1
|
Wu Z, Zhu L, Mai J, Shen H, Xu R. Rad51 Silencing with siRNA Delivered by Porous Silicon-Based Microparticle Enhances the Anti-Cancer Effect of Doxorubicin in Triple-Negative Breast Cancer. J Biomed Nanotechnol 2021; 17:2351-2363. [PMID: 34974858 DOI: 10.1166/jbn.2021.3198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to its high heterogeneity and aggressiveness, cytotoxic chemotherapy is still a mainstay treatment for triple negative breast cancer. Unfortunately, the above mentioned has not significantly ameliorated TNBC patients and induces drug resistance. Exploring the mechanisms underlying the chemotherapy sensitivity of TNBC and developing novel sensitization strategies are promising approaches for improving the prognosis of patients. Rad51, a key regulator of DNA damage response pathway, repairs DNA damage caused by genotoxic agents through "homologous recombination repair." Therefore, Rad51 inhibition may increase TNBC cell sensitivity to anticancer agents. Based on these findings, we first designed Rad51 siRNA to inhibit the Rad51 protein expression in vitro and evaluated the sensitivity of TNBC cells to doxorubicin. Subsequently, we constructed discoidal porous silicon microparticles (pSi) and encapsulated discoidal 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes/siRad51 (PS-DOPC/siRad51) to explore the synergistic antitumor effects of siRad51 and doxorubicin on two mouse models of TNBC in vivo. Our in vitro studies indicated that siRad51 enhanced the efficacy of DOX chemotherapy and significantly suppressed TNBC cell proliferation and metastasis. This effect was related to apoptosis induction and epithelial to mesenchymal transition (EMT) inhibition. siRad51 altered the expression of apoptosis- and EMT-related proteins. In orthotopic and lung metastasis xenograft models, the administration of PS-DOPC/siRad51 in combination with DOX significantly alleviated the primary tumor burden and lung metastasis, respectively. Our current studies present an efficient strategy to surmount chemotherapy resistance in TNBC through microvector delivery of siRad51.
Collapse
Affiliation(s)
- Zeliang Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lin Zhu
- Department of Pharmacy, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430061, People's Republic of China
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston 77030, USA
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
2
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
3
|
Telomere-associated genes and telomeric lncRNAs are biomarker candidates in lung squamous cell carcinoma (LUSC). Exp Mol Pathol 2019; 112:104354. [PMID: 31837325 DOI: 10.1016/j.yexmp.2019.104354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
Abstract
In the past decade, research efforts were made to identify molecular biomarkers useful as therapeutic targets in Non-Small Cell Lung Cancer (NSCLC), the most frequent type of lung carcinoma. NSCLC presents different histological subtypes being the most prevalent LUSC (Lung Squamous Cell Cancer) and LUAD (Lung Adenocarcinoma), and only a subset of LUAD patients' present tumors expressing known targetable genetic alterations. Telomeres and its components, including telomerase, the enzyme that replenishes telomeres, have been considered potential cancer biomarkers due to their crucial role in cell proliferation and genome stability. Our study aims to quantify expression changes affecting telomere-associated genes and ncRNAs associated with telomere regulation and maintenance in NSCLC. We first assessed the transcriptome (RNA-Seq) data of NSCLC patients from The Cancer Genome Atlas (TCGA) and then we tested the expression of telomere-associated genes and telomeric ncRNAs (TERC, telomerase RNA component, and TERRA, telomere repeat-containing RNA) in Brazilian NCSLC patient samples by quantitative RT-PCR, using matched normal adjacent tissue samples as the control. We also estimated the mean size of terminal restriction fragments (TRF) of some Brazilian NSCLC patients using telomeric Southern blot. The TCGA analysis identified alterations in the expression profile of TERT and telomere damage repair genes, mainly in the LUSC subtype. The study of Brazilian NSCLC samples by RT-qPCR showed that LUSC and LUAD express high amounts of TERT and that although the mean TRF size of tumor samples was shorter compared to normal cells, telomeres in NSCLC are probably maintained by telomerase. Also, the expression analysis of Brazilian NSCLC samples identified statistically significant alterations in the expression of genes involved with telomere damage repair, as well as in TERC and TERRA, mainly in the LUSC subtype. We, therefore, concluded that telomere maintenance genes are significantly deregulated in NSCLC, representing potential biomarkers in the LUSC subtype.
Collapse
|
4
|
Shailender G, Patanla K, Malla RR. ShRNA-mediated matrix metalloproteinase-2 gene silencing protects normal cells and sensitizes cancer cells against ionizing-radiation induced damage. J Cell Biochem 2019; 121:1332-1352. [PMID: 31489968 DOI: 10.1002/jcb.29369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Ionizing radiation (IR) affects healthy tissues during the treatment of cancer radiation therapy and other nuclear and radiological accidents. Some natural compounds showed nonspecific radioprotective activity with severe side effects. The present study is aimed to develop potent and specific radioprotective short hairpin RNA (shRNA), which selectively protects normal cells from IR by specifically targeting matrix metalloproteinases (MMP-2). RESULTS IR reduced the viability of human normal dermal fibroblasts (HDFs) in a dose-response manner. It enhanced the expression of MMP-2 at 10 Gy. Plasmid MMP-2shRNA (pMMP-2) reduced the IR (10 Gy) induced cytotoxicity analyzed by lactate dehydrogenase (LDH) assay, normalized IR induced cellular and morphological changes with enhanced the clonogenicity in 48 hours at 2 µg/mL. It reduced the ROS generation, released HDFs from G2 /M arrest and rescued from apoptosis analyzed by DCFDA dye, cell cycle analysis by PI stain and annexin V assay, respectively. pMMP-2 also modulates the expression of EGFR and reduced IR induced expression of DNA damage response protein, ATM and increased the expression of repair proteins, KU70/KU80, and RAD51. In addition, decreased the expression of cell cycle regulatory proteins cyclin-dependent kinases (CDK1) and Cyclin B as well as proapoptotic proteins BAX, caspase-3, and Cytochrome-C and increased the expression of survival protein, Bcl-2. In contrary pMMP-2 decreased the LDH activity, survival fraction and blocked G2 /M phase of cell cycle and increased apoptosis in MCF-7 cells. In addition, decreased the expression of EGFR, proapoptotic BAX and DNA repair proteins ATM, KU70/80 and RAD51, increased expression of cyclinB as well as CDK1. CONCLUSION Results conclude that pMMP-2 protected HDFs from IR and sensitized the MCF-7 cells. Therefore, pMMP-2 can be employed for better treatment of radiation accidents and during the treatment of radiotherapy.
Collapse
Affiliation(s)
- Gugalavath Shailender
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Vishakhapatnam, India
| | - Kiranmayi Patanla
- Department of Biotechnology, GIS, GITAM (Deemed to be University), Vishakhapatnam, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Vishakhapatnam, India
| |
Collapse
|
5
|
Wan Q, Shen Y, Zhao H, Wang B, Zhao L, Zhang Y, Bu X, Wan M, Shen C. Impaired DNA double‐strand breaks repair by kinesin family member 4A inhibition renders human H1299 non‐small‐cell lung cancer cells sensitive to cisplatin. J Cell Physiol 2018; 234:10360-10371. [DOI: 10.1002/jcp.27703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Qing Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University Nanjing China
| | - Yong Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Huzi Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Bei Wang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Lei Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Yongchen Zhang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Xiaodong Bu
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Meiling Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Chuanlu Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| |
Collapse
|
6
|
Hu C, Zhu P, Xia Y, Hui K, Wang M, Jiang X. Role of the NRP-1-mediated VEGFR2-independent pathway on radiation sensitivity of non-small cell lung cancer cells. J Cancer Res Clin Oncol 2018; 144:1329-1337. [PMID: 29777301 DOI: 10.1007/s00432-018-2667-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/14/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE To determine if inhibiting neuropilin-1 (NRP-1) affects the radiosensitivity of NSCLC cells through a vascular endothelial growth factor receptor 2 (VEGFR2)-independent pathway, and to assess the underlying mechanisms. METHODS The expression of VEGFR2, NRP-1, related signaling molecules, abelson murine leukemia viral oncogene homolog 1 (ABL-1), and RAD51 were determined by RT-PCR and Western blotting, respectively. Radiosensitivity was assessed using the colony-forming assay, and the cell apoptosis were analyzed by flow cytometry. RESULTS We selected two cell lines with high expression levels of VEGFR2, including Calu-1 cells that have high NRP-1 expression, and H358 cells that have low NRP-1 expression. Upon inhibition of p-VEGFR2 by apatinib in Calu-1 cells, the expression of NRP-1 protein and other related proteins in the pathway was still high. Upon NRP-1 siRNA treatment, the expression of both NRP-1 and RAD51 decreased (p < 0.01; p < 0.05). Upon ABL-1 siRNA treatment, the expression of NRP-1 was increased and the expression of RAD51 was unchanged. Calu-1 cells treated with NRP-1 siRNA exhibited significantly higher apoptosis and radiation sensitivity in radiation therapy compared to Calu-1 cells treated with apatinib alone (p < 0.01; p < 0.01). The apoptosis and radiation sensitivity in H358 cells with NRP-1 overexpression was similar to the control group regardless of VEGFR2 inhibition. CONCLUSIONS We demonstrated that when VEGFR2 was inhibited, NRP-1 appeared to regulate RAD51 expression through the VEGFR2-independent ABL-1 pathway, consequently regulating radiation sensitivity. In addition, the combined inhibition of VEGFR2 and NRP-1 appears to sensitize cancer cells to radiation.
