1
|
Xue Q, Ren X, Xu T, Yang T, Sun L, Luo X, Huang S, Shi D, Li X. Comparative proteomics and phosphoproteomics analysis reveals differential sperm motility in Mediterranean buffalo semen. J Proteomics 2025; 315:105401. [PMID: 39961484 DOI: 10.1016/j.jprot.2025.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
High motility spermatozoa are good for cryopreservation and artificial insemination (AI) of mammalian semen. In this study, normal motility (NM) and low motility (LM) Mediterranean buffalo spermatozoa were compared using quantitative proteomics and phosphoproteomics techniques to screen for important proteins and phosphorylated proteins related to the motility of spermatozoa and to identify candidate protein molecular markers related to the quality of Mediterranean buffalo semen. Proteomics results identified 2550 proteins, with 119 proteins upregulated and 146 proteins downregulated in the LM spermatozoa versus the NM spermatozoa. The differentially abundant proteins were mainly involved in carbohydrate metabolism, glycolysis/gluconeogenesis, and tricarboxylic acid cycles. The phosphoproteomics analysis revealed 412 proteins, 1228 phosphorylated peptides, and 1465 phosphorylation modification sites. Compared to the NM group, 119 peptides were downregulated in the LM group, corresponding to 98 proteins, and 84 phosphorylated peptides were upregulated in the white matter, corresponding to 61 proteins. Differentially phosphorylated proteins were primarily involved in spermatogenesis, flagellate sperm motility, and glycolysis/gluconeogenesis. The combined proteomics and phosphoproteomics results identified the common proteins HMGB4, POC1B, PKM, LDHA, TBC1D21, and CBY2, whose main roles were related to spermatogenesis, sperm flagellar structure, and energy metabolism, which can be used as potential markers of Mediterranean buffalo sperm quality.
Collapse
Affiliation(s)
- Qingsong Xue
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xuan Ren
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Tairan Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ting Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Le Sun
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xi Luo
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiangping Li
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
2
|
Zheng S, Blaschek L, Pottier D, Dijkhof LRH, Özmen B, Lim PK, Tan QW, Mutwil M, Hauser AS, Persson S. Pupylation-Based Proximity Labeling Unravels a Comprehensive Protein and Phosphoprotein Interactome of the Arabidopsis TOR Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414496. [PMID: 40126378 PMCID: PMC12097154 DOI: 10.1002/advs.202414496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Target of rapamycin (TOR) is a signaling hub that integrates developmental, hormonal, and environmental signals to optimize carbon allocation and plant growth. In plant cells, TOR acts together with the proteins LST8-1 and RAPTOR1 to form a core TOR complex (TORC). While these proteins comprise a functional TORC, they engage with many other proteins to ensure precise signal outputs. Although TORC interactions have attracted significant attention in the recent past, large parts of the interactome are still unknown. In this resource study, PUP-IT is adapted, a fully endogenously expressed protein proximity labeling toolbox, to map TORC protein-protein interactions using the core set of TORC as baits. It is outlined how this interactome is differentially phosphorylated during changes in carbon availability, uncovering putative direct TOR kinase targets. An AlphaFold-Multimer approach is further used to validate many interactors, thus outlining a comprehensive TORC interactome that includes over a hundred new candidate interactors and provides an invaluable resource to the plant cell signaling community.
Collapse
Affiliation(s)
- Shuai Zheng
- Copenhagen Plant Science Center (CPSC)Department of Plant & Environmental SciencesUniversity of CopenhagenFrederiksberg C1871Denmark
| | - Leonard Blaschek
- Copenhagen Plant Science Center (CPSC)Department of Plant & Environmental SciencesUniversity of CopenhagenFrederiksberg C1871Denmark
| | - Delphine Pottier
- Copenhagen Plant Science Center (CPSC)Department of Plant & Environmental SciencesUniversity of CopenhagenFrederiksberg C1871Denmark
| | - Luuk Robin Hoegen Dijkhof
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen2100Denmark
| | - Beyza Özmen
- Copenhagen Plant Science Center (CPSC)Department of Plant & Environmental SciencesUniversity of CopenhagenFrederiksberg C1871Denmark
| | - Peng Ken Lim
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Qiao Wen Tan
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Marek Mutwil
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Alexander Sebastian Hauser
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen2100Denmark
| | - Staffan Persson
- Copenhagen Plant Science Center (CPSC)Department of Plant & Environmental SciencesUniversity of CopenhagenFrederiksberg C1871Denmark
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSJTU‐University of Adelaide Joint Centre for Agriculture and HealthSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
3
|
Zhao Z, He J, Qiu S, Wang L, Huangfu S, Hu Y, Wu Q, Yang Y, Li X, Huang M, Liu S, Guan H, Chen Z, Zhang X, Zhang Y, Ding H, Zhao X, Xiao G, Pan Y, Liu T, Wu Y, Pan J. Targeting PLK1-CBX8-GPX4 axis overcomes BRAF/EGFR inhibitor resistance in BRAFV600E colorectal cancer via ferroptosis. Nat Commun 2025; 16:3605. [PMID: 40240371 PMCID: PMC12003730 DOI: 10.1038/s41467-025-58992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/09/2025] [Indexed: 04/18/2025] Open
Abstract
Metastatic BRAFV600E colorectal cancer (CRC) confers poor prognosis and represents a therapeutic bottleneck. To identify resistance mechanisms of the mitogen-activated protein kinase (MAPK) pathway in BRAFV600E CRC, we perform genome-wide CRISPR-Cas9 screening and discover that targeting glutathione peroxidase 4 (GPX4) overcomes resistance to BRAF inhibitor (BRAFi) combined with or without epidermal growth factor receptor inhibitor (EGFRi) in BRAFV600E CRC. Specifically, BRAFi ± EGFRi upregulates GPX4 expression, which antagonizes therapy-induced ferroptosis. Moreover, polo-like kinase 1 (PLK1) substrate activation promotes PLK1 translocation to the nucleus, activating chromobox protein homolog 8 (CBX8) phosphorylation at Ser265 to drives GPX4 expression. Targeting PLK1 enhances BRAFi ± EGFRi inhibition and triggers ferroptosis in vitro, vivo, organoid, and patient-derived xenograft model. Collectively, we demonstrate a PLK1-CBX8-GPX4 signaling axis that relays the ferroptosis mechanism of therapeutic resistance and propose a clinically actionable strategy to overcome BRAFi ± EGFRi resistance in BRAFV600E CRC.
Collapse
Affiliation(s)
- Zhan Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Jiashuai He
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Shenghui Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, 510632, P. R. China
| | - Shuchen Huangfu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Yangzhi Hu
- The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, P.R. China
| | - Qing Wu
- Department of Hepatic-biliary-pancreatic Surgery, The Second People's Hospital of Foshan, Foshan, Guangdong, 528000, P. R. China
| | - Yabing Yang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Xiaobo Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Shijin Liu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Hanyang Guan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Zuyang Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Xiangwei Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Yiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Xiaoxu Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Guandi Xiao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, P. R. China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Tongzheng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| | - Yanping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, P. R. China.
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
4
|
Hu J, Jin Z, Gao Y, Liu Q, Yu Y, Kong R, Zhao D, Gao J. Global Profiling of Lactylation Proteomics and Specific Lactylated Site Validation in Rheumatoid Arthritis Patients. J Proteome Res 2025; 24:1732-1744. [PMID: 40112136 DOI: 10.1021/acs.jproteome.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Protein lactylation is a novel post-translational modification that has rarely been investigated in rheumatoid arthritis (RA). This study aimed to explore lactylation proteomics in RA patients and validate sorted candidate lactylation sites. Synovial tissues from ten RA and six osteoarthritis (OA) patients were subjected to lactylation proteomics via affinity enrichment and LC-MS/MS. Four candidate lactylated modification sites were validated by immunoprecipitation. Totally, 566 sites and 250 proteins with lactylated modifications in RA patients and 548 sites and 220 proteins with lactylated modifications in OA patients were identified. By comparison, 24 upregulated but 2 downregulated lactylated modification sites and 18 upregulated but 1 downregulated lactylated modification protein were discovered in RA patients versus OA patients. The dysregulated lactylated proteins were mainly enriched in biological processes such as positive regulation of plasma membrane repair by GO analysis; pathways such as neutrophil extracellular trap formation by KEGG analysis; and two metabolism-related items by COG/KOG analysis. Immunoprecipitation confirmed that FTH1-K69la (P = 0007) and PKM2-K166la (P = 0.003), but not ANXA2-K115la (P = 0.127) or ANXA5-K76la (P = 0.361), were more abundant in RA patients versus OA patients. Moreover, FTH1-K69la was positively correlated with erythrocyte sedimentation rate (ESR) in RA patients (P = 0.037). Conclusively, this study describes a general landscape of lactylation proteomics in the RA.
Collapse
Affiliation(s)
- Jiaqi Hu
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhengyi Jin
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Ying Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qilong Liu
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yiyi Yu
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Ruina Kong
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Wu C, Yuan J, Tian Y, Wang Y, He X, Zhao K, Huang J, Jiang R. Tauopathy after long-term cervical lymphadenectomy. Alzheimers Dement 2025; 21:e70136. [PMID: 40189841 PMCID: PMC11973124 DOI: 10.1002/alz.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION This study examined the effects of long-term cervical lymphadenectomy (cLE) on cognitive and Alzheimer's disease (AD)-like tauopathy changes. METHODS Male C57BL/6 mice were used to assess cLE impacts on sleep, brain pathways, and pathologies. RNA sequencing and proteomics analyzed gene/protein changes, with results verified by western blotting and immunofluorescence. RESULTS CLE led to sleep and psychiatric disorders, linked to mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) pathway activation. Activation of ERK may interfere with autophagy and is associated with phosphorylated tau accumulation. Peripheral blood analysis shows decreased brain waste in the peripheral blood post-cLE, implicating impaired lymphatic drainage and brain waste build-up. DISCUSSION These findings suggest a potential connection between cLE and AD-like tauopathy, potentially influencing surgical decisions. HIGHLIGHTS Cervical lymphadenectomy (cLE) is the cornerstone of head and neck cancers, affecting millions of people each year. We provide the first evidence of mildly impaired cognitive functioning with significant anxiety-depressive disorders in mice after long-term cLE. Long-term cLE not only directly impairs brain wastes (amyloid beta, phosphorylated tau [p-tau]) drainage, but also activates the Erk1/2 signaling pathway leading to attenuation of autophagy. We found for the first time that long-term cLE accelerated the deposition of p-tau in young mice. Patients after clinical cervical lymph node dissection showed reduced brain waste in peripheral blood consistent with mouse models. This study suggests the need for further evaluation of the neurologic effects of cervical lymph node dissection, a procedure that affects millions of people each year.
