1
|
Matsuzono K, Honda H, Mashiko T, Koide R, Sakashita E, Endo H, Kitamoto T, Fujimoto S. GPI-anchorless prion disease is sensitive to oxidative stress and shows potential for treatment with edaravone, based on iPS-derived neuron study. Cell Mol Life Sci 2025; 82:202. [PMID: 40372528 PMCID: PMC12081781 DOI: 10.1007/s00018-025-05698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Only a few reports have generated induced pluripotent stem cells from patients with prion diseases, making it important to conduct translational studies using cells derived from individuals with prion protein (PRNP) mutations. In this study, we established induced pluripotent stem cells from a patient with a glycosylphosphatidylinositol-anchorless PRNP mutation (Y162X), which leads to abnormal deposits of prion protein in various organs. While no abnormal intracellular prion protein deposits were observed in the neurons differentiated from PRNP Y162X induced pluripotent stem cells, extracellular PrP aggregates secretions were significantly increased, and these cells were significantly more sensitive to oxidative stress compared to control cells. Utilizing this PRNP Y162X iPSC-derived neuron model, we discovered that edaravone reduced the sensitivity of PRNP Y162X cells to oxidative stress. Following this finding, we treated a PRNP Y162X patient with edaravone for two years, which successfully suppressed indicators of disease progression. Our study demonstrates that the pathology of the glycosylphosphatidylinositol-anchorless PRNP mutation is associated with oxidative stress and highlights the potential of induced pluripotent stem cell technology in identifying novel treatments for rare prion diseases.
Collapse
Affiliation(s)
- Kosuke Matsuzono
- Division of Neurology, Department of Medicine, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Neuropathology Center, Department of Neurology, National Hospital Organization, Omuta National Hospital, Fukuoka, Japan
| | - Takafumi Mashiko
- Division of Neurology, Department of Medicine, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Reiji Koide
- Division of Neurology, Department of Medicine, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Eiji Sakashita
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Tetsuyuki Kitamoto
- Division of CJD Science and Technology, Department of Neurological Science, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
2
|
Masone A, Zucchelli C, Caruso E, Lavigna G, Eraña H, Giachin G, Tapella L, Comerio L, Restelli E, Raimondi I, Elezgarai SR, De Leo F, Quilici G, Taiarol L, Oldrati M, Lorenzo NL, García-Martínez S, Cagnotto A, Lucchetti J, Gobbi M, Vanni I, Nonno R, Di Bari MA, Tully MD, Cecatiello V, Ciossani G, Pasqualato S, Van Anken E, Salmona M, Castilla J, Requena JR, Banfi S, Musco G, Chiesa R. A tetracationic porphyrin with dual anti-prion activity. iScience 2023; 26:107480. [PMID: 37636075 PMCID: PMC10448035 DOI: 10.1016/j.isci.2023.107480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Prions are deadly infectious agents made of PrPSc, a misfolded variant of the cellular prion protein (PrPC) which self-propagates by inducing misfolding of native PrPC. PrPSc can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, hampering the development of effective therapies. We identified Zn(II)-BnPyP, a tetracationic porphyrin that binds to distinct domains of native PrPC, eliciting a dual anti-prion effect. Zn(II)-BnPyP binding to a C-terminal pocket destabilizes the native PrPC fold, hindering conversion to PrPSc; Zn(II)-BnPyP binding to the flexible N-terminal tail disrupts N- to C-terminal interactions, triggering PrPC endocytosis and lysosomal degradation, thus reducing the substrate for PrPSc generation. Zn(II)-BnPyP inhibits propagation of different prion strains in vitro, in neuronal cells and organotypic brain cultures. These results identify a PrPC-targeting compound with an unprecedented dual mechanism of action which might be exploited to achieve anti-prion effects without engendering drug resistance.
Collapse
Affiliation(s)
- Antonio Masone
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Giada Lavigna
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Hasier Eraña
- Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, 35131 Padua, Italy
| | - Laura Tapella
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Liliana Comerio
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Elena Restelli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Ilaria Raimondi
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Saioa R. Elezgarai
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Federica De Leo
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Lorenzo Taiarol
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Marvin Oldrati
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Nuria L. Lorenzo
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain
| | - Sandra García-Martínez
- Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Alfredo Cagnotto
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Jacopo Lucchetti
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Michele A. Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Mark D. Tully
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France
| | - Valentina Cecatiello
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Giuseppe Ciossani
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Eelco Van Anken
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Mario Salmona
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Joaquín Castilla
- Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Bizkaia, Spain
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Roberto Chiesa
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| |
Collapse
|
3
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
4
|
Otero A, Barrio T, Eraña H, Charco JM, Betancor M, Díaz-Domínguez CM, Marín B, Andréoletti O, Torres JM, Kong Q, Badiola JJ, Bolea R, Castilla J. Glycans are not necessary to maintain the pathobiological features of bovine spongiform encephalopathy. PLoS Pathog 2022; 18:e1010900. [PMID: 36206325 PMCID: PMC9581369 DOI: 10.1371/journal.ppat.1010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/19/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
The role of the glycosylation status of PrPC in the conversion to its pathological counterpart and on cross-species transmission of prion strains has been widely discussed. Here, we assessed the effect on strain characteristics of bovine spongiform encephalopathy (BSE) isolates with different transmission histories upon propagation on a model expressing a non-glycosylated human PrPC. Bovine, ovine and porcine-passaged BSE, and variant Creutzfeldt-Jakob disease (vCJD) isolates were used as seeds/inocula in both in vitro and in vivo propagation assays using the non-glycosylated human PrPC-expressing mouse model (TgNN6h). After protein misfolding cyclic amplification (PMCA), all isolates maintained the biochemical characteristics of BSE. On bioassay, all PMCA-propagated BSE prions were readily transmitted to TgNN6h mice, in agreement with our previous in vitro results. TgNN6h mice reproduced the characteristic neuropathological and biochemical hallmarks of BSE, suggesting that the absence of glycans did not alter the pathobiological features of BSE prions. Moreover, back-passage of TgNN6h-adapted BSE prions to BoTg110 mice recovered the full BSE phenotype, confirming that the glycosylation of human PrPC is not essential for the preservation of the human transmission barrier for BSE prions or for the maintenance of BSE strain properties.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
| | - Tomás Barrio
- UMR INRAE-ENVT 1225 Interactions Hôtes-Agents Pathogènes (IHAP), Institute Nationale de Recherche pour l’Alimentation, l’Agriculture et l’Environnement (INRAE)—École Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse, Toulouse, France
| | - Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Prion Research Lab, Derio, Spain
- Atlas Molecular Pharma S. L., Derio, Spain
| | - Jorge M. Charco
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Prion Research Lab, Derio, Spain
- Atlas Molecular Pharma S. L., Derio, Spain
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
| | - Carlos M. Díaz-Domínguez
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Prion Research Lab, Derio, Spain
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
| | - Olivier Andréoletti
- UMR INRAE-ENVT 1225 Interactions Hôtes-Agents Pathogènes (IHAP), Institute Nationale de Recherche pour l’Alimentation, l’Agriculture et l’Environnement (INRAE)—École Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse, Toulouse, France
| | - Juan M. Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain
| | - Qingzhong Kong
- Departments of Pathology and Neurology & National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, ISS Aragón, Zaragoza, Spain
- * E-mail: (JC); (RB)
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Prion Research Lab, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- * E-mail: (JC); (RB)
| |
Collapse
|
5
|
Ding M, Chen Y, Lang Y, Cui L. The Role of Cellular Prion Protein in Cancer Biology: A Potential Therapeutic Target. Front Oncol 2021; 11:742949. [PMID: 34595121 PMCID: PMC8476782 DOI: 10.3389/fonc.2021.742949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Prion protein has two isoforms including cellular prion protein (PrPC) and scrapie prion protein (PrPSc). PrPSc is the pathological aggregated form of prion protein and it plays an important role in neurodegenerative diseases. PrPC is a glycosylphosphatidylinositol (GPI)-anchored protein that can attach to a membrane. Its expression begins at embryogenesis and reaches the highest level in adulthood. PrPC is expressed in the neurons of the nervous system as well as other peripheral organs. Studies in recent years have disclosed the involvement of PrPC in various aspects of cancer biology. In this review, we provide an overview of the current understanding of the roles of PrPC in proliferation, cell survival, invasion/metastasis, and stem cells of cancer cells, as well as its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Manqiu Ding
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yongqiang Chen
- CancerCare Manitoba Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Yue Lang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
A New Take on Prion Protein Dynamics in Cellular Trafficking. Int J Mol Sci 2020; 21:ijms21207763. [PMID: 33092231 PMCID: PMC7589859 DOI: 10.3390/ijms21207763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The mobility of cellular prion protein (PrPC) in specific cell membrane domains and among distinct cell compartments dictates its molecular interactions and directs its cell function. PrPC works in concert with several partners to organize signaling platforms implicated in various cellular processes. The scaffold property of PrPC is able to gather a molecular repertoire to create heterogeneous membrane domains that favor endocytic events. Dynamic trafficking of PrPC through multiple pathways, in a well-orchestrated mechanism of intra and extracellular vesicular transport, defines its functional plasticity, and also assists the conversion and spreading of its infectious isoform associated with neurodegenerative diseases. In this review, we highlight how PrPC traffics across intra- and extracellular compartments and the consequences of this dynamic transport in governing cell functions and contributing to prion disease pathogenesis.
