386570 PMCID: PMC11463588 DOI: 10.1101/2024.09.23.614645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis disease, the greatest source of global mortality by a bacterial pathogen. Mtb adapts and responds to diverse stresses such as antibiotics by inducing transcriptional stress-response regulatory programs. Understanding how and when these mycobacterial regulatory programs are activated could enable novel treatment strategies for potentiating the efficacy of new and existing drugs. Here we sought to define and analyze Mtb regulatory programs that modulate bacterial fitness. We assembled a large Mtb RNA expression compendium and applied these to infer a comprehensive Mtb transcriptional regulatory network and compute condition-specific transcription factor activity profiles. We utilized transcriptomic and functional genomics data to train an interpretable machine learning model that can predict Mtb fitness from transcription factor activity profiles. We demonstrated that this transcription factor activity-based model can successfully predict Mtb growth arrest and growth resumption under hypoxia and reaeration using only RNA-seq expression data as a starting point. These integrative network modeling and machine learning analyses thus enable the prediction of mycobacterial fitness under different environmental and genetic contexts. We envision these models can potentially inform the future design of prognostic assays and therapeutic intervention that can cripple Mtb growth and survival to cure tuberculosis disease.
Collapse
Affiliation(s)
- Ethan Bustad
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle WA, USA
| | - Edson Petry
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark NJ, USA
| | - Oliver Gu
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark NJ, USA
| | - Braden T. Griebel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle WA, USA
- Department of Chemical Engineering, University of Washington, Seattle WA, USA
| | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - Jason H. Yang
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark NJ, USA
- Department of Microbiology, Biochemistry, & Molecular Genetics, Rutgers New Jersey Medical School, Newark NJ, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle WA, USA
- Department of Chemical Engineering, University of Washington, Seattle WA, USA
- Department of Pediatrics, University of Washington, Seattle WA, USA
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle WA, USA
| |
Collapse
|
35
|
Maurer HC, Garcia-Curiel A, Holmstrom SR, Castillo C, Palermo CF, Sastra SA, Andren A, Zhang L, Le Large TYS, Sagalovskiy I, Ross DR, Wong W, Shaw K, Genkinger J, Manji GA, Iuga AC, Schmid RM, Johnson K, Badgley MA, Lyssiotis CA, Shah Y, Califano A, Olive KP. Ras-dependent activation of BMAL2 regulates hypoxic metabolism in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.19.533333. [PMID: 36993718 PMCID: PMC10055246 DOI: 10.1101/2023.03.19.533333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
To identify drivers of malignancy in human pancreatic ductal adenocarcinoma (PDAC), we performed regulatory network analysis on a large collection of expression profiles from laser capture microdissected samples of PDAC and benign precursors. We discovered that BMAL2 plays a role in the initiation, progression, post resection survival, and KRAS activity in PDAC. Functional analysis of BMAL2 target genes led us to hypothesize that it plays a role in regulating the response to hypoxia, a critical but poorly understood feature of PDAC physiology. Knockout of BMAL2 in multiple human PDAC cell lines revealed effects on viability and invasion, particularly under hypoxic conditions. Loss of BMAL2 also affected glycolysis and other metabolic processes. We found that BMAL2 directly regulates hypoxia-responsive target genes. We also found that BMAL2 is necessary for the stabilization of HIF1A upon exposure to hypoxia, but destabilizes HIF2A under hypoxia. These data demonstrate that BMAL2 is a master transcriptional regulator of hypoxia responses in PDAC and may serve as a long-sought molecular switch that distinguishes HIF1A- and HIF2A-dependent modes of hypoxic metabolism.