Collapse
Affiliation(s)
- Chenrui Wu
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jiangyuan Yuan
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Yu Tian
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Youlin Wang
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Xianghui He
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Ke Zhao
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Jinhao Huang
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Rongcai Jiang
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Li L, Tang X, Guo X, Rao D, Zeng L, Xue J, Liu S, Tu S, Shen EZ. Spatiotemporal single-cell architecture of gene expression in the Caenorhabditis elegans germ cells. Cell Discov 2025; 11:26. [PMID: 40097379 PMCID: PMC11914268 DOI: 10.1038/s41421-025-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Spermatogenesis is an intricate and tightly controlled process encompassing various layers of gene expression regulation. Despite the advance of our current understanding, the developmental trajectory and regulatory mechanisms dictating spermatogenesis remain elusive. In this study, we have generated single-cell gene expression profiles for Caenorhabditis elegans sperm cells and constructed gene regulatory networks alongside the developmental trajectories of these cells. Our findings indicate that each pre- and post-developmental stage is closely linked by co-expressed genes, while simultaneously being uniquely identified by the combined expression of specific gene families. To illustrate the applicability of this exhaustive gene expression catalog, we used gene regulatory networks to uncover potential transcription factors for (1) the expression of genes in the phosphorylation pathway, identifying NHR-23-to-phosphatase regulation for the meiotic cell division process; and (2) the expression of constituent components of small RNA pathways, identifying ELT-1-to-Argonaute protein regulation for siRNA maintenance and sperm activation. We expect that this sperm cell-specific gene expression directory will prompt investigations into the underlying mechanisms determining anatomy, differentiation, and function across the reproductive system. Finally, our expression data can be explored using the web application CelegansGermAtlas ( https://scgerm-atlas.sjtu.edu.cn/website/#/home ).
Collapse
Affiliation(s)
- Lili Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoyin Tang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xuanxuan Guo
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Di Rao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Zeng
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shuxian Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wang M, Li AM, Chen ZL, Qin CX, Liao F, Pan YQ, Lakshmanan P, Li XF, Huang DL. Dynamic proteome and acetylome profiling reveals key regulators of sucrose accumulation in sugarcane. PLANT CELL REPORTS 2025; 44:74. [PMID: 40095118 DOI: 10.1007/s00299-025-03449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
KEY MESSAGE Lysine acetylation and protein abundance both play crucial roles in regulating sucrose accumulation in sugarcane, with 73 dual-function proteins identified as potential targets for molecular breeding to enhance sucrose levels. Lysine acetylation plays a crucial role in regulating various biological processes in plants, but its role in sucrose accumulation in sugarcane remains unexplored In this study, we conducted a comprehensive quantitative proteome and acetylated proteome analysis on the leaves of two sugarcane genotypes with high and low sucrose levels at early, middle, and late stages of sucrose accumulation. Quantitative proteome analysis identified 2363 differentially abundant proteins (DAPs), of which 165 were associated with sugar metabolism pathways, providing more targets for improving sucrose content in sugarcane. The acetylated proteome analysis identified 1397 differentially acetylated proteins (DAcPs) with 2377 acetylation sites. Many DAcPs were also involved in sugar metabolism, demonstrating that lysine acetylation is associated with sucrose accumulation. A comparison of the DAPs and DAcPs identified 650 overlapping proteins, with 73 of them related to sugar metabolism, confirming dual regulatory roles of protein abundance and acetylation in sucrose accumulation in sugarcane. These 73 proteins serve as targets for sucrose improvement with dual regulatory effects. Our data also suggest that histone acetylation and nitrogen metabolism may be related to sucrose accumulation. This work enhances our understanding of the mechanisms regulating sucrose accumulation and proposes targets for improving sucrose content in sugarcane through molecular breeding.
Collapse
Affiliation(s)
- Miao Wang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Ao-Mei Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Zhong-Liang Chen
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Cui-Xian Qin
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Fen Liao
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - You-Qiang Pan
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Prakash Lakshmanan
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xiao-Feng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Dong-Liang Huang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
8
|
Shi CM, Wang QC, Li XL, Yang YH, Tang XY, Wu Y, Ding T, Zhang XT, Zhang ZY, Han R, Kong J, Liu JF, Yang JT. Global Profiling of Protein Lactylation in Human Hippocampi. Proteomics Clin Appl 2025; 19:e202400061. [PMID: 39610256 DOI: 10.1002/prca.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The hippocampus has long been associated with cognition and memory function, the implications of lysine lactylation (Kla), a recently identified post-translational modification (PTM), in the role of the hippocampus remain largely unexplored. EXPERIMENTAL DESIGN An LC-MS/MS bottom-up proteomics analysis of three human hippocampal tissue samples was applied to profile the lactylation map in human hippocampi under normal physiological conditions. RESULTS We identified 2579 quantifiable Class I lactylated sites in 853 proteins, of which contained four types of modification motifs. Cellular localization analysis implies that a majority of lactylated proteins were distributed in the cytoplasm. Functional enrichment analysis showed that lactylated proteins were mainly involved in energy metabolic pathways. In addition, we found that the lactylation on histones exhibits a certain degree of conservation across different tissues. Compared with previously reported lactylation databases, 213 lactylated proteins were identified for the first time in this study. CONCLUSION AND CLINICAL RELEVANCE The first global lactylated proteins atlas of human hippocampi was reported in this study. Our work provides a reliable foundation for further research on lactylation in the hippocampus under physiological conditions.
Collapse
Affiliation(s)
- Chun-Mei Shi
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qiao-Chu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiao-Lu Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ye-Hong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiao-Yue Tang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xu-Tong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhi-Yi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ron Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jie Kong
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiang-Feng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jun-Tao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Ding W, Duan Y, Wang Y, Fan J, Rao W, Xing S. Quantitative Proteomic Analysis of Lysine Malonylation in Response to Salicylic Acid in the Roots of Platycodon grandiflorus. Int J Mol Sci 2025; 26:1392. [PMID: 39941159 PMCID: PMC11818218 DOI: 10.3390/ijms26031392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Salicylic acid, as a plant hormone, significantly affects the physiological and biochemical indexes of soluble sugar, malondialdehyde content, peroxidase, and superoxide dismutase enzyme activity in Platycodon grandiflorus. Lysine malonylation is a post-translational modification that involves various cellular functions in plants, though it is rarely studied, especially in medicinal plants. In this study, the aim was to perform a comparative quantitative proteomic study of malonylation modification on P. grandiflorus root proteins after salicylic acid treatment using Western blot with specific antibodies, affinity enrichment and LC-MS/MS analysis methods. The analysis identified 1907 malonyl sites for 809 proteins, with 414 proteins and 798 modification sites quantified with high confidence. Post-treatment, 361 proteins were upregulated, and 310 were downregulated. Bioinformatics analysis revealed that malonylation in P. grandiflorus is primarily involved in photosynthesis and carbon metabolism. Physiological and biochemical analysis showed that salicylic acid treatment increased the malondialdehyde levels, soluble protein, superoxide dismutase, and peroxidase activity but did not significantly affect the total saponins content in P. grandiflorus. These findings provide an important basis for exploring the molecular mechanisms of P. grandiflorus following salicylic acid treatment and enhance understanding of the biological function of protein lysine malonylation in plants.
Collapse
Affiliation(s)
- Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
| | - Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
| | - Weiyi Rao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
- MOE—Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230038, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China
- MOE—Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230038, China
| |
Collapse
|
10
|
Xie P, Liu J, Liao Z, Zhou Q, Sun J, Liu Z, Xiong H, Wan H. Profiling the differential phosphoproteome between breast milk and infant formula through a titanium (IV)-immobilized magnetic nanoplatform. Food Chem 2025; 464:141541. [PMID: 39395339 DOI: 10.1016/j.foodchem.2024.141541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Breast milk (BM) fulfills the nutritional needs of infants and sets the standard for infant formula (IF). However, profiling the differential phosphoproteome between BM and IF remains unclear. Herein, a titanium (IV) (Ti4+)-immobilized magnetic nanoplatform (Fe3O4@GO@PDA-Ti4+) was constructed by self-assembly polymerization of dopamine on magnetic graphene oxide, followed by immobilizing Ti4+ through chelation for phosphopeptide enrichment. Fe3O4@GO@PDA-Ti4+ possessed outstanding selectivity (1/1000, a molar ratio of β-casein digests to bovine serum albumin digests) and favorable sensitivity (2.5 fmol/μL), along with rapid magnetic separation. Excellent phosphopeptide capture efficiencies were obtained for BM and IF using Fe3O4@GO@PDA-Ti4+ as an adsorbent coupled with liquid chromatography-mass spectrometry/mass spectrometry. There were 191 and 239 phosphopeptides found in BM and IF, respectively, with 36 phosphoproteins identified in both. However, BM and IF shared only 17 phosphopeptides and 4 phosphoproteins. The variation in the phosphoproteome between BM and IF provides valuable insights into the optimization of IF humanization.
Collapse
Affiliation(s)
- Pengcheng Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jialiang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zonggao Liao
- Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Qi Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiajiu Sun
- Bouvé College of Health Sciences, Northeastern University, Boston 02115, USA
| | - Zheyi Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Huihuang Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
11
|
Tu Z, Li Y, Ji S, Wang S, Zhou R, Kramer G, Cui Y, Xie F. Gas-phase fractionation DDA promotes in-depth DIA phosphoproteome analysis. Heliyon 2025; 11:e41928. [PMID: 39897833 PMCID: PMC11787513 DOI: 10.1016/j.heliyon.2025.e41928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Data-independent acquisition (DIA) is a promising method for quantitative proteomics. Library-based DIA database searching against project-specific data-dependent acquisition (DDA) spectral libraries is the gold standard. These libraries are constructed using material-consuming pre-fractionation two dimensional DDA analysis. The alternative to this is library-free DIA analysis. Limited sample amounts restrict the use of fractionation to build spectral libraries for post-translational modifications (PTMs) DIA analysis. We present the use of gas-phase fractionation (GPF) DDA data to improve the depth of library-free DIA identification for the phosphoproteome, called GPF-DDA hybrid DIA. This method fully utilizes the remnants of samples post-DIA analysis and leverages both library-based and -free DIA database searching. GPF-DDA hybrid DIA analyzes phosphopeptides surplus sample after DIA analysis using a number of DDA injections with each scanning different mass-to-charge (m/z) windows, instead of preforming traditional off-line fractionation-based DDA. The GPF-DDA data is integrated into the library-free DIA database search to create a hybrid library, enhancing phosphopeptide identification. Two GPF-DDA injections proved to increase 18 % phosphopeptide and 13 % phosphosite identification in HEK293 cell lines, while five injections resulted in up to 28 % phosphopeptide and 21 % phosphosite increases compared to library-free DIA analysis alone. We used GPF-DDA hybrid DIA phosphoproteomics to characterize lung tissue upon direct (smoke induced) and indirect (sepsis induced) acute lung injury (ALI) in mice. The differentially expressed phosphosites (DEPsites) in direct ALI were found in proteins related to mRNA processing and RNA. DEPsites in indirect ALI were enriched in proteins related to microtubule polymerization, positive regulation of microtubule polymerization and fibroblast migration. This study demonstrates that GPF-DDA hybrid DIA analysis workflow can indeed promote depth of DIA analysis of phosphoproteome and could be extended to DIA analysis of other PTMs.