Collapse
|
7
|
Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019; 25:e3216. [PMID: 31713950 PMCID: PMC6899880 DOI: 10.1002/psc.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.
Collapse
Affiliation(s)
- Stefanie Hackl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| |
Collapse
|
8
|
Physiological role of Prion Protein in Copper homeostasis and angiogenic mechanisms of endothelial cells. THE EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The Prion Protein (PrP) is mostly known for its role in prion diseases, where its misfolding and aggregation can cause fatal neurodegenerative conditions such as the bovine spongiform encephalopathy and human Creutzfeldt–Jakob disease. Physiologically, PrP is involved in several processes including adhesion, proliferation, differentiation and angiogenesis, but the molecular mechanisms behind its role remain unclear. PrP, due to its well-described structure, is known to be able to regulate copper homeostasis; however, copper dyshomeostasis can lead to developmental defects. We investigated PrP-dependent regulation of copper homeostasis in human endothelial cells (HUVEC) using an RNA-interference protocol. PrP knockdown did not influence cell viability in silenced HUVEC (PrPKD) compared to control cells, but significantly increased PrPKD HUVEC cells sensitivity to cytotoxic copper concentrations. A reduction of PrPKD cells reductase activity and copper ions transport capacity was observed. Furthermore, PrPKD-derived spheroids exhibited altered morphogenesis and their derived cells showed a decreased vitality 24 and 48 hours after seeding. PrPKD spheroid-derived cells also showed disrupted tubulogenesis in terms of decreased coverage area, tubule length and total nodes number on matrigel, preserving unaltered VEGF receptors expression levels. Our results highlight PrP physiological role in cellular copper homeostasis and in the angiogenesis of endothelial cells.
Collapse
|
9
|
Sarnataro D. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases. Int J Mol Sci 2018; 19:ijms19103081. [PMID: 30304819 PMCID: PMC6213118 DOI: 10.3390/ijms19103081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. It is believed that misfolded and abnormal β-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer's disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the "prion-like" properties of amyloid-β and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, School of Medicine, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
10
|
Martellucci S, Manganelli V, Santacroce C, Santilli F, Piccoli L, Sorice M, Mattei V. Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells. Prion 2018; 12:117-126. [PMID: 29644924 DOI: 10.1080/19336896.2018.1463797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular prion protein (PrPC) is expressed in a wide variety of stem cells in which regulates their self-renewal as well as differentiation potential. In this study we investigated the presence of PrPC in human dental pulp-derived stem cells (hDPSCs) and its role in neuronal differentiation process. We show that hDPSCs expresses early PrPC at low concentration and its expression increases after two weeks of treatment with EGF/bFGF. Then, we analyzed the association of PrPC with gangliosides and EGF receptor (EGF-R) during neuronal differentiation process. PrPC associates constitutively with GM2 in control hDPSCs and with GD3 only after neuronal differentiation. Otherwise, EGF-R associates weakly in control hDPSCs and more markedly after neuronal differentiation. To analyze the functional role of PrPC in the signal pathway mediated by EGF/EGF-R, a siRNA PrP was applied to ablate PrPC and its function. The treatment with siRNA PrP significantly prevented Akt and ERK1/2 phosphorylation induced by EGF. Moreover, siRNA PrP treatment significantly prevented neuronal-specific antigens expression induced by EGF/bFGF, indicating that cellular prion protein is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that PrPC interact with EGF-R within lipid rafts, playing a role in the multimolecular signaling complexes involved in hDPSCs neuronal differentiation.
Collapse
Affiliation(s)
- Stefano Martellucci
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy.,b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Valeria Manganelli
- b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Costantino Santacroce
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy
| | - Francesca Santilli
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy
| | - Luca Piccoli
- c Department of Science Dentistry and Maxillofacial - "Sapienza" University , Viale Regina Elena 287/A, Rome , Italy
| | - Maurizio Sorice
- b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Vincenzo Mattei
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy.,b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| |
Collapse
|
11
|
Kovač V, Čurin Šerbec V. Prion Proteins Without the Glycophosphatidylinositol Anchor: Potential Biomarkers in Neurodegenerative Diseases. Biomark Insights 2018; 13:1177271918756648. [PMID: 29449775 PMCID: PMC5808966 DOI: 10.1177/1177271918756648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 01/17/2023] Open
Abstract
Prion protein (PrP) is a biomolecule that is involved in neuronal signaling, myelinization, and the development of neurodegenerative diseases. In the cell, PrP is shed by the ADAM10 protease. This process generates PrP molecules that lack glycophosphatidylinositol anchor, and these molecules incorporate into toxic aggregates and neutralize toxic oligomers. Due to this dual role, these molecules are important biomarkers for neurodegenerative diseases. In this review, we present shed PrP as a potential biomarker, with a focus on PrP226*, which may be the main biomarker for predicting neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Valerija Kovač
- Department for the Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department for the Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
12
|
Takada LT, Kim MO, Metcalf S, Gala II, Geschwind MD. Prion disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:441-464. [DOI: 10.1016/b978-0-444-64076-5.00029-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
14
|
Sakaguchi S, Uchiyama K. Novel amplification mechanism of prions through disrupting sortilin-mediated trafficking. Prion 2017; 11:398-404. [PMID: 29099278 DOI: 10.1080/19336896.2017.1391435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform of prion protein, PrPSc, which leads to marked accumulation of PrPSc in brains, is a key pathogenic event in prion diseases, a group of fatal neurodegenerative disorders caused by prions. However, the exact mechanism of PrPSc accumulation in prion-infected neurons remains unknown. We recently reported a novel cellular mechanism to support PrPSc accumulation in prion-infected neurons, in which PrPSc itself promotes its accumulation by evading the cellular inhibitory mechanism, which is newly identified in our recent study. We showed that the VPS10P sorting receptor sortilin negatively regulates PrPSc accumulation in prion-infected neurons, by interacting with PrPC and PrPSc and trafficking them to lysosomes for degradation. However, PrPSc stimulated lysosomal degradation of sortilin, disrupting the sortilin-mediated degradation of PrPC and PrPSc and eventually evoking further accumulation of PrPSc in prion-infected neurons. These findings suggest a positive feedback amplification mechanism for PrPSc accumulation in prion-infected neurons.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- a Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima , Japan
| | - Keiji Uchiyama
- a Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima , Japan
| |
Collapse
|
15
|
Shah SZA, Zhao D, Hussain T, Yang L. Role of the AMPK pathway in promoting autophagic flux via modulating mitochondrial dynamics in neurodegenerative diseases: Insight into prion diseases. Ageing Res Rev 2017; 40:51-63. [PMID: 28903070 DOI: 10.1016/j.arr.2017.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
