1
|
Wang M, Wang J, Zhai J, He Y, Ma Y, Wang Z, Ren Y, Ying B, Zhou D, Li J. Peripheral T-cell subset activation in NMDAR encephalitis: Insights into pathogenesis and biomarker potential for disease monitoring. Clin Immunol 2025:110506. [PMID: 40288549 DOI: 10.1016/j.clim.2025.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND N-methyl-d-aspartate receptor encephalitis (NMDAR-E) is a severe autoimmune disorder characterized by neuropsychiatric symptoms and immune dysregulation ,involves T-cell dysregulation, but specific T-cell subset roles remain unclear. This study analyzed peripheral blood T-cell subsets as biomarkers for monitoring and severity prediction. METHODS Peripheral blood samples from 32 NMDAR-E patients, 31 antibody-mediated encephalitis, 26 viral encephalitis patients, and 23 healthy controls were analyzed using flow cytometry. Key markers of T-cell activation and co-stimulation were assessed. Clinical outcomes were correlated with immune profiles to develop a predictive model. RESULTS NMDAR-E patients showed elevated CD4+ T-cell activation, with increased CD28, CD38, and HLA-DR expression versus controls, indicating immune hyperactivation with compensatory regulation. The T-cell-based model predicted severe cases with high accuracy (AUC = 0.91). CONCLUSION CD4+ T-cell activation is central to NMDAR-E pathogenesis, highlighting diagnostic/therapeutic potential. Future studies must validate the model in larger cohorts and address peripheral blood analysis limitations.
Collapse
Affiliation(s)
- Minjin Wang
- Department of Neurology, West China Hospital of Sichuan University, China; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jierui Wang
- Department of Neurology, West China Hospital of Sichuan University, China
| | - Jianzhao Zhai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangyi He
- Faculty of Medicine and Health Sciences, University of Barcelona, Spain
| | - Yuwen Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, China
| | - Jinmei Li
- Department of Neurology, West China Hospital of Sichuan University, China.
| |
Collapse
|
2
|
Abboud H, Clardy SL, Dubey D, Wickel J, Day GS, Geis C, Gelfand JM, Irani SR, Lee ST, Titulaer MJ. The Clinical Trial Landscape in Autoimmune Encephalitis: Challenges and Opportunities. Neurology 2025; 104:e213487. [PMID: 40146951 PMCID: PMC11966526 DOI: 10.1212/wnl.0000000000213487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/28/2025] [Indexed: 03/29/2025] Open
Abstract
Autoimmune encephalitis (AE) is an important cause of neurologic morbidity and mortality. Treatment algorithms are primarily based on observational studies, retrospective series, and expert opinion. Despite clinical improvement with empiric therapy, recovery is often incomplete with a substantial burden of residual neurologic deficits and recurring symptoms. There is a pressing need for higher quality evidence-based therapies. However, designing and conducting clinical trials for patients with rare diseases such as AE has specific challenges, including slow recruitment, suboptimal outcome measures, and inclusivity vs exclusivity of the various disease subtypes. The anticipated knowledge gained from AE clinical trials emphasizes the need to overcome these challenges and support the development of the next generation of clinical trials. Yet, given these challenges, alternative approaches may be required. In this article, we review past and present clinical trials in AE with a focus on studies enrolling patients with neural surface antibodies. We discuss the potential challenges and opportunities inherent to clinical trials in rare diseases and provide an outlook for the field.
Collapse
Affiliation(s)
- Hesham Abboud
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals Cleveland Medical Center, OH
- Case Western Reserve University, Cleveland, OH
| | - Stacey L Clardy
- VA Salt Lake City Healthcare System, UT
- University of Utah Health, Salt Lake City
| | | | - Jonathan Wickel
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Germany
| | - Gregory Scott Day
- Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Germany
| | | | - Sarosh R Irani
- Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL
| | - Soon-Tae Lee
- Seoul National University Hospital, South Korea; and
| | | |
Collapse
|
3
|
Homeyer MA, Falck A, Li LY, Prüss H. From immunobiology to intervention: Pathophysiology of autoimmune encephalitis. Semin Immunol 2025; 78:101955. [PMID: 40267699 DOI: 10.1016/j.smim.2025.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Autoimmune encephalitides (AEs) are neurological disorders caused by autoantibodies against neuronal and glial surface proteins. Nearly 20 years after their discovery, AE have evolved from being frequently misdiagnosed and untreated to a growing group of increasingly well-characterized conditions where patients benefit from targeted therapeutic strategies. This narrative review provides an immunological perspective on AE, focusing on NMDAR, CASPR2 and LGI1 encephalitis as the three most common forms of AE associated with anti-neuronal surface autoantibodies. We examine the autoreactive B cell subsets, the tolerance checkpoints that may fail, and the known triggers and predispositions contributing to disease. In addition, we discuss the roles of other immune cells, including T cells and microglia, in the pathogenesis of AE. By analyzing therapeutic strategies and treatment responses we draw insights into AE pathophysiology. Written at a time of transformative therapeutic advancements through cell therapies this work underscores the synergy between detailed immunological research and the development of innovative therapies.
Collapse
Affiliation(s)
| | - Alice Falck
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lucie Y Li
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Harald Prüss
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| |
Collapse
|
4
|
Sun B, Fernandes D, Soltys J, Kienzler AK, Paneva S, Harrison R, Ramanathan S, Harrison AL, Makuch M, Fichtner ML, Donat RF, Akdeniz D, Bayuangga H, Im MG, Williams R, Vasconcelos A, Thomsen S, Fower A, Sun R, Fox H, Mgbachi V, Davies A, Tseng M, Handel A, Kelly M, Zhao M, Bancroft J, Bashford-Rogers R, Pluvinage JV, Dandekar R, Alvarenga BD, Dustin LB, Rinaldi S, Owens R, Anthony D, Bennett DL, Waters P, Davis SJ, Wilson MR, O’Connor KC, Carvalho AL, Irani SR. Permissive central tolerance plus defective peripheral checkpoints license pathogenic memory B cells in CASPR2-antibody encephalitis. SCIENCE ADVANCES 2025; 11:eadr9986. [PMID: 40238887 PMCID: PMC12002137 DOI: 10.1126/sciadv.adr9986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Autoantibody-mediated diseases targeting one autoantigen provide a unique opportunity to comprehensively understand the development of disease-causing B cells and autoantibodies. Convention suggests that such autoreactivities are generated during germinal center reactions. Here, we explore earlier immune checkpoints, focusing on patients with contactin-associated protein-like 2 (CASPR2)-autoantibody encephalitis. In both disease and health, high (~0.5%) frequencies of unmutated CASPR2-reactive naïve B cells were identified. By contrast, CASPR2-reactive memory B cells were exclusive to patients, and their B cell receptors demonstrated affinity-enhancing somatic mutations with pathogenic effects in neuronal cultures and mice. The unmutated, precursor memory B cell receptors showed a distinctive balance between strong CASPR2 reactivity and very limited binding across the remaining human proteome. Our results identify permissive central tolerance, defective peripheral tolerance, and autoantigen-specific tolerance thresholds in humans as sequential steps that license CASPR2-directed pathology. By leveraging the basic immunobiology, we rationally direct tolerance-restoring approaches, with an experimental paradigm applicable across autoimmunity.
Collapse
Affiliation(s)
- Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, UK
| | - Dominique Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - John Soltys
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Anne-Kathrin Kienzler
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Sofija Paneva
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Ruby Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Sudarshini Ramanathan
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Neurology, Concord Hospital, Sydney, Australia
| | - Anna L. Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Mateusz Makuch
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Miriam L. Fichtner
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Robert F. Donat
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Deniz Akdeniz
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Halwan Bayuangga
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Min Gyu Im
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Robyn Williams
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Vasconcelos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Selina Thomsen
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Ruyue Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Victor Mgbachi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Alexander Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Mandy Tseng
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Adam Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, UK
| | - Mark Kelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Meng Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - James Bancroft
- Cellular Imaging Core Facility, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, UK
| | - Rachael Bashford-Rogers
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, 0X1 3QU, UK
- UK Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John V. Pluvinage
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bonny D. Alvarenga
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lynn B. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Ray Owens
- Rosalind Franklin Institute, Harwell Science Campus, Didcot, OX11 0QX, UK
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Simon J. Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael R. Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin C. O’Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ana Luisa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sarosh R. Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
5
|
Segal Y, Soltys J, Clarkson BDS, Howe CL, Irani SR, Pittock SJ. Toward curing neurological autoimmune disorders: Biomarkers, immunological mechanisms, and therapeutic targets. Neuron 2025; 113:345-379. [PMID: 39809275 DOI: 10.1016/j.neuron.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis. The breakdown of immune tolerance, central to these conditions, is affected by modifiable and non-modifiable risk factors such as genetic predisposition, infections, and malignancy. While significant therapeutic advancements have revolutionized treatment of certain diseases, such as neuromyelitis optica, our understanding of many others, particularly T cell-mediated conditions, remains limited, with fewer treatment options available. Future research should focus on improving effector function modeling and deepening our understanding of the factors influencing immune tolerance, with the goal of providing novel treatment options and improving patient care.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - John Soltys
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin D S Clarkson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Division of Experimental Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sarosh R Irani
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Al-Diwani A, Provine NM, Murchison A, Laban R, Swann OJ, Koychev I, Sheerin F, Da Mesquita S, Heslegrave A, Zetterberg H, Klenerman P, Irani SR. Neurodegenerative fluid biomarkers are enriched in human cervical lymph nodes. Brain 2025; 148:394-400. [PMID: 39432679 PMCID: PMC11788199 DOI: 10.1093/brain/awae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
In animal models, brain neurodegeneration biomarkers drain into cervical lymph nodes (CLNs), and this drainage function is reduced with ageing. If this occurred in humans, CLNs may provide a readily accessible measure of this aspect of protein clearance. We tested this hypothesis in people using ultrasound-guided fine needle aspiration. We measured amyloid-beta 40 and 42, phosphorylated tau 181 (pTau181), glial fibrillary acidic protein and neurofilament light using single molecule array in CLN aspirates and plasma from: (i) a discovery cohort of 25 autoimmune patients; and (ii) plasma, CLNs and capillary blood in four healthy volunteers, an optimization cohort. Ultrasound-guided fine needle aspiration was well-tolerated by all participants. In both cohorts, all biomarkers were detected in all plasma and CLN samples, other than neurofilament light (8/17 of discovery cohort). CLN biomarker concentrations were significantly greater than plasma concentrations for all except neurofilament light, most markedly for pTau181 (266-fold; P < 0.02), whose CLN concentrations decreased with age (Spearman r = -0.66, P = 0.001). This study presents the first evidence that neurodegenerative biomarkers are detectable in human CLNs. Raised CLN:plasma biomarker ratios suggest their concentration in CLNs may offer a distinct compartment for minimally-invasive measurement of brain clearance and lymphatic drainage, with potential applicability to study of ageing and future clinical trials.