Collapse
Affiliation(s)
- Zhiwei Tu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Yabin Li
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, 100048, Beijing, China
| | - Shuhui Ji
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Shanshan Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Rui Zhou
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, China
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Yu Cui
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Fei Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, 100048, Beijing, China
| |
Collapse
|
12
|
Hardman-Kavanaugh RE, Storey AJ, Stuecker TN, Hood SE, Barrett-Wilt GA, Krishnamurthi VR, Wang Y, Byrum SD, Mackintosh SG, Edmondson RD, Wahls WP, Tackett AJ, Lewis JA. Dynamic global acetylation remodeling during the yeast heat shock response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632339. [PMID: 39935887 PMCID: PMC11812598 DOI: 10.1101/2025.01.10.632339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
All organisms experience stress and must rapidly respond to changing conditions. Thus, cells have evolved sophisticated rapid-response mechanisms such as post-translational protein modification to rapidly and reversibly modulate protein activity. One such post-translational modification is reversible lysine acetylation, where proteomic studies have identified thousands of acetylated proteins across diverse organisms. While the sheer size of the 'acetylome' is striking, the function of acetylation for the vast majority of proteins remains largely obscure. Here, we show that global acetylation plays a previously unappreciated role in the heat shock response of Saccharomyces cerevisiae. We find that dysregulated acetylation renders cells heat sensitive, and moreover, that the acetylome is globally remodeled during heat shock over time. Using quantitative acetyl-proteomics, we identified ~400 high-confidence acetyl marks across ~200 proteins that significantly change in acetylation when cells are shifted to elevated temperature. Proteins with significant changes in lysine acetylation during heat shock strongly overlap with genes induced or repressed by stress. Thus, we hypothesize that protein acetylation augments the heat shock response by activating induced proteins and inactivating repressed proteins. Intriguingly, we find nearly 40 proteins with at least two acetyl marks that significantly change in the opposite directions. These proteins are strongly enriched for chaperones and ribosomal proteins, suggesting that these two key processes are coordinately regulated by protein acetylation during heat shock. Moreover, we hypothesize that the same type of activating and inactivating marks that exist on histones may be a general feature of proteins regulated by acetylation. Overall, this work has identified a new layer of post-translational regulation that likely augments the classic heat shock response.
Collapse
Affiliation(s)
- Rebecca E. Hardman-Kavanaugh
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Tara N. Stuecker
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | - Stephanie E. Hood
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | | | | | - Yong Wang
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
- Department of Physics, University of Arkansas, Fayetteville 72701, AR, United States of America
- Materials Science and Engineering Program, University of Arkansas, Fayetteville 72701, AR, United States of America
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Rick D. Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States of America
| | - Jeffrey A. Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| |
Collapse
|
13
|
Zhu X, Min H, Tang Y, Gao M. Lysine succinylome analysis of MRSA reveals critical roles in energy metabolism and virulence. Lett Appl Microbiol 2025; 78:ovaf004. [PMID: 39825643 DOI: 10.1093/lambio/ovaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
Methicillin-resistant Staphylococcus aureus's (MRSA) resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8048 succinylation sites on 1210 proteins. These analyses included Gene Ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and protein-protein interaction (PPI) network construction (e.g. using the STRING database, a widely used online tool for analyzing protein-protein interactions), providing a comprehensive functional and interactive landscape of succinylated proteins. The succinylated proteins were predominantly involved in cytoplasmic metabolic processes, with enrichment in glycolysis/gluconeogenesis and the tricarboxylic acid cycle. Both of these pathways are critical for MRSA's energy production, growth, and virulence, supplying the necessary metabolic intermediates and energy to support bacterial survival and pathogenicity. Motif analysis revealed 13 conserved motifs, while PPI analysis highlighted fibronectin-binding protein A (FnbA) as a central virulence factor. Succinylation significantly influences MRSA's metabolism and virulence, potentially impacting biofilm by modifying key proteins such as FnbA, bifunctional autolysin, and S-ribosylhomocysteine lyase(LuxS). These findings provide new avenues for developing antibiofilm strategies and therapeutic interventions against MRSA.
Collapse
Affiliation(s)
- Xiangqin Zhu
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, China
| | - Hui Min
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, China
| | - Yishan Tang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, China
| | - Min Gao
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, China
| |
Collapse
|
14
|
Cipak L, Sivakova B, Bellova J, Danchenko M, Jurcik J, Cipakova I, Lalakova LO, Gregan J, Barath P. Characterization of Ksg1 protein kinase-dependent phosphoproteome in the fission yeast S. pombe. Biochem Biophys Res Commun 2024; 736:150895. [PMID: 39476757 DOI: 10.1016/j.bbrc.2024.150895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/10/2024]
Abstract
Ksg1 is an essential protein kinase of the fission yeast S. pombe that belongs to the AGC kinase family and is homologous to the mammalian PDPK1 kinase. Previous studies have shown that Ksg1 functions in the nutrient-sensing TOR signaling pathway and is involved in the phosphorylation and activation of other AGC kinases, thereby affecting various downstream targets related to metabolism, cell division, stress response, and gene expression. To date, the molecular function of Ksg1 has been analyzed using its temperature sensitive mutants or mutants expressing its truncated isoforms, which are not always suitable for functional studies of Ksg1 and the identification of its targets. To overcome these limitations, we employed a chemical genetic strategy and used a conditional ksg1as mutant sensitive to an ATP analog. Combining this mutant with quantitative phosphoproteomics analysis, we identified 1986 phosphosites that were differentially phosphorylated when Ksg1as kinase was inhibited by an ATP analog. We found that proteins whose phosphorylation was dysregulated after inhibition of Ksg1as kinase were mainly represented by those involved in the regulation of cytokinesis, contractile ring contraction, cell division, septation initiation signaling cascade, intracellular protein kinase cascade, barrier septum formation, protein phosphorylation, intracellular signal transduction, cytoskeleton organization, cellular response to stimulus, or in RNA, ncRNA and rRNA processing. Importantly, proteins with significantly down-regulated phosphorylation were specifically enriched for R-X-X-S and R-X-R-X-X-S motifs, which are typical consensus substrate sequences for phosphorylation by the AGC family of kinases. The results of this study provide a basis for further analysis of the role of the Ksg1 kinase and its targets in S. pombe and may also be useful for studying Ksg1 orthologs in other organisms.
Collapse
Affiliation(s)
- Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Jana Bellova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Jurcik
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Laura Olivia Lalakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juraj Gregan
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria; Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medirex Group Academy, Nitra, Slovakia.
| |
Collapse
|
15
|
Sheng L, Xu H, Wang Y, Ni J, Xiang T, Xu H, Zhou X, Wei K, Dai J. Systematic analysis of lysine lactylation in nucleus pulposus cells. iScience 2024; 27:111157. [PMID: 39524337 PMCID: PMC11546124 DOI: 10.1016/j.isci.2024.111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/28/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Nucleus pulposus (NP) resides in hypoxic microenvironment and NP cells (NPCs), primarily reply on glycolysis and producing high levels of lactate. Intracellular lactate drives lysine lactylation (Kla) as a newly epigenetic modification. However, the impact of Kla on NPCs remains unknown. Here, single-cell RNA sequencing (scRNA-seq) data suggested an altered balance between glycolysis and aerobic oxidation in intervertebral disc degeneration (IDD). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis displayed 3510 lactylation sites on 1052 non-histone proteins of NPCs isolated from rat cultured in normoxia and hypoxia. Moreover, there are 18 proteins with 129 Kla sites and 117 Kla sites in 27 proteins exclusively detected in normoxia and hypoxia group, respectively. Bioinformatics analysis displayed that these lactylated proteins are tightly related to ribosome, spliceosome and the VEGFA-VEGFA2 signaling pathway. Together, our study reveals that Kla may play an important role in regulating cellular metabolism of NPCs.
Collapse
Affiliation(s)
- Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Haoran Xu
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Yuexing Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jinhao Ni
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Taiyang Xiang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Kang Wei
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Jun Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
16
|
Wang Y, Wang X, Zhang R, Chen T, Xiao J, Li Q, Ding X, Sun X. Genome-Scale Identification of Wild Soybean Serine/Arginine-Rich Protein Family Genes and Their Responses to Abiotic Stresses. Int J Mol Sci 2024; 25:11175. [PMID: 39456959 PMCID: PMC11508973 DOI: 10.3390/ijms252011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Serine/arginine-rich (SR) proteins mostly function as splicing factors for pre-mRNA splicing in spliceosomes and play critical roles in plant development and adaptation to environments. However, detailed study about SR proteins in legume plants is still lacking. In this report, we performed a genome-wide investigation of SR protein genes in wild soybean (Glycine soja) and identified a total of 31 GsSR genes from the wild soybean genome. The analyses of chromosome location and synteny show that the GsSRs are unevenly distributed on 15 chromosomes and are mainly under the purifying selection. The GsSR proteins can be phylogenetically classified into six sub-families and are conserved in evolution. Prediction of protein phosphorylation sites indicates that GsSR proteins are highly phosphorylated proteins. The protein-protein interaction network implies that there exist numerous interactions between GsSR proteins. We experimentally confirmed their physical interactions with the representative SR proteins of spliceosome-associated components such as U1-70K or U2AF35 by yeast two-hybrid assays. In addition, we identified various stress-/hormone-responsive cis-acting elements in the promoter regions of these GsSR genes and verified their expression patterns by RT-qPCR analyses. The results show most GsSR genes are highly expressed in root and stem tissues and are responsive to salt and alkali stresses. Splicing analysis showed that the splicing patterns of GsSRs were in a tissue- and stress-dependent manner. Overall, these results will help us to further investigate the biological functions of leguminous plant SR proteins and shed new light on uncovering the regulatory mechanisms of plant SR proteins in growth, development, and stress responses.