Neurons are highly energy demanding cells dependent on the mitochondrial oxidative phosphorylation system. Mitochondria generate energy via respiratory complexes that constitute the electron transport chain. Adenosine triphosphate depletion or glucose starvation act as a trigger for the activation of adenosine monophosphate-activated protein kinase (AMPK). AMPK is an evolutionarily conserved protein that plays an important role in cell survival and organismal longevity through modulation of energy homeostasis and autophagy. Several studies suggest that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. Mild mitochondrial dysfunction leads to activated AMPK signaling, but severe endoplasmic reticulum stress and mitochondrial dysfunction may lead to a shift from autophagy towards apoptosis and perturbed AMPK signaling. Hence, controlling mitochondrial dynamics and autophagic flux via AMPK activation might be a useful therapeutic strategy in neurodegenerative diseases to reinstate energy homeostasis and degrade misfolded proteins. In this review article, we discuss briefly the role of AMPK signaling in energy homeostasis, the structure of AMPK, activation mechanisms of AMPK, regulation of AMPK, the role of AMPK in autophagy, the role of AMPK in neurodegenerative diseases, and finally the role of autophagic flux in prion diseases.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Stincardini C, Massignan T, Biggi S, Elezgarai SR, Sangiovanni V, Vanni I, Pancher M, Adami V, Moreno J, Stravalaci M, Maietta G, Gobbi M, Negro A, Requena JR, Castilla J, Nonno R, Biasini E. An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. PLoS One 2017; 12:e0182589. [PMID: 28787011 PMCID: PMC5546605 DOI: 10.1371/journal.pone.0182589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/20/2017] [Indexed: 02/01/2023] Open
Abstract
Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions.
Collapse
Affiliation(s)
- Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saioa R. Elezgarai
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Michael Pancher
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Valentina Adami
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jorge Moreno
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giulia Maietta
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Medical Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Romolo Nonno
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- * E-mail:
| |
Collapse
|
17
|
Sarnataro D, Pepe A, Zurzolo C. Cell Biology of Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:57-82. [PMID: 28838675 DOI: 10.1016/bs.pmbts.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The precise function of PrPC remains elusive but may depend upon its cellular localization. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. Nonetheless some forms of prion disease develop in the apparent absence of infectious PrPSc, suggesting that molecular species of PrP distinct from PrPSc may represent the primary neurotoxic culprits. Indeed, in some inherited cases of human prion disease, the predominant form of PrP detectable in the brain is not PrPSc but rather CtmPrP, a transmembrane form of the protein. The relationship between the neurodegeneration occurring in prion diseases involving PrPSc and that associated with CtmPrP remains unclear. However, the different membrane topology of the PrP mutants, as well as the presence of the GPI anchor, could influence both the function and the intracellular localization and trafficking of the protein, all being potentially very important in the pathophysiological mechanism that ultimately causes the disease. Here, we review the latest findings on the fundamental aspects of prions biology, from the PrPC biosynthesis, function, and structure up to its intracellular traffic and analyze the possible roles of the different topological isoforms of the protein, as well as the GPI anchor, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniela Sarnataro
- University of Naples "Federico II", Naples, Italy; Ceinge-Biotecnologie avanzate, s.c.a r.l., Naples, Italy.
| | - Anna Pepe
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Hirsch TZ, Martin-Lannerée S, Mouillet-Richard S. Functions of the Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:1-34. [PMID: 28838656 DOI: 10.1016/bs.pmbts.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although initially disregarded compared to prion pathogenesis, the functions exerted by the cellular prion protein PrPC have gained much interest over the past two decades. Research aiming at unraveling PrPC functions started to intensify when it became appreciated that it would give clues as to how it is subverted in the context of prion infection and, more recently, in the context of Alzheimer's disease. It must now be admitted that PrPC is implicated in an incredible variety of biological processes, including neuronal homeostasis, stem cell fate, protection against stress, or cell adhesion. It appears that these diverse roles can all be fulfilled through the involvement of PrPC in cell signaling events. Our aim here is to provide an overview of our current understanding of PrPC functions from the animal to the molecular scale and to highlight some of the remaining gaps that should be addressed in future research.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Séverine Martin-Lannerée
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Sophie Mouillet-Richard
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France.
| |
Collapse
|
19
|
Ballmer BA, Moos R, Liberali P, Pelkmans L, Hornemann S, Aguzzi A. Modifiers of prion protein biogenesis and recycling identified by a highly parallel endocytosis kinetics assay. J Biol Chem 2017; 292:8356-8368. [PMID: 28341739 DOI: 10.1074/jbc.m116.773283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein, PrPC, is attached by a glycosylphosphatidylinositol anchor to the outer leaflet of the plasma membrane. Its misfolded isoform PrPSc is the causative agent of prion diseases. Conversion of PrPC into PrPSc is thought to take place at the cell surface or in endolysosomal organelles. Understanding the intracellular trafficking of PrPC may, therefore, help elucidate the conversion process. Here we describe a time-resolved fluorescence energy transfer (FRET) assay reporting membrane expression and real-time internalization rates of PrPC The assay is suitable for high-throughput genetic and pharmaceutical screens for modulators of PrPC trafficking. Simultaneous administration of FRET donor and acceptor anti-PrPC antibodies to living cells yielded a measure of PrPC surface density, whereas sequential addition of each antibody visualized the internalization rate of PrPC (Z' factor >0.5). RNA interference assays showed that suppression of AP2M1 (AP-2 adaptor protein), RAB5A, VPS35 (vacuolar protein sorting 35 homolog), and M6PR (mannose 6-phosphate receptor) blocked PrPC internalization, whereas down-regulation of GIT2 and VPS28 increased PrPC internalization. PrPC cell-surface expression was reduced by down-regulation of RAB5A, VPS28, and VPS35 and enhanced by silencing EHD1. These data identify a network of proteins implicated in PrPC trafficking and demonstrate the power of this assay for identifying modulators of PrPC trafficking.
Collapse
Affiliation(s)
- Boris A Ballmer
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Prisca Liberali
- Institute of Molecular Life Sciences, University of Zurich, CH-8091 Zurich, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, CH-8091 Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
20
|
Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017; 10:77. [PMID: 28373833 PMCID: PMC5357658 DOI: 10.3389/fnmol.2017.00077] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.