Collapse
Affiliation(s)
- Chenxi Hu
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Panrong Zhu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Youyou Xia
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Kaiyuan Hui
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Mei Wang
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Xiaodong Jiang
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182 North Tongguan Road, Lianyungang, 222002, China.
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182 North Tongguan Road, Lianyungang, 222002, China.
| |
Collapse
|
7
|
Pataer A, Shao R, Correa AM, Behrens C, Roth JA, Vaporciyan AA, Wistuba II, Swisher SG. Major pathologic response and RAD51 predict survival in lung cancer patients receiving neoadjuvant chemotherapy. Cancer Med 2018; 7:2405-2414. [PMID: 29673125 PMCID: PMC6010873 DOI: 10.1002/cam4.1505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
In a previous study, we determined that major pathologic response (MPR) as indicated by the percentage of residual viable tumor cells predicted overall survival (OS) in patients with non-small-cell lung cancer (NSCLC) who received neoadjuvant chemotherapy. In this study, we assessed whether two genes and five protein biomarkers could predict MPR and OS in 98 patients with NSCLC receiving neoadjuvant chemotherapy. We collected formalin-fixed, paraffin-embedded specimens of resected NSCLC tumors from 98 patients treated with neoadjuvant chemotherapy. We identified mutations in KRAS and EGFR genes using pyrosequencing and examined the expression of protein markers VEGFR2, EZH2, ERCC1, RAD51, and PKR using immunohistochemistry. We assessed whether gene mutation status or protein expression was associated with MPR or OS. We observed that KRAS mutation tended to be associated with OS (P = .06), but EGFR mutation was not associated with OS. We found that patients with high RAD51 expression levels had a poorer prognosis than did those with low RAD51 expression. We also observed that RAD51 expression was associated with MPR. MPR and RAD51 expression were associated with OS in univariate and multivariate analyses (P = .04 and P = .02, respectively). Combination of MPR with RAD51 is a significant predictor of prognosis in patients with NSCLC who received neoadjuvant chemotherapy. We demonstrated that MPR or RAD51 expression was associated with OS in patients with NSCLC receiving neoadjuvant chemotherapy. Prediction of a patient's prognosis could be improved by combined assessment of MPR and RAD51 expression.
Collapse
Affiliation(s)
- Apar Pataer
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Ruping Shao
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Arlene M. Correa
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Ara A. Vaporciyan
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Ignacio I. Wistuba
- Department of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Stephen G. Swisher
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| |
Collapse
|
8
|
Yang Q, Wu J, Luo Y, Huang N, Zhen N, Zhou Y, Sun F, Li Z, Pan Q, Li Y. (-)-Guaiol regulates RAD51 stability via autophagy to induce cell apoptosis in non-small cell lung cancer. Oncotarget 2018; 7:62585-62597. [PMID: 27566579 PMCID: PMC5308748 DOI: 10.18632/oncotarget.11540] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
Abstract
(-)-Guaiol, generally known as an antibacterial compound, has been found in many medicinal plants. Its roles in tumor suppression are still under investigation. In the study, we mainly focused on exploring its applications in dealing with non-small cell lung cancer (NSCLC) and the underlying mechanisms. Here, we show that (-)-Guaiol significantly inhibits cell growth of NSCLC cells both in vitro and in vivo. Further high throughput analysis reveals that RAD51, a pivotal factor in homologous recombination repair, is a potential target for it. The following mechanism studies show that (-)-Guaiol is involved in cell autophagy to regulate the expression of RAD51, leading to double-strand breaks triggered cell apoptosis. Moreover, targeting RAD51, which is highly overexpressed in the lung adenocarcinoma tissues, can significantly increase the chemosensitivity of NSCLC cells to (-)-Guaiol both in vitro and in vivo. All in all, our studies provide an attractive insight in applying (-)-Guaiol into NSCLC treatments and further suggest that knockdown of oncogenic RAD51 will greatly enhance the chemosensitivity of patients with NSCLC.
Collapse
Affiliation(s)
- Qingyuan Yang
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Ni Zhen
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yun Zhou
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Zhi Li
- Department of Clinical Laboratory Medicine, Yangpu Hospital of Tongji University, Shanghai, 200090, China
| | - Qiuhui Pan
- Central Laboratory, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
9
|
Wiegmans AP, Miranda M, Wen SW, Al-Ejeh F, Möller A. RAD51 inhibition in triple negative breast cancer cells is challenged by compensatory survival signaling and requires rational combination therapy. Oncotarget 2018; 7:60087-60100. [PMID: 27507046 PMCID: PMC5312370 DOI: 10.18632/oncotarget.11065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
The molecular rationale to induce synthetic lethality, by targeting defective homologous recombination repair in triple negative breast cancer (TNBC), has proven to have several shortcomings. Not meeting the expected minimal outcomes in clinical trials has highlighted common clinical resistance mechanisms including; increased expression of the target gene PARP1, increased expression or reversion mutation of BRCA1, or up-regulation of the compensatory homologous recombination protein RAD51. Indeed, RAD51 has been demonstrated to be an alternative synthetic lethal target in BRCA1-mutated cancers. To overcome selective pressure on DNA repair pathways, we examined new potential targets within TNBC that demonstrate synthetic lethality in association with RAD51 depletion. We confirmed complementary targets of PARP1/2 and DNA-PK as well as a new synthetic lethality combination with p38. p38 is considered a relevant target in breast cancer, as it has been implicated in resistance to chemotherapy, including tamoxifen. We show that the combination of targeting RAD51 and p38 inhibits cell proliferation both in vitro and in vivo, which was further enhanced by targeting of PARP1. Analysis of the molecular mechanisms revealed that depletion of RAD51 increased ERK1/2 and p38 signaling. Our results highlight a potential compensatory mechanism via p38 that limits DNA targeted therapy.
Collapse
Affiliation(s)
- Adrian P Wiegmans
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia
| | - Mariska Miranda
- Personalized Medicine Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia
| | - Shu Wen Wen
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia
| | - Fares Al-Ejeh
- Personalized Medicine Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia.,School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Kumari R, Chouhan S, Singh S, Chhipa RR, Ajay AK, Bhat MK. Constitutively activated ERK sensitizes cancer cells to doxorubicin: Involvement of p53-EGFR-ERK pathway. J Biosci 2017; 42:31-41. [PMID: 28229963 DOI: 10.1007/s12038-017-9667-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxic stress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. We investigated the involvement of activation of ERK signalling as a consequence of non-functional p53, in sensitivity of cells to doxorubicin. We performed cell survival assays in cancer cell lines with varying p53 status: MCF-7 (wild-type p53, WTp53), MDA MB-468 (mutant p53, MUTp53), H1299 (absence of p53, NULLp53) and an isogenic cell line MCF-7As (WTp53 abrogated). Our results indicate that enhanced chemosensitivity of cells lacking wild-type p53 function is because of elevated levels of EGFR which activates ERK. Additionally, we noted that independent of p53 status, pERK contributes to doxorubicin-induced cell death.
Collapse
Affiliation(s)
- Ratna Kumari
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | | | | | | | | | | |
Collapse
|
11
|
Zhang J, Wang JC, Li YH, Wang RX, Fan XM. Expression of PH Domain Leucine-rich Repeat Protein Phosphatase, Forkhead Homeobox Type O 3a and RAD51, and their Relationships with Clinicopathologic Features and Prognosis in Ovarian Serous Adenocarcinoma. Chin Med J (Engl) 2017; 130:280-287. [PMID: 28139510 PMCID: PMC5308009 DOI: 10.4103/0366-6999.198932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Ovarian serous adenocarcinoma can be divided into low- and high-grade tumors, which exhibit substantial differences in pathogenesis, clinicopathology, and prognosis. This study aimed to investigate the differences in the PH domain leucine-rich repeat protein phosphatase (PHLPP), forkhead homeobox type O 3a (FoxO3a), and RAD51 protein expressions, and their associations with prognosis in patients with low- and high-grade ovarian serous adenocarcinomas. Methods: The PHLPP, FoxO3a, and RAD51 protein expressions were examined in 94 high- and 26 low-grade ovarian serous adenocarcinomas by immunohistochemistry. The differences in expression and their relationships with pathological features and prognosis were analyzed. Results: In high-grade serous adenocarcinomas, the positive rates of PHLPP and FoxO3a were 24.5% and 26.6%, while in low-grade tumors, they were 23.1% and 26.9%, respectively (P < 0.05 vs. the control specimens; low- vs. high-grade: P > 0.05). The positive rates of RAD51 were 70.2% and 65.4% in high- and low-grade serous adenocarcinomas, respectively (P < 0.05 vs. the control specimens; low- vs. high-grade: P > 0.05). Meanwhile, in high-grade tumors, Stage III/IV tumors and lymph node and omental metastases were significantly associated with lower PHLPP and FoxO3a and higher RAD51 expression. The 5-year survival rates of patients with PHLPP- and FoxO3a-positive high-grade tumors (43.5% and 36.0%) were significantly higher than in patients with PHLPP-negative tumors (5.6% and 7.2%, respectively; P < 0.05). Similarly, the 5-year survival rate of RAD51-positive patients (3.0%) was significantly lower than in negative patients (42.9%; P < 0.05). In low-grade tumors, the PHLPP, FoxO3a, and RAD51 expressions were not significantly correlated with lymph node metastasis, omental metastasis, Federation of Gynecology and Obstetrics stage, or prognosis. Conclusions: Abnormal PHLPP, FoxO3a, and RAD51 protein expressions may be involved in the development of high- and low-grade ovarian serous adenocarcinomas, suggesting common molecular pathways. Decreased PHLPP and FoxO3a and increased RAD51 protein expression may be important molecular markers for poor prognosis, and RAD51 may be an independent prognosis factor, of high-grade, but not low-grade, ovarian serous adenocarcinomas.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Jun-Chao Wang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yue-Hong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Rui-Xue Wang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xiao-Mei Fan
- Department of Gynecologic Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
12
|
Overexpression of Rad51 Predicts Poor Prognosis in Colorectal Cancer: Our Experience with 54 Patients. PLoS One 2017; 12:e0167868. [PMID: 28099437 PMCID: PMC5242438 DOI: 10.1371/journal.pone.0167868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Aberrant Rad51 expression is implicated in the progression of human malignancies. However, the role of Rad51 in colorectal cancer (CRC) remains undefined. This study aimed to establish a relationship between Rad51 and clinicopathologic features of CRC. METHODS We retrospectively examined the paraffin-embedded tissue samples obtained from 54 patients with CRC who had received surgical therapies at our institution during 2006-2008. Rad51 expression in adenocarcinoma, paracancerous tissue, and normal colonic tissue was determined by immunohistochemistry. The correlation between Rad51 immunoreactivity and clinicopathologic features of these patients was evaluated. RESULTS Rad51 immunoreactivity was detected in 67% of adenocarcinoma, 48% of paracancerous tissue, and 27% of normal colonic mucosa. Rad51 expression in adenocarcinoma was significantly higher than normal colonic tissue (p < 0.05). Rad51 was also overexpressed in poorly differentiated tumors and tumor samples from patients with lymph node metastasis (p < 0.05). Patients with Rad51 overexpression had a 69% two-year survival, 49% three-year survival, and 16% five-year survival, considerably worse than patients with negative Rad51 expression (p < 0.05). CONCLUSION Our data suggest that Rad51 overexpression is correlated with malignant phenotypes of CRC and may predict poor prognosis for these patients.