Collapse
Affiliation(s)
- Yanping Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (Y.W.); (X.W.)
| | - Xiaomei Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (Y.W.); (X.W.)
| | - Rui Zhang
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Tong Chen
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Xiaohuan Sun
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (Y.W.); (X.W.)
| |
Collapse
|
17
|
Wang Q, Peng W, Yang Y, Wu Y, Han R, Ding T, Zhang X, Liu J, Yang J, Liu J. Proteome and ubiquitinome analyses of the brain cortex in K18- hACE2 mice infected with SARS-CoV-2. iScience 2024; 27:110602. [PMID: 39211577 PMCID: PMC11357812 DOI: 10.1016/j.isci.2024.110602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Clinical research indicates that SARS-CoV-2 infection is linked to several neurological consequences, and the virus is still spreading despite the availability of vaccinations and antiviral medications. To determine how hosts respond to SARS-CoV-2 infection, we employed LC-MS/MS to perform ubiquitinome and proteome analyses of the brain cortexes from K18-hACE2 mice in the presence and absence of SARS-CoV-2 infection. A total of 8,024 quantifiable proteins and 5,220 quantifiable lysine ubiquitination (Kub) sites in 2023 proteins were found. Glutamatergic synapse, calcium signaling pathway, and long-term potentiation may all play roles in the neurological consequences of SARS-CoV-2 infection. Then, we observed possible interactions between 26 SARS-CoV-2 proteins/E3 ubiquitin-protein ligases/deubiquitinases and several differentially expressed mouse proteins or Kub sites. We present the first description of the brain cortex ubiquitinome in K18-hACE2 mice, laying the groundwork for further investigation into the pathogenic processes and treatment options for neurological dysfunction following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qiaochu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Yehong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Rong Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xutong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
18
|
Wang S, Di Y, Yang Y, Salovska B, Li W, Hu L, Yin J, Shao W, Zhou D, Cheng J, Liu D, Yang H, Liu Y. PTMoreR-enabled cross-species PTM mapping and comparative phosphoproteomics across mammals. CELL REPORTS METHODS 2024; 4:100859. [PMID: 39255793 PMCID: PMC11440062 DOI: 10.1016/j.crmeth.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
To support PTM proteomic analysis and annotation in different species, we developed PTMoreR, a user-friendly tool that considers the surrounding amino acid sequences of PTM sites during BLAST, enabling a motif-centric analysis across species. By controlling sequence window similarity, PTMoreR can map phosphoproteomic results between any two species, perform site-level functional enrichment analysis, and generate kinase-substrate networks. We demonstrate that the majority of real P-sites in mice can be inferred from experimentally derived human P-sites with PTMoreR mapping. Furthermore, the compositions of 129 mammalian phosphoproteomes can also be predicted using PTMoreR. The method also identifies cross-species phosphorylation events that occur on proteins with an increased tendency to respond to the environmental factors. Moreover, the classic kinase motifs can be extracted across mammalian species, offering an evolutionary angle for refining current motifs. PTMoreR supports PTM proteomics in non-human species and facilitates quantitative phosphoproteomic analysis.
Collapse
Affiliation(s)
- Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Di
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yin Yang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Liqiang Hu
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahui Yin
- Information Research Institute, Tongji University, Shanghai 200092, China
| | - Wenguang Shao
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong Zhou
- Department of Medicine, Division of Nephrology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jingqiu Cheng
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hao Yang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale Univeristy School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
19
|
Wang Z, Peng Y, Li J, Li J, Yuan H, Yang S, Ding X, Xie A, Zhang J, Wang S, Li K, Shi J, Xing G, Shi W, Yan J, Liu J. DeepCBA: A deep learning framework for gene expression prediction in maize based on DNA sequences and chromatin interactions. PLANT COMMUNICATIONS 2024; 5:100985. [PMID: 38859587 DOI: 10.1016/j.xplc.2024.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Chromatin interactions create spatial proximity between distal regulatory elements and target genes in the genome, which has an important impact on gene expression, transcriptional regulation, and phenotypic traits. To date, several methods have been developed for predicting gene expression. However, existing methods do not take into consideration the effect of chromatin interactions on target gene expression, thus potentially reducing the accuracy of gene expression prediction and mining of important regulatory elements. In this study, we developed a highly accurate deep learning-based gene expression prediction model (DeepCBA) based on maize chromatin interaction data. Compared with existing models, DeepCBA exhibits higher accuracy in expression classification and expression value prediction. The average Pearson correlation coefficients (PCCs) for predicting gene expression using gene promoter proximal interactions, proximal-distal interactions, and both proximal and distal interactions were 0.818, 0.625, and 0.929, respectively, representing an increase of 0.357, 0.16, and 0.469 over the PCCs obtained with traditional methods that use only gene proximal sequences. Some important motifs were identified through DeepCBA; they were enriched in open chromatin regions and expression quantitative trait loci and showed clear tissue specificity. Importantly, experimental results for the maize flowering-related gene ZmRap2.7 and the tillering-related gene ZmTb1 demonstrated the feasibility of DeepCBA for exploration of regulatory elements that affect gene expression. Moreover, promoter editing and verification of two reported genes (ZmCLE7 and ZmVTE4) demonstrated the utility of DeepCBA for the precise design of gene expression and even for future intelligent breeding. DeepCBA is available at http://www.deepcba.com/ or http://124.220.197.196/.
Collapse
Affiliation(s)
- Zhenye Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jie Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiying Li
- Microsoft Corporation, Redmond, WA 98052, USA
| | - Hao Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shangpo Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinru Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiangling Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouzhe Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - Keqin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Shi
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangjie Xing
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihan Shi
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
20
|
Bai X, Shang J, Cao X, Li M, Yu H, Wu C, Yang M, Yue X. Proteomic and phosphoproteomic reveal immune-related function of milk fat globule membrane in bovine milk of different lactation periods. Food Chem 2024; 451:139295. [PMID: 38729042 DOI: 10.1016/j.foodchem.2024.139295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/04/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
Information regarding protein expression and phosphorylation modifications in the bovine milk fat globule membrane is scarce, particularly throughout various lactation periods. This study employed a complete proteome and phosphoproteome between bovine colostrum and mature milk. A total of 11 proteins were seen in both protein expression and phosphorylation levels. There were 400 proteins identified in only protein expression, and 104 phosphoproteins identified in only phosphorylation levels. A total of 232 significant protein characteristics were identified within the proteome and significant phosphorylation sites within 86 phosphoproteins of the phosphoproteome. Biological activities and pathways primarily exhibited associations with the immune system. Simultaneously, a comprehensive analysis of proteins and phosphorylation sites using a multi-omics approach. Hence, the data we have obtained has the potential to expand our understanding of how the bovine milk fat globule membrane might be utilized as a beneficial component in dairy products.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingwen Shang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Hong Yu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chunshuang Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| |
Collapse
|
21
|
Liu YY, Wang RJ, Ru SS, Gao F, Liu W, Zhang X. Comparative analysis of phosphorylated proteomes between plerocercoid and adult Spirometra mansoni reveals phosphoproteomic profiles of the medical tapeworm. Parasit Vectors 2024; 17:371. [PMID: 39217359 PMCID: PMC11366163 DOI: 10.1186/s13071-024-06454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Plerocercoid larvae of the tapeworm Spirometra mansoni can infect both humans and animals, leading to severe parasitic zoonosis worldwide. Despite ongoing research efforts, our understanding of the developmental process of S. mansoni remains inadequate. To better characterize posttranslational regulation associated with parasite growth, development, and reproduction, a comparative phosphoproteomic study was conducted on the plerocercoid and adult stages of S. mansoni. METHODS In this study, site-specific phosphoproteomic analysis was conducted via 4D label-free quantitative analysis technology to obtain primary information about the overall phosphorylation status of plerocercoids and adults. RESULTS A total of 778 differentially abundant proteins (DAPs) were detected between adults and plerocercoids, of which 704 DAPs were upregulated and only 74 were downregulated. DAPs involved in metabolic activity were upregulated in plerocercoid larvae compared with adults, whereas DAPs associated with binding were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses indicated that most DAPs involved in signal transduction and environmental information processing pathways were highly active in adults. DAPs upregulated in the plerocercoid group were enriched mainly in metabolic activities. The kinases PKACA, GSK3B, and smMLCK closely interact, suggesting potential active roles in the growth and development of S. mansoni. CONCLUSIONS The dataset presented in this study offers a valuable resource for forthcoming research on signaling pathways as well as new insights into functional studies on the molecular mechanisms of S. mansoni.
Collapse
Affiliation(s)
- Yong Yan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Department of Clinical Microbiology, The People's Hospital of Xixian, Xinyang, 464300, Henan, China
| | - Rui Jie Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Si Si Ru
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fei Gao
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
22
|
Zhang X, Lu M, An H. Lysine acetylproteome analysis reveals the lysine acetylation in developing fruit and a key acetylated protein involved in sucrose accumulation in Rosa roxburghii Tratt. J Proteomics 2024; 305:105248. [PMID: 38964538 DOI: 10.1016/j.jprot.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Lysine acetylation is a common post-translational modification of proteins in plants. Rosa roxburghii Tratt. is an economically important fruit tree known for its high nutritional value. However, the characteristics of acetylome-related proteins during fruit development in this crop remain unknown. This study aimed to explore the global acetylproteome of R. roxburghii fruit to identify key lysine-acetylated proteins associated with its quality traits. A total of 4280 acetylated proteins were identified, among them, 981 proteins exhibited differential acetylation (DA) while 19 proteins showed increased acetylation level consistently on individual sites. Functional classification revealed that these DA proteins were primarily associated with central metabolic pathways, carbohydrate metabolism, terpenoids and polyketides metabolism, lipid metabolism, and amino acid metabolism, highlighting the importance of lysine acetylation in fruit quality formation. Notably, the most significant up-regulated acetylation occurred in sucrose synthase (SuS1), a key enzyme in sucrose biosynthesis. Enzyme assays, RNA-seq and proteome analysis indicated that SuS activity, which was independent of its transcriptome and proteome level, may be enhanced by up-acetylation, ultimately increasing sucrose accumulation. Thus, these findings offer a better understanding of the global acetylproteome of R. roxburghii fruit, while also uncover a novel mechanism of acetylated SuS-mediated in sucrose metabolism in plant. SIGNIFICANCE: Rosa roxburghii Tratt. is an important horticultural crop whose commercial value is closely linked to its fruit quality. Acetylation modification is a post-translational mechanism observed in plants, which regulates the physiological functions and metabolic fluxes involved in various biological processes. The regulatory mechanism of lysine acetylation in the fruit quality formation in perennial woody plants has not been fully elucidated, while most of the research has primarily focused on annual crops. Therefore, this study, for the first time, uses Rosaceae fruits as the research material to elucidate the regulatory role of lysine-acetylated proteins in fruit development, identify key metabolic processes influencing fruit quality formation, and provide valuable insights for cultivation strategies.
