1
|
Delmas D, Mialhe A, Cotte AK, Connat JL, Bouyer F, Hermetet F, Aires V. Lipid metabolism in cancer: Exploring phospholipids as potential biomarkers. Biomed Pharmacother 2025; 187:118095. [PMID: 40311223 DOI: 10.1016/j.biopha.2025.118095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Aberrant lipid metabolism is increasingly recognized as a hallmark of cancer, contributing to tumor growth, metastatic dissemination, and resistance to therapy. Cancer cells reprogram key metabolic pathways-including de novo lipogenesis, lipid uptake, and phospholipid remodeling-to sustain malignant progression and adapt to microenvironmental demands. This review summarizes current insights into the role of lipid metabolic reprogramming in oncogenesis and highlights recent advances in lipidomics that have revealed cancer type- and stage-specific lipid signatures with diagnostic and prognostic relevance. We emphasize the dual potential of lipid metabolic pathways-particularly those involving phospholipids-as sources of clinically relevant biomarkers and therapeutic targets. Enzymes and transporters involved in these pathways have emerged as promising candidates for both diagnostic applications and pharmacological intervention. We also examine persistent challenges hindering the clinical translation of lipid-based approaches, including analytical variability, insufficient biological validation, and the lack of standardized integration into clinical workflows. Furthermore, the review explores strategies to overcome these barriers, highlighting the importance of incorporating lipidomics into multi-omics frameworks, supported by advanced computational tools and AI-driven analytics, to decipher the complexity of tumor-associated metabolic networks. We discuss how such integrative approaches can facilitate the identification of actionable metabolic targets, improve the specificity and robustness of lipid-based biomarkers, and enhance patient stratification in the context of precision oncology.
Collapse
Affiliation(s)
- Dominique Delmas
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France; Centre de Lutte Contre le Cancer Georges François Leclerc Center, Dijon F-21000, France; Inserm UMS58 - Biologie Santé Dijon (BioSanD), Dijon F-21000, France.
| | - Aurélie Mialhe
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Alexia K Cotte
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Jean-Louis Connat
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Florence Bouyer
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - François Hermetet
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Virginie Aires
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| |
Collapse
|
2
|
Kumar S, Chakraborty R, Roy C, Basu S, Hajra AK, Sen P, Paul D, Phukan K, Roy S, Bera R, Mondal T, Chakraborty S, Banerjee M, Mondal SK, Das S, Malik P, De Mandal S, Subudhi E, Kundu M. Discovery of 1-(Cyclopropylmethyl)-2-(Dibenzo[b,d]Thiophen-2-yl)-1H-Benzo[d]Imidazole-5-Carboxylic Acid as Orally Bioavailable EP4 Receptor Antagonist. Chem Biol Drug Des 2025; 105:e70132. [PMID: 40448530 DOI: 10.1111/cbdd.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 06/02/2025]
Abstract
The prostaglandin E2 (PGE2) regulates several biological processes via interaction with 1 of 4 E-type prostanoid receptors (EP1-EP4). The E-type prostanoid receptor 4 (EP4) is expressed primarily on myeloid cells, T lymphocytes, and tumor cells, and has emerged as a major contributor to PGE2-mediated enhancement of tumor survival pathways and as a suppressor of innate and adaptive antitumor immune responses. To date, significant work on the discovery of EP4 receptor antagonists has been carried out, but no compound has been approved for use in humans yet. Toward our aim of discovering potential EP4 antagonists, a pharmacophore-based scaffold-hopping approach combined with docking studies has been envisaged. As a result, compound 4 was found to be a non-toxic, potent EP4 antagonist binding in the orthosteric site. This compound exhibited good aqueous solubility, with acceptable in vitro metabolic stability and permeability. Albeit high protein binding, it displayed sustained exposure and significant oral bioavailability in mice and can thus have the potential for further optimization to yield next-generation EP4 antagonists.