Collapse
Affiliation(s)
- H Carlo Maurer
- Department of Internal Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Alvaro Garcia-Curiel
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Columbia University Digestive and Liver Disease Research Center, Columbia University Irving Medical Center, New York, NY
| | - Sam R Holmstrom
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Cristina Castillo
- Department of Molecular & Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
| | - Carmine F Palermo
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Columbia University Digestive and Liver Disease Research Center, Columbia University Irving Medical Center, New York, NY
| | - Steven A Sastra
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Columbia University Digestive and Liver Disease Research Center, Columbia University Irving Medical Center, New York, NY
| | - Anthony Andren
- Department of Molecular & Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
| | - Li Zhang
- Department of Molecular & Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
| | - Tessa Y S Le Large
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Irina Sagalovskiy
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Daniel R Ross
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Columbia University Digestive and Liver Disease Research Center, Columbia University Irving Medical Center, New York, NY
| | - Winston Wong
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kaitlin Shaw
- Division of GI/Endocrine Surgery, Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jeanine Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Gulam A Manji
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Alina C Iuga
- Department of Pathology, Columbia University Irving Medical Center, New York, NY
| | - Roland M Schmid
- Department of Internal Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Michael A Badgley
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Columbia University Digestive and Liver Disease Research Center, Columbia University Irving Medical Center, New York, NY
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
| | - Yatrik Shah
- Department of Molecular & Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Darwin Therapeutics, New York, NY
- Chan Zuckerberg Biohub, New York, NY
| | - Kenneth P Olive
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Columbia University Digestive and Liver Disease Research Center, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
36
|
Desai P, Takahashi N, Kumar R, Nichols S, Malin J, Hunt A, Schultz C, Cao Y, Tillo D, Nousome D, Chauhan L, Sciuto L, Jordan K, Rajapakse V, Tandon M, Lissa D, Zhang Y, Kumar S, Pongor L, Singh A, Schroder B, Sharma AK, Chang T, Vilimas R, Pinkiert D, Graham C, Butcher D, Warner A, Sebastian R, Mahon M, Baker K, Cheng J, Berger A, Lake R, Abel M, Krishnamurthy M, Chrisafis G, Fitzgerald P, Nirula M, Goyal S, Atkinson D, Bateman NW, Abulez T, Nair G, Apolo A, Guha U, Karim B, El Meskini R, Ohler ZW, Jolly MK, Schaffer A, Ruppin E, Kleiner D, Miettinen M, Brown GT, Hewitt S, Conrads T, Thomas A. Microenvironment shapes small-cell lung cancer neuroendocrine states and presents therapeutic opportunities. Cell Rep Med 2024; 5:101610. [PMID: 38897168 PMCID: PMC11228806 DOI: 10.1016/j.xcrm.2024.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/04/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.
Collapse
Affiliation(s)
- Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medical Oncology, Fox Chase Cancer Center, Temple University Hospital and Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Malin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison Hunt
- Women's Health Integrated Research Center, Inova Health System, Falls Church, VA, USA
| | - Christopher Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yingying Cao
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Desiree Tillo
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Darryl Nousome
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lakshya Chauhan
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mayank Tandon
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lorinc Pongor
- HCEMM Cancer Genomics and Epigenetics Research Group, Szeged, Hungary
| | - Abhay Singh
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Brett Schroder
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ajit Kumar Sharma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Pinkiert
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chante Graham
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mimi Mahon
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Karen Baker
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Jennifer Cheng
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ann Berger
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ross Lake
- Laboratory of Genitourinary cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Abel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manan Krishnamurthy
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George Chrisafis
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Fitzgerald
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Micheal Nirula
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shubhank Goyal
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Nicholas W Bateman
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Tamara Abulez
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Rajaa El Meskini
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Mohit Kumar Jolly
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Alejandro Schaffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Tom Brown
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Conrads
- Women's Health Integrated Research Center, Inova Health System, Falls Church, VA, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Moakley DF, Campbell M, Anglada-Girotto M, Feng H, Califano A, Au E, Zhang C. Reverse engineering neuron type-specific and type-orthogonal splicing-regulatory networks using single-cell transcriptomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.597128. [PMID: 38915499 PMCID: PMC11195221 DOI: 10.1101/2024.06.13.597128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cell type-specific alternative splicing (AS) enables differential gene isoform expression between diverse neuron types with distinct identities and functions. Current studies linking individual RNA-binding proteins (RBPs) to AS in a few neuron types underscore the need for holistic modeling. Here, we use network reverse engineering to derive a map of the neuron type-specific AS regulatory landscape from 133 mouse neocortical cell types defined by single-cell transcriptomes. This approach reliably inferred the regulons of 350 RBPs and their cell type-specific activities. Our analysis revealed driving factors delineating neuronal identities, among which we validated Elavl2 as a key RBP for MGE-specific splicing in GABAergic interneurons using an in vitro ESC differentiation system. We also identified a module of exons and candidate regulators specific for long- and short-projection neurons across multiple neuronal classes. This study provides a resource for elucidating splicing regulatory programs that drive neuronal molecular diversity, including those that do not align with gene expression-based classifications.