Collapse
Affiliation(s)
- Xue Zhang
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Min Lu
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Huaming An
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
23
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
24
|
Zhang E, Yan Q, Sun Y, Li J, Chen L, Zou J, Zeng S, Jiang J, Li J. Integrative Analysis of Lactylome and Proteome of Hypertrophic Scar To Identify Pathways or Proteins Associated with Disease Development. J Proteome Res 2024; 23:3367-3382. [PMID: 39012622 DOI: 10.1021/acs.jproteome.3c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lactylation (Kla), a recently discovered post-translational modification derived from lactate, plays crucial roles in various cellular processes. However, the specific influence of lactylation on the biological processes underlying hypertrophic scar formation remains unclear. In this study, we present a comprehensive profiling of the lactylome and proteome in both hypertrophic scars and adjacent normal skin tissues. A total of 1023 Kla sites originating from 338 nonhistone proteins were identified based on lactylome analysis. Proteome analysis in hypertrophic scar and adjacent skin samples revealed the identification of 2008 proteins. It is worth noting that Kla exhibits a preference for genes associated with ribosome function as well as glycolysis/gluconeogenesis in both normal skin and hypertrophic scar tissues. Furthermore, the functional enrichment analysis demonstrated that differentially lactyled proteins are primarily involved in proteoglycans, HIF-1, and AMPK signaling pathways. The combined analysis of the lactylome and proteome data highlighted a significant upregulation of 14 lactylation sites in hypertrophic scar tissues. Overall, our investigation unveiled the significant involvement of protein lactylation in the regulation of ribosome function as well as glycolysis/gluconeogenesis, potentially contributing to the formation of hypertrophic scars.
Collapse
Affiliation(s)
- Enyuan Zhang
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Qiyue Yan
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Yue Sun
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Ling Chen
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Siqi Zeng
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jingbin Jiang
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jun Li
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| |
Collapse
|
25
|
Tian Y, Wang H, Pan T, Hu X, Ding J, Chen Y, Li J, Chen H, Luo T. Global proteomic analyses of lysine acetylation, malonylation, succinylation, and crotonylation in human sperm reveal their involvement in male fertility. J Proteomics 2024; 303:105213. [PMID: 38797435 DOI: 10.1016/j.jprot.2024.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Protein lysine modifications (PLMs) are hotspots of post-translational modifications and are involved in many diseases; however, their role in human sperm remains obscure. This study examined the presence and functional roles of a classical PLM (lysine acetylation, Kac) and three novel PLMs (lysine malonylation, Kmal; lysine succinylation, Ksucc; lysine crotonylation, Kcr) in human sperm. Immunoblotting and immunofluorescence assays revealed modified proteins (15-150 kDa) in the tails of human sperm. An immunoaffinity approach coupled with liquid chromatography/tandem mass spectrometry revealed 1423 Kac sites in 680 proteins, 196 Kmal sites in 118 proteins, 788 Ksucc sites in 251 proteins, and 1836 Kcr sites in 645 proteins. These modified proteins participate in a variety of biological processes and metabolic pathways. Crosstalk analysis demonstrated that proteins involved in the sperm energy pathways of glycolysis, oxidative phosphorylation, the citrate cycle, fatty acid oxidation, and ketone body metabolism were modified by at least one of these modifications. In addition, these modifications were found in 62 male fertility-related proteins that weave a protein-protein interaction network associated with asthenoteratozoospermia, asthenozoospermia, globozoospermia, spermatogenic failure, hypogonadotropic hypogonadism, and polycystic kidney disease. Our findings shed light on the functional role of PLMs in male reproduction. SIGNIFICANCE: Protein lysine modifications (PLMs) are hotspots of posttranslational modifications and are involved in many diseases. This study revealed the presence of a classical PLM (lysine acetylation) and three novel PLMs (lysine malonylation, lysine succinylation, and lysine crotonylation) in human sperm tails. The modified proteins participate in a variety of biological processes and metabolic pathways. In addition, these modifications were found in 62 male infertility-associated proteins and could serve as potential diagnostic markers and therapeutic targets for male infertility.
Collapse
Affiliation(s)
- Yan Tian
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hao Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Tingting Pan
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaonian Hu
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jing Ding
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ying Chen
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jia Li
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, Jiangxi, China.
| | - Tao Luo
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
26
|
Yan R, Song Y, Liu D, Yu W, Sun Y, Tang C, Yang X, Ding W, Yu N, Zhang Z, Ling M, Li X, Zhao C, Xing Y. Multi-omics reveals the role of MCM2 and hnRNP K phosphorylation in mouse renal aging through genomic instability. Exp Cell Res 2024; 440:114115. [PMID: 38844260 DOI: 10.1016/j.yexcr.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
The process of aging is characterized by structural degeneration and functional decline, as well as diminished adaptability and resistance. The aging kidney exhibits a variety of structural and functional impairments. In aging mice, thinning and graying of fur were observed, along with a significant increase in kidney indices compared to young mice. Biochemical indicators revealed elevated levels of creatinine, urea nitrogen and serum uric acid, suggesting impaired kidney function. Histological analysis unveiled glomerular enlargement and sclerosis, severe hyaline degeneration, capillary occlusion, lymphocyte infiltration, tubular and glomerular fibrosis, and increased collagen deposition. Observations under electron microscopy showed thickened basement membranes, altered foot processes, and increased mesangium and mesangial matrix. Molecular marker analysis indicated upregulation of aging-related β-galactosidase, p16-INK4A, and the DNA damage marker γH2AX in the kidneys of aged mice. In metabolomics, a total of 62 significantly different metabolites were identified, and 10 pathways were enriched. We propose that citrulline, dopamine, and indoxyl sulfate have the potential to serve as markers of kidney damage related to aging in the future. Phosphoproteomics analysis identified 6656 phosphosites across 1555 proteins, annotated to 62 pathways, and indicated increased phosphorylation at the Ser27 site of Minichromosome maintenance complex component 2 (Mcm2) and decreased at the Ser284 site of heterogeneous nuclear ribonucleoprotein K (hnRNP K), with these modifications being confirmed by western blotting. The phosphorylation changes in these molecules may contribute to aging by affecting genome stability. Eleven common pathways were detected in both omics, including arginine biosynthesis, purine metabolism and biosynthesis of unsaturated fatty acids, etc., which are closely associated with aging and renal insufficiency.
Collapse
Affiliation(s)
- Rong Yan
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yiping Song
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Di Liu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenzhuo Yu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Sun
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Congmin Tang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuechun Yang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenjing Ding
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan, China
| | - Zhen Zhang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Mingying Ling
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuehui Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Chuanli Zhao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqiu Xing
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
27
|
Yoshida T, Mergner J, Yang Z, Liu J, Kuster B, Fernie AR, Grill E. Integrating multi-omics data reveals energy and stress signaling activated by abscisic acid in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1112-1133. [PMID: 38613775 DOI: 10.1111/tpj.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024]
Abstract
Phytohormones are essential signaling molecules regulating various processes in growth, development, and stress responses. Genetic and molecular studies, especially using Arabidopsis thaliana (Arabidopsis), have discovered many important players involved in hormone perception, signal transduction, transport, and metabolism. Phytohormone signaling pathways are extensively interconnected with other endogenous and environmental stimuli. However, our knowledge of the huge and complex molecular network governed by a hormone remains limited. Here we report a global overview of downstream events of an abscisic acid (ABA) receptor, REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR) 6 (also known as PYRABACTIN RESISTANCE 1 [PYR1]-LIKE [PYL] 12), by integrating phosphoproteomic, proteomic and metabolite profiles. Our data suggest that the RCAR6 overexpression constitutively decreases the protein levels of its coreceptors, namely clade A protein phosphatases of type 2C, and activates sucrose non-fermenting-1 (SNF1)-related protein kinase 1 (SnRK1) and SnRK2, the central regulators of energy and ABA signaling pathways. Furthermore, several enzymes in sugar metabolism were differentially phosphorylated and expressed in the RCAR6 line, and the metabolite profile revealed altered accumulations of several organic acids and amino acids. These results indicate that energy- and water-saving mechanisms mediated by the SnRK1 and SnRK2 kinases, respectively, are under the control of the ABA receptor-coreceptor complexes.
Collapse
Affiliation(s)
- Takuya Yoshida
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Zhenyu Yang
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Jinghui Liu
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| |
Collapse
|
28
|
Xu F, Chen H, Zhou C, Zang T, Wang R, Shen S, Li C, Yu Y, Pei Z, Shen L, Qian J, Ge J. Targeting deubiquitinase OTUB1 protects vascular smooth muscle cells in atherosclerosis by modulating PDGFRβ. Front Med 2024; 18:465-483. [PMID: 38644399 DOI: 10.1007/s11684-024-1056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 04/23/2024]
Abstract
Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction. Vascular smooth muscle cells (VSMCs), the main components of atherosclerotic plaque, switch from contractile to synthetic phenotypes during atherogenesis. Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis, and it can be reversely regulated by deubiquitinases. However, the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated. In this study, RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases, which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch. Further in vivo studies using Apoe-/- mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype. Moreover, VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro. Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation, adhesion, and proliferation. Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated. Mechanistically, we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRβ with its catalytic triad, thereby reducing the K48-linked ubiquitylation of PDGFRβ. Inhibiting OTUB1 in VSMCs could promote PDGFRβ degradation via the ubiquitin-proteasome pathway, so it was beneficial in preventing VSMCs' phenotype switch. These findings revealed that knocking down OTUB1 ameliorated VSMCs' phenotype switch and atherosclerosis progression, indicating that OTUB1 could be a valuable translational therapeutic target in the future.
Collapse
Affiliation(s)
- Fei Xu
- Department of Cardiology and Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Han Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Changyi Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Tongtong Zang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Rui Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Shutong Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Yue Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| |
Collapse
|
29
|
Hu Y, Lin Y, Bai J, Xu X, Wang Z, Ding C, Ding Y, Chen L. AMPK activator 991 specifically activates SnRK1 and thereby affects seed germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2917-2932. [PMID: 38465908 DOI: 10.1093/jxb/erae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) and AMP-activated protein kinase (AMPK) are highly conserved. Compound 991 is an AMPK activator in mammals. However, whether 991 also activates SnRK1 remains unknown. The addition of 991 significantly increased SnRK1 activity in desalted extracts from germinating rice seeds in vitro. To determine whether 991 has biological activity, rice seeds were treated with different concentrations of 991. Germination was promoted at low concentrations but inhibited at high concentrations. The effects of 991 on germination were similar to those of OsSnRK1a overexpression. To explore whether 991 affects germination by specifically affecting SnRK1, germination of an snrk1a mutant and the wild type under 1 μM 991 treatment was compared. The snrk1a mutant was insensitive to 991. Phosphoproteomic analysis showed that the differential phosphopeptides induced by 991 and OsSnRK1a overexpression largely overlapped. Furthermore, SnRK1 might regulate rice germination in a dosage-dependent manner by regulating the phosphorylation of three phosphosites, namely S285-PIP2;4, S1013-SOS1, and S110-ABI5. These results indicate that 991 is a specific SnRK1 activator in rice. The promotion and inhibition of germination by 991 also occurred in wheat seeds. Thus, 991 is useful for exploring SnRK1 function and the chemical regulation of growth and development in crops.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Ziteng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| |
Collapse
|
30
|
Wang Y, Liu X, Zuo X, Wang C, Zhang Z, Zhang H, Zeng T, Chen S, Liu M, Chen H, Song Q, Li Q, Yang C, Le Y, Xing J, Zhang H, An J, Jia W, Kang L, Zhang H, Xie H, Ye J, Wu T, He F, Zhang X, Li Y, Zhou G. NRDE2 deficiency impairs homologous recombination repair and sensitizes hepatocellular carcinoma to PARP inhibitors. CELL GENOMICS 2024; 4:100550. [PMID: 38697125 PMCID: PMC11099347 DOI: 10.1016/j.xgen.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.