Collapse
Affiliation(s)
- Sanjay Kumar
- TCG Lifesciences Pvt. Ltd., Kolkata, India
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University) (Campus-2), Bhubaneswar, India
| | | | | | | | | | - Priyam Sen
- TCG Lifesciences Pvt. Ltd., Kolkata, India
| | | | | | | | | | | | | | | | | | - Sonali Das
- TCG Lifesciences Pvt. Ltd., Kolkata, India
| | | | - Surajit De Mandal
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University) (Campus-2), Bhubaneswar, India
| | - Enketeswara Subudhi
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University) (Campus-2), Bhubaneswar, India
| | | |
Collapse
|
3
|
Berenguer Roque A, Zgheib A, Salomon-Izquierdo S, Manso Peña A, Osoria Alfonso LA, Piloto-Ferrer J, Annabi B. Xanthatin nanocrystals exert anti-inflammatory properties against TNFα-primed 2D monolayers and in 3D spheroids of human HT29 colorectal cancer cells. DISCOVER NANO 2025; 20:83. [PMID: 40388049 PMCID: PMC12089583 DOI: 10.1186/s11671-025-04257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/16/2025] [Indexed: 05/20/2025]
Abstract
Poor water-solubility of emerging new chemotherapeutic drugs lead to low absorption and tissue bioavailability. Improved drug delivery has therefore recently been achieved through the versatile physico-chemical properties of nanocrystals (NCs) in targeted cancer therapies. Here, nanocrystalization was used with xanthatin, a not highly water-soluble natural sesquiterpene lactone compound that possesses anti-tumour properties and which was recently investigated for potential use in the treatment of cancer and autoimmune diseases. Given that tumour-promoting inflammation is a hallmark of colorectal cancer (CRC), and that epidemiological studies associated inflammatory biomarkers to CRC poor prognosis and therapy resistance, the anti-inflammatory properties of xanthatin NCs were assessed in 2D monolayers and in 3D spheroids of a human HT29 CRC cell model. The 3D spheroids being a model recapitulating a cancer stem cells and chemoresistant phenotype. HT29 2D monolayer cell response was first tested against four pro-inflammatory inducers including phorbol-12-myristate-13-acetate, tumour necrosis factor alpha (TNFα), transforming growth factor beta, and Concanavalin A. Of these inducers, HT29 cell response to TNFα resulted in the most elevated expression of cyclooxygenase (COX)-2 which was prevented by commercial xanthatin along with the phosphorylation of the extracellular signal-regulated kinase 1/2 and of IkappaB (IκB). Alteration of 3D spheroids formation and of the inflammatory/immunity transcriptomic signature was also found better altered by xanthatin NCs in comparison to commercial xanthatin and the isolated molecule. Collectively, our data indicate that xanthatin nanocrystallization did not alter the potential in vitro anti-inflammatory and anticancer properties of xanthatin against a 3D CRC chemoresistance cellular model. These properties make NCs a significant advancement in the field of cancer theranostics to improve patient outcomes.
Collapse
Affiliation(s)
- Aleksandra Berenguer Roque
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Alain Zgheib
- Chair in Cancer Prevention and Treatment, Département de Chimie, Université du Québec à Montréal, Succ. Centre-ville, Montreal, QC, C.P. 8888, Canada
| | - Suslebys Salomon-Izquierdo
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Amanda Manso Peña
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Luis A Osoria Alfonso
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Janet Piloto-Ferrer
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Borhane Annabi
- Chair in Cancer Prevention and Treatment, Département de Chimie, Université du Québec à Montréal, Succ. Centre-ville, Montreal, QC, C.P. 8888, Canada.
| |
Collapse
|
4
|
Samoudi A, Abolhasani-Zadeh F, Afgar A, Jalilian E, Zeinalynezhad H, Langroudi L. Treatment of cancer-associated fibroblast-like cells with celecoxib enhances the anti-cancer T helper 1/Treg responses in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6099-6112. [PMID: 39652176 DOI: 10.1007/s00210-024-03641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/15/2024] [Indexed: 04/11/2025]
Abstract
Tumor inflammation, as one of the hallmarks of cancer, has been the target for anti-cancer treatments. Celecoxib is a selective inhibitor of the enzyme cycloxygenase-2 (COX-2) and inhibits the production of PGE2, which is an important mediator of tumor inflammation produced by cancer cells and cells of the tumor microenvironment. In this study, we aimed at inhibiting COX-2 using celecoxib, expressed in cancer-associated fibroblast (CAF)-like cells isolated from breast cancer and evaluated the alterations in their cytokine profile and gene expression. CAF-like cells were isolated by explant culture from 13 breast cancer tissues. Simultaneously, peripheral blood mononuclear cells (PBMCs) were isolated from patients' blood. CAF-like cells were treated with 10 µM of celecoxib and expression of genes COX-2, smooth muscle actin-alpha (α-SMA), and production of prostaglandin E2 (PGE2), Interleukin 10 (IL10), and transforming growth factor beta1 (TGF-β1) was evaluated. Next, PBMCs were co-cultured with celecoxib-treated CAF-like cells and the expression of genes T-bet, Foxp3, GATA-3; production of cytokines IFN-ɣ, IL-10, IL-4, TGF-β1, and the mediator PGE2 were assessed by real-time-PCR and ELISA, respectively. Isolated CAF-like cells showed expression of fibroblast activation protein (FAP). Treatment with celecoxib was able to efficiently reduce the production of PGE2 and the expression of α-SMA in isolated CAF-like cells. Furthermore, PBMCs in co-culture with these cells showed enhanced Th1 phenotype including T-bet and IFNγ expression and decreased the phenotypical markers of regulatory T cells such as FoxP3 and IL-10 and TGF-β1 production. Our study shows the important role of COX-2 in CAFs by promoting immune suppression. Our results suggested that high expression of COX-2 in CAFs may serve as a new therapeutic, targeting CAFs in enhancing immune responses in breast cancer treatment.