Collapse
Affiliation(s)
- Daniel F Moakley
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Melissa Campbell
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Present address: Department of Neurosciences, University of California, San Diego, USA
| | - Miquel Anglada-Girotto
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Present address: Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Huijuan Feng
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Present address: Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Edmund Au
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Columbia Translational Neuroscience Initiative Scholar, New York, NY 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| |
Collapse
|
38
|
Malagola E, Vasciaveo A, Ochiai Y, Kim W, Zheng B, Zanella L, Wang ALE, Middelhoff M, Nienhüser H, Deng L, Wu F, Waterbury QT, Belin B, LaBella J, Zamechek LB, Wong MH, Li L, Guha C, Cheng CW, Yan KS, Califano A, Wang TC. Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell 2024; 187:3056-3071.e17. [PMID: 38848678 PMCID: PMC11164536 DOI: 10.1016/j.cell.2024.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/15/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.
Collapse
Affiliation(s)
- Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350000, China
| | - Luca Zanella
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Alexander L E Wang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Henrik Nienhüser
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Lu Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66107, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Quin T Waterbury
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Bryana Belin
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jonathan LaBella
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, L215, Portland, OR, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66107, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Kelley S Yan
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Chan Zuckerberg Biohub NY, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
39
|
Yang Z, Peng Y, Wang Y, Yang P, Huang Z, Quan T, Xu X, Sun P, Sun Y, Lv J, Wei D, Zhou GQ. KLF5 regulates actin remodeling to enhance the metastasis of nasopharyngeal carcinoma. Oncogene 2024; 43:1779-1795. [PMID: 38649438 DOI: 10.1038/s41388-024-03033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Transcription factors (TFs) engage in various cellular essential processes including differentiation, growth and migration. However, the master TF involved in distant metastasis of nasopharyngeal carcinoma (NPC) remains largely unclear. Here we show that KLF5 regulates actin remodeling to enhance NPC metastasis. We analyzed the msVIPER algorithm-generated transcriptional regulatory networks and identified KLF5 as a master TF of metastatic NPC linked to poor clinical outcomes. KLF5 regulates actin remodeling and lamellipodia formation to promote the metastasis of NPC cells in vitro and in vivo. Mechanistically, KLF5 preferentially occupies distal enhancer regions of ACTN4 to activate its transcription, whereby decoding the informative DNA sequences. ACTN4, extensively localized within actin cytoskeleton, facilitates dense and branched actin networks and lamellipodia formation at the cell leading edge, empowering cells to migrate faster. Collectively, our findings reveal that KLF5 controls robust transcription program of ACTN4 to modulate actin remodeling and augment cell motility which enhances NPC metastasis, and provide new potential biomarkers and therapeutic interventions for NPC.