Collapse
Affiliation(s)
- Adam Al-Diwani
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Nicholas M Provine
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrew Murchison
- Department of Radiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Rhiannon Laban
- Fluid Biomarker Laboratory, UK Dementia Research Institute at UCL, London W1T 7NF, UK
| | - Owen J Swann
- Fluid Biomarker Laboratory, UK Dementia Research Institute at UCL, London W1T 7NF, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Fintan Sheerin
- Department of Radiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | | | - Amanda Heslegrave
- Fluid Biomarker Laboratory, UK Dementia Research Institute at UCL, London W1T 7NF, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henrik Zetterberg
- Fluid Biomarker Laboratory, UK Dementia Research Institute at UCL, London W1T 7NF, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 431 39, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 39, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Paul Klenerman
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Sarosh R Irani
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
7
|
Sun B, Fernandes D, Kienzler AK, Paneva S, Harrison R, Ramanathan S, Harrison AL, Makuch M, Fichtner ML, Donat RF, Akdeniz D, Bayuangga H, Im MG, Williams R, Vasconcelos A, Thomsen S, Fower A, Sun R, Fox H, Mgbachi V, Davies A, Tseng M, Handel A, Kelly M, Zhao M, Bancroft J, Bashford-Rogers R, Pluvinage JV, Dandekar R, Alvarenga BD, Dustin L, Rinaldi S, Owens R, Anthony D, Bennett DL, Waters P, Davis SJ, Wilson MR, O'Connor KC, Soltys J, Carvalho AL, Irani SR. Permissive central tolerance plus defective peripheral checkpoints licence pathogenic memory B cells in CASPR2-antibody encephalitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.631703. [PMID: 39868113 PMCID: PMC11760777 DOI: 10.1101/2025.01.14.631703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autoimmunity affects 10% of the population. Within this umbrella, autoantibody-mediated diseases targeting one autoantigen provide a unique opportunity to comprehensively understand the developmental pathway of disease-causing B cells and autoantibodies. While such autoreactivities are believed to be generated during germinal centre reactions, the roles of earlier immune checkpoints in autoantigen-specific B cell tolerance are poorly understood. We address this concept in patients with CASPR2-autoantibody encephalitis and healthy controls. In both groups, comparable and high (~0.5%) frequencies of unmutated CASPR2-reactive naïve B cells were identified. By contrast, CASPR2-reactive memory B cells were exclusive to patients, and their B cell receptors demonstrated affinity-enhancing somatic mutations with heterogenous binding kinetics. These effector molecules possessed epitope-dependent pathogenic effects in vitro neuronal cultures and in vivo. The unmutated common ancestors of these memory B cells showed a distinctive balance between strong CASPR2 reactivity and very limited binding across the remaining human proteome. Our results are the first to propose mechanisms underlying autoantigen-specific tolerance in humans. We identify permissive central tolerance, defective peripheral tolerance and heterogenous autoantibody binding properties as sequential pathogenic steps which licence CASPR2-directed pathology. By leveraging the basic immunobiology, we rationally direct tolerance-restoring approaches in CASPR2-antibody diseases. This paradigm is applicable across autoimmune conditions.
Collapse
Affiliation(s)
- Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
| | - Dominique Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Anne-Kathrin Kienzler
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Sofija Paneva
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ruby Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Sudarshini Ramanathan
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney; Department of Neurology, Concord Hospital, Sydney, Australia
| | - Anna L Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mateusz Makuch
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Miriam L Fichtner
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Robert F Donat
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Deniz Akdeniz
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Halwan Bayuangga
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Min Gyu Im
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Robyn Williams
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Vasconcelos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Selina Thomsen
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ruyue Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Victor Mgbachi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Alexander Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Mandy Tseng
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Adam Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
| | - Mark Kelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Meng Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - James Bancroft
- Cellular Imaging Core Facility, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - John V Pluvinage
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bonny D Alvarenga
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lynn Dustin
- Kennedy Institute of Rheumatology, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ray Owens
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, United Kingdom
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael R Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| | - John Soltys
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Luisa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
8
|
Binks SNM. mAbsolutely FABulous: From a case of mistaken identity to pinpoint precision in the antibodies formerly known as 'VGKC'. Brain Behav Immun 2025; 123:838-839. [PMID: 39477078 DOI: 10.1016/j.bbi.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- Sophie N M Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK.
| |
Collapse
|
9
|
Nagata S, Yamasaki R. The Involvement of Glial Cells in Blood-Brain Barrier Damage in Neuroimmune Diseases. Int J Mol Sci 2024; 25:12323. [PMID: 39596390 PMCID: PMC11594741 DOI: 10.3390/ijms252212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The blood-brain barrier and glial cells, particularly astrocytes, interact with each other in neuroimmune diseases. In the inflammatory environment typical of these diseases, alterations in vascular endothelial cell surface molecules and weakened cell connections allow immune cells and autoantibodies to enter the central nervous system. Glial cells influence the adhesion of endothelial cells by changing their morphology and releasing various signaling molecules. Multiple sclerosis has been the most studied disease in relation to vascular endothelial and glial cell interactions, but these cells also significantly affect the onset and severity of other neuroimmune conditions, including demyelinating and inflammatory diseases. In this context, we present an overview of these interactions and highlight how they vary across different neuroimmune diseases.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Bao Y, Mo Z, Wang S, Long J, Zhang H, Xu Y, Jiang H, Qian T, Zeng Z. Global trends in tertiary lymphoid structures: a bibliometric analysis from 2014 to 2023. Front Immunol 2024; 15:1475062. [PMID: 39620224 PMCID: PMC11604643 DOI: 10.3389/fimmu.2024.1475062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/28/2024] [Indexed: 03/30/2025] Open
Abstract
AIM AND BACKGROUND Tertiary lymphoid structures (TLS) are increasingly recognized for their role in immunity. Despite growing interest, a systematic bibliometric analysis of TLS-related research has been lacking. To provide a comprehensive overview of current research trends and hotspots, we conducted a bibliometric analysis using data from the Web of Science Core Collection. METHODS We retrieved TLS-related publications from the Science Citation Index Expanded within the Web of Science Core Collection from January 2014 to December 2023. Co-occurrence analysis with "VOSviewer" identified current status and research hotspots, while "CiteSpace" was used for co-citation analysis to assess knowledge evolution and bursts. Thematic evolution was explored using bibliometrics to identify emerging keyword trends. Additionally, we examined country/region, institutional, and author contributions and collaborations. Tables were created using Microsoft Word. RESULTS A total of 785 publications were analyzed, showing a continuous growth trend from 2017 to 2023, indicating escalating interest in TLS among researchers. Leading countries in TLS research were China (231 publications), the United States (212 publications), and France (89 publications). The most productive institution and author were the "Institut national de la santé et de la recherche médicale" (70 publications) and Catherine Sautes-Fridman (21 publications), respectively. Key topics included TLS, B cells, and immunotherapy. Recent research has focused on mechanisms linking TLS with cancers, such as immunotherapy, tumor microenvironment, tumor-infiltrating lymphocytes, prognosis, and immune checkpoint inhibitors, highlighting an expanding area of study. Additionally, TLS' potential as a biomarker for predicting immunotherapy efficacy across different cancer types remains a burgeoning research direction. CONCLUSIONS This study provides a comprehensive analysis of global TLS-related publications, revealing key literature metrics and identifying influential articles and emerging research concerns. These findings contribute valuable insights into the role of TLS in immunotherapy and suggest future directions for this dynamic field.
Collapse
Affiliation(s)
- Yiwen Bao
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zeming Mo
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuang Wang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jinhua Long
- Department of Head & Neck, Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, China
| | - Honghong Zhang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yujun Xu
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Honglian Jiang
- Department of Nephrology, The People’s Hospital of Qiannan, Duyun, Guizhou, China
| | - Tianbao Qian
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Cobanovic S, Blaabjerg M, Illes Z, Nissen MS, Nielsen CH, Kondziella D, Buhelt S, Mahler MR, Sellebjerg F, Romme Christensen J. Cerebrospinal fluid soluble CD27 is a sensitive biomarker of inflammation in autoimmune encephalitis. J Neurol Sci 2024; 466:123226. [PMID: 39278170 DOI: 10.1016/j.jns.2024.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Autoimmune encephalitis (AE) comprises a group of rare, severe neuroinflammatory conditions. Current biomarkers of neuroinflammation are often normal in AE which therefore can be difficult to rule out in patients with seizures, cognitive and/or neuropsychiatric symptoms. Cerebrospinal fluid (CSF) soluble CD27 (sCD27) and soluble B-cell maturation antigen (sBCMA) have high sensitivity for neuroinflammation in other neuroinflammatory conditions. In this exploratory study we investigate the potential of sCD27 and sBCMA in CSF as biomarkers of neuroinflammation in AE. METHODS Concentrations of sCD27 and sBCMA were measured in CSF from 40 AE patients (20 patients were untreated (12 with anti-N-Methyl-d-Aspartate receptor antibodies (NMDA) and 8 with anti-Leucine-rich Glioma-Inactivated 1 antibodies (LGI1)), and 37 symptomatic controls (SCs). RESULTS CSF concentrations of sCD27 were increased in untreated NMDA AE patients (median 1571 pg/ml; p < 0.001) and untreated LGI1 AE patients (median 551 pg/ml; p < 0.05) compared to SCs (median 250 pg/ml). CSF sBCMA was increased in untreated NMDA AE patients (median 832 pg/ml) compared to SCs (median 429 pg/ml). CSF sCD27 and sBCMA correlated with the CSF cell count. Receiver operating characteristic curve analysis of untreated AE patients versus SCs showed an area under the curve of 0.97 for sCD27 and 0.76 for sBCMA. CONCLUSION CSF sCD27 is a suitable biomarker of neuroinflammation in AE with an ability to discriminate patients with NMDA AE and LGI1 AE from symptomatic controls. CSF sCD27 may be suited for ruling out AE and other neuroinflammatory conditions in the early phase of the diagnostic work-up.
Collapse
Affiliation(s)
- Stefan Cobanovic
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5220, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5220, Odense, Denmark
| | - Mette Scheller Nissen
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5220, Odense, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital, Ole Maaløes Vej 26, 2200 Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 8, 2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sophie Buhelt
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Mie Reith Mahler
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark.
| |
Collapse
|
12
|
Rossor T, Tewari S, Gadian J, Kaliakatsos M, Angelini P, Lim M. Immune-mediated neurological syndromes associated with childhood cancers. Eur J Paediatr Neurol 2024; 53:174-181. [PMID: 39547086 DOI: 10.1016/j.ejpn.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
The association of recognisable neurological conditions with an underlying malignancy is well described. In this review we explore the complex interplay of genetic, environmental and tumour factors which contribute to autoimmunity and paraneoplastic conditions. We review the current understanding of the pathogenesis of well recognised paraneoplastic conditions in children including Opsoclonus myoclonus ataxia syndrome, N-Methyl-D Aspartate receptor encephalitis and limbic encephalitis, and the broad approaches to treatment. Rapid advances in oncological treatment has expanded the arsenal of therapeutic modalities. We explore the broad spectrum of immune therapies in childhood cancer, and the potential neurological complications of these novel therapies, and discuss the fine balance of risk and benefit that these bring.
Collapse
Affiliation(s)
- Thomas Rossor
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Sanjay Tewari
- Department of Paediatric Haematology, The Royal Marsden, London, United Kingdom
| | - Jon Gadian
- Department of Paediatric Neurology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Marios Kaliakatsos
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Paola Angelini
- Children and Young People's Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom; Memorial Sloan Kettering Cancer Centre, Neuroblastoma service, New York
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; Department Women and Children's Health, School of Life Course Sciences (SoLCS), King's College, London, United Kingdom.
| |
Collapse
|
13
|
Peter E, Dumez P, Honnorat J, Desestret V. Mechanisms of immune tolerance breakdown in paraneoplastic neurological syndromes. Rev Neurol (Paris) 2024; 180:931-939. [PMID: 39299842 DOI: 10.1016/j.neurol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Paraneoplastic neurological syndromes (PNS) are rare autoimmune disorders triggered by the presence of a cancer. The autoimmunity is herein directed against proteins expressed both in the tumor and in the nervous system, namely the onconeural antigens, against which are directed specific autoantibodies, each of them characterizing a neurological syndrome. The mechanisms of the immune tolerance breakdown in PNS leading to the production of specific autoantibodies directed against the nervous system and leading to the immune attack begins to be explained. Each syndrome is associated with a specific histo-molecular subtype of tumor suggesting a link between the PNS genesis and oncogenesis. The expression of the onconeural antigen by these tumors is insufficient to explain the immune tolerance breakdown. In some PNS tumors, alterations of the antigen have been identified: mutations, gene copy number variation and overexpression of transcript and protein. But in others PNS, no such molecular alterations of the onconeural antigens have been demonstrated. In these cases, other mechanisms of neoantigen generation that may be involved remain to be deciphered. Cancer outcomes of PNS tumors are also characterized by the high frequency of lymph node metastasis at diagnosis. At the primary tumor site, the antitumor immune reaction seems to be particularly intense and characterized by a prominence of B-cell and Ig-secreting plasma cells that may generate the autoantibody secretion. The immune control mechanisms leading to such organization of the immune attack are not known to date. Renewed research efforts are thus needed to better understand the mechanism of immune tolerance breakdown in each PNS and determine potential targets to meet the therapeutic challenges posed by these rare disorders.