Collapse
Affiliation(s)
- Arash Samoudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, 7616914111, Iran
| | | | - Ali Afgar
- Research center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Elnaz Jalilian
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, 7616914111, Iran
| | - Hamid Zeinalynezhad
- Department of Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Langroudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, 7616914111, Iran.
| |
Collapse
|
5
|
Yuan F, Jia G, Wen W, Xu S, Gunchick V, Deng K, Long J, Yu D, Shu XO, Zheng W. Blood metabolic biomarkers and colorectal cancer risk: results from large prospective cohort and Mendelian randomisation analyses. Br J Cancer 2025:10.1038/s41416-025-02997-4. [PMID: 40307439 DOI: 10.1038/s41416-025-02997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Emerging evidence suggests metabolic dysregulation may contribute to colorectal cancer (CRC) aetiology. We aimed to identify pre-diagnostic metabolic biomarkers for CRC risk in 230,420 UK Biobank participants. METHODS Nuclear magnetic resonance spectroscopy was used to quantify 249 metabolic biomarkers in plasma samples collected at baseline. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals (CIs) for associations of metabolic biomarkers with CRC risk after adjusting for potential confounders. To infer the potential causality of biomarkers that were associated with CRC independent of the others, we performed genome-wide association analyses among 199,732 UK Biobank participants of European ancestry to identify biomarker-associated genetic variants, followed by two-sample Mendelian randomization (MR) analyses using summary statistics of 78,473 CRC cases and 107,143 controls of European ancestry. RESULTS During a median follow-up time of 9.7 years, 2,410 incident primary CRC cases were identified. Among 43 CRC-associated (P-value < 0.001) metabolic biomarkers, ten biomarkers including fatty acids (FAs), inflammation, ketone bodies, and lipoprotein lipids were associated with CRC risk after mutual adjustment. MR analyses provided strong evidence for potential causal associations of CRC risk with percentages of linolic acid [odds ratio (OR) = 0.89, 95% CI = 0.83-0.96, P-value = 3 × 10-3] and saturated FAs (OR = 1.14, 95% CI = 1.03-1.25, P-value = 9 × 10-3) to total FAs. CONCLUSIONS We identified multiple CRC-associated metabolic biomarkers. Perturbed lipid and lipoprotein metabolism may promote colorectal carcinogenesis.
Collapse
Affiliation(s)
- Fangcheng Yuan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valerie Gunchick
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kui Deng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Jeayeng S, Kwanthongdee J, Jittreeprasert R, Runganantchai K, Naksavasdi K, Rirkkrai R, Wongcharoenthavorn V, Mahikul W, Chatsirisupachai A. Natural products as promising therapeutics for fine particulate matter-induced skin damage: a review of pre-clinical studies on skin inflammation and barrier dysfunction. PeerJ 2025; 13:e19316. [PMID: 40313388 PMCID: PMC12045276 DOI: 10.7717/peerj.19316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/23/2025] [Indexed: 05/03/2025] Open
Abstract
Background Particulate matter less than 2.5 µm (PM2.5) is a significant air pollutant and is linked to an increased risk of health conditions, including skin diseases. The skin, as the first barrier and the largest organ, is primarily damaged by PM2.5 through different pathways. Several studies have shown that PM2.5 upregulates inflammatory responses through the excessive production of reactive oxygen species (ROS) and several inflammatory cytokines, leading to PM2.5-induced skin damage. The ROS/mitogen-activated protein kinase (MAPK) and Cyclooxygenase-2-Prostaglandin E2 (COX2/PGE2) inflammatory pathways are activated by free radical scavenging and phase II detoxification. Natural products have been suggested as therapeutic agents for mitigating PM2.5-induced skin damage. Objectives We elaborate on the mechanisms of action of natural products and their functions as protectants against environmental skin diseases. This review highlights the optimal doses of natural products for clinical study, which may benefit dermatologists, molecular biologists, clinicians, and healthcare professionals in preventive and alternative medicine. Methodology The available scientific literature published between 1999 and 2024 was searched using PubMed and Google Scholar. Multiple keywords related to the topic were used. Only 41 of the screened articles were chosen for this review, as they were the most relevant publications on the topic of the preventive advantages of natural products and specific pathways targeting PM2.5-induced skin injury. All relevant articles meeting the criteria of being original full articles and written in English were included. Results This review summarized the natural products, including phenolic/polyphenolic compounds and flavonoids, that can act as anti-inflammatory and antioxidant agents by protecting the skin against oxidative stress, inhibiting enzymes that promote free radical formation, enhancing antioxidant enzyme activity, and reducing overall ROS formation. Several natural products have demonstrated efficacy in alleviating intracellular ROS, oxidative stress, mitochondrial dysfunction, autophagy, and apoptosis caused by PM2.5. In addition, phytochemical agents