Collapse
Affiliation(s)
- Zhenyu Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yanfu Peng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yaqin Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Panyang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zhuohui Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Tingqiu Quan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xudong Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Peng Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jiawei Lv
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| |
Collapse
|
40
|
Zou W, Fang Z, Feng Y, Gong S, Li Z, Li M, Sun Y, Ruan X, Fang X, Qu H, Li H. Transcriptomic and genomic characteristics of intrahepatic metastases of primary liver cancer. BMC Cancer 2024; 24:672. [PMID: 38824541 PMCID: PMC11144329 DOI: 10.1186/s12885-024-12428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Patients with primary multifocal hepatocellular carcinoma (HCC) have a poor prognosis and often experience a high rate of treatment failure. Multifocal HCC is mainly caused by intrahepatic metastasis (IM), and though portal vein tumor thrombosis (PVTT) is considered a hallmark of IM, the molecular mechanism by which primary HCC cells invade the portal veins remains unclear. Therefore, it is necessary to recognize the early signs of metastasis of HCC to arrange better treatment for patients. RESULTS To determine the differential molecular features between primary HCC with and without phenotype of metastasis, we used the CIBERSORTx software to deconvolute cell types from bulk RNA-Seq based on a single-cell transcriptomic dataset. According to the relative abundance of tumorigenic and metastatic hepatoma cells, VEGFA+ macrophages, effector memory T cells, and natural killer cells, HCC samples were divided into five groups: Pro-T, Mix, Pro-Meta, NKC, and MemT, and the transcriptomic and genomic features of the first three groups were analyzed. We found that the Pro-T group appeared to retain native hepatic metabolic activity, whereas the Pro-Meta group underwent dedifferentiation. Genes highly expressed in the group Pro-Meta often signify a worse outcome. CONCLUSIONS The HCC cohort can be well-typed and prognosis predicted according to tumor microenvironment components. Primary hepatocellular carcinoma may have obtained corresponding molecular features before metastasis occurred.
Collapse
Affiliation(s)
- Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhanjie Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Feng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shangjin Gong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqiang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Meng Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiuyan Ruan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
41
|
Chen C, Padi M. Flexible modeling of regulatory networks improves transcription factor activity estimation. NPJ Syst Biol Appl 2024; 10:58. [PMID: 38806476 PMCID: PMC11133322 DOI: 10.1038/s41540-024-00386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Transcriptional regulation plays a crucial role in determining cell fate and disease, yet inferring the key regulators from gene expression data remains a significant challenge. Existing methods for estimating transcription factor (TF) activity often rely on static TF-gene interaction databases and cannot adapt to changes in regulatory mechanisms across different cell types and disease conditions. Here, we present a new algorithm - Transcriptional Inference using Gene Expression and Regulatory data (TIGER) - that overcomes these limitations by flexibly modeling activation and inhibition events, up-weighting essential edges, shrinking irrelevant edges towards zero through a sparse Bayesian prior, and simultaneously estimating both TF activity levels and changes in the underlying regulatory network. When applied to yeast and cancer TF knock-out datasets, TIGER outperforms comparable methods in terms of prediction accuracy. Moreover, our application of TIGER to tissue- and cell-type-specific RNA-seq data demonstrates its ability to uncover differences in regulatory mechanisms. Collectively, our findings highlight the utility of modeling context-specific regulation when inferring transcription factor activities.
Collapse
Affiliation(s)
- Chen Chen
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Megha Padi
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
42
|
Li Q, Button-Simons KA, Sievert MAC, Chahoud E, Foster GF, Meis K, Ferdig MT, Milenković T. Enhancing Gene Co-Expression Network Inference for the Malaria Parasite Plasmodium falciparum. Genes (Basel) 2024; 15:685. [PMID: 38927622 PMCID: PMC11202799 DOI: 10.3390/genes15060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Malaria results in more than 550,000 deaths each year due to drug resistance in the most lethal Plasmodium (P.) species P. falciparum. A full P. falciparum genome was published in 2002, yet 44.6% of its genes have unknown functions. Improving the functional annotation of genes is important for identifying drug targets and understanding the evolution of drug resistance. RESULTS Genes function by interacting with one another. So, analyzing gene co-expression networks can enhance functional annotations and prioritize genes for wet lab validation. Earlier efforts to build gene co-expression networks in P. falciparum have been limited to a single network inference method or gaining biological understanding for only a single gene and its interacting partners. Here, we explore multiple inference methods and aim to systematically predict functional annotations for all P. falciparum genes. We evaluate each inferred network based on how well it predicts existing gene-Gene Ontology (GO) term annotations using network clustering and leave-one-out crossvalidation. We assess overlaps of the different networks' edges (gene co-expression relationships), as well as predicted functional knowledge. The networks' edges are overall complementary: 47-85% of all edges are unique to each network. In terms of the accuracy of predicting gene functional annotations, all networks yielded relatively high precision (as high as 87% for the network inferred using mutual information), but the highest recall reached was below 15%. All networks having low recall means that none of them capture a large amount of all existing gene-GO term annotations. In fact, their annotation predictions are highly complementary, with the largest pairwise overlap of only 27%. We provide ranked lists of inferred gene-gene interactions and predicted gene-GO term annotations for future use and wet lab validation by the malaria community. CONCLUSIONS The different networks seem to capture different aspects of the P. falciparum biology in terms of both inferred interactions and predicted gene functional annotations. Thus, relying on a single network inference method should be avoided when possible. SUPPLEMENTARY DATA Attached.