Collapse
|
13
|
Ko JC, Chen JC, Wang TJ, Zheng HY, Chen WC, Chang PY, Lin YW. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells. Biochem Pharmacol 2016; 105:91-100. [PMID: 26921637 DOI: 10.1016/j.bcp.2016.02.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/23/2016] [Indexed: 01/10/2023]
Abstract
Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan; Institute of Technology Law, National Chiao Tung University, Hsinchu, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Tai-Jing Wang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Hao-Yu Zheng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Wen-Ching Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Po-Yuan Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
14
|
Shao J, Xu Z, Peng X, Chen M, Zhu Y, Xu L, Zhu H, Yang B, Luo P, He Q. Gefitinib Synergizes with Irinotecan to Suppress Hepatocellular Carcinoma via Antagonizing Rad51-Mediated DNA-Repair. PLoS One 2016; 11:e0146968. [PMID: 26752698 PMCID: PMC4709237 DOI: 10.1371/journal.pone.0146968] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022] Open
Abstract
Chemotherapy is the only choice for most of the advanced hepatocellular carcinoma (HCC) patients, while few agents were available, making it an urgent need to develop new chemotherapy strategies. A phase II clinical trial suggested that the efficacy of irinotecan in HCC was limited due to dose-dependent toxicities. Here, we found that gefitinib exhibited synergistic activity in combination with SN-38, an active metabolite of irinotecan, in HCC cell lines. And the enhanced apoptosis induced by gefitinib plus SN-38 was a result from caspase pathway activation. Mechanistically, gefitinib dramatically promoted the ubiquitin–proteasome-dependent degradation of Rad51 protein, suppressed the DNA repair, gave rise to more DNA damages, and ultimately resulted in the synergism of these two agents. In addition, the increased antitumor efficacy of gefitinib combined with irinotecan was further validated in a HepG2 xenograft mice model. Taken together, our data demonstrated for the first time that the combination of irinotecan and gefitinib showed potential benefit in HCC, which suggests that Rad51 is a promising target and provides a rationale for clinical trials investigating the efficacy of the combination of topoisomerase I inhibitors and gefitinib in HCC.
Collapse
Affiliation(s)
- Jinjin Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueming Peng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanrun Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- * E-mail: (PL); (QH)
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- * E-mail: (PL); (QH)
| |
Collapse
|
15
|
Li X, Pan L, Shi J. Nuclear-Targeting MSNs-Based Drug Delivery System: Global Gene Expression Analysis on the MDR-Overcoming Mechanisms. Adv Healthc Mater 2015; 4:2641-8. [PMID: 26450832 DOI: 10.1002/adhm.201500548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/10/2015] [Indexed: 11/07/2022]
Abstract
The biological mechanisms of nuclear-targeting mesoporous silica nanoparticles (MSNs)-based DDSs (DOX@NT-MSNs) in overcoming multidrug resistance of cancer cells are studied. It is interesting to find for the first time that DOX@NT-MSNs down-regulate the expression of apoptosis suppressor genes and inhibit DNA repair process by disturbing the p53 pathway.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Ding-xi Road Shanghai 200050 China
| | - Limin Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Ding-xi Road Shanghai 200050 China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Ding-xi Road Shanghai 200050 China
| |
Collapse
|
16
|
Ko JC, Chiu HC, Syu JJ, Chen CY, Jian YT, Huang YJ, Wo TY, Jian YJ, Chang PY, Wang TJ, Lin YW. Down-regulation of MSH2 expression by Hsp90 inhibition enhances cytotoxicity affected by tamoxifen in human lung cancer cells. Biochem Biophys Res Commun 2014; 456:506-12. [PMID: 25490383 DOI: 10.1016/j.bbrc.2014.11.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 01/22/2023]
Abstract
The anti-estrogen tamoxifen has been used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Human MutS homolog 2 (MSH2), a crucial element of the highly conserved DNA mismatch repair system, and expression of MSH2 have been down-regulated by Hsp90 function inhibition in human lung cancer. Therefore, in this study, we examined whether MSH2 plays a role in the tamoxifen and Hsp90 inhibitor-induced cytotoxic effect on NSCLC cells. The results showed that treatment with tamoxifen increased MSH2 mRNA and protein levels. The combination treatment with PI3K inhibitors (LY294002 or wortmannin) or knockdown AKT expression by specific small interfering RNA could decrease tamoxifen-induced MSH2 expression. Both knocking down MSH2 expression and co-treatment of PI3K inhibitors enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Compared to a single agent alone, tamoxifen combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced MSH2 expression. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and Hsp90 inhibitors for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Hsien-Chun Chiu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jhan-Jhang Syu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chien-Yu Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Ting Jian
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Jhen Huang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Ting-Yu Wo
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Jun Jian
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Po-Yuan Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Tai-Jing Wang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
17
|
O'Grady S, Finn SP, Cuffe S, Richard DJ, O'Byrne KJ, Barr MP. The role of DNA repair pathways in cisplatin resistant lung cancer. Cancer Treat Rev 2014; 40:1161-70. [PMID: 25458603 DOI: 10.1016/j.ctrv.2014.10.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/11/2014] [Indexed: 11/19/2022]
Abstract
Platinum chemotherapeutic agents such as cisplatin are currently used in the treatment of various malignancies such as lung cancer. However, their efficacy is significantly hindered by the development of resistance during treatment. While a number of factors have been reported that contribute to the onset of this resistance phenotype, alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating this phenomenon. The mode of action of cisplatin has been linked to its ability to crosslink purine bases on the DNA, thereby interfering with DNA repair mechanisms and inducing DNA damage. Following DNA damage, cells respond by activating a DNA-damage response that either leads to repair of the lesion by the cell thereby promoting resistance to the drug, or cell death via activation of the apoptotic response. Therefore, DNA repair is a vital target to improving cancer therapy and reduce the resistance of tumour cells to DNA damaging agents currently used in the treatment of cancer patients. To date, despite the numerous findings that differential expression of components of the various DNA repair pathways correlate with response to cisplatin, translation of such findings in the clinical setting are still warranted. The identification of alterations in specific proteins and pathways that contribute to these unique DNA repair pathways in cisplatin resistant cancer cells may potentially lead to a renewed interest in the development of rational novel therapies for cisplatin resistant cancers, in particular, lung cancer.
Collapse
Affiliation(s)
- Shane O'Grady
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland.
| | - Stephen P Finn
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland; Department of Histopathology, St James's Hospital and Trinity College Dublin, Ireland.
| | - Sinead Cuffe
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland.
| | - Derek J Richard
- Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Kenneth J O'Byrne
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland; Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Martin P Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
18
|
Lee PS, Fang J, Jessop L, Myers T, Raj P, Hu N, Wang C, Taylor PR, Wang J, Khan J, Jasin M, Chanock SJ. RAD51B Activity and Cell Cycle Regulation in Response to DNA Damage in Breast Cancer Cell Lines. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2014; 8:135-44. [PMID: 25368520 PMCID: PMC4213955 DOI: 10.4137/bcbcr.s17766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 12/12/2022]
Abstract
Common genetic variants mapping to two distinct regions of RAD51B, a paralog of RAD51, have been associated with breast cancer risk in genome-wide association studies (GWAS). RAD51B is a plausible candidate gene because of its established role in the homologous recombination (HR) process. How germline genetic variation in RAD51B confers susceptibility to breast cancer is not well understood. Here, we investigate the molecular function of RAD51B in breast cancer cell lines by knocking down RAD51B expression by small interfering RNA and treating cells with DNA-damaging agents, namely cisplatin, hydroxyurea, or methyl-methanesulfonate. Our results show that RAD51B-depleted breast cancer cells have increased sensitivity to DNA damage, reduced efficiency of HR, and altered cell cycle checkpoint responses. The influence of RAD51B on the cell cycle checkpoint is independent of its role in HR and further studies are required to determine whether these functions can explain the RAD51B breast cancer susceptibility alleles.