Collapse
Affiliation(s)
- E Peter
- Inserm U1314/UMR CNRS5284, SynatAc Team, MeLis Institute, Lyon, France; French Reference Center on Paraneoplastic Neurological Syndromes, Hospices Civils de Lyon, Lyon, France; University of Lyon, Université Claude-Bernard Lyon 1, Lyon, France
| | - P Dumez
- Inserm U1314/UMR CNRS5284, SynatAc Team, MeLis Institute, Lyon, France; French Reference Center on Paraneoplastic Neurological Syndromes, Hospices Civils de Lyon, Lyon, France; University of Lyon, Université Claude-Bernard Lyon 1, Lyon, France
| | - J Honnorat
- Inserm U1314/UMR CNRS5284, SynatAc Team, MeLis Institute, Lyon, France; French Reference Center on Paraneoplastic Neurological Syndromes, Hospices Civils de Lyon, Lyon, France; University of Lyon, Université Claude-Bernard Lyon 1, Lyon, France
| | - V Desestret
- Inserm U1314/UMR CNRS5284, SynatAc Team, MeLis Institute, Lyon, France; French Reference Center on Paraneoplastic Neurological Syndromes, Hospices Civils de Lyon, Lyon, France; University of Lyon, Université Claude-Bernard Lyon 1, Lyon, France.
| |
Collapse
|
14
|
Joubert B. The neurobiology and immunology of CASPR2-associated neurological disorders. Rev Neurol (Paris) 2024; 180:950-956. [PMID: 39341757 DOI: 10.1016/j.neurol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
CASPR2-associated neurological disorders encompass a wide clinical spectrum broadly divided into overlapping three autoimmune syndromes: CASPR2 limbic encephalitis, Morvan syndrome, and Isaacs syndrome. CASPR2 is a neuronal protein expressed at different sites in the central and peripheral nervous system and has a variety of roles and functions regarding neuronal excitability, synaptic plasticity, and homeostasis of inhibitory networks, most of which are only partially understood. CASPR2 antibodies have various pathogenic effects including internalization of CASPR2, disruption of protein-protein interactions, and, possibly, complement activation. Their pathogenic effect is well demonstrated in the limbic encephalitis phenotype, but the role of pathogenic antibodies in the development of other clinical manifestations is less clear. CASPR2 limbic encephalitis also differ from the other CASPR2-associated disorders in regard to HLA allele and paraneoplastic associations, suggesting it has immunological mechanisms distinct from the other clinical forms. Future studies are needed to better understand how the immunological alterations lead to the different phenotypes associated with CASPR2 antibodies.
Collapse
Affiliation(s)
- B Joubert
- Service de neurologie clinique et fonctionnelle, groupe hospitalier Sud, hospices civils de Lyon, Lyon, France; Centre de référence pour les encéphalites auto-immunes et les syndromes neurologiques paranéoplasiques, hospices civils de Lyon, Lyon, France.
| |
Collapse
|
15
|
Al‐Diwani A, Agrawal D, Sheerin F, Board C, Irani SR, Pollock KM, Provine NM. Multi-site Ultrasound-guided Fine Needle Aspiration to Study Cells and Soluble Factors From Human Lymph Nodes. Curr Protoc 2024; 4:e70063. [PMID: 39579041 PMCID: PMC11585077 DOI: 10.1002/cpz1.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Lymph nodes (LNs) are specialized secondary lymphoid tissues essential to the priming and maintenance of adaptive immune responses, including the B cell germinal center response; thus, they are central to immunity. However, the anatomically restricted and time-resolved nature of immune priming means that sampling disease-relevant human LNs requires specialized techniques. This article describes the application of ultrasound-guided fine-needle aspiration (FNA) to sample LNs, using cervical LNs of the head and neck as an exemplar. This minimally invasive technique allows collection of both immune cells and cell-free material that are relevant to both neuroimmune diseases and basic lymphatic functions. Downstream use of cellular material can include multiplexed flow cytometry, single-cell transcriptome sequencing (RNA-seq), and B cell cultures. The cell-free supernatant can be used for proteomics or other similar 'omics approaches. This unit describes collection of samples by FNA as well as processing and storage of samples for downstream assays. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sampling of human cervical lymph nodes by ultrasound-guided fine-needle aspiration Alternate Protocol: Sampling of human lymph nodes by ultrasound-guided fine-needle aspiration with negative pressure Basic Protocol 2: Processing and storage of human lymph node samples.
Collapse
Affiliation(s)
| | - Deepsha Agrawal
- Department of Radiology, John Radcliffe HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Fintan Sheerin
- Department of Radiology, John Radcliffe HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Callum Board
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Departments of Neurology and NeurosciencesMayo ClinicJacksonvilleFlorida
| | - Katrina M. Pollock
- Oxford Vaccine Group, Department of PaediatricsUniversity of OxfordOxfordUK
| | - Nicholas M. Provine
- Pandemic Sciences Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
16
|
Cleaver J, Ceronie B, Strippel C, Handel A, Irani SR. The immunology underlying CNS autoantibody diseases. Rev Neurol (Paris) 2024; 180:916-930. [PMID: 39289136 DOI: 10.1016/j.neurol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
The past two decades have seen a considerable paradigm shift in the way autoimmune CNS disorders are considered, diagnosed, and treated; largely due to the discovery of novel autoantibodies directed at neuroglial surface or intracellular targets. This approach has enabled multiple bona fide CNS autoantibody-associated diseases to thoroughly infiltrate the sphere of clinical neurology, facilitating advances in patient outcomes. This review focusses on the fundamental immunological concepts behind CNS autoantibody-associated diseases. First, we briefly review the broad phenotypic profiles of these conditions. Next, we explore concepts around immune checkpoints and the related B cell lineage. Thirdly, the sources of autoantibody production are discussed alongside triggers of tolerance failure, including neoplasms, infections and iatrogenic therapies. Penultimately, the role of T cells and leucocyte trafficking into the CNS are reviewed. Finally, biological insights from responses to targeted immunotherapies in different CNS autoantibody-associated diseases are summarised. The continued and rapid expansion of the CNS autoantibody-associated field holds promise for further improved diagnostic and therapeutic paradigms, ultimately leading to further improvements in patient outcomes.
Collapse
Affiliation(s)
- J Cleaver
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - B Ceronie
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - C Strippel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - A Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - S R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
17
|
Melzer N, Weber K, Räuber S, Rosenow F. [(Auto)immunity in focal epilepsy: mechanisms of (auto‑)immune-inflammatory epileptogenic neurodegeneration]. DER NERVENARZT 2024; 95:932-937. [PMID: 38953922 PMCID: PMC11427648 DOI: 10.1007/s00115-024-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE While the neuronal mechanisms of epileptic hyperexcitability (HE) have been studied in detail, recent findings suggest that extraneuronal, mainly immune-mediated inflammatory and vascular mechanisms play an important role in the development and progression of HE in epilepsy and the cognitive and behavioral comorbidities. MATERIAL AND METHODS Narrative review. RESULTS As in autoimmune (limbic) encephalitis (ALE/AIE) or Rasmussen's encephalitis (RE), the primary adaptive and innate immune responses and associated changes in the blood-brain barrier (BBB) and neurovascular unit (NVU) can cause acute cortical hyperexcitability (HE) and the development of hippocampal sclerosis (HS) and other structural cortical lesions with chronic HE. Cortical HE, which is associated with malformation of cortical development (MCD) and low-grade epilepsy-associated tumors (LEAT), for example, can be accompanied by secondary adaptive and innate immune responses and alterations in the BBB and NVU, potentially modulating the ictogenicity and epileptogenicity. These associations illustrate the influence of adaptive and innate immune mechanisms and associated changes in the BBB and NVU on cortical excitability and vice versa, suggesting a dynamic and complex interplay of these factors in the development and progression of epilepsy in general. DISCUSSION The described concept of a neuro-immune-vascular interaction in focal epilepsy opens up new possibilities for the pathogenetic understanding and thus also for the selective therapeutic intervention.
Collapse
Affiliation(s)
- Nico Melzer
- Klinik für Neurologie, Medizinische Fakultät und Universitätsklinikum, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Deutschland.
| | - Katharina Weber
- Neurologisches Institut (Edinger Institut), Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland
- Frankfurt Cancer Institute (FCI), Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland
- Partnerstätte Frankfurt, Frankfurt am Main und Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Deutschland
- Universitäres Centrum für Tumorerkrankungen Frankfurt (UCT), Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland
| | - Saskia Räuber
- Klinik für Neurologie, Medizinische Fakultät und Universitätsklinikum, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Deutschland
| | - Felix Rosenow
- Epilepsiezentrum Frankfurt Rhein-Main, Klinik für Neurologie, Zentrum für Neurologie und Neurochirurgie, Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland.
| |
Collapse
|
18
|
Lee ST, Abboud H, Irani SR, Nakajima H, Piquet AL, Pittock SJ, Yeh EA, Wang J, Rajan S, Overell J, Smith J, St Lambert J, El-Khairi M, Gafarova M, Gelfand JM. Innovation and optimization in autoimmune encephalitis trials: the design and rationale for the Phase 3, randomized study of satralizumab in patients with NMDAR-IgG-antibody-positive or LGI1-IgG-antibody-positive autoimmune encephalitis (CIELO). Front Neurol 2024; 15:1437913. [PMID: 39193150 PMCID: PMC11348855 DOI: 10.3389/fneur.2024.1437913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Background Autoimmune encephalitis (AIE) encompasses a spectrum of rare autoimmune-mediated neurological disorders, which are characterized by brain inflammation and dysfunction. Autoantibodies targeting the N-methyl-d-aspartic acid receptor (NMDAR) and leucine-rich glioma-inactivated 1 (LGI1) are the most common subtypes of antibody-positive AIE. Currently, there are no approved therapies for AIE. Interleukin-6 (IL-6) signaling plays a role in the pathophysiology of AIE. Satralizumab, a humanized, monoclonal recycling antibody that specifically targets the IL-6 receptor and inhibits IL-6 signaling, has demonstrated efficacy and safety in another autoantibody-mediated neuroinflammatory disease, aquaporin-4 immunoglobulin G antibody-positive neuromyelitis optica spectrum disorder, and has the potential to be an evidence-based disease modifying treatment in AIE. Objectives CIELO will evaluate the efficacy, safety, pharmacodynamics, and pharmacokinetics of satralizumab compared with placebo in patients with NMDAR-immunoglobulin G antibody-positive (IgG+) or LGI1-IgG+ AIE. Study design CIELO (NCT05503264) is a prospective, Phase 3, randomized, double-blind, multicenter, basket study that will enroll approximately 152 participants with NMDAR-IgG+ or LGI1-IgG+ AIE. Prior to enrollment, participants will have received acute first-line therapy. Part 1 of the study will consist of a 52-week primary treatment period, where participants will receive subcutaneous placebo or satralizumab at Weeks 0, 2, 4, and every 4 weeks thereafter. Participants may continue to receive background immunosuppressive therapy, symptomatic treatment, and rescue therapy throughout the study. Following Part 1, participants can enter an optional extension period (Part 2) to continue the randomized, double-blind study drug, start open-label satralizumab, or stop study treatment and continue with follow-up assessments. Endpoints The primary efficacy endpoint is the proportion of participants with a ≥1-point improvement in the modified Rankin Scale (mRS) score from study baseline and no use of rescue therapy at Week 24. Secondary efficacy assessments include mRS, Clinical Assessment Scale of Autoimmune Encephalitis (CASE), time to rescue therapy, sustained seizure cessation and no rescue therapy, Montreal Cognitive Assessment, and Rey Auditory Verbal Learning Test (RAVLT) measures. Safety, pharmacokinetics, pharmacodynamics, exploratory efficacy, and biomarker endpoints will be captured. Conclusion The innovative basket study design of CIELO offers the opportunity to yield prospective, robust evidence, which may contribute to the development of evidence-based treatment recommendations for satralizumab in AIE.