Collapse
Affiliation(s)
- Rafael Linden
- Laboratory of Neurogenesis, Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Takada LT, Kim MO, Cleveland RW, Wong K, Forner SA, Gala II, Fong JC, Geschwind MD. Genetic prion disease: Experience of a rapidly progressive dementia center in the United States and a review of the literature. Am J Med Genet B Neuropsychiatr Genet 2017; 174:36-69. [PMID: 27943639 PMCID: PMC7207989 DOI: 10.1002/ajmg.b.32505] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Although prion diseases are generally thought to present as rapidly progressive dementias with survival of only a few months, the phenotypic spectrum for genetic prion diseases (gPrDs) is much broader. The majority have a rapid decline with short survival, but many patients with gPrDs present as slowly progressive ataxic or parkinsonian disorders with progression over a few to several years. A few very rare mutations even present as neuropsychiatric disorders, sometimes with systemic symptoms such as gastrointestinal disorders and neuropathy, progressing over years to decades. gPrDs are caused by mutations in the prion protein gene (PRNP), and have been historically classified based on their clinicopathological features as genetic Jakob-Creutzfeldt disease (gJCD), Gerstmann-Sträussler-Scheinker (GSS), or Fatal Familial Insomnia (FFI). Mutations in PRNP can be missense, nonsense, and octapeptide repeat insertions or a deletion, and present with diverse clinical features, sensitivities of ancillary testing, and neuropathological findings. We present the UCSF gPrD cohort, including 129 symptomatic patients referred to and/or seen at UCSF between 2001 and 2016, and compare the clinical features of the gPrDs from 22 mutations identified in our cohort with data from the literature, as well as perform a literature review on most other mutations not represented in our cohort. E200K is the most common mutation worldwide, is associated with gJCD, and was the most common in the UCSF cohort. Among the GSS-associated mutations, P102L is the most commonly reported and was also the most common at UCSF. We also had several octapeptide repeat insertions (OPRI), a rare nonsense mutation (Q160X), and three novel mutations (K194E, E200G, and A224V) in our UCSF cohort. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Mee-Ohk Kim
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Ross W. Cleveland
- Department of Pediatrics, The University of Vermont Children’s Hospital, University of Vermont, Burlington, VT 05401
| | - Katherine Wong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Sven A. Forner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Ignacio Illán Gala
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jamie C. Fong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Michael D. Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| |
Collapse
|
22
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
23
|
Mukundan V, Maksoudian C, Vogel MC, Chehade I, Katsiotis MS, Alhassan SM, Magzoub M. Cytotoxicity of prion protein-derived cell-penetrating peptides is modulated by pH but independent of amyloid formation. Arch Biochem Biophys 2016; 613:31-42. [PMID: 27818203 DOI: 10.1016/j.abb.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
Prion diseases are associated with conversion of cellular prion protein (PrPC) into an abnormally folded and infectious scrapie isoform (PrPSc). We previously showed that peptides derived from the unprocessed N-termini of mouse and bovine prion proteins, mPrP1-28 and bPrP1-30, function as cell-penetrating peptides (CPPs), and destabilize model membrane systems, which could explain the infectivity and toxicity of prion diseases. However, subsequent studies revealed that treatment with mPrP1-28 or bPrP1-30 significantly reduce PrPSc levels in prion-infected cells. To explain these seemingly contradictory results, we correlated the aggregation, membrane perturbation and cytotoxicity of the peptides with their cellular uptake and intracellular localization. Although the peptides have a similar primary sequence, mPrP1-28 is amyloidogenic, whereas bPrP1-30 forms smaller oligomeric or non-fibrillar aggregates. Surprisingly, bPrP1-30 induces much higher cytotoxicity than mPrP1-28, indicating that amyloid formation and toxicity are independent. The toxicity is correlated with prolonged residence at the plasma membrane and membrane perturbation. Both ordered aggregation and toxicity of the peptides are inhibited by low pH. Under non-toxic conditions, the peptides are internalized by lipid-raft dependent macropinocytosis and localize to acidic lysosomal compartments. Our results shed light on the antiprion mechanism of the prion protein-derived CPPs and identify a potential site for PrPSc formation.
Collapse
Affiliation(s)
- Vineeth Mukundan
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Christy Maksoudian
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria C Vogel
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Marios S Katsiotis
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Saeed M Alhassan
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
24
|
Mays CE, Soto C. The stress of prion disease. Brain Res 2016; 1648:553-560. [PMID: 27060771 DOI: 10.1016/j.brainres.2016.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/31/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders that include scrapie of sheep, bovine spongiform encephalopathy of cattle, chronic wasting disease of cervids, and Creutzfeldt-Jakob disease (CJD) of humans. The etiology for prion diseases can be infectious, sporadic, or hereditary. However, the common denominator for all types is the formation of a transmissible agent composed of a β-sheet-rich, misfolded version of the host-encoded prion protein (PrPC), known as PrPSc. PrPSc self-replicates through a template-assisted process that converts the α-helical conformation of PrPC into the disease-associated isoform. In parallel with PrPSc accumulation, spongiform change is pathologically observed in the central nervous system, where "holes" appear because of massive neuronal death. Here, we review the cellular pathways triggered in response to PrPSc formation and accumulation. Available data suggest that neuronal dysfunction and death may be caused by what originates as a cellular pro-survival response to chronic PrPSc accumulation. We also discuss what is known about the complex cross-talk between the endoplasmic reticulum stress components and the quality control pathways. Better knowledge about these processes may lead to innovative therapeutic strategies based on manipulating the stress response and its consequences for neurodegeneration. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Charles E Mays
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Kaczmarczyk L, Mende Y, Zevnik B, Jackson WS. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One 2016; 11:e0154604. [PMID: 27128441 PMCID: PMC4851410 DOI: 10.1371/journal.pone.0154604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023] Open
Abstract
The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9), have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs). It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program.
Collapse
Affiliation(s)
- Lech Kaczmarczyk
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ylva Mende
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Branko Zevnik
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Walker S. Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- * E-mail:
| |
Collapse
|
26
|
Katorcha E, Klimova N, Makarava N, Savtchenko R, Pan X, Annunziata I, Takahashi K, Miyagi T, Pshezhetsky AV, d’Azzo A, Baskakov IV. Loss of Cellular Sialidases Does Not Affect the Sialylation Status of the Prion Protein but Increases the Amounts of Its Proteolytic Fragment C1. PLoS One 2015; 10:e0143218. [PMID: 26569607 PMCID: PMC4646690 DOI: 10.1371/journal.pone.0143218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/02/2015] [Indexed: 11/29/2022] Open
Abstract
The central molecular event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC), which is a sialoglycoprotein, into the disease-associated, transmissible form denoted PrPSc. Recent studies revealed a correlation between the sialylation status of PrPSc and incubation time to disease and introduced a new hypothesis that progression of prion diseases could be controlled or reversed by altering the sialylation level of PrPC. Of the four known mammalian sialidases, the enzymes that cleave off sialic acid residues, only NEU1, NEU3 and NEU4 are expressed in the brain. To test whether cellular sialidases control the steady-state sialylation level of PrPC and to identify the putative sialidase responsible for desialylating PrPC, we analyzed brain-derived PrPC from knockout mice deficient in Neu1, Neu3, Neu4, or from Neu3/Neu4 double knockouts. Surprisingly, no differences in the sialylation of PrPC or its proteolytic product C1 were noticed in any of the knockout mice tested as compared to the age-matched controls. However, significantly higher amounts of the C1 fragment relative to full-length PrPC were detected in the brains of Neu1 knockout mice as compared to WT mice or to the other knockout mice. Additional experiments revealed that in neuroblastoma cell line the sialylation pattern of C1 could be changed by an inhibitor of sialylatransferases. In summary, this study suggests that targeting cellular sialidases is apparently not the correct strategy for altering the sialylation levels of PrPC, whereas modulating the activity of sialylatransferases might offer a more promising approach. Our findings also suggest that catabolism of PrPC involves its α-cleavage followed by desialylation of the resulting C1 fragments by NEU1 and consequent fast degradation of the desialylated products.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nina Klimova
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xuefang Pan
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Ida Annunziata
- Department of Genetics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kohta Takahashi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | - Taeko Miyagi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Alessandra d’Azzo
- Department of Genetics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
27
|
Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J Vasc Res 2015; 52:172-96. [PMID: 26484858 DOI: 10.1159/000438485] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis critically sustains the progression of both physiological and pathological processes. Copper behaves as an obligatory co-factor throughout the angiogenic signalling cascades, so much so that a deficiency causes neovascularization to abate. Moreover, the progress of several angiogenic pathologies (e.g. diabetes, cardiac hypertrophy and ischaemia) can be tracked by measuring serum copper levels, which are being increasingly investigated as a useful prognostic marker. Accordingly, the therapeutic modulation of body copper has been proven effective in rescuing the pathological angiogenic dysfunctions underlying several disease states. Vascular copper transport systems profoundly influence the activation and execution of angiogenesis, acting as multi-functional regulators of apparently discrete pro-angiogenic pathways. This review concerns the complex relationship among copper-dependent angiogenic factors, copper transporters and common pathological conditions, with an unusual accent on the multi-faceted involvement of the proteins handling vascular copper. Functions regulated by the major copper transport proteins (CTR1 importer, ATP7A efflux pump and metallo-chaperones) include the modulation of endothelial migration and vascular superoxide, known to activate angiogenesis within a narrow concentration range. The potential contribution of prion protein, a controversial regulator of copper homeostasis, is discussed, even though its angiogenic involvement seems to be mainly associated with the modulation of endothelial motility and permeability.