Collapse
Affiliation(s)
- Phoebe S Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Fang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lea Jessop
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy Myers
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Preethi Raj
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianjun Wang
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Javed Khan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Zhang J, Yin D, Li H. hMSH2 expression is associated with paclitaxel resistance in ovarian carcinoma, and inhibition of hMSH2 expression in vitro restores paclitaxel sensitivity. Oncol Rep 2014; 32:2199-206. [PMID: 25175513 DOI: 10.3892/or.2014.3430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the association between paclitaxel resistance, gene copy number, and gene expression in ovarian carcinoma, and to restore paclitaxel sensitivity in a paclitaxel-resistant ovarian carcinoma cell line by using hMSH2-targeting siRNA. Paclitaxel-resistant ovarian carcinoma cell lines OC3/TAX300 and OC3/TAX50 and their parental cell lines were analyzed by comparative genomic hybridization, and the expression levels of hMSH2 in ovarian carcinoma cell lines and tissues were determined. An siRNA targeted to hMSH2 mRNA was used to transfect a paclitaxel-resistant cell line. We assessed the morphological features, proliferation, and susceptibility to apoptosis of the transfected cells after paclitaxel treatment. Chromosome 2p21 (gene locus of hMSH2) was amplified in OC3/TAX300 cells. hMSH2 was overexpressed in 93.9 and 47.6% of paclitaxel-treated and untreated ovarian carcinoma tissue samples (P=0.0001), respectively. hMSH2 was overexpressed in 93.3 and 54.2% of low-differentiated and moderate-to-highly differentiated ovarian carcinoma tissue samples (P=0.0008), respectively. hMSH2 expression was inhibited in the OC3/TAX300 cells transfected with hMSH2 siRNA. hMSH2 siRNA increased paclitaxel sensitivity, inhibited OC3/TAX300 cell proliferation (G2/M arrest), and increased susceptibility to apoptosis. hMSH2 expression was upregulated in ovarian carcinoma cell lines and tissues after paclitaxel treatment. hMSH2 overexpression is related to paclitaxel resistance and poor prognosis. Inhibition of hMSH2 expression in vitro restores paclitaxel sensitivity in paclitaxel‑resistant ovarian carcinoma cell lines and indicates a new direction in adjuvant therapy for ovarian carcinoma.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Haidian, Beijing 100038, P.R. China
| | - Dongmei Yin
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dongcheng, Beijing 100006, P.R. China
| | - Hongxia Li
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Haidian, Beijing 100038, P.R. China
| |
Collapse
|
20
|
Al-Ejeh F, Pajic M, Shi W, Kalimutho M, Miranda M, Nagrial AM, Chou A, Biankin AV, Grimmond SM, Brown MP, Khanna KK. Gemcitabine and CHK1 inhibition potentiate EGFR-directed radioimmunotherapy against pancreatic ductal adenocarcinoma. Clin Cancer Res 2014; 20:3187-97. [PMID: 24838526 DOI: 10.1158/1078-0432.ccr-14-0048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To develop effective combination therapy against pancreatic ductal adenocarcinoma (PDAC) with a combination of chemotherapy, CHK1 inhibition, and EGFR-targeted radioimmunotherapy. EXPERIMENTAL DESIGN Maximum tolerated doses were determined for the combination of gemcitabine, the CHK1 inhibitor PF-477736, and Lutetium-177 ((177)Lu)-labeled anti-EGFR antibody. This triple combination therapy was investigated using PDAC models from well-established cell lines, recently established patient-derived cell lines, and fresh patient-derived xenografts. Tumors were investigated for the accumulation of (177)Lu-anti-EGFR antibody, survival of tumor-initiating cells, induction of DNA damage, cell death, and tumor tissue degeneration. RESULTS The combination of gemcitabine and CHK1 inhibitor PF-477736 with (177)Lu-anti-EGFR antibody was tolerated in mice. This triplet was effective in established tumors and prevented the recurrence of PDAC in four cell line-derived and one patient-derived xenograft model. This exquisite response was associated with the loss of tumor-initiating cells as measured by flow cytometric analysis and secondary implantation of tumors from treated mice into treatment-naïve mice. Extensive DNA damage, apoptosis, and tumor degeneration were detected in the patient-derived xenograft. Mechanistically, we observed CDC25A stabilization as a result of CHK1 inhibition with consequent inhibition of gemcitabine-induced S-phase arrest as well as a decrease in canonical (ERK1/2 phosphorylation) and noncanonical EGFR signaling (RAD51 degradation) as a result of EGFR inhibition. CONCLUSIONS Our study developed an effective combination therapy against PDAC that has potential in the treatment of PDAC.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Benzodiazepinones/pharmacology
- Blotting, Western
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Proliferation/drug effects
- Checkpoint Kinase 1
- Combined Modality Therapy
- DNA Damage/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Synergism
- ErbB Receptors/antagonists & inhibitors
- Female
- Humans
- Immunoenzyme Techniques
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Phosphorylation/drug effects
- Protein Kinases/chemistry
- Pyrazoles/pharmacology
- Radioimmunotherapy
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Gemcitabine
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Marina Pajic
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Wei Shi
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Murugan Kalimutho
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Mariska Miranda
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Adnan M Nagrial
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Angela Chou
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Andrew V Biankin
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Sean M Grimmond
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medic
| | - Michael P Brown
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Kum Kum Khanna
- Authors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United KingdomAuthors' Affiliations: Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research; St Vincent's Clinical School, Faculty of Medicine, University of NSW; Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, Darlinghurst, New South Wales; Australian Pancreatic Cancer Genome Initiative, for the full list of contributors see http://www.pancreaticcancer.net.au/apgi/collaborators; Cancer Clinical Trials Unit, Royal Adelaide Hospital Cancer Centre, and Centre for Cancer Biology, SA Pathology; School of Medicine, University of Adelaide, Adelaide, Australia; and Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
21
|
Ko JC, Chiu HC, Syu JJ, Jian YJ, Chen CY, Jian YT, Huang YJ, Wo TY, Lin YW. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells. Biochem Pharmacol 2014; 88:119-27. [DOI: 10.1016/j.bcp.2014.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
|
22
|
Desai A, Webb B, Gerson SL. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Radiother Oncol 2014; 110:538-45. [PMID: 24440048 PMCID: PMC4004669 DOI: 10.1016/j.radonc.2013.10.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/14/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. MATERIALS AND METHODS A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. RESULTS A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. CONCLUSIONS CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs.
Collapse
Affiliation(s)
- Amar Desai
- Department of Pharmacology, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States; Division of Hematology/Oncology, National Center for Regenerative Medicine, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States
| | - Bryan Webb
- Division of Hematology/Oncology, National Center for Regenerative Medicine, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States
| | - Stanton L Gerson
- Department of Pharmacology, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States; Division of Hematology/Oncology, National Center for Regenerative Medicine, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States; Case Comprehensive Cancer Center, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States.
| |
Collapse
|
23
|
Genome stability pathways in head and neck cancers. Int J Genomics 2013; 2013:464720. [PMID: 24364026 PMCID: PMC3834617 DOI: 10.1155/2013/464720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022] Open
Abstract
Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies.
Collapse
|
24
|
Pemetrexed downregulates ERCC1 expression and enhances cytotoxicity effected by resveratrol in human nonsmall cell lung cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:1047-59. [PMID: 23912706 DOI: 10.1007/s00210-013-0905-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
Abstract
The multitargeted antifolate pemetrexed has demonstrated certain clinical activities against nonsmall cell lung cancer (NSCLC). Resveratrol (3,5,4-trihydroxy-trans-stilbene) is a polyphenol found in grapes and other plants and has great potential as a preventative and therapeutic agent due to its anticarcinogenic activity. The efficacy of adding resveratrol to pemetrexed to prolong the survival of patients with NSCLC still remains unclear. The excision repair cross-complementation 1 (ERCC1) is a DNA repair gene coding 5' endonuclease in nucleotide excision repair and is overexpressed in chemo- or radioresistant carcinomas. In this study, resveratrol (10-50 μM) inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with resveratrol increased ERCC1 messenger RNA and protein levels in a MKK3/6-p38 MAPK signal activation-dependent manner. Furthermore, blocking p38 MAPK activation by SB202190 or knocking down ERCC1 expression by transfection with small interfering RNA of ERCC1 enhanced the cytotoxicity of resveratrol. Combining resveratrol with pemetrexed resulted in a synergistic cytotoxic effect, accompanied with the reduction of phospho-p38 MAPK and ERCC1 protein levels, and a DNA repair capacity. Expression of constitutively active MKK6 (MKK6E) or HA-p38 MAPK vectors significantly rescued the decreased p38 MAPK activity, and restored ERCC1 protein levels and cell survival in resveratrol and pemetrexed cotreated NSCLC cells. In this study, for the first time, we have demonstrated the synergistic effect of combined treatment with resveratrol and pemetrexed in human NSCLC cells through downregulation of the MKK3/6-p38 MAPK-ERCC1 signal, suggesting a potential benefit of combining resveratrol and pemetrexed to treat lung cancer in the future.