Collapse
Affiliation(s)
- Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hesham Abboud
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, United States
| | - Hideto Nakajima
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Amanda L. Piquet
- Department of Neurology, University of Colorado, Aurora, CO, United States
| | - Sean J. Pittock
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - E. Ann Yeh
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Sharmila Rajan
- Product Development Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| | - James Overell
- Product Development Neuroscience, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jillian Smith
- Roche Products Ltd., Welwyn Garden City, United Kingdom
| | | | | | - Marina Gafarova
- Product Development Neuroscience, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jeffrey M. Gelfand
- Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| |
Collapse
|
19
|
Cleaver J, Dale R, Irani SR. Hunting the origin and source of NR1-directed IgGs in patients with encephalitis. Brain Behav Immun 2024; 120:554-556. [PMID: 38986722 DOI: 10.1016/j.bbi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Jonathan Cleaver
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - Russell Dale
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Clinical Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; TY Nelson Department of Neurology, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
20
|
Irani SR. Autoimmune Encephalitis. Continuum (Minneap Minn) 2024; 30:995-1020. [PMID: 39088286 DOI: 10.1212/con.0000000000001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE This article focuses on the clinical features and diagnostic evaluations that accurately identify patients with ever-expanding forms of antibody-defined encephalitis. Forms of autoimmune encephalitis are more prevalent than infectious encephalitis and represent treatable neurologic syndromes for which early immunotherapies lead to the best outcomes. LATEST DEVELOPMENTS A clinically driven approach to identifying many autoimmune encephalitis syndromes is feasible, given the typically distinctive features associated with each antibody. Patient demographics alongside the presence and nature of seizures, cognitive impairment, psychiatric disturbances, movement disorders, and peripheral features provide a valuable set of clinical tools to guide the detection and interpretation of highly specific antibodies. In turn, these clinical features in combination with serologic findings and selective paraclinical testing, direct the rationale for the administration of immunotherapies. Observational studies provide the mainstay of evidence guiding first- and second-line immunotherapy administration in autoimmune encephalitis and, whereas these typically result in some clinical improvements, almost all patients have residual neuropsychiatric deficits, and many experience clinical relapses. An improved pathophysiologic understanding and ongoing clinical trials can help to address these unmet medical needs. ESSENTIAL POINTS Antibodies against central nervous system proteins characterize various autoimmune encephalitis syndromes. The most common targets include leucine-rich glioma inactivated protein 1 (LGI1), N-methyl-d-aspartate (NMDA) receptors, contactin-associated proteinlike 2 (CASPR2), and glutamic acid decarboxylase 65 (GAD65). Each antibody-associated autoimmune encephalitis typically presents with a recognizable blend of clinical and investigation features, which help differentiate each from alternative diagnoses. The rapid expansion of recognized antibodies and some clinical overlaps support panel-based antibody testing. The clinical-serologic picture guides the immunotherapy regime and offers valuable prognostic information. Patient care should be delivered in conjunction with autoimmune encephalitis experts.
Collapse
|
21
|
Qing Li A, Jie Li X, Liu X, Gong X, Ru Ma Y, Cheng P, Jiao Wang X, Mei Li J, Zhou D, Hong Z. Antibody-secreting cells as a source of NR1-IgGs in N-methyl-D-aspartate receptor-antibody encephalitis. Brain Behav Immun 2024; 120:181-186. [PMID: 38825049 DOI: 10.1016/j.bbi.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND The pathogenicity of NR1-IgGs in N-methyl-D-aspartate receptor (NMDAR)-antibody encephalitis is known, but the immunobiological mechanisms underlying their production remain unclear. METHODS For the first time, we explore the origin of NR1-IgGs and evaluate the contribution of B-cells to serum NR1-IgGs levels. Peripheral blood mononuclear cells (PBMCs) were obtained from patients and healthy controls (HCs). Naïve, unswitched memory (USM), switched memory B cells (SM), antibody-secreting cells (ASCs), and PBMC depleted of ASCs were obtained by fluorescence-activated cell sorting and cultured in vitro. RESULTS For some patients, PBMCs spontaneously produced NR1-IgGs. Compared to the patients in PBMC negative group, the positive group had higher NR1-IgG titers in cerebrospinal fluid and Modified Rankin scale scores. The proportions of NR1-IgG positive wells in PBMCs cultures were correlated with NR1-IgGs titers in serum and CSF. The purified ASCs, SM, USM B cells produced NR1-IgGs in vitro. Compared to the patients in ASCs negative group, the positive group exhibited a worse response to second-line IT at 3-month follow-up. Naïve B cells also produce NR1-IgGs, implicating that NR1-IgGs originate from naïve B cells and a pre-germinal centres defect in B cell tolerance checkpoint in some patients. For HCs, no NR1-IgG from cultures was observed. PBMC depleted of ASCs almost eliminated the production of NR1-IgGs. CONCLUSIONS These collective findings suggested that ASCs might mainly contribute to the production of peripheral NR1-IgG in patients with NMDAR-antibody encephalitis in the acute phase. Our study reveals the pathogenesis and helps develop tailored treatments (eg, anti-CD38) for NMDAR-antibody encephalitis.
Collapse
Affiliation(s)
- Ai Qing Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xing Jie Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xu Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xue Gong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ya Ru Ma
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Peng Cheng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiao Jiao Wang
- Core Facilities of West China Hospital, Chengdu, Sichuan, China
| | - Jin Mei Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nan fu Hospital, Chengdu, Sichuan 611730, China; Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, China.
| |
Collapse
|
22
|
Peris Sempere V, Luo G, Muñiz-Castrillo S, Pinto AL, Picard G, Rogemond V, Titulaer MJ, Finke C, Leypoldt F, Kuhlenbäumer G, Jones HF, Dale RC, Binks S, Irani SR, Bastiaansen AE, de Vries JM, de Bruijn MAAM, Roelen DL, Kim TJ, Chu K, Lee ST, Kanbayashi T, Pollock NR, Kichula KM, Mumme-Monheit A, Honnorat J, Norman PJ, Mignot E. HLA and KIR genetic association and NK cells in anti-NMDAR encephalitis. Front Immunol 2024; 15:1423149. [PMID: 39050850 PMCID: PMC11266021 DOI: 10.3389/fimmu.2024.1423149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Genetic predisposition to autoimmune encephalitis with antibodies against N-methyl-D-aspartate receptor (NMDAR) is poorly understood. Given the diversity of associated environmental factors (tumors, infections), we hypothesized that human leukocyte antigen (HLA) and killer-cell immunoglobulin-like receptors (KIR), two extremely polymorphic gene complexes key to the immune system, might be relevant for the genetic predisposition to anti-NMDAR encephalitis. Notably, KIR are chiefly expressed by Natural Killer (NK) cells, recognize distinct HLA class I allotypes and play a major role in anti-tumor and anti-infection responses. Methods We conducted a Genome Wide Association Study (GWAS) with subsequent control-matching using Principal Component Analysis (PCA) and HLA imputation, in a multi-ethnic cohort of anti-NMDAR encephalitis (n=479); KIR and HLA were further sequenced in a large subsample (n=323). PCA-controlled logistic regression was then conducted for carrier frequencies (HLA and KIR) and copy number variation (KIR). HLA-KIR interaction associations were also modeled. Additionally, single cell sequencing was conducted in peripheral blood mononuclear cells from 16 cases and 16 controls, NK cells were sorted and phenotyped. Results Anti-NMDAR encephalitis showed a weak HLA association with DRB1*01:01~DQA1*01:01~DQB1*05:01 (OR=1.57, 1.51, 1.45; respectively), and DRB1*11:01 (OR=1.60); these effects were stronger in European descendants and in patients without an underlying ovarian teratoma. More interestingly, we found increased copy number variation of KIR2DL5B (OR=1.72), principally due to an overrepresentation of KIR2DL5B*00201. Further, we identified two allele associations in framework genes, KIR2DL4*00103 (25.4% vs. 12.5% in controls, OR=1.98) and KIR3DL3*00302 (5.3% vs. 1.3%, OR=4.44). Notably, the ligands of these KIR2DL4 and KIR3DL3, respectively, HLA-G and HHLA2, are known to act as immune checkpoint with immunosuppressive functions. However, we did not find differences in specific KIR-HLA ligand interactions or HLA-G polymorphisms between cases and controls. Similarly, gene expression of CD56dim or CD56bright NK cells did not differ between cases and controls. Discussion Our observations for the first time suggest that the HLA-KIR axis might be involved in anti-NMDAR encephalitis. While the genetic risk conferred by the identified polymorphisms appears small, a role of this axis in the pathophysiology of this disease appears highly plausible and should be analyzed in future studies.
Collapse
Affiliation(s)
- Vicente Peris Sempere
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Guo Luo
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Sergio Muñiz-Castrillo
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Anne-Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Géraldine Picard
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Rogemond
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Leypoldt
- Department of Neurology, Christian-Albrechts-University/University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein Kiel/Lübeck, Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, Christian-Albrechts-University/University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Hannah F. Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Russell C. Dale
- Kids Neuroscience Centre, Children’s Hospital at Westmead clinical school, University of Sydney, Sydney, NSW, Australia
| | - Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, United States
| | | | - Juna M. de Vries
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Dave L. Roelen
- Department of Immunogenetics and Transplantation Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Nicholas R. Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Abigail Mumme-Monheit
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emmanuel Mignot
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
23
|
Paparoditis P, Shulman Z. The tumor-driven antibody-mediated immune response in cancer. Curr Opin Immunol 2024; 88:102431. [PMID: 38866666 DOI: 10.1016/j.coi.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Immune cells in the tumor microenvironment play a crucial role in cancer prognosis and response to immunotherapy. Recent studies highlight the significance of tumor-infiltrating B cells and tertiary lymphoid structures as markers of favorable prognosis and patient-positive response to immune checkpoint blockers in some types of cancer. Although the presence of germinal center B cells and plasma cells in the tumor microenvironment has been established, determining their tumor reactivity remains challenging. The few known tumor targets range from viral proteins to self and altered self-proteins. The emergence of self-reactive antibodies in patients with cancer, involves the opposing forces of antigen-driven affinity increase and peripheral tolerance mechanisms. Here, B cell tumor antigen specificity and affinity maturation in tumor-directed immune responses in cancer are discussed.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
24
|
Provine NM, Al-Diwani A, Agarwal D, Dooley K, Heslington A, Murchison AG, Garner LC, Sheerin F, Klenerman P, Irani SR. Fine needle aspiration of human lymph nodes reveals cell populations and soluble interactors pivotal to immunological priming. Eur J Immunol 2024; 54:e2350872. [PMID: 38388988 DOI: 10.1002/eji.202350872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Lymph node (LN) fine needle aspiration (LN FNA) represents a powerful technique for minimally invasive sampling of human LNs in vivo and has been used effectively to directly study aspects of the human germinal center response. However, systematic deep phenotyping of the cellular populations and cell-free proteins recovered by LN FNA has not been performed. Thus, we studied human cervical LN FNAs as a proof-of-concept and used single-cell RNA-sequencing and proteomic analysis to benchmark this compartment, define the purity of LN FNA material, and facilitate future studies in this immunologically pivotal environment. Our data provide evidence that LN FNAs contain bone-fide LN-resident innate immune populations, with minimal contamination of blood material. Examination of these populations reveals unique biology not predictable from equivalent blood-derived populations. LN FNA supernatants represent a specific source of lymph- and lymph node-derived proteins, and can, aided by transcriptomics, identify likely receptor-ligand interactions. This represents the first description of the types and abundance of immune cell populations and cell-free proteins that can be efficiently studied by LN FNA. These findings are of broad utility for understanding LN physiology in health and disease, including infectious or autoimmune perturbations, and in the case of cervical nodes, neuroscience.