support the restoration of the skin wound healing process and muscle contraction impaired by environmental pollutants, such as PM2.5 and UV rays. Conclusion This review highlights promising natural agents that can protect against environment-mediated health problems by focusing on their mechanisms of action. Particular emphasis is placed on antioxidant and anti-inflammatory compounds, including sulforaphane, hesperidin, quercetin, catechin, diphloroethohydroxycarmalol, resveratrol, and ginsenoside, which have become interesting candidates as nutraceuticals due to their potential to reduce reliance on conventional medicines. However, the low stability and bioavailability of natural products remain significant challenges to their clinical use; therefore, further research and development are warranted.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Jaturon Kwanthongdee
- Princess Srisavangavadhana Faculty of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Ratima Jittreeprasert
- Princess Srisavangavadhana Faculty of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Kalayaporn Naksavasdi
- Princess Srisavangavadhana Faculty of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Rosarin Rirkkrai
- Princess Srisavangavadhana Faculty of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Wiriya Mahikul
- Princess Srisavangavadhana Faculty of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | | |
Collapse
|
7
|
Zhang M, Feng C, Zhang B, Yin Y, Chen J, Liu H, Farag MA, Mamadalieva NZ, Li N, Sun J, Sun S, Liu C. In vitro and in vivo immune-enhancing effects of punicic acid and the action mechanisms as revealed via microbiome and lipid profiling. Food Funct 2025; 16:3120-3133. [PMID: 40159912 DOI: 10.1039/d4fo05023a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Punicic acid (PA) is a chief component of pomegranate seed oil with several health benefits. In this study, the in vitro immunomodulatory activity of PA was assessed using RAW264.7 cells, revealing that PA activated the macrophages, facilitated the concentration of immune-related cytokines and enzymes, and regulated the immune-related NF-κB and MAPK signaling pathways. Further, the in vivo immune-enhancing effect of PA was evaluated with the cyclophosphamide (CTX)-induced immune-compromised mouse model with 16S rDNA amplicon sequencing and relative quantification of lipidome. Results indicated that high doses of PA (200 mg kg-1) remarkably restored CTX-induced immune injury by enhancing the innate and adaptive immunity to stimulate the secretion of immune-related factors. In addition, PA improved gut microbiota dysbiosis and ameliorated lipid metabolism disorders. Our research provides a theoretical basis for the exploitation of PA as a functional component with immune-enhancing effects and adds to the potential health uses of pomegranate seed oil.
Collapse
Affiliation(s)
- Mengqi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Caiyun Feng
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Bo Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China
| | - Yanlei Yin
- Shandong Institute of Pomology, Tai'an, 271000, China
| | - Jinlong Chen
- Work Station of Forest Fruit Industry in Kashi, Kashi, 844000, PR China
| | - Haoran Liu
- JiMei One Health Industry (Shandong) Co., Ltd, Zaozhuang, 277300, PR China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Nilufar Z Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent, 100170, Uzbekistan
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Shutao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
- Shandong Aojing Biotechnology Co., Ltd, Jining, 273500, PR China
| |
Collapse
|
8
|
Wang Y, Liu C, Pang J, Li Z, Zhang J, Dong L. The Extra-Tumoral Vaccine Effects of Apoptotic Bodies in the Advancement of Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410503. [PMID: 39871756 PMCID: PMC11878267 DOI: 10.1002/smll.202410503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Indexed: 01/29/2025]
Abstract
The induction of apoptosis in tumor cells is a common target for the development of anti-tumor therapies; however, these therapies still leave patients at increased risk of disease recurrence. For example, apoptotic tumor cells can promote tumor growth and immune evasion via the secretion of metabolites, apoptotic extracellular vesicles, and induction of pro-tumorigenic macrophages. This paradox of apoptosis induction and the pro-tumorigenic effects of tumor cell apoptosis has begged the question of whether apoptosis is a suitable cancer therapy, and led to further explorations into other immunogenic cell death-based approaches. However, these strategies still face multiple challenges, the most critical of which is the tumor microenvironment. Contrary to the promotion of immune tolerance mediated by apoptotic tumor cells, apoptotic bodies with enriched tumor-related antigens have demonstrated great immunogenic potential, as evidenced by their ability to initiate systemic T-cell immune responses. These characteristics indicate that apoptotic body-based therapies could be ideal "in situ" extra-tumoral tumor vaccine candidates for the treatment of cancers, and further address the current issues with apoptosis-based or immunotherapy treatments. Although not yet tested clinically, apoptotic body-based vaccines have the potential to better treatment strategies and patient outcomes in the future.