Collapse
Affiliation(s)
- Qi Li
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
| | - Katrina A. Button-Simons
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mackenzie A. C. Sievert
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elias Chahoud
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Preprofessional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gabriel F. Foster
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kaitlynn Meis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael T. Ferdig
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
| |
Collapse
|
43
|
Wei G, Zhang X, Liu S, Hou W, Dai Z. Comprehensive data mining reveals RTK/RAS signaling pathway as a promoter of prostate cancer lineage plasticity through transcription factors and CNV. Sci Rep 2024; 14:11688. [PMID: 38778150 PMCID: PMC11111877 DOI: 10.1038/s41598-024-62256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate cancer lineage plasticity is a key driver in the transition to neuroendocrine prostate cancer (NEPC), and the RTK/RAS signaling pathway is a well-established cancer pathway. Nevertheless, the comprehensive link between the RTK/RAS signaling pathway and lineage plasticity has received limited investigation. In particular, the intricate regulatory network governing the interplay between RTK/RAS and lineage plasticity remains largely unexplored. The multi-omics data were clustered with the coefficient of argument and neighbor joining algorithm. Subsequently, the clustered results were analyzed utilizing the GSEA, gene sets related to stemness, multi-lineage state datasets, and canonical cancer pathway gene sets. Finally, a comprehensive exploration of the data based on the ssGSEA, WGCNA, GSEA, VIPER, prostate cancer scRNA-seq data, and the GPSAdb database was conducted. Among the six modules in the clustering results, there are 300 overlapping genes, including 3 previously unreported prostate cancer genes that were validated to be upregulated in prostate cancer through RT-qPCR. Function Module 6 shows a positive correlation with prostate cancer cell stemness, multi-lineage states, and the RTK/RAS signaling pathway. Additionally, the 19 leading-edge genes of the RTK/RAS signaling pathway promote prostate cancer lineage plasticity through a complex network of transcriptional regulation and copy number variations. In the transcriptional regulation network, TP63 and FOXO1 act as suppressors of prostate cancer lineage plasticity, whereas RORC exerts a promoting effect. This study provides a comprehensive perspective on the role of the RTK/RAS pathway in prostate cancer lineage plasticity and offers new clues for the treatment of NEPC.
Collapse
Affiliation(s)
- Guanyun Wei
- Co-Innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Xu Zhang
- Clinical Medical Research Center, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Siyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Wanxin Hou
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China
| | - Zao Dai
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China.
| |
Collapse
|
44
|
Rosenberger G, Li W, Turunen M, He J, Subramaniam PS, Pampou S, Griffin AT, Karan C, Kerwin P, Murray D, Honig B, Liu Y, Califano A. Network-based elucidation of colon cancer drug resistance mechanisms by phosphoproteomic time-series analysis. Nat Commun 2024; 15:3909. [PMID: 38724493 PMCID: PMC11082183 DOI: 10.1038/s41467-024-47957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression, which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance mechanisms, induced by rapid, context-specific signaling network rewiring, continue to challenge therapeutic efficacy. Leveraging progress in proteomic technologies and network-based methodologies, we introduce Virtual Enrichment-based Signaling Protein-activity Analysis (VESPA)-an algorithm designed to elucidate mechanisms of cell response and adaptation to drug perturbations-and use it to analyze 7-point phosphoproteomic time series from colorectal cancer cells treated with clinically-relevant inhibitors and control media. Interrogating tumor-specific enzyme/substrate interactions accurately infers kinase and phosphatase activity, based on their substrate phosphorylation state, effectively accounting for signal crosstalk and sparse phosphoproteome coverage. The analysis elucidates time-dependent signaling pathway response to each drug perturbation and, more importantly, cell adaptive response and rewiring, experimentally confirmed by CRISPR knock-out assays, suggesting broad applicability to cancer and other diseases.