Collapse
Affiliation(s)
- Yahui Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Xianbo Zuo
- Department of Dermatology, Department of Pharmacy, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Cuiling Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Zheng Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haitao Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Tao Zeng
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Shunqi Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Mengyu Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hongxia Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Qingfeng Song
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City, Guangxi Province, P.R. China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; Department of Neurosciences, School of Medicine, University of South China, Hengyang City, Hunan Province, P.R. China
| | - Chenning Yang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Yi Le
- Department of Hepatobiliary Surgery, the 5th Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Weihua Jia
- State Key Laboratory of Oncology in Southern China, Guangzhou City, Guangdong Province, P.R. China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou City, Guangdong Province, P.R. China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City, Shaanxi Province, P.R. China
| | - Hongxing Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China
| | - Hui Xie
- Department of Interventional Oncology, the Fifth Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Jiazhou Ye
- Department of Hepatobiliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning City, Guangxi Province, P.R. China
| | - Tianzhun Wu
- Department of Hepatobiliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning City, Guangxi Province, P.R. China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China.
| | - Xuejun Zhang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei City, Anhui Province, P.R. China.
| | - Yuanfeng Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, P.R. China.
| |
Collapse
|
31
|
Domingo G, Marsoni M, Davide E, Fortunato S, de Pinto MC, Bracale M, Molla G, Gehring C, Vannini C. The cAMP-dependent phosphorylation footprint in response to heat stress. PLANT CELL REPORTS 2024; 43:137. [PMID: 38713285 PMCID: PMC11076351 DOI: 10.1007/s00299-024-03213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
KEY MESSAGE cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| | - Milena Marsoni
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Eleonora Davide
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Stefania Fortunato
- Department of Biology, University of Bari "Aldo Moro", Piazza Umberto I, 70121, Bari, Italy
| | | | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Gianluca Molla
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
32
|
Qiu K, Tian Y, Guo C, Liu O, Shi Y, Liu D, Luo T. Global proteomic analysis reveals lysine succinylation is involved in the pathogenesis of hypertrophic scar. J Proteomics 2024; 298:105155. [PMID: 38460743 DOI: 10.1016/j.jprot.2024.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Lysine succinylation (Ksucc) is a recently identified posttranslational modification that is involved in many diseases. This study examined the role of Ksucc in the pathogenesis of hypertrophic scar (HS). The presence of Ksucc in human skin was measured by immunoblotting. Ksucc occurs in many skin proteins ranging from 25 to 250 kDa, and higher levels of Ksucc are found in HS skin than in normal skin. An immunoaffinity approach coupled with LC-MS/MS was used to characterize the first succinylome of human skin, and 159 Ksucc sites in 79 proteins were identified. Among these, there were 38 increased succinylated sites in 29 proteins but no decreased succinylated sites in HS compared with normal skin. A parallel reaction monitoring assay was performed to validate the results of the succinylome and showed that the levels of Ksucc in decorin and collagens, which are involved in the pathogenesis of HS, were increased in HS than in normal skin. In addition, increasing the level of Ksucc enhanced cell proliferation and upregulated the expression of fibrosis markers (α-SMA, COL1, and COL3) in human skin fibroblasts. Our results provide global insights into the functional role of Ksucc in hypertrophic scarring.
Collapse
Affiliation(s)
- Keqing Qiu
- Department of Dermatology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yan Tian
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Chunyan Guo
- Department of Dermatology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ougen Liu
- Department of Dermatology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yan Shi
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Dewu Liu
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Tao Luo
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
33
|
Zang S, Yang X, Ye J, Mo X, Zhou G, Fang Y. Quantitative phosphoproteomics explain cryopreservation-induced reductions in ram sperm motility. J Proteomics 2024; 298:105153. [PMID: 38438079 DOI: 10.1016/j.jprot.2024.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Sperm cryopreservation decreases motility, probably due to changes in protein phosphorylation. Our objective was to use quantitative phosphoproteomics for systematic comparative analyses of fresh versus frozen-thawed sperm to identify factors causing cryo-injury. Ejaculates were collected (artificial vagina) from six Dorper rams, pooled, extended, and frozen over liquid nitrogen. Overall, 915, 3382, and 6875 phosphorylated proteins, phosphorylated peptides, and phosphorylation sites, respectively, were identified. At least two modified sites were present in 57.94% of the 6875 phosphosites identified, of which AKAP4 protein contained up to 331 modified sites. There were 732 phosphorylated peptides significantly up-regulated and 909 significantly down-regulated in frozen-thawed versus fresh sperm. Moreover, the conserved motif [RxxS] was significantly down-regulated in frozen-thawed sperm. Phosphorylation of sperm-specific proteins, e.g., AKAP3/4, CABYR, FSIP2, GSK3A/B, GPI, and ODF1/2 make them potential biomarkers to assess the quality of frozen-thawed ram sperm. Furthermore, these differentially phosphorylated proteins and modification sites were implicated in cryopreservation-induced changes in sperm energy production, fiber sheath composition, and various biological processes. We concluded that abnormal protein phosphorylation modifications are key regulators of reduced sperm motility. These novel findings implicated specific protein phosphorylation modifications in sperm cryo-injury. SIGNIFICANCE: This study used phosphorylated TMT quantitative proteomics to explore regulation of epigenetic modifications in frozen-thawed ram sperm. This experiment demonstrated that ram sperm freezing affects phosphorylation site modifications of proteins, especially those related to functions such as sperm motility and energy production. Furthermore, it is important to link functions of phosphorylated proteins with changes in sperm quality after freezing and thawing, and to clarify intrinsic reasons for sperm quality changes, which is of great importance for elucidating mechanisms of sperm freezing damage. Based on these protein markers and combined with cryoprotectant design theory, it provides a theoretical basis and data reference to study sperm cryoprotectants.
Collapse
Affiliation(s)
- Shengqin Zang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Jiangfeng Ye
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xianhong Mo
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, PR China
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China.
| |
Collapse
|
34
|
Zhou R, Tu Z, Chen D, Wang W, Liu S, She L, Li Z, Liu J, Li Y, Cui Y, Pan P, Xie F. Quantitative proteome and lysine succinylome characterization of zinc chloride smoke-induced lung injury in mice. Heliyon 2024; 10:e27450. [PMID: 38524532 PMCID: PMC10957386 DOI: 10.1016/j.heliyon.2024.e27450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
The inhalation of zinc chloride (ZnCl2) smoke is one of common resources of lung injury, potentially resulting in severe pulmonary complications and even mortality. The influence of ZnCl2 smoke on lysine succinylation (Ksucc) in the lungs remains uncertain. In this study, we used a ZnCl2 smoke inhalation mouse model to perform global proteomic and lysine succinylome analyses. A total of 6781 Ksucc sites were identified in the lungs, with injured lungs demonstrating a reduction to approximately 2000 Ksucc sites, and 91 proteins exhibiting at least five differences in the number of Ksucc sites. Quantitative analysis revealed variations in expression of 384 proteins and 749 Ksucc sites. The analysis of protein-protein interactions was conducted for proteins displaying differential expression and differentially expressed lysine succinylation. Notably, proteins with altered Ksucc exhibited increased connectivity compared with that in differentially expressed proteins. Beyond metabolic pathways, these highly connected proteins were also involved in lung injury-associated pathological reactions, including processes such as focal adhesion, adherens junction, and complement and coagulation cascades. Collectively, our findings contribute to the understanding of the molecular mechanisms underlaying ZnCl2 smoke-induced lung injury with a specific emphasis on lysine succinylation. These findings could pave the way for targeted interventions and therapeutic strategies to mitigate severe pulmonary complications and mortality associated with such injuries in humans.
Collapse
Affiliation(s)
- Rui Zhou
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, China
| | - Zhiwei Tu
- National Center for Protein Sciences (Beijing), Institute of Lifeomics, 102206, Beijing, China
| | - Daishi Chen
- Department of Otorhinolaryngology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 515100, Shenzhen, Guangdong, China
| | - Wanmei Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Shuzi Liu
- College of Pulmonary and Critical Care Medicine, The First Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Linjun She
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, China
| | - Zhan Li
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, China
| | - Jihong Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, China
| | - Yabin Li
- College of Pulmonary and Critical Care Medicine, The First Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Yu Cui
- National Center for Protein Sciences (Beijing), Institute of Lifeomics, 102206, Beijing, China
- State Key Laboratory of Proteomics, 102206, Beijing, China
| | - Pan Pan
- College of Pulmonary and Critical Care Medicine, The First Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Fei Xie
- College of Pulmonary and Critical Care Medicine, The First Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| |
Collapse
|
35
|
Wang T, Zou Y, Meng H, Zheng P, Teng J, Huang N, Chen J. Securin acetylation prevents precocious separase activation and premature sister chromatid separation. Curr Biol 2024; 34:1295-1308.e5. [PMID: 38452759 DOI: 10.1016/j.cub.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Lysine acetylation of non-histone proteins plays crucial roles in many cellular processes. In this study, we examine the role of lysine acetylation during sister chromatid separation in mitosis. We investigate the acetylation of securin at K21 by cell-cycle-dependent acetylome analysis and uncover its role in separase-triggered chromosome segregation during mitosis. Prior to the onset of anaphase, the acetylated securin via TIP60 prevents its degradation by the APC/CCDC20-mediated ubiquitin-proteasome system. This, in turn, restrains precocious activation of separase and premature separation of sister chromatids. Additionally, the acetylation-dependent stability of securin is also enhanced by its dephosphorylation. As anaphase approaches, HDAC1-mediated deacetylation of securin promotes its degradation, allowing released separase to cleave centromeric cohesin. Blocking securin deacetylation leads to longer anaphase duration and errors in chromosome segregation. Thus, this study illustrates the emerging role of securin acetylation dynamics in mitotic progression and genetic stability.