Collapse
Affiliation(s)
- Emanuela Urso
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
28
|
Soutyrine A, Yogasingam N, Huang H, Mitchell G. Effects of heme-PrP complex on cell-free conversion and peroxidase-linked immunodetection of prions in blood-based assays. Res Vet Sci 2015; 101:168-74. [PMID: 26022071 DOI: 10.1016/j.rvsc.2015.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 01/02/2023]
Abstract
Prion protein (PrP) binding to natural and synthetic porphyrins has been previously demonstrated but the effects of endogenous heme interactions with PrP remain uncertain. This study investigated implications of this interaction in blood-based peroxidase-linked prion immunodetection and seeded conversion of cellular prion (PrP(C)) into disease associated form (PrP(Sc)). Heme binding to recombinant PrP(C) enhanced intrinsic peroxidase activity (POD) by 2.5-fold and POD inherent to denatured blood accounted for over 84% of luminol-based substrate oxidation in a prion immunodetection assay. An immuno-capture assay showed that 75-98% of blood POD was attributable to binding of PrP(C) with endogenous heme. Additionally, 10 μM heme inhibited (P<0.05) the seeded conversion of PrP(C) to PrP(Sc) through the protein misfolding cycling amplification assay. We conclude that the observed effects can interfere with cell-free conversion and peroxidase-linked immunodetection of prions in blood-based assays. These results indicate that heme-PrP interactions could modulate intrinsic POD and protect PrP(C) from conversion into PrP(Sc).
Collapse
Affiliation(s)
- Andrei Soutyrine
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada.
| | - Nishandan Yogasingam
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Hongsheng Huang
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Gordon Mitchell
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Zafar S, Schmitz M, Younus N, Tahir W, Shafiq M, Llorens F, Ferrer I, Andéoletti O, Zerr I. Creutzfeldt-Jakob Disease Subtype-Specific Regional and Temporal Regulation of ADP Ribosylation Factor-1-Dependent Rho/MLC Pathway at Pre-Clinical Stage. J Mol Neurosci 2015; 56:329-48. [PMID: 25896910 DOI: 10.1007/s12031-015-0544-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Small GTPases of the Arf family mainly activate the formation of coated carrier vesicles. We showed that class-I Arf1 interacts specifically with full length GPI-anchored cellular prion protein (PrP(C)). Several recent reports have also demonstrated a missing link between the endoplasmic reticulum and the Golgi-complex role for proper folding, but the exact molecular mechanism is not yet fully understood. In the present study, we identified and characterized the interactive role of Arf1 during PrP(C) intracellular distribution under pathophysiological conditions. PrP(C) interaction with Arf1 was investigated in cortical primary neuronal cultures of PrP(C) wild type and knockout mice (PrP(-/-)). Arf1 and PrP(C) co-binding affinity was confirmed using reverse co-immunoprecipitation, co-localization affinity using confocal laser-scanning microscopy. Treatment with brefeldin-A modulated Arf1 expression and resulted in down-regulation and redistribution of PrP(C) into cytosolic region. In the pre-symptomatic stage of the disease, Arf1 expression was significantly downregulated in the frontal cortex in tg340 mice expressing about fourfold of human PrP-M129 with PrP null background that had been inoculated with human sCJD MM1 brain tissue homogenates (sCJD MM1 mice). In addition, the frontal cortex of CJD human brain demonstrated significant binding capacity of Arf1 protein using co-immunoprecipitation analysis. We also examined Arf1 expression in the brain of CJD patients with the subtypes MM1 and VV2 and found that it was regulated in a region-specific manner. In the frontal cortex, Arf1 expression was not significantly changed in either MM1 or VV2 subtype. Interestingly, Arf1 expression was significantly reduced in the cerebellum in both subtypes as compared to controls. Furthermore, we observed altered RhoA activity, which in turn affects myosin light-chain (MLC) phosphorylation and Arf1-dependent PI3K pathway. Together, our findings underscore a key early symptomatic role of Arf1 in neurodegeneration. Targeting the Arf/Rho/MLC signaling axis might be a promising strategy to uncover the missing link which probably influences disease progression and internal homeostasis of misfolded proteins.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E, Greene LE. The multivesicular body is the major internal site of prion conversion. J Cell Sci 2015; 128:1434-43. [PMID: 25663703 PMCID: PMC4379730 DOI: 10.1242/jcs.165472] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The conversion of the properly folded prion protein, PrPc, to its misfolded amyloid form, PrPsc, occurs as the two proteins traffic along the endocytic pathway and PrPc is exposed to PrPsc. To determine the specific site of prion conversion, we knocked down various proteins in the endocytic pathway including Rab7a, Tsg101 and Hrs (also known as HGS). PrPsc was markedly reduced in two chronically infected cell lines by preventing the maturation of the multivesicular body, a process that begins in the early endosome and ends with the sorting of cargo to the lysosome. By contrast, knocking down proteins in the retromer complex, which diverts cargo away from the multivesicular body caused an increase in PrPsc levels. These results suggest that the multivesicular body is the major site for intracellular conversion of PrPc to PrPsc.
Collapse
Affiliation(s)
- Yang-In Yim
- Laboratory of Cell Biology, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Bum-Chan Park
- Laboratory of Cell Biology, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Xiaohong Zhao
- Laboratory of Cell Biology, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Evan Eisenberg
- Laboratory of Cell Biology, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Lois E Greene
- Laboratory of Cell Biology, NHLBI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Salta E, Kanata E, Ouzounis CA, Gilch S, Schätzl H, Sklaviadis T. Assessing proteinase K resistance of fish prion proteins in a scrapie-infected mouse neuroblastoma cell line. Viruses 2014; 6:4398-421. [PMID: 25402173 PMCID: PMC4246229 DOI: 10.3390/v6114398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022] Open
Abstract
The key event in prion pathogenesis is the structural conversion of the normal cellular protein, PrP(C), into an aberrant and partially proteinase K resistant isoform, PrP(Sc). Since the minimum requirement for a prion disease phenotype is the expression of endogenous PrP in the host, species carrying orthologue prion genes, such as fish, could in theory support prion pathogenesis. Our previous work has demonstrated the development of abnormal protein deposition in sea bream brain, following oral challenge of the fish with natural prion infectious material. In this study, we used a prion-infected mouse neuroblastoma cell line for the expression of three different mature fish PrP proteins and the evaluation of the resistance of the exogenously expressed proteins to proteinase K treatment (PK), as an indicator of a possible prion conversion. No evidence of resistance to PK was detected for any of the studied recombinant proteins. Although not indicative of an absolute inability of the fish PrPs to structurally convert to pathogenic isoforms, the absence of PK-resistance may be due to supramolecular and conformational differences between the mammalian and piscine PrPs.