Collapse
Affiliation(s)
- George Rosenberger
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Mikko Turunen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jing He
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Prem S Subramaniam
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Pampou
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron T Griffin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Patrick Kerwin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Diana Murray
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
- Chan Zuckerberg Biohub New York, New York, NY, USA.
| |
Collapse
|
45
|
Ho NCW, Yap JYY, Zhao Z, Wang Y, Fernando K, Li CH, Kwang XL, Quah HS, Arcinas C, Iyer NG, Fong ELS. Bioengineered Hydrogels Recapitulate Fibroblast Heterogeneity in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307129. [PMID: 38493497 PMCID: PMC11132030 DOI: 10.1002/advs.202307129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Recently mapped transcriptomic landscapes reveal the extent of heterogeneity in cancer-associated fibroblasts (CAFs) beyond previously established single-gene markers. Functional analyses of individual CAF subsets within the tumor microenvironment are critical to develop more accurate CAF-targeting therapeutic strategies. However, there is a lack of robust preclinical models that reflect this heterogeneity in vitro. In this study, single-cell RNA sequencing datasets acquired from head and neck squamous cell carcinoma tissues to predict microenvironmental and cellular features governing individual CAF subsets are leveraged. Some of these features are then incorporated into a tunable hyaluronan-based hydrogel system to culture patient-derived CAFs. Control over hydrogel degradability and integrin adhesiveness enabled derivation of the predominant myofibroblastic and inflammatory CAF subsets, as shown through changes in cell morphology and transcriptomic profiles. Last, using these hydrogel-cultured CAFs, microtubule dynamics are identified, but not actomyosin contractility, as a key mediator of CAF plasticity. The recapitulation of CAF heterogeneity in vitro using defined hydrogels presents unique opportunities for advancing the understanding of CAF biology and evaluation of CAF-targeting therapeutics.
Collapse
Affiliation(s)
- Nicholas Ching Wei Ho
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
| | - Josephine Yu Yan Yap
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
| | - Zixuan Zhao
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
| | - Yunyun Wang
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
| | - Kanishka Fernando
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
| | - Constance H Li
- Cancer Therapeutics Research LaboratoryNational Cancer Centre SingaporeSingapore168583Singapore
- Duke‐NUS Medical SchoolNational University of SingaporeSingapore169857Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research LaboratoryNational Cancer Centre SingaporeSingapore168583Singapore
| | - Hong Sheng Quah
- Cancer Therapeutics Research LaboratoryNational Cancer Centre SingaporeSingapore168583Singapore
- Duke‐NUS Medical SchoolNational University of SingaporeSingapore169857Singapore
| | - Camille Arcinas
- Duke‐NUS Medical SchoolNational University of SingaporeSingapore169857Singapore
| | - N. Gopalakrishna Iyer
- Cancer Therapeutics Research LaboratoryNational Cancer Centre SingaporeSingapore168583Singapore
- Duke‐NUS Medical SchoolNational University of SingaporeSingapore169857Singapore
| | - Eliza Li Shan Fong
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science InstituteNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
46
|
Stokes ME, Vasciaveo A, Small JC, Zask A, Reznik E, Smith N, Wang Q, Daniels J, Forouhar F, Rajbhandari P, Califano A, Stockwell BR. Subtype-selective prenylated isoflavonoids disrupt regulatory drivers of MYCN-amplified cancers. Cell Chem Biol 2024; 31:805-819.e9. [PMID: 38061356 PMCID: PMC11031350 DOI: 10.1016/j.chembiol.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease. Applying this approach to neuroblastoma (NBL), we screened bioactive molecules in cell lines representing its MYC-dependent (MYCNA) and mesenchymal (MES) subtypes to identify selective compounds, followed by PLATESeq profiling of treated cells. This revealed compounds that disrupt a sub-network of MYCNA-specific regulatory proteins, resulting in MYCN degradation in vivo. The top hit was isopomiferin, a prenylated isoflavonoid that inhibited casein kinase 2 (CK2) in cells. Isopomiferin and its structural analogs inhibited MYC and MYCN in NBL and lung cancer cells, highlighting the general MYC-inhibiting potential of this unique scaffold.