Collapse
Affiliation(s)
- Yulian Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Chunyan Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiayun Pang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhenjiang Li
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- Chemistry and Biomedicine Innovative CenterNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
9
|
Kodagoda YK, Hanchapola HACR, Rodrigo DCG, Lim C, Liyanage DS, Omeka WKM, Ganepola GANP, Dilshan MAH, Kim J, Lee JH, Jeong T, Wan Q, Kim G, Lee J. Expression profiling and functional role of cyclooxygenase-2 in the immune and inflammatory responses of red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110158. [PMID: 39890039 DOI: 10.1016/j.fsi.2025.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Cyclooxygenase-2 (Cox-2) is a well-studied enzyme and a significant medicinal target associated with various inflammatory disorders. However, its role in pathogen-induced inflammatory responses in fish remains poorly understood. This study characterized the structural and functional properties of a Cox-2 homolog from red-spotted grouper (Epinephelus akaara) (EaCox-2). The three-dimensional structure of EaCox-2 revealed a homodimer with two functional domains: a catalytic domain with two active sites and a membrane-binding domain. EaCox-2 transcripts were ubiquitously expressed in all tested tissues of E. akaara, with the highest expression in the gills, followed by the spleen. Immune stimulation with polyinosinic:polycytidylic acid (poly I:C), lipopolysaccharides (LPS), and nervous necrosis virus (NNV) led to significant upregulation in EaCox-2 transcripts 12 and 24 h post-injection in both gill and spleen tissues. EaCox-2 overexpression in murine macrophages triggered a pro-inflammatory response characterized by M1 macrophage polarization, upregulation of pro-inflammatory mediators such as TNF-α, IL-1β, and IL-6, and iNOS enzyme, enhanced production of reactive nitric oxide (NO), and mitochondrial depolarization. These findings highlight the crucial role of EaCox-2 in regulating immune and inflammatory responses in E. akaara, providing valuable insights into the molecular mechanisms underlying teleost immunity.
Collapse
Affiliation(s)
- Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyun Lim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - G A N P Ganepola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Ji Hun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
10
|
Ma C, Fang X, Wang W, Ji S, Liu H, Lv W, Tang D. In Triple-Negative Breast Cancer: Correlation Among Metabolic Syndrome, S100A7/cPLA2 Expression and the Efficacy of Neoadjuvant Chemotherapy. Clin Breast Cancer 2025:S1526-8209(25)00043-6. [PMID: 40118690 DOI: 10.1016/j.clbc.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) has a poor prognosis. Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) is a prognostic factor. This study aimed to find predictors of efficacy. METHODS A total of 266 TNBC patients treated with NAC were included. The relationship between MetS, S100A7/cPLA2 expression and clinicopathological features was investigated. The effect on pCR, clinical response, and disease-free survival (DFS) was observed. A cell co-culture model was established by the researchers to further assess the function of S100A7. RESULTS Correlation analysis revealed a strong association between the expressions of S100A7 and cPLA2, with both significantly higher in the MetS group compared to the non-MetS group. Logistic regression analysis indicated that MetS and S100A7/cPLA2 expressions were linked to pCR and clinical response. S100A7/cPLA2 served as an independent predictor of pCR, while cPLA2 was an independent predictor of clinical response. Survival analysis demonstrated that MetS and S100A7/cPLA2 were associated with an increased risk of disease progression. MP grading and clinical efficacy were independent predictors of DFS, with MetS and S100A7/cPLA2 expressions correlating with shortened DFS. In the co-culture model, S100A7 inhibited the NF-κB pathway, enhancing TNBC cell proliferation and invasion in the presence of macrophages, and promoting M2 macrophage polarization. CONCLUSION S100A7/cPLA2 expression predicts a low pCR rate in TNBC patients undergoing NAC and may serve as a potential mechanistic biomarker linking MetS with altered NAC efficacy in TNBC, warranting further investigation and intervention.
Collapse
Affiliation(s)
- Chenhong Ma
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xue Fang
- Department of Hematology and Oncology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Wenwen Wang
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuyu Ji
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Huili Liu
- Department of Radiation Oncology, Zhebei Mingzhou Hospital, Huzhou, Zhejiang, China
| | - Wenli Lv
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Dabei Tang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
11
|
Khamees N, Al-Ani A, Tamimi TA, Sarhan O, Matouq Y, Laswi D, Arabiyat D, Rayyan N, Ali MR, Al-Slaimieh AI, Rayyan YM. Epidemiology and clinical characteristics of colorectal cancer and advanced adenoma: a single center experience in Jordan. BMC Gastroenterol 2025; 25:120. [PMID: 40016635 PMCID: PMC11866683 DOI: 10.1186/s12876-024-03531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/21/2024] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVES We evaluated the epidemiology and clinical characteristics of colorectal polyps to formulate an appropriate screening program. METHODS A retrospective chart review was conducted on all patients who underwent complete colonoscopy at Jordan University Hospital from January to September 2018. Demographics, comorbidities, lifestyle habits, medication history, family history of cancer, laboratory parameters, quality of bowel preparation, and polyp characteristics were evaluated. Binary logistic regression was utilized to find predictors of colorectal polyps. RESULTS A total of 965 patients were included in the study, with a mean age of 53.9 ± 17.1 years and a male predominance (52.7%). Polyps were detected in 28.1% of patients, with 18% having one polyp, 10.4% having two polyps, and 3.3% having more than two polyps. Multivariate analysis demonstrated that older age, high BMI, male gender, diabetes mellitus, dyslipidemia, ischemic heart disease, and family history of CRC were positive predictors of polyps. The right colon (cecum and ascending colon) was the most common location for polyps (51%), followed by the sigmoid colon (24.8%). The most common histologic subtype of polyps was tubular adenoma (48.2%). The prevalence of CRC was 18.65 per 1000 patients. CONCLUSION We highlight the fair prevalence of colorectal polyps and CRC in a Jordanian cohort. Awareness campaigns, screening strategies, and promotion of healthy lifestyles could help alleviate the burden of the disease, particularly among patients with classical risk factors for CRC.