Collapse
Affiliation(s)
- Evgenia Salta
- Laboratory for the Research of Neurodegenerative Diseases, Center for Human Genetics, KU Leuven, O&N 4 Herestraat 49, PO Box 602, 3000 Leuven, Belgium.
| | - Eirini Kanata
- Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| | - Christos A Ouzounis
- Biological Computation & Process Laboratory (BCPL), Chemical Process Research Institute (CPERI), Centre for Research & Technology (CERTH), PO Box 361, GR-57001 Thessaloniki, Greece.
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Hermann Schätzl
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Theodoros Sklaviadis
- Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| |
Collapse
|
32
|
Davidson L, Knight R. Neuropathogenesis of prion disease. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Although much is known about prion diseases (characterized by a post-translational misfolding of the prion protein [PrP]) and their neuropathology and molecular pathology, the fundamental cause of illness, the basic neuropathogenesis, remains uncertain. There are three broad considerations discussed in this review: the possible loss of normal PrP function, the possible direct toxicity of the abnormally folded PrP and a harmful interaction between the normal and abnormal protein. In considering these possibilities, there are difficulties, including the facts that the relevant normal functions of the PrP are somewhat uncertain and that there are a number of possible toxic species of abnormal protein. In addition to the possible interactions of normal and abnormal PrP in prion disease, PrP may play a role in the neuropathogenesis of other diseases (such as Alzheimer’s disease).
Collapse
Affiliation(s)
- Louise Davidson
- National Creutzfeldt–Jakob Disease Research & Surveillance Unit, University of Edinburgh, Edinburgh, UK
| | - Richard Knight
- National Creutzfeldt–Jakob Disease Research & Surveillance Unit, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Cheng CJ, Daggett V. Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH. Biomolecules 2014; 4:181-201. [PMID: 24970211 PMCID: PMC4030982 DOI: 10.3390/biom4010181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 12/24/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process.
Collapse
Affiliation(s)
- Chin Jung Cheng
- Department of Bioengineering, University of Washington, Seattle WA 98195-5013, USA.
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle WA 98195-5013, USA.
| |
Collapse
|
34
|
Vilches S, Vergara C, Nicolás O, Sanclimens G, Merino S, Varón S, Acosta GA, Albericio F, Royo M, Río JAD, Gavín R. Neurotoxicity of prion peptides mimicking the central domain of the cellular prion protein. PLoS One 2013; 8:e70881. [PMID: 23940658 PMCID: PMC3733940 DOI: 10.1371/journal.pone.0070881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022] Open
Abstract
The physiological functions of PrP(C) remain enigmatic, but the central domain, comprising highly conserved regions of the protein may play an important role. Indeed, a large number of studies indicate that synthetic peptides containing residues 106-126 (CR) located in the central domain (CD, 95-133) of PrP(C) are neurotoxic. The central domain comprises two chemically distinct subdomains, the charge cluster (CC, 95-110) and a hydrophobic region (HR, 112-133). The aim of the present study was to establish the individual cytotoxicity of CC, HR and CD. Our results show that only the CD peptide is neurotoxic. Biochemical, Transmission Electron Microscopy and Atomic Force Microscopy experiments demonstrated that the CD peptide is able to activate caspase-3 and disrupt the cell membrane, leading to cell death.
Collapse
Affiliation(s)
- Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Cristina Vergara
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Oriol Nicolás
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gloria Sanclimens
- Combinatorial Chemistry Unit, Scientific Park of Barcelona, Barcelona, Spain
| | - Sandra Merino
- Department of Physicochemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Sonia Varón
- Combinatorial Chemistry Unit, Scientific Park of Barcelona, Barcelona, Spain
| | - Gerardo A. Acosta
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
- Department of Organic Chemistry, Faculty of Chemistry, University of Barcelona, Barcelona, Spain
| | - Miriam Royo
- Combinatorial Chemistry Unit, Scientific Park of Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - José A. Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Llorens F, Carulla P, Villa A, Torres JM, Fortes P, Ferrer I, del Río JA. PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells. J Neurochem 2013; 127:124-38. [PMID: 23638794 DOI: 10.1111/jnc.12283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 01/28/2023]
Abstract
The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrP(SC)) has been studied in depth, the physiological role of PrP(C) remains elusive and controversial. PrP(C) is a cell-surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrP(C) in animals and in cellular models. In this article, we present PrP(C)-dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrP(C) over-expression enhances cell proliferation and cell cycle re-entrance after serum stimulation, while PrP(C) silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrP(C) in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrP(C) in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrP(C) over-expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT-Cdc42-N-WASP-dependent pathway.
Collapse
Affiliation(s)
- Franc Llorens
- Molecular and Cellular Neurobiotechnology Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Barcelona, Spain; Department of Cell Biology, University of Barcelona (UB), Barcelona, Spain; Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuropathology, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhou J, Liu B. Alzheimer's disease and prion protein. Intractable Rare Dis Res 2013; 2:35-44. [PMID: 25343100 PMCID: PMC4204584 DOI: 10.5582/irdr.2013.v2.2.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease with progressive loss of memory and cognitive function, pathologically hallmarked by aggregates of the amyloid-beta (Aβ) peptide and hyperphosphorylated tau in the brain. Aggregation of Aβ under the form of amyloid fibrils has long been considered central to the pathogenesis of AD. However, recent evidence has indicated that soluble Aβ oligomers, rather than insoluble fibrils, are the main neurotoxic species in AD. The cellular prion protein (PrP(C)) has newly been identified as a cell surface receptor for Aβ oligomers. PrP(C) is a cell surface glycoprotein that plays a key role in the propagation of prions, proteinaceous infectious agents that replicate by imposing their abnormal conformation to PrP(C) molecules. In AD, PrP(C) acts to transduce the neurotoxic signals arising from Aβ oligomers, leading to synaptic failure and cognitive impairment. Interestingly, accumulating evidence has also shown that aggregated Aβ or tau possesses prion-like activity, a property that would allow them to spread throughout the brain. In this article, we review recent findings regarding the function of PrP(C) and its role in AD, and discuss potential therapeutic implications of PrP(C)-based approaches in the treatment of AD.