Collapse
Affiliation(s)
- Nicholas M Provine
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adam Al-Diwani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- University Department of Psychiatry, University of Oxford, Oxford, UK
| | - Devika Agarwal
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kyla Dooley
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amelia Heslington
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew G Murchison
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fintan Sheerin
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Klenerman
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
25
|
Iizuka M, Nagata N, Kanazawa N, Iwami T, Nagashima M, Nakamura M, Kaneko J, Kitamura E, Nishiyama K, Mamorita N, Iizuka T. H-intensity scale score to estimate CSF GluN1 antibody titers with one-time immunostaining using a commercial assay. Front Immunol 2024; 15:1350837. [PMID: 38745654 PMCID: PMC11091310 DOI: 10.3389/fimmu.2024.1350837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Anti-NMDA receptor encephalitis is an autoimmune disorder caused by autoantibodies (abs) against the conformational epitope on GluN1 subunits. GluN1-abs have been determined with cell-based assay (CBA) co-expressing GluN1/GluN2 subunits. However, commercial fixed CBA expressing only GluN1 subunit has increasingly been used in clinical practice. The ab titers can be determined with serial dilutions, but its clinical significance remains unclear. We aimed to develop an H-intensity scale (HIS) score to estimate GluN1-ab titers in cerebrospinal fluid (CSF) with one-time immunostaining using both commercial CBA and immunohistochemistry and report its usefulness. "H" is the initial of a patient with high CSF GluN1-ab titers (1:2,048). Methods We first determined the reliability of CBA in 370 patients with suspected autoimmune encephalitis by comparing the results between commercial CBA and established assay in Dalmau's Lab. Then, we made positive control panels using the patient H's CSF diluted in a fourfold serial dilution method (1:2, 1:8, 1:32, 1:128, 1:512, and 1:2,048). Based on the panels, we scored the intensity of ab reactivity of 79 GluN1-ab-positive patients' CSF (diluted at 1:2) on a scale from 0 to 6 (with ≥1 considered positive). To assess inter-assay reliability, we performed immunostaining twice in 21 patients' CSF. We investigated an association between the score of CSF obtained at diagnosis and the clinical/paraclinical features. Results The sensitivity and specificity of CBA were 93.7% (95% CI: 86.0-97.3) and 98.6% (95% CI: 96.5-99.5), respectively. Linear regression analysis showed a good agreement between the scores of the first and second assays. Patients with a typical spectrum, need for mechanical ventilation support, autonomic symptoms/central hypoventilation, dyskinesias, speech dysfunction, decreased level of consciousness, preceding headache, ovarian teratoma, and CSF leukocyte count >20 cells/µL had a higher median HIS score than those without, but HIS score was not associated with sex, age at onset, or seizure. HIS score at diagnosis had a significant effect on 1-year functional status. Discussion The severity of disease and four of the six core symptoms were associated with higher GluN1-ab titers in CSF at diagnosis, which may play a role in poor 1-year functional status. An incomplete phenotype can be attributed to low CSF GluN1-ab titers.
Collapse
Affiliation(s)
- Masaki Iizuka
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naomi Nagata
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naomi Kanazawa
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomomi Iwami
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Makoto Nagashima
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masaaki Nakamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Juntaro Kaneko
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazutoshi Nishiyama
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Noritaka Mamorita
- Department of Medical Informatics, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Takahiro Iizuka
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
26
|
Cleaver J, Jeffery K, Klenerman P, Lim M, Handunnetthi L, Irani SR, Handel A. The immunobiology of herpes simplex virus encephalitis and post-viral autoimmunity. Brain 2024; 147:1130-1148. [PMID: 38092513 PMCID: PMC10994539 DOI: 10.1093/brain/awad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 04/06/2024] Open
Abstract
Herpes simplex virus encephalitis (HSE) is the leading cause of non-epidemic encephalitis in the developed world and, despite antiviral therapy, mortality and morbidity is high. The emergence of post-HSE autoimmune encephalitis reveals a new immunological paradigm in autoantibody-mediated disease. A reductionist evaluation of the immunobiological mechanisms in HSE is crucial to dissect the origins of post-viral autoimmunity and supply rational approaches to the selection of immunotherapeutics. Herein, we review the latest evidence behind the phenotypic progression and underlying immunobiology of HSE including the cytokine/chemokine environment, the role of pathogen-recognition receptors, T- and B-cell immunity and relevant inborn errors of immunity. Second, we provide a contemporary review of published patients with post-HSE autoimmune encephalitis from a combined cohort of 110 patients. Third, we integrate novel mechanisms of autoimmunization in deep cervical lymph nodes to explore hypotheses around post-HSE autoimmune encephalitis and challenge these against mechanisms of molecular mimicry and others. Finally, we explore translational concepts where neuroglial surface autoantibodies have been observed with other neuroinfectious diseases and those that generate brain damage including traumatic brain injury, ischaemic stroke and neurodegenerative disease. Overall, the clinical and immunological landscape of HSE is an important and evolving field, from which precision immunotherapeutics could soon emerge.
Collapse
Affiliation(s)
- Jonathan Cleaver
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Katie Jeffery
- Department of Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Ming Lim
- Children’s Neurosciences, Evelina London Children’s Hospital at Guy’s and St Thomas’ NHS Foundation Trust, London, SE1 7EH, UK
- Department Women and Children’s Health, School of Life Course Sciences, King’s College London, London, WC2R 2LS, UK
| | - Lahiru Handunnetthi
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Adam Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| |
Collapse
|
27
|
Tuulasvaara A, Kurdo G, Martola J, Laakso SM. Cervical lymph node diameter reflects disease progression in multiple sclerosis. Mult Scler Relat Disord 2024; 84:105496. [PMID: 38354443 DOI: 10.1016/j.msard.2024.105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease against the central nervous system (CNS), where B cells activate in the deep cervical lymph nodes (CLNs) before migrating to the CNS. CLN diameter in head magnetic resonance imaging (MRI) is an unexplored possible biomarker for disease activity. METHODS We measured CLN axial diameter from head MRIs of patients with active stable relapsing-remitting MS (a-RRMS-stable, n = 26), highly active stable RRMS (ha-RRMS-stable, n = 23), RRMS patients directly after a relapse (RRMS-relapse, n = 64) and follow-up MRIs from the same patients (r-RRMS-follow-up, n = 26). MRIs of primary headache syndrome patients (n = 38) served as a control group. We evaluated the correlation between CLN diameter and clinical data. RESULTS Increases in EDSS in approximately 2 year-follow up after imaging was connected to smaller CLN diameter at imaging (correlation coefficient -0.305, p = 0.009). In a regression model, age did not show a significant effect to CLN diameter in MS patients. Enlarged CLNs of over 10 mm diameter were more common in patients with shorter disease duration (p = 0.013). The largest CLN axial diameter in RRMS-relapse group was smaller than in the control group (p = 0.005), whereas MS subgroups of the study did not differ in CLN diameter. CONCLUSIONS CLN diameter appears to reflect disease duration and disease progression in MS, in line with compartmentalization of immunological activity to the CNS in time. Decrease in CLN diameter was seen also during relapse. CLN axial diameter in MRI shows promise as a feasible biomarker for assessing MS disease activity.
Collapse
Affiliation(s)
- Anni Tuulasvaara
- Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland; Department of Neurosciences, Clinicum, University of Helsinki, Helsinki, Finland
| | - Goran Kurdo
- Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Juha Martola
- Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Sini M Laakso
- Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland; Department of Neurosciences, Clinicum, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
28
|
Wang J, Luo L, Meng Z, Ren Y, Tang M, Huang Z, Yang B, Niu Q, Zhou D, Wang M, Li J. Blood and CSF findings of cellular immunity in anti-NMDAR encephalitis. Int Immunopharmacol 2024; 130:111743. [PMID: 38430802 DOI: 10.1016/j.intimp.2024.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES To investigate the immunopathogenic mechanisms of anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) by characterizing the changes of immune cells in both peripheral blood (PB) and cerebrospinal fluid (CSF) of patients with NMDAR-E. METHODS Cytology and flow cytometry were used to explore and compare different immunological parameters in PB and CSF of patients with NMDAR-E, viral encephalitis (VE) and healthy volunteers. Moreover, different models were established to assess the possibility of identifying NMDAR-E patients based on PB and CSF parameters. RESULTS The neutrophil counts and monocyte-to-lymphocyte ratios (MLR) in PB are higher in NMDAR-E patients than in both VEs and controls (P < 0.001, respectively), while the percentages of CD3 + T, CD4 + T lymphocytes, and the leukocytes count in CSF were lower in NMDAR-Es than in VEs (P < 0.01, respectively). The higher percentages of CD8 + T cells in blood and CSF were both correlated with more severe NMDAR-E (P < 0.05, respectively). The poor neurological status group had significantly higher PB leukocytes but lower CSF leukocyte count (P < 0.05). Longitudinal observations in patients with NMDAR-E showed a decreasing trend of leukocyte count, neutrophils count, neutrophil-to-monocyte ratios (NMR), and neutrophil-to-lymphocyte ratios (NLR) with the gradual recovery of neurological function. CONCLUSIONS The expression patterns of T lymphocyte subsets were different in patients with NMDAR-E and viral encephalitis. The changing trends of leukocyte and lymphocyte populations in peripheral blood and cerebrospinal fluid may provide clues for the diagnosis of different types of encephalitides, including NMDARE, and can be used as immunological markers to assess and predict the prognosis.
Collapse
Affiliation(s)
- Jierui Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Limei Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Zirui Meng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Yan Ren
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Meng Tang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Minjin Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Jinmei Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Handel AE, Irani SR, Leite MI. MOG-IgA as a Potential Marker of Germinal Center Activity. JAMA Neurol 2024; 81:297. [PMID: 38227335 DOI: 10.1001/jamaneurol.2023.5167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Affiliation(s)
- Adam E Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Sarosh R Irani
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, United Kingdom
| |
Collapse
|
30
|
Kulsvehagen L, Ayroza Galvão Ribeiro Gomes AB, Pröbstel AK. MOG-IgA as a Potential Marker of Germinal Center Activity-Reply. JAMA Neurol 2024; 81:298. [PMID: 38227339 DOI: 10.1001/jamaneurol.2023.5170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Affiliation(s)
- Laila Kulsvehagen
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Ana Beatriz Ayroza Galvão Ribeiro Gomes
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
- Departamento de Neurologia, Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Li S, Hu X, Wang M, Yu L, Zhang Q, Xiao J, Hong Z, Zhou D, Li J. Single-cell RNA sequencing reveals diverse B cell phenotypes in patients with anti-NMDAR encephalitis. Psychiatry Clin Neurosci 2024; 78:197-208. [PMID: 38063052 DOI: 10.1111/pcn.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUNDS Anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) is a severe autoimmune disorder characterized by prominent psychiatric symptoms. Although the role of NMDAR antibodies in the disease has been extensively studied, the phenotype of B cell subsets is still not fully understood. METHODS We utilized single-cell RNA sequencing, single-cell B cell receptor sequencing (scBCR-seq), bulk BCR sequencing, flow cytometry, and enzyme-linked immunosorbent assay to analyze samples from both NMDAR-E patients and control individuals. RESULTS The cerebrospinal fluid (CSF) of NMDAR-E patients showed significantly increased B cell counts, predominantly memory B (Bm) cells. CSF Bm cells in NMDAR-E patients exhibited upregulated expression of differential expression genes (DEGs) associated with immune regulatory function (TNFRSF13B and ITGB1), whereas peripheral B cells upregulated DEGs related to antigen presentation. Additionally, NMDAR-E patients displayed higher levels of IgD- CD27- double negative (DN) cells and DN3 cells in peripheral blood (PB). In vitro, DN1 cell subsets from NMDAR-E patients differentiated into DN2 and DN3 cells, while CD27+ and/or IgD+ B cells (non-DN) differentiated into antibody-secreting cells (ASCs) and DN cells. NR1-IgG antibodies were found in B cell culture supernatants from patients. Differential expression of B cell IGHV genes in CSF and PB of NMDAR-E patients suggests potential antigen class switching. CONCLUSION B cell subpopulations in the CSF and PB of NMDAR-E patients exhibit distinct compositions and transcriptomic features. In vitro, non-DN cells from NMDAR-E can differentiate into DN cells and ASCs, potentially producing NR1-IgG antibodies. Further research is necessary to investigate the potential contribution of DN cell subpopulations to NR1-IgG antibody production.
Collapse
Affiliation(s)
- Sisi Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiang Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinmei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Voit A, Graziano A, Schomer A, Theodore D. Ovarian teratoma-associated anti-NMDA receptor encephalitis with severe features. BMJ Case Rep 2024; 17:e258038. [PMID: 38355204 PMCID: PMC10868323 DOI: 10.1136/bcr-2023-258038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Anti-N-methyl-D-aspartame receptor (NMDAR) encephalitis is an uncommon clinical entity for the general intensivist or neurologist. Diagnosis can be made by the presence of cerebrospinal fluid IgG antibody against the GluNR1 and GluNR2 subunits of the NMDAR. We present a case of anti-NMDAR encephalitis in a young woman with an ovarian teratoma treated with surgical resection and multiple immunomodulatory therapies.