Collapse
Affiliation(s)
- Nadia Khamees
- Department of Internal Medicine, Section of Gastroenterology, Jordan University Hospital, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdallah Al-Ani
- School of Medicine, The University of Jordan, Amman, Jordan
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
- King Hussein Cancer Center, Amman, Jordan
| | - Tarek A Tamimi
- Department of Internal Medicine, Section of Gastroenterology, Jordan University Hospital, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Omar Sarhan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Yazan Matouq
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Dana Laswi
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Dima Arabiyat
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Nadin Rayyan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Mustafa Rami Ali
- School of Medicine, The University of Jordan, Amman, Jordan
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | | | - Yaser M Rayyan
- Department of Internal Medicine, Section of Gastroenterology, Jordan University Hospital, Amman, Jordan.
- School of Medicine, The University of Jordan, Amman, Jordan.
| |
Collapse
|
12
|
Zhao L, Wang YF, Adamcakova-Dodd A, Thorne PS, Islam R, Liu KJ, Chen F, Luo J, Liu LZ. Nrf2/cyclooxygenase 2 signaling in Cr(VI)-induced carcinogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117800. [PMID: 39923569 DOI: 10.1016/j.ecoenv.2025.117800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/29/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
Long-term exposure to hexavalent chromium [Cr(VI)] has been linked to lung cancer, and cyclooxygenase-2 (COX-2) is a well-known inflammatory factor. However, the role and mechanism of COX-2 in Cr(VI)-induced carcinogenesis are not clear yet. To address this question, we employed a mouse model exposed to Cr(VI) through intranasal instillation of particulate zinc chromate (ZnCrO4) for 12 weeks. Metabolomics and RNA-seq assays revealed enhanced activity of the arachidonic acid (AA)/eicosanoid metabolism pathway in lung tissues from mice exposed to Cr(VI). COX-2, the key enzyme of the AA/eicosanoid pathway, was significantly upregulated in Cr(VI)-exposed lung tissues, as well as in the Cr(VI)-induced transformed (Cr-T) cells compared to parental BEAS-2B (B2B) cells. We then employed multidisciplinary in vitro and in vivo functional assays to characterize the role of COX-2 in Cr(VI)-induced lung cancer. The results indicated that COX-2 functioned as an oncogene to promote the malignant transformation of B2B cells and enhance the proliferation, migration, tumor growth, and angiogenesis of Cr-T cells. Nuclear factor E2-related factor-2 (Nrf2) was identified as a transcription factor for COX-2. Nrf2 was upregulated in response to Cr(VI) exposure and contributed to Cr(VI)-induced lung cancers, in part by upregulating COX-2 expression. Moreover, microRNA-379 (miR-379) was found to target COX-2 to inhibit its expression posttranscriptionally. MiR-379 was downregulated in Cr(VI)-exposed lung tissues and Cr-T cells, and ectopic miR-379 expression reduced Cr-T cell viability and migration, with partial reversal upon COX-2 restoration. In summary, our study revealed the oncogenic role of COX-2 and identified two novel regulatory mechanisms for COX-2 overexpression in Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Pathology, University of Iowa, Iowa, IA 52242, USA; Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yi-Fang Wang
- Department of Pathology, University of Iowa, Iowa, IA 52242, USA; Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Ranakul Islam
- Department of Pathology, University of Iowa, Iowa, IA 52242, USA; Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ke Jian Liu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Fei Chen
- Department of Pathology, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jia Luo
- Department of Pathology, University of Iowa, Iowa, IA 52242, USA
| | - Ling-Zhi Liu
- Department of Pathology, University of Iowa, Iowa, IA 52242, USA; Department of Pathology, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
13
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Hollis AR. Squamous Cell Carcinomas in Horses: An Update of the Aetiopathogenesis and Treatment Options. Vet Clin North Am Equine Pract 2024; 40:421-430. [PMID: 39168748 DOI: 10.1016/j.cveq.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Squamous cell carcinomas are a very common tumor type in horses, and are found in a variety of dermatologic and non-dermatologic locations. Metastasis is common, even at the first presentation of the disease, and a full staging workup is therefore strongly recommended to direct treatment and assist with prognostication. Wide surgical excision remains the treatment of choice in most cases, but recurrence is common, and adjunctive therapy may be indicated to improve the long-term prognosis.