Collapse
|
25
|
Al-Ejeh F, Shi W, Miranda M, Simpson PT, Vargas AC, Song S, Wiegmans AP, Swarbrick A, Welm AL, Brown MP, Chenevix-Trench G, Lakhani SR, Khanna KK. Treatment of triple-negative breast cancer using anti-EGFR-directed radioimmunotherapy combined with radiosensitizing chemotherapy and PARP inhibitor. J Nucl Med 2013; 54:913-21. [PMID: 23564760 DOI: 10.2967/jnumed.112.111534] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Triple-negative breast cancer (TNBC) is associated with poor survival. Chemotherapy is the only standard treatment for TNBC. The prevalence of BRCA1 inactivation in TNBC has rationalized clinical trials of poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. Similarly, the overexpression of epidermal growth factor receptor (EGFR) rationalized anti-EGFR therapies in this disease. However, clinical trials using these 2 strategies have not reached their promise. In this study, we used EGFR as a target for radioimmunotherapy and hypothesized that EGFR-directed radioimmunotherapy can deliver a continuous lethal radiation dose to residual tumors that are radiosensitized by PARP inhibitors and chemotherapy. METHODS We analyzed EGFR messenger RNA in published gene expression array studies and investigated EGFR protein expression by immunohistochemistry in a cohort of breast cancer patients to confirm EGFR as a target in TNBC. Preclinically, using orthotopic and metastatic xenograft models of EGFR-positive TNBC, we investigated the effect of the novel combination of (177)Lu-labeled anti-EGFR monoclonal antibody, chemotherapy, and PARP inhibitors on cell death and the survival of breast cancer stem cells. RESULTS In this first preclinical study of anti-EGFR radioimmunotherapy in breast cancer, we found that anti-EGFR radioimmunotherapy is safe and that TNBC orthotopic tumors and established metastases were eradicated in mice treated with anti-EGFR radioimmunotherapy combined with chemotherapy and PARP inhibitors. We showed that the superior response to this triple-agent combination therapy was associated with apoptosis and eradication of putative breast cancer stem cells. CONCLUSION Our data support further preclinical investigations toward the development of combination therapies using systemic anti-EGFR radioimmunotherapy for the treatment of recurrent and metastatic TNBC.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nogueira A, Assis J, Catarino R, Medeiros R. DNA repair and cytotoxic drugs: the potential role of RAD51 in clinical outcome of non-small-cell lung cancer patients. Pharmacogenomics 2013; 14:689-700. [DOI: 10.2217/pgs.13.48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Many of the cytotoxic drugs used in the treatment of non-small-cell lung carcinoma patients can interfere with DNA activity and the definition of an individual DNA repair profile could be a key strategy to achieve better response to chemotherapeutic treatment. Although DNA repair mechanisms are important factors in the prevention of carcinogenesis, these molecular pathways are also involved in therapy response. RAD51 is a crucial element in DNA repair by homologous recombination and has been shown to interfere with the prognosis of patients treated with chemoradiotherapy. There is increasing evidence that genetic polymorphisms in repair enzymes can influence DNA repair capacity and, consequently, affect chemotherapy efficacy. We conducted this review to show the possible influence of the RAD51 genetic variants in damage repair capacity and treatment response in non-small-cell lung carcinoma patients.
Collapse
Affiliation(s)
- Augusto Nogueira
- Portuguese Institute of Oncology, Molecular Oncology Group – CI, Edifícios Laboratórios – Piso 4, Rua Dr. Ant. Bernardino Almeida, 4200-072 Porto, Portugal
- LPCC, Research Department-Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Joana Assis
- Portuguese Institute of Oncology, Molecular Oncology Group – CI, Edifícios Laboratórios – Piso 4, Rua Dr. Ant. Bernardino Almeida, 4200-072 Porto, Portugal
- LPCC, Research Department-Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Raquel Catarino
- Portuguese Institute of Oncology, Molecular Oncology Group – CI, Edifícios Laboratórios – Piso 4, Rua Dr. Ant. Bernardino Almeida, 4200-072 Porto, Portugal
| | - Rui Medeiros
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
- CEBIMED, Faculty of Health Sciences of Fernando Pessoa University, Porto, Portugal
| |
Collapse
|
27
|
He L, Bi JJ, Guo Q, Yu Y, Ye XF. Effects of emodin extracted from Chinese herbs on proliferation of non-small cell lung cancer and underlying mechanisms. Asian Pac J Cancer Prev 2013; 13:1505-10. [PMID: 22799356 DOI: 10.7314/apjcp.2012.13.4.1505] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To aim of this was to observe emodin-mediated cytotoxicity and its influence on Rad51 and ERCC1 expressionin non-small cell lung cancer (NSCLC). NSCLC cells were cultured in vitro with emodin at various concentrations (0, 25, 50, 75 and 100 μmol/L) for 48 h and the proliferation inhibition rate was determined by the MTT method. Then, NSCLC were treated with emodin (SK-MES-1 40 μmol/L, A549 70 μmol/L) or 20 μmol/L U0126 (an ERK inhibitor) for 48 h, or with various concentrations of emodin for 48 h and the protein and mRNA expressions of ERCC1 and Rad51 were determined by RT-PCR and Western blot assay, respectively. Emodin exerted a suppressive effect on the proliferation of NSCLC in a concentration dependent manner. Protein and mRNA expression of ERCC1 and Rad51 was also significantly decreased with the dose. Vacuolar degeneration was observed in A549 and SK-MES-1 cell lines after emodin treatment by transmission electron microscopy. Emodin may thus inhibited cell proliferation in NSCLC cells by downregulation ERCC1 and Rad51.
Collapse
Affiliation(s)
- Lin He
- Department of Pathology, Institute of Neuroscience, Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
28
|
Ko JC, Chen HJ, Huang YC, Tseng SC, Weng SH, Wo TY, Huang YJ, Chiu HC, Tsai MS, Chiou RYY, Lin YW. HSP90 inhibition induces cytotoxicity via down-regulation of Rad51 expression and DNA repair capacity in non-small cell lung cancer cells. Regul Toxicol Pharmacol 2012; 64:415-24. [PMID: 23069143 DOI: 10.1016/j.yrtph.2012.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 12/20/2022]
Abstract
Heat shock protein 90 (HSP90) is an exciting new target in cancer therapy. Repair protein Rad51 is involved in protecting non-small cell lung cancer (NSCLC) cell lines against chemotherapeutic agent-induced cytotoxicity. This study investigated the role of Rad51 expression in HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced cytotoxicity in two NSCLC cell lines, A549 and H1975. The 17-AAG treatment decreased cellular Rad51 protein and mRNA levels and phosphorylated MKK1/2-ERK1/2 protein levels, and disrupted the HSP90 and Rad51 interaction. This triggered Rad51 protein degradation through the 26S proteasome pathway. The 17-AAG treatment also decreased the NSCLC cells' DNA repair capacity, which was restored by the forced expression of the Flag-Rad51 vector. Specific inhibition of Rad51 expression by siRNA further enhanced 17-AAG-induced cytotoxicity. In contrast, enhanced ERK1/2 activation by the constitutively active MKK1/2 (MKK1/2-CA) vector significantly restored the 17-AAG-reduced Rad51 protein levels and cell viability. Arachidin-1, an antioxidant stilbenoid, further decreased Rad51 expression and augmented the cytotoxic effect and growth inhibition of 17-AAG. The 17-AAG and arachidin-1-induced synergistic cytotoxic effects and decreased DNA repair capacity were abrogated in lung cancer cells with MKK1/2-CA or Flag-Rad51 expression vector transfection. In conclusion, HSP90 inhibition induces cytotoxicity by down-regulating Rad51 expression and DNA repair capacity in NSCLC cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Natsume H, Shinmura K, Tao H, Igarashi H, Suzuki M, Nagura K, Goto M, Yamada H, Maeda M, Konno H, Nakamura S, Sugimura H. The CRKL gene encoding an adaptor protein is amplified, overexpressed, and a possible therapeutic target in gastric cancer. J Transl Med 2012; 10:97. [PMID: 22591714 PMCID: PMC3388458 DOI: 10.1186/1479-5876-10-97] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/16/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genomic DNA amplification is a genetic factor involved in cancer, and some oncogenes, such as ERBB2, are highly amplified in gastric cancer. We searched for the possible amplification of other genes in gastric cancer. METHODS AND RESULTS A genome-wide single nucleotide polymorphism microarray analysis was performed using three cell lines of differentiated gastric cancers, and 22 genes (including ERBB2) in five highly amplified chromosome regions (with a copy number of more than 6) were identified. Particular attention was paid to the CRKL gene, the product of which is an adaptor protein containing Src homology 2 and 3 (SH2/SH3) domains. An extremely high CRKL copy number was confirmed in the MKN74 gastric cancer cell line using fluorescence in situ hybridization (FISH), and a high level of CRKL expression was also observed in the cells. The RNA-interference-mediated knockdown of CRKL in MKN74 disclosed the ability of CRKL to upregulate gastric cell proliferation. An immunohistochemical analysis revealed that CRKL protein was overexpressed in 24.4% (88/360) of the primary gastric cancers that were analyzed. The CRKL copy number was also examined in 360 primary gastric cancers using a FISH analysis, and CRKL amplification was found to be associated with CRKL overexpression. Finally, we showed that MKN74 cells with CRKL amplification were responsive to the dual Src/BCR-ABL kinase inhibitor BMS354825, likely via the inhibition of CRKL phosphorylation, and that the proliferation of MKN74 cells was suppressed by treatment with a CRKL-targeting peptide. CONCLUSION These results suggested that CRKL protein is overexpressed in a subset of gastric cancers and is associated with CRKL amplification in gastric cancer. Furthermore, our results suggested that CRKL protein has the ability to regulate gastric cell proliferation and has the potential to serve as a molecular therapy target for gastric cancer.