Collapse
Affiliation(s)
- Antanina Voit
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Ashley Graziano
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Andrew Schomer
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Danny Theodore
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Theorell J, Harrison R, Williams R, Raybould MIJ, Zhao M, Fox H, Fower A, Miller G, Wu Z, Browne E, Mgbachi V, Sun B, Mopuri R, Li Y, Waters P, Deane CM, Handel A, Makuch M, Irani SR. Ultrahigh frequencies of peripherally matured LGI1- and CASPR2-reactive B cells characterize the cerebrospinal fluid in autoimmune encephalitis. Proc Natl Acad Sci U S A 2024; 121:e2311049121. [PMID: 38319973 PMCID: PMC10873633 DOI: 10.1073/pnas.2311049121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Intrathecal synthesis of central nervous system (CNS)-reactive autoantibodies is observed across patients with autoimmune encephalitis (AE), who show multiple residual neurobehavioral deficits and relapses despite immunotherapies. We leveraged two common forms of AE, mediated by leucine-rich glioma inactivated-1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies, as human models to comprehensively reconstruct and profile cerebrospinal fluid (CSF) B cell receptor (BCR) characteristics. We hypothesized that the resultant observations would both inform the observed therapeutic gap and determine the contribution of intrathecal maturation to pathogenic B cell lineages. From the CSF of three patients, 381 cognate-paired IgG BCRs were isolated by cell sorting and scRNA-seq, and 166 expressed as monoclonal antibodies (mAbs). Sixty-two percent of mAbs from singleton BCRs reacted with either LGI1 or CASPR2 and, strikingly, this rose to 100% of cells in clonal groups with ≥4 members. These autoantigen-reactivities were more concentrated within antibody-secreting cells (ASCs) versus B cells (P < 0.0001), and both these cell types were more differentiated than LGI1- and CASPR2-unreactive counterparts. Despite greater differentiation, autoantigen-reactive cells had acquired few mutations intrathecally and showed minimal variation in autoantigen affinities within clonal expansions. Also, limited CSF T cell receptor clonality was observed. In contrast, a comparison of germline-encoded BCRs versus the founder intrathecal clone revealed marked gains in both affinity and mutational distances (P = 0.004 and P < 0.0001, respectively). Taken together, in patients with LGI1 and CASPR2 antibody encephalitis, our results identify CSF as a compartment with a remarkably high frequency of clonally expanded autoantigen-reactive ASCs whose BCR maturity appears dominantly acquired outside the CNS.
Collapse
Affiliation(s)
- Jakob Theorell
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm17177, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm17176, Sweden
| | - Ruby Harrison
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Robyn Williams
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OxfordOX3 9DU, United Kingdom
| | - Matthew I. J. Raybould
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, OxfordOX1 3LB, United Kingdom
| | - Meng Zhao
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Hannah Fox
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Andrew Fower
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Georgina Miller
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Zoe Wu
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Eleanor Browne
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Victor Mgbachi
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Bo Sun
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Rohini Mopuri
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL32224
| | - Ying Li
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL32224
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Charlotte M. Deane
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, OxfordOX1 3LB, United Kingdom
| | - Adam Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OxfordOX3 9DU, United Kingdom
| | - Mateusz Makuch
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OxfordOX3 9DU, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL32224
| |
Collapse
|
34
|
Farina A, Villagrán-García M, Vogrig A, Zekeridou A, Muñiz-Castrillo S, Velasco R, Guidon AC, Joubert B, Honnorat J. Neurological adverse events of immune checkpoint inhibitors and the development of paraneoplastic neurological syndromes. Lancet Neurol 2024; 23:81-94. [PMID: 38101905 DOI: 10.1016/s1474-4422(23)00369-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 12/17/2023]
Abstract
Immune checkpoint inhibitors, a class of oncological treatments that enhance antitumour immunity, can trigger neurological adverse events closely resembling paraneoplastic neurological syndromes. Unlike other neurological adverse events caused by these drugs, post-immune checkpoint inhibitor paraneoplastic neurological syndromes predominantly affect the CNS and are associated with neural antibodies and cancer types commonly found also in spontaneous paraneoplastic neurological syndromes. Furthermore, post-immune checkpoint inhibitor paraneoplastic neurological syndromes have poorer neurological outcomes than other neurological adverse events of immune checkpoint inhibitors. Early diagnosis and initiation of immunosuppressive therapy are likely to be crucial in preventing the accumulation of neurological disability. Importantly, the neural antibodies found in patients with post-immune checkpoint inhibitor paraneoplastic neurological syndromes are sometimes detected before treatment, indicating that these antibodies might help to predict the development of neurological adverse events. Experimental and clinical evidence suggests that post-immune checkpoint inhibitor paraneoplastic neurological syndromes probably share immunological features with spontaneous paraneoplastic syndromes. Hence, the study of post-immune checkpoint inhibitor paraneoplastic neurological syndromes can help in deciphering the immunopathogenesis of paraneoplastic neurological syndromes and in identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Antonio Farina
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France; Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Macarena Villagrán-García
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Alberto Vogrig
- Clinical Neurology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy; Department of Medicine (DAME), University of Udine Medical School, Udine, Italy
| | - Anastasia Zekeridou
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sergio Muñiz-Castrillo
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France; Stanford Center for Sleep Sciences and Medicine, Palo Alto, CA, USA
| | - Roser Velasco
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-Institut Català d Oncologia L'Hospitalet, Institut d'Investigació Biomèdica de Bellvitge, l'Hospitalet de Llobregat, Barcelona, Spain; Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Amanda C Guidon
- Harvard Medical School, Boston, MA, USA; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Bastien Joubert
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France; Department of Neurology, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
35
|
Luo W, Zheng J, Su B. Low-Grade Glioma within Mature Cystic Teratoma in a Patient with Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Case Report. Case Rep Oncol 2024; 17:430-437. [PMID: 38449876 PMCID: PMC10917429 DOI: 10.1159/000535708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 03/08/2024] Open
Abstract
Introduction Mature cystic teratoma (MCT) is a common type of ovarian tumors that can, in rare cases, undergo malignant transformation. It has been discovered that MCT patients may experience psychiatric symptoms due to the presence of anti-N-methyl-D-aspartate receptor (NMDAR) antibodies, which is the underlying cause of autoimmune encephalitis. Here, we present the first documented case of a patient with anti-NMDAR encephalitis who also had a morphology of low-grade glioma within MCT. Case Report A 45-year-old woman presented with seizures, altered consciousness, abnormal NMDAR antibody IgG titers, and abnormal brain MRI findings confirm the diagnosis of anti-NMDAR encephalitis. Physical examination revealed an oval mixed echo mass measuring 54 × 37 mm in the left adnexal area on ultrasound of the uterine appendage. The patient underwent laparoscopic left ovarian and fallopian tube resection. The pathological gross examination revealed a pile of grayish-red cystic and solid fragmented tissue measuring 7 × 6 × 2.2 cm. Histological examination revealed characteristic components of MCT. Furthermore, the solid component of the gross tissue showed proliferative and densely arranged astrocytes with cellular atypia, which were positive for GFAP and Olig-2, negative for IDH1 and EMA. And the Ki67 index was approximately 10%, suggesting the presence of low-grade glioma lesions. The patient was diagnosed with malignant transformation of MCT into a morphology of low-grade glioma, not otherwise specified. After the removal of the ovarian tumor, the patient's psychiatric symptoms improved. Conclusions Low-grade glioma within MCT is a rare occurrence, and the presence of this malignant transformation in patients with anti-NMDAR encephalitis is even more uncommon.
Collapse
Affiliation(s)
- Wenwen Luo
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Jinyue Zheng
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Bojin Su
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
36
|
Wagner B, Irani S. Autoimmune and paraneoplastic seizures. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:151-172. [PMID: 38494275 DOI: 10.1016/b978-0-12-823912-4.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Seizures are a common feature of autoimmune encephalitis and are especially prevalent in patients with the commonest autoantibodies, against LGI1, CASPR2 and the NMDA, GABAB, and GABAA receptors. In this chapter, we discuss the classification, clinical, investigation, and treatment aspects of patients with these, and other autoantibody-mediated and -associated, illnesses. We highlight distinctive and common seizure semiologies which, often alongside other features we outline, can help the clinical diagnosis of an autoantibody-associated syndrome. Next, we classify these syndromes by either focusing on whether they represent underlying causative autoantibodies or T-cell-mediated syndromes and on the distinction between acute symptomatic seizures and a more enduring tendency to autoimmune-associated epilepsy, a practical and valuable distinction for both patients and clinicians which relates to the pathogenesis. We emphasize the more effective immunotherapy response in patients with causative autoantibodies, and discuss the emerging evidence for various first-, second-, and third-line immunotherapies. Finally, we highlight available clinical rating scales which can guide autoantibody testing and immunotherapy in patients with seizures of unknown etiology. Throughout, we relate the clinical and therapeutic observations to the immunobiology and neuroscience which drive these seizures.
Collapse
Affiliation(s)
- Barbara Wagner
- Neuroscience Department, NDCN, University of Oxford and Oxford University Hospitals, Oxford, United Kingdom; Kantonsspital Aarau Switzerland, Tellstrasse, Aarau, Switzerland
| | - Sarosh Irani
- Neuroscience Department, NDCN, University of Oxford and Oxford University Hospitals, Oxford, United Kingdom.
| |
Collapse
|
37
|
Jang Y, Lee K, Lee C, Chu K, Lee SK, Won J, Lee S. Teratoma pathology and genomics in anti-NMDA receptor encephalitis. Ann Clin Transl Neurol 2024; 11:225-234. [PMID: 37986706 PMCID: PMC10791014 DOI: 10.1002/acn3.51948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
INTRODUCTION Ovarian teratoma is a common occurrence in patients with anti-NMDA receptor encephalitis (NMDARe), and its removal is crucial for a favorable prognosis. However, the initial pathogenesis of autoimmunity in the encephalitic teratoma remains unclear. In this study, we aimed to investigate the genomic landscape and microscopic findings by comparing NMDARe-associated teratomas and non-encephalitic control teratomas. MATERIALS AND METHODS A prospective consecutive cohort of 84 patients with NMDARe was recruited from January 2014 to April 2020, and among them, patients who received teratoma removal surgery at Seoul National University Hospital were enrolled. We conducted a comparison of whole-exome sequencing data and pathologic findings between NMDARe-associated teratomas and control teratomas. RESULTS We found 18 NMDARe-associated teratomas from 15 patients and compared them with 17 non-encephalitic control teratomas. Interestingly, the genomic analysis revealed no significant differences in mutations between encephalitic and non-encephalitic teratomas. Pathologic analysis showed no discrepancies in terms of the presence of neuronal tissue and lymphocytic infiltration between the encephalitic teratomas (n = 14) and non-encephalitic teratomas (n = 18). However, rituximab-naïve encephalitic teratomas exhibited a higher frequency of germinal center formation compared to non-encephalitic teratomas (80% vs. 16.7%, P = 0.017). Additionally, rituximab-treated encephalitic teratomas demonstrated a reduced number of CD20+ cells and germinal centers in comparison to rituximab-naïve encephalitic teratomas (P = 0.048 and 0.023, respectively). DISCUSSION These results suggest that the initiation of immunopathogenesis in NMDARe-associated teratoma is not primarily attributed to intrinsic tumor mutations, but rather to immune factors present in the encephalitic patient group, ultimately leading to germinal center formation within the teratoma.
Collapse
Affiliation(s)
- Yoonhyuk Jang
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Kwanghoon Lee
- Department of PathologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Cheol Lee
- Department of PathologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Kon Chu
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Sang Kun Lee
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Jae‐Kyung Won
- Department of PathologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| | - Soon‐Tae Lee
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
| |
Collapse
|
38
|
Casagrande S, Zuliani L, Grisold W. Paraneoplastic encephalitis. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:131-149. [PMID: 38494274 DOI: 10.1016/b978-0-12-823912-4.00019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The first reports of encephalitis associated with cancer date to the 1960s and were characterized by clinical and pathologic involvement of limbic areas. This specific association was called limbic encephalitis (LE). The subsequent discovery of several "onconeural" antibodies (Abs), i.e., Abs targeting an antigen shared by neurons and tumor cells, supported the hypothesis of an autoimmune paraneoplastic etiology of LE and other forms of rapidly progressive encephalopathy. Over the past 20 years, similar clinical pictures with different clinical courses have been described in association with novel Abs-binding neuronal membrane proteins and proved to be pathogenic. The most well-known encephalitis in this group was described in 2007 as an association of a complex neuro-psychiatric syndrome, N-methyl-d-aspartate (NMDA) receptor-Abs, and ovarian teratoma in young women. Later on, nonparaneoplastic cases of NMDA receptor encephalitis were also described. Since then, the historical concept of LE and Ab associated encephalitis has changed. Some of these occur in fact more commonly in the absence of a malignancy (e.g., anti-LG1 Abs). Lastly, seronegative cases were also described. The term paraneoplastic encephalitis nowadays encompasses different syndromes that may be triggered by occult tumors.