Collapse
Affiliation(s)
- Michael E Stokes
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alessandro Vasciaveo
- Department of Systems Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Jonnell Candice Small
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Nailah Smith
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Qian Wang
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Jacob Daniels
- Department of Pharmacology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource (PMCSR), Columbia University Medical Center, New York City, NY 10032, USA
| | - Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA; Department of Chemistry, Columbia University, New York City, NY 10027, USA; Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
47
|
Fiorentino J, Armaos A, Colantoni A, Tartaglia G. Prediction of protein-RNA interactions from single-cell transcriptomic data. Nucleic Acids Res 2024; 52:e31. [PMID: 38364867 PMCID: PMC11014251 DOI: 10.1093/nar/gkae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Proteins are crucial in regulating every aspect of RNA life, yet understanding their interactions with coding and noncoding RNAs remains limited. Experimental studies are typically restricted to a small number of cell lines and a limited set of RNA-binding proteins (RBPs). Although computational methods based on physico-chemical principles can predict protein-RNA interactions accurately, they often lack the ability to consider cell-type-specific gene expression and the broader context of gene regulatory networks (GRNs). Here, we assess the performance of several GRN inference algorithms in predicting protein-RNA interactions from single-cell transcriptomic data, and propose a pipeline, called scRAPID (single-cell transcriptomic-based RnA Protein Interaction Detection), that integrates these methods with the catRAPID algorithm, which can identify direct physical interactions between RBPs and RNA molecules. Our approach demonstrates that RBP-RNA interactions can be predicted from single-cell transcriptomic data, with performances comparable or superior to those achieved for the well-established task of inferring transcription factor-target interactions. The incorporation of catRAPID significantly enhances the accuracy of identifying interactions, particularly with long noncoding RNAs, and enables the identification of hub RBPs and RNAs. Additionally, we show that interactions between RBPs can be detected based on their inferred RNA targets. The software is freely available at https://github.com/tartaglialabIIT/scRAPID.
Collapse
Affiliation(s)
- Jonathan Fiorentino
- Center for Life Nano- and Neuro-Science, RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Alexandros Armaos
- Centre for Human Technologies (CHT), RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Alessio Colantoni
- Center for Life Nano- and Neuro-Science, RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- and Neuro-Science, RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Centre for Human Technologies (CHT), RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| |
Collapse
|
48
|
de Biase MS, Massip F, Wei TT, Giorgi FM, Stark R, Stone A, Gladwell A, O'Reilly M, Schütte D, de Santiago I, Meyer KB, Markowetz F, Ponder BAJ, Rintoul RC, Schwarz RF. Smoking-associated gene expression alterations in nasal epithelium reveal immune impairment linked to lung cancer risk. Genome Med 2024; 16:54. [PMID: 38589970 PMCID: PMC11000304 DOI: 10.1186/s13073-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death in the world. In contrast to many other cancers, a direct connection to modifiable lifestyle risk in the form of tobacco smoke has long been established. More than 50% of all smoking-related lung cancers occur in former smokers, 40% of which occur more than 15 years after smoking cessation. Despite extensive research, the molecular processes for persistent lung cancer risk remain unclear. We thus set out to examine whether risk stratification in the clinic and in the general population can be improved upon by the addition of genetic data and to explore the mechanisms of the persisting risk in former smokers. METHODS We analysed transcriptomic data from accessible airway tissues of 487 subjects, including healthy volunteers and clinic patients of different smoking statuses. We developed a computational model to assess smoking-associated gene expression changes and their reversibility after smoking is stopped, comparing healthy subjects to clinic patients with and without lung cancer. RESULTS We find persistent smoking-associated immune alterations to be a hallmark of the clinic patients. Integrating previous GWAS data using a transcriptional network approach, we demonstrate that the same immune- and interferon-related pathways are strongly enriched for genes linked to known genetic risk factors, demonstrating a causal relationship between immune alteration and lung cancer risk. Finally, we used accessible airway transcriptomic data to derive a non-invasive lung cancer risk classifier. CONCLUSIONS Our results provide initial evidence for germline-mediated personalized smoke injury response and risk in the general population, with potential implications for managing long-term lung cancer incidence and mortality.