Collapse
Affiliation(s)
- Hiroko Natsume
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hong Tao
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hisaki Igarashi
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Masaya Suzuki
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kiyoko Nagura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Masanori Goto
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Matsuyoshi Maeda
- Department of Pathology, Toyohashi Municipal Hospital, 50 Hachiken Nishi, Aotake-cho, Toyohashi, Aichi, 441-8570, Japan
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Satoki Nakamura
- Third Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
30
|
Inhibition of thymidine phosphorylase expression by using an HSP90 inhibitor potentiates the cytotoxic effect of cisplatin in non-small-cell lung cancer cells. Biochem Pharmacol 2012; 84:126-36. [DOI: 10.1016/j.bcp.2012.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/17/2012] [Accepted: 03/20/2012] [Indexed: 12/26/2022]
|
31
|
Prodigiosin-induced cytotoxicity involves RAD51 down-regulation through the JNK and p38 MAPK pathways in human breast carcinoma cell lines. Toxicol Lett 2012; 212:83-9. [DOI: 10.1016/j.toxlet.2012.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/06/2012] [Accepted: 05/02/2012] [Indexed: 11/21/2022]
|
32
|
Pasaje CFA, Kim JH, Park BL, Cheong HS, Bae JS, Park TJ, Lee JS, Kim Y, Lee HS, Koh I, Kim YJ, Shin HD. Lack of association of RAD51 genetic variations with hepatitis B virus clearance and occurrence of hepatocellular carcinoma in a Korean population. J Med Virol 2012; 83:1892-9. [PMID: 21915862 DOI: 10.1002/jmv.22122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The RecA homolog, E. coli (S. cerevisiae) (RAD51) may modulate hepatitis B virus (HBV) infection by maintaining genome integrity and mediating homologous DNA repairs. In this study, 16 sequence variations were detected by resequencing all exons, the exon-intron boundary, and promoter regions of the human RAD51 gene in DNA samples of 24 unrelated individuals. To investigate the association of common variations in the RAD51 locus with HBV infection and hepatocellular carcinoma (HCC) occurrence, six common polymorphisms were genotyped in a total of 1,103 Korean HBV cohort, composed of 433 spontaneously recovered patients as controls and 670 chronic carriers of HBV, who were stratified further into 327 cirrhosis/chronic hepatitis patients and 343 patients with HCC infected with HBV. Logistic analyses revealed no significant association of RAD51 polymorphisms and haplotypes with HBV clearance and HCC occurrence (P > 0.05). Furthermore, with age of infection as an important factor in disease progression to HCC, results from the Cox proportional hazards analysis showed no significant associations between any of the tested RAD51 variants and the age of onset of HCC (P > 0.05), suggesting that genetic polymorphisms of RAD51 may not play an important role in clearance of HBV and disease progression to HCC. Although studies in other populations are needed to confirm these findings, this preliminary data may contribute to the current knowledge on the pathogenesis of hepatitis.
Collapse
|
33
|
Weng SH, Tsai MS, Chiu YF, Kuo YH, Chen HJ, Lin YW. Enhancement of Mitomycin C-Induced Cytotoxicity by Curcumin Results from Down-Regulation of MKK1/2-ERK1/2-Mediated Thymidine Phosphorylase Expression. Basic Clin Pharmacol Toxicol 2011; 110:298-306. [DOI: 10.1111/j.1742-7843.2011.00806.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Inhibition of p38 MAPK-Dependent Excision Repair Cross-Complementing 1 Expression Decreases the DNA Repair Capacity to Sensitize Lung Cancer Cells to Etoposide. Mol Cancer Ther 2011; 11:561-71. [DOI: 10.1158/1535-7163.mct-11-0684] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Kiyohara E, Tamai K, Katayama I, Kaneda Y. The combination of chemotherapy with HVJ-E containing Rad51 siRNA elicited diverse anti-tumor effects and synergistically suppressed melanoma. Gene Ther 2011; 19:734-41. [PMID: 21900962 DOI: 10.1038/gt.2011.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dacarbazine (DTIC) is one of the most popular alkylating agents used for the treatment of malignant melanoma. DTIC induces apoptosis of melanoma cells via double-strand breaks (DSBs). Melanoma cells, however, tend to increase their expression of DNA repair molecules in order to be resistant to DTIC. Here, we show that DTIC increases expression of Rad51, but not Ku70, in a cultured B16-F10 mouse melanoma cell line in dose- and time-dependent manners. On introducing Rad51 short interfering RNA (siRNA) with the hemagglutinating virus of Japan envelope (HVJ-E) to B16-F10 cells, DSBs induced by DTIC treatment were not efficiently repaired and resulted in enhanced apoptotic cell death. Colony formation of B16-F10 cells that received Rad51 siRNA was significantly decreased by DTIC treatment as compared with cells that received scramble siRNA. In melanoma-bearing mice, the combination of three intratumoral injections of HVJ-E containing Rad51 siRNA and five intraperitoneal injections of DTIC at a clinical dose synergistically suppressed the tumors. Moreover, HVJ-E demonstrated anti-tumor immunity by inducing cytotoxic T lymphocytes to B16-F10 cells on administration of DTIC. These results suggest that the combination of chemotherapy with HVJ-E containing therapeutic molecules will provide a promising therapeutic strategy for patients bearing malignant tumors resistant to chemotherapeutic agents.
Collapse
Affiliation(s)
- E Kiyohara
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Japan
| | | | | | | |
Collapse
|
36
|
Ko JC, Tsai MS, Weng SH, Kuo YH, Chiu YF, Lin YW. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2–ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells. Toxicol Appl Pharmacol 2011; 255:327-38. [DOI: 10.1016/j.taap.2011.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/06/2011] [Accepted: 07/15/2011] [Indexed: 01/20/2023]
|
37
|
Liu Q, Jiang H, Liu Z, Wang Y, Zhao M, Hao C, Feng S, Guo H, Xu B, Yang Q, Gong Y, Shao C. Berberine radiosensitizes human esophageal cancer cells by downregulating homologous recombination repair protein RAD51. PLoS One 2011; 6:e23427. [PMID: 21858113 PMCID: PMC3152570 DOI: 10.1371/journal.pone.0023427] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 07/17/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinomas (ESCC) have poor prognosis. While combined modality of chemotherapy and radiotherapy increases survival, most patients die within five years. Development of agents that confer cancer cell-specific chemo- and radiosensitivity may improve the therapy of ESCC. We here reported the discovery of berberine as a potent radiosensitizing agent on ESCC cells. PRINCIPAL FINDINGS Berberine at low concentrations (<15 µM) substantially radiosensitized ESCC cells. X-ray induced DNA double-strand breaks (DSBs) persist longer in ESCC cells pretreated with berberine. Berberine pretreatment led to a significant downregulation of RAD51, a key player in homologous recombination repair, in ESCC cells, but not in non-malignant human cells. Downregulation of RAD51 by RNA interference similarly radiosensitized the cancer cells, and, conversely, introduction of exogenous RAD51 was able to significantly counteract the radiosensitizing effect of berberine, thus establishing RAD51 as a key determinant in radiation sensitivity. We also observed that RAD51 was commonly overexpressed in human ESCC tissues, suggesting that it is necessary to downregulate RAD51 to achieve high radio- or chemotherapeutic efficacy of ESCC in clinic, because overexpression of RAD51 is known to confer radio- and chemoresistance. CONCLUSIONS/SIGNIFICANCE Berberine can effectively downregulate RAD51 in conferring radiosensitivity on esophageal cancer cells. Its clinical application as an adjuvant in chemotherapy and radiotherapy of esophageal cancers should be explored.