Collapse
Affiliation(s)
- Tianning Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Breast Disease Diagnosis and Treatment Center/Department of Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Yuhong Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Meng
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Pengli Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
36
|
Tan C, Chen L, Guan X, Huang W, Feng Y, Li Z, Wu L, Huang X, Ouyang Q, Liu S, Huang Y, Hu J. Redox proteomics of PANC-1 cells reveals the significance of HIF-1 signaling protein oxidation in pancreatic ductal adenocarcinoma pathogenesis. J Transl Med 2024; 22:287. [PMID: 38493183 PMCID: PMC10944602 DOI: 10.1186/s12967-024-05068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Protein cysteine oxidation is substantially involved in various biological and pathogenic processes, but its implications in pancreatic cancer development remains poorly understood. METHODS AND RESULTS In this study, we performed a global characterization of protein oxidation targets in PDAC cells through iodoTMT-based quantitative proteomics, which identified over 4300 oxidized cysteine sites in more than 2100 proteins in HPDE6c7 and PANC-1 cells. Among them, 1715 cysteine residues were shown to be differentially oxidized between HPDE6c7 and PANC-1 cells. Also, charged amino acids including aspartate, glutamate and lysine were significantly overrepresented in flanking sequences of oxidized cysteines. Differentially oxidized proteins in PANC-1 cells were enriched in multiple cancer-related biological processes and signaling pathways. Specifically, the HIF-1 signaling proteins exhibited significant oxidation alterations in PANC-1 cells, and the reduced PHD2 oxidation in human PDAC tissues was correlated with lower survival time in pancreatic cancer patients. CONCLUSION These investigations provided new insights into protein oxidation-regulated signaling and biological processes during PDAC pathogenesis, which might be further explored for pancreatic cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
- Tumor Immunity Research Center of Hunan Provincial Geriatric Institute, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Lichun Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyu Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yinhong Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ziyi Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling Wu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xiangping Huang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Qianhui Ouyang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Sixiang Liu
- Department of Emergency, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410006, Hunan, China
| | - Ying Huang
- Department of Emergency, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410006, Hunan, China.
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, China.
| |
Collapse
|
37
|
Zhao X, Perez JM, Faull PA, Chan C, Munting FW, Canadeo LA, Cenik C, Huibregtse JM. Cellular targets and lysine selectivity of the HERC5 ISG15 ligase. iScience 2024; 27:108820. [PMID: 38303729 PMCID: PMC10831901 DOI: 10.1016/j.isci.2024.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
ISG15 is a type I interferon-induced ubiquitin-like modifier that functions in innate immune responses. The major human ISG15 ligase is hHERC5, a ribosome-associated HECT E3 that broadly ISGylates proteins cotranslationally. Here, we characterized the hHERC5-dependent ISGylome and identified over 2,000 modified lysines in over 1,100 proteins in IFN-β-stimulated cells. In parallel, we compared the substrate selectivity hHERC5 to the major mouse ISG15 ligase, mHERC6, and analysis of sequences surrounding ISGylation sites revealed that hHERC5 and mHERC6 have distinct preferences for amino acid sequence context. Several features of the datasets were consistent with ISGylation of ribosome-tethered nascent chains, and mHERC6, like hHERC5, cotranslationally modified nascent polypeptides. The ISGylome datasets presented here represent the largest numbers of protein targets and modification sites attributable to a single Ub/Ubl ligase and the lysine selectivities of the hHERC5 and mHERC6 enzymes may have implications for the activities of HECT domain ligases, generally.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jessica M. Perez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Peter A. Faull
- Biological Mass Spectrometry Facility, Center for Biomedical Research Support, University of Texas at Austin, Austin, TX 78712, USA
| | - Catherine Chan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Femke W. Munting
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Larissa A. Canadeo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon M. Huibregtse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- John Ring LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
38
|
Cai J, Song M, Li M, Merchant M, Benz F, McClain C, Klein J. Site-Specific Identification of Protein S-Acylation by IodoTMT0 Labeling and Immobilized Anti-TMT Antibody Resin Enrichment. J Proteome Res 2024; 23:673-683. [PMID: 38157263 PMCID: PMC12082655 DOI: 10.1021/acs.jproteome.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Protein S-acylation is a reversible post-translational modification (PTM). It is present on diverse proteins and has important roles in regulating protein function. Aminolysis with hydroxylamine is widely used in the global identification of the PTM. However, the identification is indirect. Distinct criteria have been used for identification, and the false discovery rate has not been addressed. Here, we report a site-specific method for S-acylation identification based on tagging of S-acylation sites with iodoTMT0. Efforts to improve the performance of the method and confidence of identification are discussed, highlighting the importance of reducing contaminant peptides and keeping the recovery rate consistent between aliquots with or without hydroxylamine treatment. With very stringent criteria, presumptive S-acylation sites of 269, 684, 695, and 780 were identified from HK2 cells, HK11 cells, mouse brain, and mouse liver samples, respectively. Among them, the newly identified protein S-acylation sites are equivalent to 34% of human and 24% of mouse S-acylation sites reported previously. In addition, false-positive rates for S-acylation identification and S-acylation abundances were estimated. Significant differences in S-acylation abundance were found from different samples (from 0.08% in HK2 cells to 0.76% in mouse brain), and the false-positive rates were significantly higher for samples with a low abundance of S-acylation.
Collapse
Affiliation(s)
- Jian Cai
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
| | - Ming Song
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40292, United States
| | - Ming Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
| | - Michael Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
| | - Frederick Benz
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202, United States
| | - Craig McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202, United States
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Jon Klein
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, United States
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40292, United States
| |
Collapse
|
39
|
Mohallem R, Aryal UK. Nuclear Phosphoproteome Reveals Prolyl Isomerase PIN1 as a Modulator of Oncogene-Induced Senescence. Mol Cell Proteomics 2024; 23:100715. [PMID: 38216124 PMCID: PMC10864342 DOI: 10.1016/j.mcpro.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
40
|
Zhang K, Xie N, Ye H, Miao J, Xia B, Yang Y, Peng H, Xu S, Wu T, Tao C, Ruan J, Wang Y, Yang S. Glucose restriction enhances oxidative fiber formation: A multi-omic signal network involving AMPK and CaMK2. iScience 2024; 27:108590. [PMID: 38161415 PMCID: PMC10755363 DOI: 10.1016/j.isci.2023.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Skeletal muscle is a highly plastic organ that adapts to different metabolic states or functional demands. This study explored the impact of permanent glucose restriction (GR) on skeletal muscle composition and metabolism. Using Glut4m mice with defective glucose transporter 4, we conducted multi-omics analyses at different ages and after low-intensity treadmill training. The oxidative fibers were significantly increased in Glut4m muscles. Mechanistically, GR activated AMPK pathway, promoting mitochondrial function and beneficial myokine expression, and facilitated slow fiber formation via CaMK2 pathway. Phosphorylation-activated Perm1 may synergize AMPK and CaMK2 signaling. Besides, MAPK and CDK kinases were also implicated in skeletal muscle protein phosphorylation during GR response. This study provides a comprehensive signaling network demonstrating how GR influences muscle fiber types and metabolic patterns. These insights offer valuable data for understanding oxidative fiber formation mechanisms and identifying clinical targets for metabolic diseases.
Collapse
Affiliation(s)
- Kaiyi Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, 5030 Gembloux, Belgium
| | - Ning Xie
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Huaqiong Ye
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jiakun Miao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Boce Xia
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yu Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Huanqi Peng
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shuang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
41
|
Ma Q, Zeng Q, Wang K, Qian M, Li J, Wang H, Zhang H, Jiang J, Chen Z, Huang W. Acetyltransferase P300 Regulates Glucose Metabolic Reprogramming through Catalyzing Succinylation in Lung Cancer. Int J Mol Sci 2024; 25:1057. [PMID: 38256128 PMCID: PMC10816063 DOI: 10.3390/ijms25021057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Aberrant protein post-translational modification is a hallmark of malignant tumors. Lysine succinylation (Ksucc) plays a vital role in cell energy metabolism in various cancers. However, whether succinylation can be catalyzed by acetyltransferase p300 remains unclear. In this study, we unveiled that p300 is a "writer" for succinylation, and p300-mediated Ksucc promotes cell glycometabolism in lung adenocarcinoma (LUAD). Specifically, our succinylome data revealed that EP300 deficiency leads to the systemic reduction of Ksucc, and 79.55% of the p300-succinylated proteins were found in the cytoplasm, which were primarily enriched in the carbohydrate metabolism process. Interestingly, deleting EP300 led to a notable decrease in Ksucc levels on several glycolytic enzymes, especially Phosphoglycerate Kinase 1 (PGK1). Mutation of the succinylated site of PGK1 notably hindered cell glycolysis and lactic acid excretion. Metabolomics in vivo indicated that p300-caused metabolic reprogramming was mainly attributed to the altered carbohydrate metabolism. In addition, 89.35% of LUAD patients exhibited cytoplasmic localization of p300, with higher levels in tumor tissues than adjacent normal tissues. High levels of p300 correlated with advanced tumor stages and poor prognosis of LUAD patients. Briefly, we disclose the activity of p300 to catalyze succinylation, which contributes to cell glucose metabolic reprogramming and malignant progression of lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Wan Huang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
42
|
Bo Z, Li X, Zhang C, Guo M, Cao Y, Zhang X, Wu Y. Phosphoproteomic landscape of pseudorabies virus infection reveals multiple potential antiviral targets. Microbiol Spectr 2024; 12:e0301023. [PMID: 37991362 PMCID: PMC10783065 DOI: 10.1128/spectrum.03010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Pseudorabies virus (PRV) is a kind of alpha herpesvirus that infects a wide range of animals and even human beings. Therefore, it is important to explore the mechanisms behind PRV replication and pathogenesis. By conducting a tandem mass tag-based phosphoproteome, this study revealed the phosphorylated proteins and cellular response pathways involved in PRV infection. Findings from this study shed light on the relationship between the phosphorylated cellular proteins and PRV infection, as well as guiding the discovery of targets for the development of antiviral compounds against PRV.
Collapse
Affiliation(s)
- Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaojuan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yantao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
43
|
Ding T, Yang YH, Wang QC, Wu Y, Han R, Zhang XT, Kong J, Yang JT, Liu JF. Global profiling of protein lactylation in Caenorhabditis elegans. Proteomics 2024; 24:e2300185. [PMID: 37847886 DOI: 10.1002/pmic.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Lactylation, as a novel posttranslational modification, is essential for studying the functions and regulation of proteins in physiological and pathological processes, as well as for gaining in-depth knowledge on the occurrence and development of many diseases, including tumors. However, few studies have examined the protein lactylation of one whole organism. Thus, we studied the lactylation of global proteins in Caenorhabditis elegans to obtain an in vivo lactylome. Using an MS-based platform, we identified 1836 Class I (localization probabilities > 0.75) lactylated sites in 487 proteins. Bioinformatics analysis showed that lactylated proteins were mainly located in the cytoplasm and involved in the tricarboxylic acid cycle (TCA cycle) and other metabolic pathways. Then, we evaluated the conservation of lactylation in different organisms. In total, 41 C. elegans proteins were lactylated and homologous to lactylated proteins in humans and rats. Moreover, lactylation on H4K80 was conserved in three species. An additional 238 lactylated proteins were identified in C. elegans for the first time. This study establishes the first lactylome database in C. elegans and provides a basis for studying the role of lactylation.