Collapse
Affiliation(s)
- Anna R Hollis
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
15
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
16
|
Teruna HY, Rullah K, Hendra R, Utami R, Islami D, Mohd Faudzi SM, Mohd Aluwi MFF, Lam KW. Inhibitory Effect of (2 S)-Pinocembrin From Goniothalamus macrophyllus on the Prostaglandin E 2 Production in Macrophage Cell Lines: In Vitro and In Silico Studies. Adv Pharmacol Pharm Sci 2024; 2024:8811022. [PMID: 39512302 PMCID: PMC11540893 DOI: 10.1155/2024/8811022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Pinocembrin (PCB), a flavonoid known for its anti-inflammatory properties, has been approved for various clinical trial applications. To evaluate deeper into the anti-inflammatory potential of the specific enantiomer of natural PCB, we conducted the first investigation into the efficacy of the pure enantiomer (2S)-PCB in modulating inflammatory mediators induced by lipopolysaccharide (LPS) in both murine RAW 264.7 and human U937 macrophage cell lines. This particular compound was isolated from Goniothalamus macrophyllus (Annonaceae), a native plant of Indonesia. This plant has been used traditionally as an herbal medicine to alleviate inflammation. (2S)-PCB was isolated from the stem bark of G. macrophyllus by defatting with n-hexane followed by maceration with methanol. Purification was performed using several chromatographic techniques. The absolute configuration was determined using electronic circular dichroism (ECD) spectroscopy. This compound was then tested for its inhibitory activity on prostaglandin E2 (PGE2) and subjected to docking simulations. The results indicated that (2S)-PCB significantly suppressed the production of PGE2 induced by LPS in both RAW 264.7 and U937 cell lines. The docking simulations revealed that (2S)-PCB reduced PGE2 levels by suppressing mitogen-activated protein kinase (MAPK) activation through inhibiting p38 and extracellular signal-regulated kinases (ERK). These findings suggest that the compound may prevent worsening of septic shock caused by bacterial infection.
Collapse
Affiliation(s)
- Hilwan Yuda Teruna
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Riau, Pekanbaru 28293, Indonesia
| | - Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia 25200, Kuantan, Pahang, Malaysia
| | - Rudi Hendra
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Riau, Pekanbaru 28293, Indonesia
| | - Rahayu Utami
- Department of Pharmacy, Sekolah Tinggi Ilmu Farmasi Riau, Pekanbaru 28293, Indonesia
| | - Deri Islami
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Abdurrab, Pekanbaru 28292, Indonesia
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | | | - Kok Wai Lam
- Drugs and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
17
|
Guimarães SJA, Vale AAM, Rocha MCB, Butarelli ALDA, da Silva JM, de Deus AJS, Nogueira L, Coelho RWP, Pereira SR, Azevedo-Santos APS. Human papillomavirus infection affects the immune microenvironment and antigen presentation in penile cancer. Front Oncol 2024; 14:1463445. [PMID: 39493451 PMCID: PMC11527599 DOI: 10.3389/fonc.2024.1463445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Penile squamous cell carcinoma (PSCC) is a largely neglected condition, predominantly affecting underdeveloped regions, and is associated with risk factors such as low socioeconomic status, phimosis, and human papillomavirus (HPV) infection. Unlike other urogenital cancers, its pathophysiology and therapeutic targets remain poorly understood, particularly regarding the immune response to the tumor microenvironment. This study aims to investigate immune cell infiltration profiles, dendritic cell maturation, and lymphocyte apoptosis in both HPV-positive and HPV-negative PSCC. Clinical and histopathological data, along with peripheral blood and tumor tissue samples, were collected from 30 patients (66.6% were HPV-positive and 33.3% HPV-negative), with an additional 19 healthy donors serving as controls. Tumor-infiltrating immune cells were analyzed following enzymatic digestion of tumor tissue, enabling detailed phenotypic characterization. A simulated tumor microenvironment was created using supernatants derived from primary cultures of HPV-positive PSCC tumors. Peripheral blood mononuclear cells were isolated and differentiated into dendritic cells (Mo-DCs) for further phenotyping and lymphoproliferation assays. Lymphocytes from healthy donors and patients were exposed to tumor culture supernatants to evaluate apoptosis induced by the tumor microenvironment. Results showed that HPV-positive tumors exhibited lower T lymphocyte frequencies compared to HPV-negative tumors. Additionally, patients infected with high-risk HPV demonstrated reduced maturation rates of Mo-DCs and decreased expression of co-stimulatory molecules on these cells compared to healthy donors. Furthermore, Mo-DCs from hrHPV-positive patients showed impaired lymphoproliferation capacity relative to controls, while HPV-negative patients exhibited a trend towards reduced lymphoproliferative ability. Regarding the simulated tumor microenvironment, lymphocytes from healthy donors underwent apoptosis, contrasting with patients' lymphocytes, which showed increased viability when cultured with tumor supernatants. These results underscore the impact of HPV infection on T lymphocyte infiltration, Mo-DC maturation, and lymphocyte survival in PSCC, offering critical insights for advancing our understanding of the tumor microenvironment and guiding the development of immunotherapy strategies.