Collapse
MESH Headings
- Berberine/pharmacology
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/radiation effects
- Cells, Cultured
- DNA Breaks, Double-Stranded/drug effects
- DNA Breaks, Double-Stranded/radiation effects
- Dose-Response Relationship, Drug
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- HEK293 Cells
- Histones/metabolism
- Homologous Recombination/drug effects
- Homologous Recombination/radiation effects
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- RNA Interference
- Rad51 Recombinase/genetics
- Rad51 Recombinase/metabolism
- Radiation-Sensitizing Agents/pharmacology
- Recombinational DNA Repair/drug effects
- Recombinational DNA Repair/radiation effects
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Haiyan Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yu Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Minnan Zhao
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Chunyan Hao
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuai Feng
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Haiyang Guo
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Bing Xu
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
- * E-mail: (YG); (CS)
| | - Changshun Shao
- Key Laboratory of Experimental Teratology, Ministry of Education, and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
- * E-mail: (YG); (CS)
| |
Collapse
|
38
|
Modulation of Rad51, ERCC1, and thymidine phosphorylase by emodin result in synergistic cytotoxic effect in combination with capecitabine. Biochem Pharmacol 2010; 81:680-90. [PMID: 21168393 DOI: 10.1016/j.bcp.2010.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 11/23/2022]
Abstract
Thymidine phosphorylase (TP) is the rate-limiting enzyme for the activation of capecitabine (pro-drug of fluorouracil), and as a useful predictor of tumor response to capecitabine-based chemotherapy. Overexpression of Rad51 and ERCC1 induce resistance to chemotherapeutic agents. Emodin, one of the main bioactive anthraquinone derivatives in the roots and rhizomes of numerous plants, possesses potent antitumor effects. Accordingly, we aimed to explore the molecular mechanism of emodin enhances the capecitabine-induced cytotoxicity through controlling Rad51, ERCC1, and TP expression in human non-small cell lung cancer (NSCLC). The results show that capecitabine increases the phosphorylation of MKK1/2-ERK1/2 and protein levels of Rad51 and ERCC1 through enhancing the protein stability. Depletion of endogenous Rad51 or ERCC1 expression by specific small interfering RNA transfection significantly increases capecitabine-induced cell death and growth inhibition. Emodin enhances the capecitabine-induced cytotoxic effects through ERK1/2 inactivation and decreasing the Rad51 and ERCC1 protein levels induced by capecitabine. Enhancement of ERK1/2 signaling by constitutively active MKK1/2 (MKK1/2-CA) results in increasing Rad51 and ERCC1 protein levels and cell viability in NSCLC cell lines treated with emodin and capecitabine. Interestingly, emodin enhances TP mRNA and protein expression in capecitabine treated NSCLC cell lines, and depletion of the TP expression decreases the cytotoxic effects induced by capecitabine and emodin. We conclude that enhancing the cytotoxicity to capecitabine by emodin is mediated by down-regulation the expression of Rad51 and ERCC1 and up-regulation TP expression.
Collapse
|
39
|
Stewart DJ. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit Rev Oncol Hematol 2010; 75:173-234. [PMID: 20047843 PMCID: PMC2888634 DOI: 10.1016/j.critrevonc.2009.11.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/19/2009] [Accepted: 11/27/2009] [Indexed: 12/19/2022] Open
Abstract
While chemotherapy provides useful palliation, advanced lung cancer remains incurable since those tumors that are initially sensitive to therapy rapidly develop acquired resistance. Resistance may arise from impaired drug delivery, extracellular factors, decreased drug uptake into tumor cells, increased drug efflux, drug inactivation by detoxifying factors, decreased drug activation or binding to target, altered target, increased damage repair, tolerance of damage, decreased proapoptotic factors, increased antiapoptotic factors, or altered cell cycling or transcription factors. Factors for which there is now substantial clinical evidence of a link to small cell lung cancer (SCLC) resistance to chemotherapy include MRP (for platinum-based combination chemotherapy) and MDR1/P-gp (for non-platinum agents). SPECT MIBI and Tc-TF scanning appears to predict chemotherapy benefit in SCLC. In non-small cell lung cancer (NSCLC), the strongest clinical evidence is for taxane resistance with elevated expression or mutation of class III beta-tubulin (and possibly alpha tubulin), platinum resistance and expression of ERCC1 or BCRP, gemcitabine resistance and RRM1 expression, and resistance to several agents and COX-2 expression (although COX-2 inhibitors have had minimal impact on drug efficacy clinically). Tumors expressing high BRCA1 may have increased resistance to platinums but increased sensitivity to taxanes. Limited early clinical data suggest that chemotherapy resistance in NSCLC may also be increased with decreased expression of cyclin B1 or of Eg5, or with increased expression of ICAM, matrilysin, osteopontin, DDH, survivin, PCDGF, caveolin-1, p21WAF1/CIP1, or 14-3-3sigma, and that IGF-1R inhibitors may increase efficacy of chemotherapy, particularly in squamous cell carcinomas. Equivocal data (with some positive studies but other negative studies) suggest that NSCLC tumors with some EGFR mutations may have increased sensitivity to chemotherapy, while K-ras mutations and expression of GST-pi, RB or p27kip1 may possibly confer resistance. While limited clinical data suggest that p53 mutations are associated with resistance to platinum-based therapies in NSCLC, data on p53 IHC positivity are equivocal. To date, resistance-modulating strategies have generally not proven clinically useful in lung cancer, although small randomized trials suggest a modest benefit of verapamil and related agents in NSCLC.
Collapse
Affiliation(s)
- David J Stewart
- Department of Thoracic/Head & Neck Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Kriegs M, Kasten-Pisula U, Rieckmann T, Holst K, Saker J, Dahm-Daphi J, Dikomey E. The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining. DNA Repair (Amst) 2010; 9:889-97. [DOI: 10.1016/j.dnarep.2010.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/28/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
|
41
|
Knockdown of Rad51 expression induces radiation- and chemo-sensitivity in osteosarcoma cells. Med Oncol 2010; 28:1481-7. [DOI: 10.1007/s12032-010-9605-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 06/14/2010] [Indexed: 12/20/2022]
|
42
|
Su YJ, Tsai MS, Kuo YH, Chiu YF, Cheng CM, Lin ST, Lin YW. Role of Rad51 down-regulation and extracellular signal-regulated kinases 1 and 2 inactivation in emodin and mitomycin C-induced synergistic cytotoxicity in human non-small-cell lung cancer cells. Mol Pharmacol 2010; 77:633-43. [PMID: 20042515 DOI: 10.1124/mol.109.061887] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. It is a tyrosine kinase inhibitor and has anticancer effects on lung cancer. Rad51 plays a central role in homologous recombination, and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the mitogen-activated protein kinase kinase (MKK) 1/2-extracellular signal-regulated kinase (ERK) 1/2 signal pathway maintains the expression of Rad51. Therefore, in this study, we hypothesized that emodin could enhance the effects of the antitumor antibiotic mitomycin C (MMC)-mediated cytotoxicity by decreasing the expression of Rad51 and the phosphorylation of ERK1/2. Exposure of the human non-small-cell lung cancer H1703 or A549 cell lines to emodin decreased the MMC-elicited phosphorylated ERK1/2 and Rad51 levels. Moreover, emodin significantly decreased the MMC-elicited Rad51 mRNA and protein levels by increasing the instability of Rad51 mRNA and protein. In emodin- and MMC-cotreated cells, ERK1/2 phosphorylation was enhanced by constitutively active MKK1/2 (MKK1/2-CA), thus increasing Rad51 protein levels and protein stability. The synergistic cytotoxic effects induced by emodin combined with MMC were remarkably decreased by MKK1-CA-mediated enhancement of ERK1/2 activation. Depletion of endogenous Rad51 expression by small interfering Rad51 RNA transfection significantly enhanced MMC-induced cell death and cell growth inhibition. In contrast, overexpression of Rad51 protects lung cancer cells from the synergistic cytotoxic effects induced by emodin and MMC. We conclude that suppression of Rad51 expression or a combination of emodin with chemotherapeutic agents may be considered as potential therapeutic modalities for lung cancer.
Collapse
Affiliation(s)
- Ying-Jhen Su
- Molecular Oncology Laboratory, Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Ko JC, Su YJ, Lin ST, Jhan JY, Ciou SC, Cheng CM, Lin YW. Suppression of ERCC1 and Rad51 expression through ERK1/2 inactivation is essential in emodin-mediated cytotoxicity in human non-small cell lung cancer cells. Biochem Pharmacol 2010; 79:655-64. [PMID: 19799875 DOI: 10.1016/j.bcp.2009.09.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 01/20/2023]
Abstract
Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. Emodin exhibits anticancer effects against a variety of cancer cells, including lung cancer cells. ERCC1 and Rad51 proteins are essential for nucleotide excision repair and homologous recombination, respectively. Furthermore, ERCC1 and Rad51 overexpression induces resistance to DNA-damaging agents that promote DNA double-strand breaks. Accordingly, the aim of this study was to determine the role of ERCC1 and Rad51 in emodin-mediated cytotoxicity in human non-small cell lung cancer (NSCLC) cells. Both ERCC1 and Rad51 protein levels as well as mRNA levels were decreased in four different NSCLC cell lines after exposure to emodin. These decreases correlated with the inactivation of the MKK1/2-ERK1/2 pathway. Moreover, cellular ERCC1 and Rad51 protein and mRNA levels were specifically inhibited by U0126, a MKK1/2 inhibitor. We found that transient transfection of human NSCLC cells with si-ERCC1 or si-Rad51 RNA and cotreatment with U0126 could enhance emodin-induced cytotoxicity. In contrast, overexpression of constitutively active MKK1/2 vectors (MKK1/2-CA) was shown to significantly recover reduced phospho-ERK1/2, ERCC1, and Rad51 protein levels and to rescue cell viability upon emodin treatment. These results demonstrate that activation of the MKK1/2-ERK1/2 pathway is the upstream signal regulating the expressions of ERCC1 and Rad51, which are suppressed by emodin to induce cytotoxicity in NSCLC cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, Hsinchu Hospital, Department of Health, The Executive Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Stewart DJ. Lung Cancer Resistance to Chemotherapy. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Ko JC, Su YJ, Lin ST, Jhan JY, Ciou SC, Cheng CM, Chiu YF, Kuo YH, Tsai MS, Lin YW. Emodin enhances cisplatin-induced cytotoxicity via down-regulation of ERCC1 and inactivation of ERK1/2. Lung Cancer 2009; 69:155-64. [PMID: 19962780 DOI: 10.1016/j.lungcan.2009.10.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 12/11/2022]
Abstract
Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants; it exhibits an anticancer effect on many malignancies. The most important chemotherapeutic agent for patients with advanced non-small cell lung cancer (NSCLC) is a platinum-containing compound such as cisplatin or carboplatin. The molecular mechanism underlying decreased NSCLC cell viability after treatment with emodin and cisplatin is unclear. Therefore, the aim of this study was to assess the cytotoxic effect of combined emodin and cisplatin on NSCLC cell lines and to clarify underlying molecular mechanisms. Exposure of human NSCLC cells to emodin decreased cisplatin-elicited ERK1/2 activation and ERCC1 protein induction by increasing instability of ERCC1 protein. Cisplatin alone did not affect expression of ERCC1 mRNA. However, emodin alone or combined with cisplatin significantly decreased expression of ERCC1 mRNA levels. Enhancement of ERK1/2 activation by transfection with constitutively active MKK1/2 (MKK1/2-CA) vector increased ERCC1 protein levels and protein stability, as well as increasing viability of NSCLC cells treated with emodin and cisplatin. In contrast, blocking ERK1/2 activation by U0126 (an MKK1/2 inhibitor) decreased cisplatin-elicited ERCC1 expression and enhanced cisplatin-induced cytotoxicity. Depletion of endogenous ERCC1 expression by si-ERCC1 RNA transfection significantly enhanced cisplatin's cytotoxic effect. In conclusion, ERCC1 protein protects NSCLC cells from synergistic cytotoxicity induced by emodin and platinum agents. Further investigation of combined emodin and cisplatin may lead to novel therapy in the future for NSCLC through down-regulating expression of ERCC1.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, Hsinchu Hospital, Department of Health, The Executive Yuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wei J, Liu B, Cardona AF, Rosell R. Molecular biomarkers for predicting chemotherapy response in lung cancer. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:621-9. [PMID: 23496047 DOI: 10.1517/17530050903222239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Chemotherapy in non-small-cell lung cancer (NSCLC) has reached a plateau, with no evidence of substantial improvement in survival. However, recent advances in the management of lung cancer have paved the way for the optimization of treatment. Several lines of evidence indicate that multiple genetic disturbances found in human cancer cell lines and in the tumors of NSCLC patients have a role as predictive markers for response and survival with chemotherapy regimens now in use. OBJECTIVE This review highlights relevant translational research findings on potential predictive markers in lung cancer with therapeutic impact in both the near and distant future. CONCLUSION The next step is to develop clinical trials that will prospectively validate the benefits of customizing chemotherapy, which should translate into an improvement in outcome in NSCLC patients.