Collapse
Affiliation(s)
- Silvia Casagrande
- Neurology Unit, Rovereto Hospital, Trento, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.
| | - Luigi Zuliani
- Department of Neurology, San Bortolo Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Wolfgang Grisold
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
39
|
Waters P, Mills JR, Fox H. Evolution of methods to detect paraneoplastic antibodies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:113-130. [PMID: 38494273 DOI: 10.1016/b978-0-12-823912-4.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
An adaptive immune response in less than 1% of people who develop cancer produces antibodies against neuronal proteins. These antibodies can be associated with paraneoplastic syndromes, and their accurate detection should instigate a search for a specific cancer. Over the years, multiple systems, from indirect immunofluorescence to live cell-based assays, have been developed to identify these antibodies. As the specific antigens were identified, high throughput, multi-antigen substrates such as line blots and ELISAs were developed for clinical laboratories. However, the evolution of assays required to identify antibodies to membrane targets has shone a light on the importance of antigen conformation for antibody detection. This chapter discusses the early antibody assays used to detect antibodies to nuclear and cytosolic targets and how new approaches are required to detect antibodies to membrane targets. The chapter presents recent data that support international recommendations against the sole use of line blots for antibody detection and highlights a new antigen-specific approach that appears promising for the detection of submembrane targets.
Collapse
Affiliation(s)
- Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - John R Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Masciocchi S, Businaro P, Scaranzin S, Morandi C, Franciotta D, Gastaldi M. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci 2024; 61:45-69. [PMID: 37777038 DOI: 10.1080/10408363.2023.2247482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
Autoimmune encephalitis (AE) is a group of inflammatory conditions that can associate with the presence of antibodies directed to neuronal intracellular, or cell surface antigens. These disorders are increasingly recognized as an important differential diagnosis of infectious encephalitis and of other common neuropsychiatric conditions. Autoantibody diagnostics plays a pivotal role for accurate diagnosis of AE, which is of utmost importance for the prompt recognition and early treatment. Several AE subgroups can be identified, either according to the prominent clinical phenotype, presence of a concomitant tumor, or type of neuronal autoantibody, and recent diagnostic criteria have provided important insights into AE classification. Antibodies to neuronal intracellular antigens typically associate with paraneoplastic neurological syndromes and poor prognosis, whereas antibodies to synaptic/neuronal cell surface antigens characterize many AE subtypes that associate with tumors less frequently, and that are often immunotherapy-responsive. In addition to the general features of AE, we review current knowledge on the pathogenic mechanisms underlying these disorders, focusing mainly on the potential role of neuronal antibodies in the most frequent conditions, and highlight current theories and controversies. Then, we dissect the crucial aspects of the laboratory diagnostics of neuronal antibodies, which represents an actual challenge for both pathologists and neurologists. Indeed, this diagnostics entails technical difficulties, along with particularly interesting novel features and pitfalls. The novelties especially apply to the wide range of assays used, including specific tissue-based and cell-based assays. These assays can be developed in-house, usually in specialized laboratories, or are commercially available. They are widely used in clinical immunology and in clinical chemistry laboratories, with relevant differences in analytic performance. Indeed, several data indicate that in-house assays could perform better than commercial kits, notwithstanding that the former are based on non-standardized protocols. Moreover, they need expertise and laboratory facilities usually unavailable in clinical chemistry laboratories. Together with the data of the literature, we critically evaluate the analytical performance of the in-house vs commercial kit-based approach. Finally, we propose an algorithm aimed at integrating the present strategies of the laboratory diagnostics in AE for the best clinical management of patients with these disorders.
Collapse
Affiliation(s)
- Stefano Masciocchi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Pietro Businaro
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Morandi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
41
|
Dale RC, Mohammad SS. Movement disorders associated with pediatric encephalitis. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:229-238. [PMID: 38494280 DOI: 10.1016/b978-0-12-823912-4.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
New onset movement disorders are a common clinical problem in pediatric neurology and can be infectious, inflammatory, metabolic, or functional in origin. Encephalitis is one of the more important causes of new onset movement disorders, and movement disorders are a common feature (~25%) of all encephalitis. However, all encephalitides are not the same, and movement disorders are a key diagnostic feature that can help the clinician identify the etiology of the encephalitis, and therefore appropriate treatment is required. Movement disorders are a characteristic feature of autoimmune encephalitis such as anti-NMDAR encephalitis, herpes simplex virus encephalitis-induced autoimmune encephalitis, and basal ganglia encephalitis. Other rarer autoantibody-associated encephalitis syndromes with movement disorder associations include encephalitis associated with glycine receptor, DPPX, and neurexin-3 alpha autoantibodies. In addition, movement disorders can accompany acute disseminated encephalomyelitis with and without myelin oligodendrocyte glycoprotein antibodies. Extremely important infectious encephalitides that have characteristic movement disorder associations include Japanese encephalitis, dengue fever, West Nile virus, subacute sclerosing panencephalitis (SSPE), and SARS-CoV-2 (COVID-19). This chapter discusses how specific movement disorder phenomenology can aid clinician diagnostic suspicion, such as stereotypy, perseveration, and catatonia in anti-NMDAR encephalitis, dystonia-Parkinsonism in basal ganglia encephalitis, and myoclonus in SSPE. In addition, the chapter discusses how the age of the patients can influence the movement disorder phenomenology, such as in anti-NMDAR encephalitis where chorea is typical in young children, even though catatonia and akinesia is more common in adolescents and adults.
Collapse
Affiliation(s)
- Russell C Dale
- Children's Hospital at Westmead Clinical School and Kids Neuroscience Centre, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| | - Shekeeb S Mohammad
- Children's Hospital at Westmead Clinical School and Kids Neuroscience Centre, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
42
|
Gong X, Wang N, Zhu H, Tang N, Wu K, Meng Q. Anti-NMDAR antibodies, the blood-brain barrier, and anti-NMDAR encephalitis. Front Neurol 2023; 14:1283511. [PMID: 38145121 PMCID: PMC10748502 DOI: 10.3389/fneur.2023.1283511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is an antibody-related autoimmune encephalitis. It is characterized by the existence of antibodies against NMDAR, mainly against the GluN1 subunit, in cerebrospinal fluid (CSF). Recent research suggests that anti-NMDAR antibodies may reduce NMDAR levels in this disorder, compromising synaptic activity in the hippocampus. Although anti-NMDAR antibodies are used as diagnostic indicators, the origin of antibodies in the central nervous system (CNS) is unclear. The blood-brain barrier (BBB), which separates the brain from the peripheral circulatory system, is crucial for antibodies and immune cells to enter or exit the CNS. The findings of cytokines in this disorder support the involvement of the BBB. Here, we aim to review the function of NMDARs and the relationship between anti-NMDAR antibodies and anti-NMDAR encephalitis. We summarize the present knowledge of the composition of the BBB, especially by emphasizing the role of BBB components. Finally, we further provide a discussion on the impact of BBB dysfunction in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Xiarong Gong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Niya Wang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hongyan Zhu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Kunhua Wu
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiang Meng
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
43
|
Alagoda S, Wimalaratna S, Herath TM. Occult bowel cancer presenting as Morvan syndrome. BMJ Case Rep 2023; 16:e256407. [PMID: 37977837 PMCID: PMC10661011 DOI: 10.1136/bcr-2023-256407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
A man in his mid-60s presented with a 3-month history of progressive muscle twitching, agitation, cognitive impairment, insomnia, hyperhidrosis and lower limb pain. He had fasciculations, myokymia, myoclonus, exaggerated startle response and significant postural hypotension. Electrophysiological studies showed evidence of peripheral nerve hyperexcitability with neuromyotonia. Contactin-associated protein-like 2 antibodies (CASPR2) were strongly positive. A diagnosis of Morvan syndrome was made. CT of the chest, abdomen and pelvis was undertaken to identify any occult malignancy, and a large bowel carcinoma in situ was identified and resected. His central nervous system and autonomic symptoms significantly improved following surgery, but neuromyotonia persisted, and this was treated with intravenous immunoglobulins and steroids. Early detection of bowel cancer in this patient enabled curative treatment.
Collapse
Affiliation(s)
- Shyama Alagoda
- Clinical Neurophyisology, Somerset NHS Foundation Trust, Taunton, UK
| | - Sunil Wimalaratna
- Neurology, Kettering General Hospital NHS Foundation Trust, Kettering, UK
| | | |
Collapse
|
44
|
Monson N, Smith C, Greenberg H, Plumb P, Guzman A, Tse K, Chen D, Zhang W, Morgan M, Speed H, Powell C, Batra S, Cowell L, Christley S, Vernino S, Blackburn K, Greenberg B. VH2+ Antigen-Experienced B Cells in the Cerebrospinal Fluid Are Expanded and Enriched in Pediatric Anti-NMDA Receptor Encephalitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1332-1339. [PMID: 37712756 PMCID: PMC10593502 DOI: 10.4049/jimmunol.2300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pediatric and adult autoimmune encephalitis (AE) are often associated with Abs to the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). Very little is known regarding the cerebrospinal fluid humoral immune profile and Ab genetics associated with pediatric anti-NMDAR-AE. Using a combination of cellular, molecular, and immunogenetics tools, we collected cerebrospinal fluid from pediatric subjects and generated 1) flow cytometry data to calculate the frequency of B cell subtypes in the cerebrospinal fluid of pediatric subjects with anti-NMDAR-AE and controls, 2) a panel of recombinant human Abs from a pediatric case of anti-NMDAR-AE that was refractory to treatment, and 3) a detailed analysis of the Ab genes that bound the NR1 subunit of the NMDAR. Ag-experienced B cells including memory cells, plasmablasts, and Ab-secreting cells were expanded in the pediatric anti-NMDAR-AE cohort, but not in the controls. These Ag-experienced B cells in the cerebrospinal fluid of a pediatric case of NMDAR-AE that was refractory to treatment had expanded use of variable H chain family 2 (VH2) genes with high somatic hypermutation that all bound to the NR1 subunit of the NMDAR. A CDR3 motif was identified in this refractory case that likely drove early stage activation and expansion of naive B cells to Ab-secreting cells, facilitating autoimmunity associated with pediatric anti-NMDAR-AE through the production of Abs that bind NR1. These features of humoral immune responses in the cerebrospinal fluid of pediatric anti-NMDAR-AE patients may be relevant for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Nancy Monson
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | - Chad Smith
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Hannah Greenberg
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Patricia Plumb
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Alyssa Guzman
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Key Tse
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Ding Chen
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Wei Zhang
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Miles Morgan
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Haley Speed
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Craig Powell
- Department of Neurobiology, Civitan International Research Center, University of Alabama Marnix E. Heersink School of Medicine, Birmingham, AL
| | - Sushobhna Batra
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Lindsay Cowell
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Steve Vernino
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Kyle Blackburn
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
45
|
Stevens-Jones O, Mojzisova H, Elisak M, Constantinescu R, Hanzalova J, Axelsson M, Krysl D. Paraneoplastic or not? Sirtuin 2 in anti-N-methyl-d-aspartate receptor encephalitis. Eur J Neurol 2023; 30:3228-3235. [PMID: 37483157 DOI: 10.1111/ene.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND AND PURPOSE N-methyl-d-aspartate receptor (NMDAR) and leucine-rich glioma-inactivated protein 1 (LGI1) encephalitis are important types of autoimmune encephalitis (AE) with significant morbidity. In this study, we used a proteomic approach in search of novel clinically relevant biomarkers in these types of encephalitides. METHODS Swedish and Czech tertiary neuroimmunology centers collaborated in this retrospective exploratory study. Fifty-eight cerebrospinal fluid (CSF) samples of 28 patients with AE (14 definite NMDAR, 14 with definite LGI1 encephalitis) and 30 controls were included. CSF samples were analyzed using proximity extension assay technology (Olink Target 96 Inflammation panel). For each CSF sample, 92 proteins were measured. Clinical variables were retrospectively collected, and correlations with protein levels were statistically analyzed. RESULTS Patients and controls differed significantly in the following 18 biomarkers: TNFRSF9, TNFRSF12, TNFRSF14, TNFβ, TNFα, IL7, IL10, IL12B, IFNγ, CD5, CD6, CASP8, MMP1, CXCL8, CXCL10, CXCL11, IL20RA, and sirtuin 2 (SIRT2). In LGI1 encephalitis, no clinically useful association was found between biomarkers and clinical variables. In the NMDAR encephalitis group, SIRT2, TNFβ, and CD5 were significantly associated with ovarian teratoma. For SIRT2, this was true even for the first patients' CSF sample (SIRT2 without vs. with tumor, mean ± SD = 2.2 ± 0.29 vs. 2.88 ± 0.48; p = 0.007, 95% confidence interval = -1.15 to -0.22; r statistic in point-biserial correlation (rpb) = 0.66, p = 0.011). SIRT2 was positively correlated with age (rpb = 0.39, p = 0.018) and total hospital days (r = 0.55, p = <0.001). CONCLUSIONS SIRT2 should be investigated as a biomarker of paraneoplastic etiology in NMDAR encephalitis.