Collapse
Affiliation(s)
- Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Ye-Hong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qiao-Chu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Rong Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xu-Tong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jie Kong
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jun-Tao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang-Feng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy ofMedical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Li X, Zhu Y, Yao Z, Ge R. The lysine 2-hydroxyisobutyrylome of Helicobacter pylori: Indicating potential roles of lysine 2-hydroxyisobutyrylation in the bacterial metabolism. Microb Pathog 2024; 186:106510. [PMID: 38147967 DOI: 10.1016/j.micpath.2023.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Helicobacter pylori (H. pylori) is a pathogen which colonizes the stomach, causing ulcers, chronic gastritis and other related diseases. Protein post-translational modifications (PTMs) in bacteria mainly include glycosylation, ubiquitination, nitrosylation, methylation, phosphorylation and acetylation, all of which have divergent functions in the physiology and pathology of the bacterium. Lysine 2-hydroxyisobutyrylation (Khib) is a newly discovered type of PTM in recent years in some kinds of organisms, and this PTM is involved in the regulation of a variety of metabolic process, such as bacterial glucose metabolism, lipid metabolism and protein synthesis. This study performed the first qualitative lysine 2-hydroxyisobutyrylome in H. pylori, and a total of 4419 Khib sites in 812 proteins were identified. The results show that Khib sites are mainly located in the key functional regions or active domains of proteins involved in nickel-trafficking, energy production, virulence factors, anti-oxidation, metal resistance, and ribosome biosynthesis in H. pylori. The study presented here provides new hints in the metabolism and pathology of H. pylori and the proteins with Khib modification may be potentially promising targets for the further development of antibiotics, especially considering the high occurrence of treatment failure of H. pylori failure due to development of antibiotics-resistance.
Collapse
Affiliation(s)
- Xinhang Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yulin Zhu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zihui Yao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruiguang Ge
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
45
|
Duan X, Zhang Y, Huang X, Ma X, Gao H, Wang Y, Xiao Z, Huang C, Wang Z, Li B, Yang W, Wang Y. GreenPhos, a universal method for in-depth measurement of plant phosphoproteomes with high quantitative reproducibility. MOLECULAR PLANT 2024; 17:199-213. [PMID: 38018035 DOI: 10.1016/j.molp.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
Protein phosphorylation regulates a variety of important cellular and physiological processes in plants. In-depth profiling of plant phosphoproteomes has been more technically challenging than that of animal phosphoproteomes. This is largely due to the need to improve protein extraction efficiency from plant cells, which have a dense cell wall, and to minimize sample loss resulting from the stringent sample clean-up steps required for the removal of a large amount of biomolecules interfering with phosphopeptide purification and mass spectrometry analysis. To this end, we developed a method with a streamlined workflow for highly efficient purification of phosphopeptides from tissues of various green organisms including Arabidopsis, rice, tomato, and Chlamydomonas reinhardtii, enabling in-depth identification with high quantitative reproducibility of about 11 000 phosphosites, the greatest depth achieved so far with single liquid chromatography-mass spectrometry (LC-MS) runs operated in a data-dependent acquisition (DDA) mode. The mainstay features of the method are the minimal sample loss achieved through elimination of sample clean-up before protease digestion and of desalting before phosphopeptide enrichment and hence the dramatic increases of time- and cost-effectiveness. The method, named GreenPhos, combined with single-shot LC-MS, enabled in-depth quantitative identification of Arabidopsis phosphoproteins, including differentially phosphorylated spliceosomal proteins, at multiple time points during salt stress and a number of kinase substrate motifs. GreenPhos is expected to serve as a universal method for purification of plant phosphopeptides, which, if samples are further fractionated and analyzed by multiple LC-MS runs, could enable measurement of plant phosphoproteomes with an unprecedented depth using a given mass spectrometry technology.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongshu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bolong Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
Jayaraman S, Wu X, Kalari KR, Tang X, Kuffel MJ, Bruinsma ES, Jalali S, Peterson KL, Correia C, Kudgus RA, Kaufmann SH, Renuse S, Ingle JN, Reid JM, Ames MM, Fields AP, Schellenberg MJ, Hawse JR, Pandey A, Goetz MP. Endoxifen downregulates AKT phosphorylation through protein kinase C beta 1 inhibition in ERα+ breast cancer. NPJ Breast Cancer 2023; 9:101. [PMID: 38114522 PMCID: PMC10730845 DOI: 10.1038/s41523-023-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCβ) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCβ1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCβ1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCβ1 degradation, attenuated PKCβ1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCβ1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCβ1 as an ENDX target, indicate that PKCβ1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.
Collapse
Affiliation(s)
| | - Xinyan Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mary J Kuffel
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shahrzad Jalali
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Cristina Correia
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rachel A Kudgus
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joel M Reid
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew M Ames
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL, 32224, USA
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Cancer Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P Goetz
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
47
|
Jiang B, Yang J, He R, Wang D, Huang Y, Zhao G, Ning M, Zeng T, Li G. Integrated multi-omics analysis for lung adenocarcinoma in Xuanwei, China. Aging (Albany NY) 2023; 15:14263-14291. [PMID: 38095636 PMCID: PMC10756121 DOI: 10.18632/aging.205300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Xuanwei lung cancer (XWLC) is well-known for its high incidence and mortality. However, the molecular mechanism is still unclear. METHODS We performed a comprehensive transcriptomic, proteomic, and phosphoproteomic characterization of tumors and matched normal adjacent tissues from three XWLC patients with lung adenocarcinoma (LUAD). RESULTS Integrated transcriptome and proteome analysis revealed dysregulated molecules and pathways in tumors and identified enhanced metabolic-disease coupling. Non-coding RNAs were widely involved in post-transcriptional regulatory mechanisms to coordinate the progress of LUAD and partially explained the molecular differences between RNA and protein expression patterns. Phosphoproteome provided evidence support for new phosphate sites, reporting the potential roles of core kinase family members and key kinase pathways involved in metabolism, immunity, and homeostasis. In addition, by comparing with the previous LUAD researches, we emphasized the higher degree of oxidative phosphorylation in Xuanwei LUAD and pointed that VIPR1 deficiency aggravated metabolic dysfunction. CONCLUSION Our integrated multi-omics analysis provided a powerful resource for a systematic understanding of the molecular structure of XWLC and proposed therapeutic opportunities based on redox metabolism.
Collapse
Affiliation(s)
- Boyi Jiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Jiapeng Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Rui He
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Dong Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Mingjie Ning
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Teng Zeng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Guangjian Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| |
Collapse
|
48
|
Po A, Eyers CE. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J Proteome Res 2023; 22:3663-3675. [PMID: 37937372 PMCID: PMC10696603 DOI: 10.1021/acs.jproteome.3c00416] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Top-down proteomics (TDP) aims to identify and profile intact protein forms (proteoforms) extracted from biological samples. True proteoform characterization requires that both the base protein sequence be defined and any mass shifts identified, ideally localizing their positions within the protein sequence. Being able to fully elucidate proteoform profiles lends insight into characterizing proteoform-unique roles, and is a crucial aspect of defining protein structure-function relationships and the specific roles of different (combinations of) protein modifications. However, defining and pinpointing protein post-translational modifications (PTMs) on intact proteins remains a challenge. Characterization of (heavily) modified proteins (>∼30 kDa) remains problematic, especially when they exist in a population of similarly modified, or kindred, proteoforms. This issue is compounded as the number of modifications increases, and thus the number of theoretical combinations. Here, we present our perspective on the challenges of analyzing kindred proteoform populations, focusing on annotation of protein modifications on an "average" protein. Furthermore, we discuss the technical requirements to obtain high quality fragmentation spectral data to robustly define site-specific PTMs, and the fact that this is tempered by the time requirements necessary to separate proteoforms in advance of mass spectrometry analysis.
Collapse
Affiliation(s)
- Allen Po
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| |
Collapse
|
49
|
De Marco Verissimo C, Cwiklinski K, Nilsson J, Mirgorodskaya E, Jin C, Karlsson NG, Dalton JP. Glycan Complexity and Heterogeneity of Glycoproteins in Somatic Extracts and Secretome of the Infective Stage of the Helminth Fasciola hepatica. Mol Cell Proteomics 2023; 22:100684. [PMID: 37993102 PMCID: PMC10755494 DOI: 10.1016/j.mcpro.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland.
| | - Krystyna Cwiklinski
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Ekaterina Mirgorodskaya
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Life Science and Health, Faculty of Health Science, Oslo Metropolitan University, Oslo, Norway
| | - John P Dalton
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland
| |
Collapse
|
50
|
Wu F, Ren F, Xie X, Meng J, Wu X. The implication of viability and pathogenicity by truncated lipopolysaccharide in Yersinia enterocolitica. Appl Microbiol Biotechnol 2023; 107:7165-7180. [PMID: 37728625 DOI: 10.1007/s00253-023-12785-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
The fast envelope stress responses play a key role in the transmission and pathogenesis of Yersinia enterocolitica, one of the most common foodborne pathogens. Our previous study showed that deletion of the waaF gene, essential for the biosynthesis of lipopolysaccharide (LPS) core polysaccharides, led to the formation of a truncated LPS structure and induced cell envelope stress. This envelope stress may disturb the intracellular signal transduction, thereby affecting the physiological functions of Y. enterocolitica. In this study, truncated LPS caused by waaF deletion was used as a model of envelope stress in Y. enterocolitica. We investigated the mechanisms of envelope stress responses and the cellular functions affected by truncated LPS. Transcriptome analysis and phenotypic validation showed that LPS truncation reduced flagellar assembly, bacterial chemotaxis, and inositol phosphate metabolism, presenting lower pathogenicity and viability both in vivo and in vitro environments. Further 4D label-free phosphorylation analysis confirmed that truncated LPS perturbed multiple intracellular signal transduction pathways. Specifically, a comprehensive discussion was conducted on the mechanisms by which chemotactic signal transduction and Rcs system contribute to the inhibition of chemotaxis. Finally, the pathogenicity of Y. enterocolitica with truncated LPS was evaluated in vitro using IPEC-J2 cells as models, and it was found that truncated LPS exhibited reduced adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. Our research provides an understanding of LPS in the regulation of Y. enterocolitica viability and pathogenicity and, thus, opening new avenues to develop novel food safety strategies or drugs to prevent and control Y. enterocolitica infections. KEY POINTS: • Truncated LPS reduces flagellar assembly, chemotaxis, and inositol phosphate metabolism in Y. enterocolitica. • Truncated LPS reduces adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. • Truncated LPS regulates intracellular signal transduction of Y. enterocolitica.
Collapse
Affiliation(s)
- Fan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fengyun Ren
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China.
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| |
Collapse
|