Collapse
Affiliation(s)
- Jia Wei
- Medical School of Nanjing University, Affiliated Drum Tower Hospital, Clinical Cancer Institute of Nanjing University, Department of Oncology, Zhongshan Road 321, Nanjing 210008, China +86 25 83317016 ; +86 25 83317016 ;
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
48
|
Ko JC, Ciou SC, Jhan JY, Cheng CM, Su YJ, Chuang SM, Lin ST, Chang CC, Lin YW. Roles of MKK1/2-ERK1/2 and phosphoinositide 3-kinase-AKT signaling pathways in erlotinib-induced Rad51 suppression and cytotoxicity in human non-small cell lung cancer cells. Mol Cancer Res 2009; 7:1378-89. [PMID: 19671683 DOI: 10.1158/1541-7786.mcr-09-0051] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Erlotinib (Tarceva) is a selective epidermal growth factor receptor tyrosine kinase inhibitor in the treatment of human non-small cell lung cancer (NSCLC). In this study, we investigated the roles of ERK1/2 and AKT signaling pathways in regulating Rad51 expression and cytotoxic effects in different NSCLC cell lines treated with erlotinib. Erlotinib decreased cellular levels of phosphorylated ERK1/2, phosphorylated AKT, Rad51 protein, and mRNA in erlotinib-sensitive H1650, A549, and H1869 cells, leading to cell death via apoptosis, but these results were not seen in erlotinib-resistant H520 and H1703 cells. Erlotinib decreased Rad51 protein levels by enhancing Rad51 mRNA and protein instability. Enforced expression of constitutively active MKK1 or AKT vectors could restore Rad51 protein levels, which were inhibited by erlotinib, and decrease erlotinib-induced cytotoxicity. Knocking down endogenous Rad51 expression by si-Rad51 RNA transfection significantly enhanced erlotinib-induced cytotoxicity. In contrast, overexpression of Rad51 by transfection with Rad51 vector could protect the cells from cytotoxic effects induced by erlotinib. Blocking the activations of ERK1/2 and AKT by MKK1/2 inhibitor (U0126) and phosphoinositide 3-kinase inhibitor (wortmannin) suppressed the expression of Rad51 and enhanced the erlotinib-induced cell death in erlotinib-resistant cells. In conclusion, suppression of Rad51 may be a novel therapeutic modality in overcoming drug resistance of erlotinib in NSCLC.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, Hsinchu Hospital, Department of Health, Executive Yuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen RS, Jhan JY, Su YJ, Lee WT, Cheng CM, Ciou SC, Lin ST, Chuang SM, Ko JC, Lin YW. Emodin enhances gefitinib-induced cytotoxicity via Rad51 downregulation and ERK1/2 inactivation. Exp Cell Res 2009; 315:2658-72. [PMID: 19505457 DOI: 10.1016/j.yexcr.2009.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/12/2009] [Accepted: 06/03/2009] [Indexed: 01/24/2023]
Abstract
Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. It reportedly exhibits an anticancer effect on lung cancer. Gefitinib (Iressa) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for human non-small cell lung cancer (NSCLC). However, the molecular mechanism of how emodin combined with gefitinib decreases NSCLC cell viability is unclear. The recombinase protein Rad51 is essential for homologous recombination repair, and Rad51 overexpression is resistant to DNA double-strand break-inducing cancer therapies. In this study, we found that emodin enhanced the cytotoxicity induced by gefitinib in two NSCLC cells lines, A549 and H1650. Emodin at low doses of 2-10 microM did not affect ERK1/2 activation, mRNA, and Rad51 protein levels; however, it enhanced a gefitinib-induced decrease in phospho-ERK1/2 and Rad51 protein levels by enhancing Rad51 protein instability. Expression of constitutively active MKK1/2 vectors (MKK1/2-CA) significantly rescued the reduced phospho-ERK1/2 and Rad51 protein levels as well as cell viability on gefitinib and emodin cotreatment. Blocking of ERK1/2 activation by U0126 (an MKK1/2 inhibitor) lowered Rad51 protein levels and cell viability in emodin-treated H1650 and A549 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA enhanced emodin cytotoxicity. In contrast, Rad51 overexpression protected the cells from the cytotoxic effects induced by emodin and gefitinib. Consequently, emodin-gefitinib cotreatment may serve as the basis for a novel and better therapeutic modality in the management of advanced lung cancer.
Collapse
Affiliation(s)
- Ruey-Shyang Chen
- Molecular Genetics of Microorganisms Laboratory, Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF, Valerie K. Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 2009; 8:730-8. [PMID: 19252415 PMCID: PMC2863288 DOI: 10.4161/cbt.8.8.7927] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is frequently dysregulated in malignant glioma that leads to increased resistance to cancer therapy. Upregulation of wild type or expression of mutant EGFR is associated with tumor radioresistance and poor clinical outcome. EGFR variant III (EGFRvIII) is the most common EGFR mutation in malignant glioma. Radioresistance is thought to be, at least in part, the result of a strong cytoprotective response fueled by signaling via AKT and ERK that is heightened by radiation in the clinical dose range. Several groups including ours have shown that this response may modulate DNA repair. Herein, we show that expression of EGFRvIII promoted gamma-H2AX foci resolution, a surrogate for double-strand break (DSB) repair, and thus enhanced DNA repair. Conversely, small molecule inhibitors targeting EGFR, MEK, and the expression of dominant-negative EGFR (EGFR-CD533) significantly reduced the resolution of gamma-H2AX foci. When homologous recombination repair (HRR) and non-homologous end joining (NHEJ) were specifically examined, we found that EGFRvIII stimulated and CD533 compromised HRR and NHEJ, respectively. Furthermore, NHEJ was blocked by inhibitors of AKT and ERK signaling pathways. Moreover, expression of EGFRvIII and CD533 increased and reduced, respectively, the formation of phospho-DNA-PKcs and -ATM repair foci, and RAD51 foci and expression levels, indicating that DSB repair is regulated at multiple levels. Altogether, signaling from EGFR and EGFRvIII promotes both HRR and NHEJ that is likely a contributing factor towards the radioresistance of malignant gliomas.
Collapse
Affiliation(s)
- Sarah E. Golding
- Department of Radiation Oncology, Virginia Commonwealth University; Richmond, VA USA
| | - Rhiannon N. Morgan
- Department of Radiation Oncology, Virginia Commonwealth University; Richmond, VA USA
| | - Bret R. Adams
- Department of Radiation Oncology, Virginia Commonwealth University; Richmond, VA USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University; Richmond, VA USA
| | - Amy J. Hawkins
- Department of Radiation Oncology, Virginia Commonwealth University; Richmond, VA USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University; Richmond, VA USA
| | - Lawrence F. Povirk
- Department of Pharmacology and Toxicology, Virginia Commonwealth University; Richmond, VA USA
- The Massey Cancer Center, Virginia Commonwealth University; Richmond, VA USA
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University; Richmond, VA USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University; Richmond, VA USA
- The Massey Cancer Center, Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|