Collapse
Affiliation(s)
- Jiayi Zhou
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
- Address correspondence to: Dr. Jiayi Zhou, Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA. E-mail:
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
38
|
Cavaliere P, Pagano B, Granata V, Prigent S, Rezaei H, Giancola C, Zagari A. Cross-talk between prion protein and quadruplex-forming nucleic acids: a dynamic complex formation. Nucleic Acids Res 2012; 41:327-39. [PMID: 23104426 PMCID: PMC3592392 DOI: 10.1093/nar/gks970] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prion protein (PrP) is involved in lethal neurodegenerative diseases, and many issues remain unclear about its physio-pathological role. Quadruplex-forming nucleic acids (NAs) have been found to specifically bind to both PrP cellular and pathological isoforms. To clarify the relevance of these interactions, thermodynamic, kinetic and structural studies have been performed, using isothermal titration calorimetry, surface plasmon resonance and circular dichroism methodologies. Three quadruplex-forming sequences, d(TGGGGT), r(GGAGGAGGAGGA), d(GGAGGAGGAGGA), and various forms of PrP were selected for this study. Our results showed that these quadruplexes exhibit a high affinity and specificity toward PrP, with KD values within the range 62÷630 nM, and a weaker affinity toward a PrP-β oligomer, which mimics the pathological isoform. We demonstrated that the NA quadruplex architecture is the structural determinant for the recognition by both PrP isoforms. Furthermore, we spotted both PrP N-terminal and C-terminal domains as the binding regions involved in the interaction with DNA/RNAs, using several PrP truncated forms. Interestingly, a reciprocally induced structure loss was observed upon PrP–NA interaction. Our results allowed to surmise a quadruplex unwinding-activity of PrP, that may have a feedback in vivo.
Collapse
Affiliation(s)
- Paola Cavaliere
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli Federico II, Naples 80134, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Lisa S, Domingo B, Martínez J, Gilch S, Llopis JF, Schätzl HM, Gasset M. Failure of prion protein oxidative folding guides the formation of toxic transmembrane forms. J Biol Chem 2012; 287:36693-701. [PMID: 22955286 DOI: 10.1074/jbc.m112.398776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanism by which pathogenic mutations in the globular domain of the cellular prion protein (PrP(C)) increase the likelihood of misfolding and predispose to diseases is not yet known. Differences in the evidences provided by structural and metabolic studies of these mutants suggest that in vivo folding could be playing an essential role in their pathogenesis. To address this role, here we use the single or combined M206S and M213S artificial mutants causing labile folds and express them in cells. We find that these mutants are highly toxic, fold as transmembrane PrP, and lack the intramolecular disulfide bond. When the mutations are placed in a chain with impeded transmembrane PrP formation, toxicity is rescued. These results suggest that oxidative folding impairment, as on aging, can be fundamental for the genesis of intracellular neurotoxic intermediates key in prion neurodegenerations.
Collapse
Affiliation(s)
- Silvia Lisa
- Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Solomon IH, Biasini E, Harris DA. Ion channels induced by the prion protein: mediators of neurotoxicity. Prion 2012; 6:40-5. [PMID: 22453177 DOI: 10.4161/pri.6.1.18627] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases comprise a group of rapidly progressive and invariably fatal neurodegenerative disorders for which there are no effective treatments. While conversion of the cellular prion protein (PrP(C)) to a β-sheet rich isoform (PrP(Sc) ) is known to be a critical event in propagation of infectious prions, the identity of the neurotoxic form of PrP and its mechanism of action remain unclear. Insights into this mechanism have been provided by studying PrP molecules harboring deletions and point mutations in the conserved central region, encompassing residues 105-125. When expressed in transgenic mice, PrP deleted for these residues (Δ105-125) causes a spontaneous neurodegenerative illness that is reversed by co-expression of wild-type PrP. In cultured cells, Δ105-125 PrP confers hypersensitivity to certain cationic antibiotics and induces spontaneous ion channel activity that can be recorded by electrophysiological techniques. We have utilized these drug-hypersensitization and current-inducing activities to identify which PrP domains and subcellular locations are required for toxicity. We present an ion channel model for the toxicity of Δ105-125 PrP and related mutants and speculate how a similar mechanism could mediate PrP(Sc)-associated toxicity. Therapeutic regimens designed to inhibit prion-induced toxicity, as well as formation of PrP(Sc) , may prove to be the most clinically beneficial.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
41
|
Sorice M, Mattei V, Tasciotti V, Manganelli V, Garofalo T, Misasi R. Trafficking of PrPc to mitochondrial raft-like microdomains during cell apoptosis. Prion 2012; 6:354-8. [PMID: 22842913 DOI: 10.4161/pri.20479] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cellular form of prion protein (PrP (c)) is a highly conserved cell surface GPI-anchored glycoprotein that was identified in cholesterol-enriched, detergent-resistant microdomains, named "rafts." The association with these specialized portions of the cell plasma membrane is required for conversion of PrP (c) to the transmissible spongiform encephalopathy-associated protease-resistant isoform. Usually, PrP (c) is reported to be a plasma membrane protein, however several studies have revealed PrP (c) as an interacting protein mainly with the membrane/organelles, as well as with cytoskeleton network. Recent lines of evidence indicated its association with ER lipid raft-like microdomains for a correct folding of PrP (c), as well as for the export of the protein to the Golgi and proper glycosylation. During cell apoptosis, PrP (c) can undergo intracellular re-localization, via ER-mitochondria associated membranes (MAM) and microtubular network, to mitochondrial raft-like microdomains, where it induced the loss of mitochondrial membrane potential and citochrome c release, after a contained raise of calcium concentration. We suggest that PrP (c) may play a role in the multimolecular signaling complex associated with cell apoptosis Lipid rafts and their components may, thus, be investigated as pharmacological targets of interest, introducing a novel and innovative task in modern pharmacology, i.e., the development of glycosphingolipid targeted drugs.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Prion protein at the crossroads of physiology and disease. Trends Neurosci 2011; 35:92-103. [PMID: 22137337 DOI: 10.1016/j.tins.2011.10.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
Abstract
The presence of the cellular prion protein (PrP(C)) on the cell surface is critical for the neurotoxicity of prions. Although several biological activities have been attributed to PrP(C), a definitive demonstration of its physiological function remains elusive. In this review, we discuss some of the proposed functions of PrP(C), focusing on recently suggested roles in cell adhesion, regulation of ionic currents at the cell membrane and neuroprotection. We also discuss recent evidence supporting the idea that PrP(C) may function as a receptor for soluble oligomers of the amyloid β peptide and possibly other toxic protein aggregates. These data suggest surprising new connections between the physiological function of PrP(C) and its role in neurodegenerative diseases beyond those caused by prions.
Collapse
|
43
|
Rigter A, Priem J, Langeveld JPM, Bossers A. Prion protein self-interaction in prion disease therapy approaches. Vet Q 2011; 31:115-28. [PMID: 22029882 DOI: 10.1080/01652176.2011.604976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrP(Sc)), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrP(C) into PrP(Sc) are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrP(C) into PrP(Sc) and where the most drastic structural changes take place. Direct interactions between PrP(C) molecules and/or PrP(Sc) are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.