Collapse
Affiliation(s)
- Oskar Stevens-Jones
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Akademin, Gothenburg University, Gothenburg, Sweden
| | - Hana Mojzisova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martin Elisak
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Radu Constantinescu
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Akademin, Gothenburg University, Gothenburg, Sweden
| | - Jitka Hanzalova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Markus Axelsson
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Akademin, Gothenburg University, Gothenburg, Sweden
| | - David Krysl
- Institute of Neuroscience and Physiology, Sahlgrenska Akademin, Gothenburg University, Gothenburg, Sweden
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
46
|
Erlebach R, Brandi G. Effect and timing of operative treatment for teratoma associated N-Methyl-d-Aspartate receptor-antibody encephalitis: A systematic review with meta-analysis. J Neuroimmunol 2023; 382:578153. [PMID: 37499300 DOI: 10.1016/j.jneuroim.2023.578153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Resection of an underlying ovarian teratoma in patients with N-Methyl-d-Aspartate receptor (NMDAR)-antibody encephalitis is supported by pathophysiological studies demonstrating the production of NMDAR antibodies within the teratoma. This systematic review assesses the clinical effect of teratoma resection and compares early versus late resection. Literature search was performed on the first of October 2022 (MEDLINE, Embase, CENTRAL, Web of Science). Original studies including more than three patients with NDMAR encephalitis and associated ovarian teratoma were included and evaluated with the Study Quality Assessment Tool for risk of bias. Fourteen studies referring to 1499 patients were included and analyzed in four syntheses using the fixed Mantel-Haenszel method. The rate of relapse in patients with ovarian teratoma resection was lower than in patients without resection (risk ratio for relapse 0.30, 95% CI 0.17-0.51), however the certainty level of evidence is very low. Despite some evidence pointing to a beneficial effect of early teratoma resection in patients with NMDAR-antibody encephalitis, systematically accessible data are insufficient to provide recommendations for or against resection, as well as for timing of surgery. The authors received no financial support for the research, authorship, or publication of this article. For the systematic review no clinical-trial database registration had been done.
Collapse
Affiliation(s)
- Rolf Erlebach
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Giovanna Brandi
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Varley JA, Strippel C, Handel A, Irani SR. Autoimmune encephalitis: recent clinical and biological advances. J Neurol 2023; 270:4118-4131. [PMID: 37115360 PMCID: PMC10345035 DOI: 10.1007/s00415-023-11685-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
In 2015, we wrote a review in The Journal of Neurology summarizing the field of autoantibody-associated neurological diseases. Now, in 2023, we present an update of the subject which reflects the rapid expansion and refinement of associated clinical phenotypes, further autoantibody discoveries, and a more detailed understanding of immunological and neurobiological pathophysiological pathways which mediate these diseases. Increasing awareness around distinctive aspects of their clinical phenotypes has been a key driver in providing clinicians with a better understanding as to how these diseases are best recognized. In clinical practice, this recognition supports the administration of often effective immunotherapies, making these diseases 'not to miss' conditions. In parallel, there is a need to accurately assess patient responses to these drugs, another area of growing interest. Feeding into clinical care are the basic biological underpinnings of the diseases, which offer clear pathways to improved therapies toward enhanced patient outcomes. In this update, we aim to integrate the clinical diagnostic pathway with advances in patient management and biology to provide a cohesive view on how to care for these patients in 2023, and the future.
Collapse
Affiliation(s)
- James A Varley
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Christine Strippel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Adam Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK.
| |
Collapse
|
48
|
Alam AM, Easton A, Nicholson TR, Irani SR, Davies NWS, Solomon T, Michael BD. Encephalitis: diagnosis, management and recent advances in the field of encephalitides. Postgrad Med J 2023; 99:815-825. [PMID: 37490360 DOI: 10.1136/postgradmedj-2022-141812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
Encephalitis describes inflammation of the brain parenchyma, typically caused by either an infectious agent or through an autoimmune process which may be postinfectious, paraneoplastic or idiopathic. Patients can present with a combination of fever, alterations in behaviour, personality, cognition and consciousness. They may also exhibit focal neurological deficits, seizures, movement disorders and/or autonomic instability. However, it can sometimes present non-specifically, and this combined with its many causes make it a difficult to manage neurological syndrome. Despite improved treatments in some forms of encephalitides, encephalitis remains a global concern due to its high mortality and morbidity. Prompt diagnosis and administration of specific and supportive management options can lead to better outcomes. Over the last decade, research in encephalitis has led to marked developments in the understanding, diagnosis and management of encephalitis. In parallel, the number of autoimmune encephalitis syndromes has rapidly expanded and clinically characteristic syndromes in association with pathogenic autoantibodies have been defined. By focusing on findings presented at the Encephalitis Society's conference in December 2021, this article reviews the causes, clinical manifestations and management of encephalitis and integrate recent advances and challenges of research into encephalitis.
Collapse
Affiliation(s)
- Ali M Alam
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Unit for Emerging and Zoonotic Infection, Liverpool, UK
- Department of Clinical Infection, Microbiology, & Immunology, University of Liverpool, Liverpool, UK
| | - Ava Easton
- Department of Clinical Infection, Microbiology, & Immunology, University of Liverpool, Liverpool, UK
- Encephalitis Society, Malton, UK
| | | | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | | | - Tom Solomon
- NIHR Health Protection Unit for Emerging and Zoonotic Infection, Liverpool, UK
- The Pandemic Institute, Liverpool, UK
| | - Benedict D Michael
- NIHR Health Protection Unit for Emerging and Zoonotic Infection, Liverpool, UK
- Department of Clinical Infection, Microbiology, & Immunology, University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
49
|
Linnoila J, Jalali Motlagh N, Jachimiec G, Lin CCJ, Küllenberg E, Wojtkiewicz G, Tanzi R, Chen JW. Optimizing animal models of autoimmune encephalitis using active immunization. Front Immunol 2023; 14:1177672. [PMID: 37520559 PMCID: PMC10374403 DOI: 10.3389/fimmu.2023.1177672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background and objectives Encephalitis is a devastating neurologic disorder with high morbidity and mortality. Autoimmune causes are roughly as common as infectious ones. N-methyl-D-aspartic acid receptor (NMDAR) encephalitis (NMDARE), characterized by serum and/or spinal fluid NMDAR antibodies, is the most common form of autoimmune encephalitis (AE). A translational rodent NMDARE model would allow for pathophysiologic studies of AE, leading to advances in the diagnosis and treatment of this debilitating neuropsychiatric disorder. The main objective of this work was to identify optimal active immunization conditions for NMDARE in mice. Methods Female C57BL/6J mice aged 8 weeks old were injected subcutaneously with an emulsion of complete Freund's adjuvant, killed and dessicated Mycobacterium tuberculosis, and a 30 amino acid peptide flanking the NMDAR GluN1 subunit N368/G369 residue targeted by NMDARE patients' antibodies. Three different induction methods were examined using subcutaneous injection of the peptide emulsion mixture into mice in 1) the ventral surface, 2) the dorsal surface, or 3) the dorsal surface with reimmunization at 4 and 8 weeks (boosted). Mice were bled biweekly and sacrificed at 2, 4, 6, 8, and 14 weeks. Serum and CSF NMDAR antibody titer, mouse behavior, hippocampal cell surface and postsynaptic NMDAR cluster density, and brain immune cell entry and cytokine content were examined. Results All immunized mice produced serum and CSF NMDAR antibodies, which peaked at 6 weeks in the serum and at 6 (ventral and dorsal boosted) or 8 weeks (dorsal unboosted) post-immunization in the CSF, and demonstrated decreased hippocampal NMDAR cluster density by 6 weeks post-immunization. In contrast to dorsally-immunized mice, ventrally-induced mice displayed a translationally-relevant phenotype including memory deficits and depressive behavior, changes in cerebral cytokines, and entry of T-cells into the brain at the 4-week timepoint. A similar phenotype of memory dysfunction and anxiety was seen in dorsally-immunized mice only when they were serially boosted, which also resulted in higher antibody titers. Discussion Our study revealed induction method-dependent differences in active immunization mouse models of NMDARE disease. A novel ventrally-induced NMDARE model demonstrated characteristics of AE earlier compared to dorsally-induced animals and is likely suitable for most short-term studies. However, boosting and improving the durability of the immune response might be preferred in prolonged longitudinal studies.
Collapse
Affiliation(s)
- Jenny Linnoila
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Massachusetts General Hospital (MGH), Boston, United States
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
| | - Negin Jalali Motlagh
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital (MGH), Boston, MA, United States
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, MA, United States
| | - Grace Jachimiec
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
| | - Chih-Chung Jerry Lin
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
| | - Enrico Küllenberg
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital (MGH), Boston, MA, United States
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, MA, United States
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, MA, United States
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
| | - John W. Chen
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital (MGH), Boston, MA, United States
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, MA, United States
| |
Collapse
|
50
|
Gong Z, Lao D, Huang F, Lv S, Mao F, Huang W. Risk Factors and Prognosis in Anti-NMDA Receptor Encephalitis Patients with Disturbance of Consciousness. Patient Relat Outcome Meas 2023; 14:181-192. [PMID: 37337520 PMCID: PMC10277025 DOI: 10.2147/prom.s411260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023] Open
Abstract
Purpose Disturbance of consciousness is common in patients with severe anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. However, little is known about it. This study aimed to analyze the clinical manifestations and prognostic factors of anti-NMDAR encephalitis with disturbance of consciousness. Methods In this retrospective study, the clinical features, treatment results, and long-term outcomes of anti-NMDAR encephalitis patients with disturbance of consciousness were analyzed, and multivariate logistic regression was used to analyze the factors affecting their prognosis. Results In the group with disturbance of consciousness, the incidences of seizures, involuntary movements, pulmonary infection, mechanical ventilation, intensive care unit (ICU) admission, neutrophil-lymphocyte ratio (NLR), abnormal cerebrospinal fluid index, plasma exchange, and immunosuppressive therapy were higher than those in the group without disturbance of consciousness (all P<0.05). During the follow-up period (median: 36 months, range: 12-78 months), the modified Rankin scale (mRS) score, the maximum mRS score during hospitalization, the mRS score at discharge, and the mRS score at 12 months after discharge were higher in the disturbance of consciousness group (all P < 0.001). However, there was no significant difference in long-term outcomes and recurrence between the two groups. Multivariate logistic regression analysis showed that mechanical ventilation, elevated IgG index, and delayed immunotherapy were independent risk factors for poor outcomes in patients with anti-NMDAR encephalitis with disturbance of consciousness at 12 months (odds ratio: 22.591, 39.868, 1.195). The receiver operating characteristics (ROC) curve analysis showed that the area under the curve (AUC) of mechanical ventilation, elevated IgG index, and delayed immunotherapy was 0.971 (95% CI=0.934-1.000, P<0.001). Conclusion Mechanical ventilation, elevated IgG index, and delayed immunotherapy may be the influencing factors of poor prognosis of anti-NMDAR encephalitis patients with disturbance of consciousness. Although their condition is relatively serious, most patients with anti-NMDAR encephalitis with disturbance of consciousness will achieve favorable long-term outcomes after long-term treatment.
Collapse
Affiliation(s)
- Zhuowei Gong
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Dayuan Lao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Fang Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Sirao Lv
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Fengping Mao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Wen Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|