Collapse
Affiliation(s)
- Maria Stella de Biase
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
| | - Florian Massip
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- MINES Paris, PSL University, CBIO-Centre for Computational Biology, 60 bd Saint Michel, 75006, Paris, France.
- Institut Curie, Cedex, Paris, France.
- INSERM, U900, Cedex, Paris, France.
| | - Tzu-Ting Wei
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Federico M Giorgi
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rory Stark
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Amanda Stone
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Amy Gladwell
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Martin O'Reilly
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: MRC Toxicology Unit, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Daniel Schütte
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany
| | - Ines de Santiago
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: e-therapeutics plc, 17 Blenheim Office Park, Long Hanborough, OX29 8LN, UK
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: The Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Bruce A J Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
| | - Robert C Rintoul
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK.
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, CB2 0XZ, UK.
| | - Roland F Schwarz
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany.
| |
Collapse
|
49
|
Balboni N, Babini G, Poeta E, Protti M, Mercolini L, Magnifico MC, Barile SN, Massenzio F, Pignataro A, Giorgi FM, Lasorsa FM, Monti B. Transcriptional and metabolic effects of aspartate-glutamate carrier isoform 1 (AGC1) downregulation in mouse oligodendrocyte precursor cells (OPCs). Cell Mol Biol Lett 2024; 29:44. [PMID: 38553684 PMCID: PMC10979587 DOI: 10.1186/s11658-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.
Collapse
Affiliation(s)
- Nicola Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Babini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Chiara Magnifico
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Pignataro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | | | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
50
|
Fernández EC, Tomassoni L, Zhang X, Wang J, Obradovic A, Laise P, Griffin AT, Vlahos L, Minns HE, Morales DV, Simmons C, Gallitto M, Wei HJ, Martins TJ, Becker PS, Crawford JR, Tzaridis T, Wechsler-Reya RJ, Garvin J, Gartrell RD, Szalontay L, Zacharoulis S, Wu CC, Zhang Z, Califano A, Pavisic J. Elucidation and Pharmacologic Targeting of Master Regulator Dependencies in Coexisting Diffuse Midline Glioma Subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585370. [PMID: 38559080 PMCID: PMC10979998 DOI: 10.1101/2024.03.17.585370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Diffuse Midline Gliomas (DMGs) are universally fatal, primarily pediatric malignancies affecting the midline structures of the central nervous system. Despite decades of clinical trials, treatment remains limited to palliative radiation therapy. A major challenge is the coexistence of molecularly distinct malignant cell states with potentially orthogonal drug sensitivities. To address this challenge, we leveraged established network-based methodologies to elucidate Master Regulator (MR) proteins representing mechanistic, non-oncogene dependencies of seven coexisting subpopulations identified by single-cell analysis-whose enrichment in essential genes was validated by pooled CRISPR/Cas9 screens. Perturbational profiles of 372 clinically relevant drugs helped identify those able to invert the activity of subpopulation-specific MRs for follow-up in vivo validation. While individual drugs predicted to target individual subpopulations-including avapritinib, larotrectinib, and ruxolitinib-produced only modest tumor growth reduction in orthotopic models, systemic co-administration induced significant survival extension, making this approach a valuable contribution to the rational design of combination therapy.
Collapse
|