Collapse
Affiliation(s)
- Alan Rigter
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Shi Q, Dong XP. (Ctm)PrP and ER stress: a neurotoxic mechanism of some special PrP mutants. Prion 2011; 5:123-5. [PMID: 21795854 DOI: 10.4161/pri.5.3.16327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pathogenic agent is hypothesized to be PrP(Sc) in prion diseases. However, little accumulation of PrPSc is repeatedly observed in some kinds of natural and experimental prion diseases, including some special genetic human prion diseases. One of the specific topology forms of PrP, (Ctm)PrP, representing a key neurotoxic intermediate in prion disorders, has been testified in cell-free translation systems and transgenic mice models. Recently, some studies have showed that point-mutations within the hydrophobic transmembrane region increase the amount of (Ctm)PrP in cells, such as human homologue A117V which is associated with GSS and G114V associated with gCJD, while the mutations outsides transmembrane region do not. The retention of the CtmPrP in ER subsequently is able to induce ER stress and apoptosis, which is supported by up-regulation of ER chaperone synthesis, such as Grp78, Grp58, Grp94, Bip and the transcription factor CHOP/GADD153. In conclusion, some kinds of intermediate forms of PrP(Sc) , including (Ctm)PrP, may work as the ultimate cause of neurodegeneration.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | |
Collapse
|
45
|
Encalada SE, Szpankowski L, Xia CH, Goldstein LSB. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 2011; 144:551-65. [PMID: 21335237 PMCID: PMC3576050 DOI: 10.1016/j.cell.2011.01.021] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 11/12/2010] [Accepted: 01/18/2011] [Indexed: 01/19/2023]
Abstract
Kinesin and dynein are opposite-polarity microtubule motors that drive the tightly regulated transport of a variety of cargoes. Both motors can bind to cargo, but their overall composition on axonal vesicles and whether this composition directly modulates transport activity are unknown. Here we characterize the intracellular transport and steady-state motor subunit composition of mammalian prion protein (PrP(C)) vesicles. We identify Kinesin-1 and cytoplasmic dynein as major PrP(C) vesicle motor complexes and show that their activities are tightly coupled. Regulation of normal retrograde transport by Kinesin-1 is independent of dynein-vesicle attachment and requires the vesicle association of a complete Kinesin-1 heavy and light chain holoenzyme. Furthermore, motor subunits remain stably associated with stationary as well as with moving vesicles. Our data suggest a coordination model wherein PrP(C) vesicles maintain a stable population of associated motors whose activity is modulated by regulatory factors instead of by structural changes to motor-cargo associations.
Collapse
Affiliation(s)
- Sandra E. Encalada
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lukasz Szpankowski
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Chun-hong Xia
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lawrence S. B. Goldstein
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Prcina M, Kontsekova E. Has prion protein important physiological function? Med Hypotheses 2011; 76:567-9. [PMID: 21277689 DOI: 10.1016/j.mehy.2011.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/25/2010] [Accepted: 01/01/2011] [Indexed: 10/18/2022]
Abstract
Despite the great effort aimed at uncovering the physiological function of cellular prion protein, its role remains unclear. The highly conserved amino acid sequence of PrP indicates its important function, but normally developing PrP knockout mice and cattle were prepared. Here we propose hypothesis that prion protein has no function or a redundant one and more importantly, that the conserved amino acid sequence of mammalian PrPs is not the result of their important function, but rather due to cytotoxicity of most mutations occurring in the PrP molecule. It is possible that the majority of mutations in PrP dramatically destabilizes the PrP(C) structure and causes a pathological change in conformation, so that natural selection favours individuals with non-mutated PrP.
Collapse
Affiliation(s)
- Michal Prcina
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovak Republic.
| | | |
Collapse
|
47
|
Wang X, Shi Q, Xu K, Gao C, Chen C, Li XL, Wang GR, Tian C, Han J, Dong XP. Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells. PLoS One 2011; 6:e14602. [PMID: 21298055 PMCID: PMC3029303 DOI: 10.1371/journal.pone.0014602] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 01/06/2011] [Indexed: 01/22/2023] Open
Abstract
Background Genetic prion diseases are linked to point and inserted mutations in the prion protein (PrP) gene that are presumed to favor conversion of the cellular isoform of PrP (PrPC) to the pathogenic one (PrPSc). The pathogenic mechanisms and the subcellular sites of the conversion are not completely understood. Here we introduce several PRNP gene mutations (such as, PrP-KDEL, PrP-3AV, PrP-A117V, PrP-G114V, PrP-P102L and PrP-E200K) into the cultured cells in order to explore the pathogenic mechanism of familial prion disease. Methodology/Principal Findings To address the roles of aberrant retention of PrP in endoplasmic reticulum (ER), the recombinant plasmids expressing full-length human PrP tailed with an ER signal peptide at the COOH-terminal (PrP-KDEL) and PrP with three amino acids exchange in transmembrane region (PrP-3AV) were constructed. In the preparations of transient transfections, 18-kD COOH-terminal proteolytic resistant fragments (Ctm-PrP) were detected in the cells expressing PrP-KDEL and PrP-3AV. Analyses of the cell viabilities in the presences of tunicamycin and brefeldin A revealed that expressions of PrP-KDEL and PrP-3AV sensitized the transfected cells to ER stress stimuli. Western blots and RT-PCR identified the clear alternations of ER stress associated events in the cells expressing PrP-KDEL and PrP-3AV that induced ER mediated apoptosis by CHOP and capase-12 apoptosis pathway. Moreover, several familial CJD related PrP mutants were transiently introduced into the cultured cells. Only the mutants within the transmembrane region (G114V and A117V) induced the formation of Ctm-PrP and caused the ER stress, while the mutants outside the transmembrane region (P102L and E200K) failed. Conclusions/Significance The data indicate that the retention of PrP in ER through formation of Ctm-PrP results in ER stress and cell apoptosis. The cytopathic activities caused by different familial CJD associated PrP mutants may vary, among them the mutants within the transmembrane region undergo an ER-stress mediated cell apoptosis.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Kun Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- School of Medicine, Xi'an Jiao-Tong University, Xi'an, People's Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiao-Li Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Gui-Rong Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
48
|
Abstract
Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.
Collapse
|
49
|
Jeffrey M, McGovern G, Sisó S, González L. Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropathol 2011; 121:113-34. [PMID: 20532540 DOI: 10.1007/s00401-010-0700-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/04/2010] [Accepted: 05/19/2010] [Indexed: 11/24/2022]
Abstract
The transmissible spongiform encephalopathies (TSEs) or prion diseases of animals are characterised by CNS spongiform change, gliosis and the accumulation of disease-associated forms of prion protein (PrP(d)). Particularly in ruminant prion diseases, a wide range of morphological types of PrP(d) depositions are found in association with neurons and glia. When light microscopic patterns of PrP(d) accumulations are correlated with sub-cellular structure, intracellular PrP(d) co-localises with lysosomes while non-intracellular PrP(d) accumulation co-localises with cell membranes and the extracellular space. Intracellular lysosomal PrP(d) is N-terminally truncated, but the site at which the PrP(d) molecule is cleaved depends on strain and cell type. Different PrP(d) cleavage sites are found for different cells infected with the same agent indicating that not all PrP(d) conformers code for different prion strains. Non-intracellular PrP(d) is full-length and is mainly found on plasma-lemmas of neuronal perikarya and dendrites and glia where it may be associated with scrapie-specific membrane pathology. These membrane changes appear to involve a redirection of the predominant axonal trafficking of normal cellular PrP and an altered endocytosis of PrP(d). PrP(d) is poorly excised from membranes, probably due to increased stabilisation on the membrane of PrP(d) complexed with other membrane ligands. PrP(d) on plasma-lemmas may also be transferred to other cells or released to the extracellular space. It is widely assumed that PrP(d) accumulations cause neurodegenerative changes that lead to clinical disease. However, when different animal prion diseases are considered, neurological deficits do not correlate well with any morphological type of PrP(d) accumulation or perturbation of PrP(d) trafficking. Non-PrP(d)-associated neurodegenerative changes in TSEs include vacuolation, tubulovesicular bodies and terminal axonal degeneration. The last of these correlates well with early neurological disease in mice, but such changes are absent from large animal prion disease. Thus, the proximate cause of clinical disease in animal prion disease is uncertain, but may not involve PrP(d).
Collapse
Affiliation(s)
- Martin Jeffrey
- Veterinary Laboratories Agency, Lasswade Laboratory, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.
| | | | | | | |
Collapse
|
50
|
Prion protein self-interactions: A gateway to novel therapeutic strategies? Vaccine 2010; 28:7810-23. [DOI: 10.1016/j.vaccine.2010.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022]
|