Collapse
Affiliation(s)
- Sulayne Janayna Araujo Guimarães
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, MA, Brazil
| | - André Alvares Marques Vale
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, MA, Brazil
| | - Mirtes Castelo Branco Rocha
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ana Luiza de Araújo Butarelli
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, MA, Brazil
| | - Jenilson Mota da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Biology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, MA, Brazil
| | - Amanda Jordão Silva de Deus
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Biology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, MA, Brazil
| | | | | | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ana Paula Silva Azevedo-Santos
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
18
|
Yazdanimoghaddam F, Rezazadeh H, Soltani N, Mehranfard N, Dastgerdi AH, Rad MG, Ghasemi M. Long-term GABA Supplementation Regulates Diabetic Gastroenteropathy through GABA Receptor/trypsin-1/PARs/Akt/COX-2 Axis. DOKL BIOCHEM BIOPHYS 2024; 518:452-462. [PMID: 39196532 DOI: 10.1134/s1607672924600386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
AIM Molecular alterations of diabetic gastroenteropathy are poorly identified. This study investigates the effects of prolonged GABA supplementation on key protein expression levels of trypsin-1, PAR-1, PAR-2, PAR-3, PI3K, Akt, COX-2, GABAA, and GABAB receptors in the gastric tissue of type 2 diabetic rats (T2DM). METHOD To induce T2DM, a 3-month high-fat diet and 35 mg/kg of streptozotocin was used. Twenty-four male Wistar rats were divided into 4 groups: (1) control, (2) T2DM, (3) insulin-treated (2.5 U/kg), and (4) GABA-treated (1.5 g/kg GABA). Blood glucose was measured weekly. The protein expressions were assessed using western blotting. Histopathological changes were examined by H&E and Masson's staining. RESULTS Diabetic rats show reduced NOS1 and elevated COX-2 and trypsin-1 protein expression levels in gastric tissue. Insulin and GABA therapy restored the NOS1 and COX-2 levels to control values. Insulin treatment increased PI3K, Akt, and p-Akt and, decreased trypsin-1, PAR-1, PAR-2, and PAR-3 levels in the diabetic rats. Levels of GABAA and GABAB receptors normalized following insulin and GABA therapy. H&E staining indicated an increase in mucin secretion following GABA treatment. CONCLUSION These results suggest that GABA by acting on GABA receptors may regulate the trypsin-1/PARs/Akt/COX-2 pathway and thereby improve complications of diabetic gastroenteropathy.
Collapse
Affiliation(s)
- Farzaneh Yazdanimoghaddam
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, 4631-19395, Tehran, Iran
| | - Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen, Private Joint Stock Company, 5715793731, Urmia, Iran
| | | | - Mahtab Ghanbari Rad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Chun KS, Kim EH, Kim DH, Song NY, Kim W, Na HK, Surh YJ. Targeting cyclooxygenase-2 for chemoprevention of inflammation-associated intestinal carcinogenesis: An update. Biochem Pharmacol 2024; 228:116259. [PMID: 38705538 DOI: 10.1016/j.bcp.2024.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, South Korea
| | - Na-Young Song
- Department of Oral Biology, BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, South Korea
| | - Wonki Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
20
|
Stark AK, Penn JS. Prostanoid signaling in retinal vascular diseases. Prostaglandins Other Lipid Mediat 2024; 174:106864. [PMID: 38955261 DOI: 10.1016/j.prostaglandins.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The vasculature of the retina is exposed to systemic and local factors that have the capacity to induce several retinal vascular diseases, each of which may lead to vision loss. Prostaglandin signaling has arisen as a potential therapeutic target for several of these diseases due to the diverse manners in which these lipid mediators may affect retinal blood vessel function. Previous reports and clinical practices have investigated cyclooxygenase (COX) inhibition by nonsteroidal anti-inflammatory drugs (NSAIDs) to address retinal diseases with varying degrees of success; however, targeting individual prostanoids or their distinct receptors affords more signaling specificity and poses strong potential for therapeutic development. This review offers a comprehensive view of prostanoid signaling involved in five key retinal vascular diseases: retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration, retinal occlusive diseases, and uveitis. Mechanistic and clinical studies of these lipid mediators provide an outlook for therapeutic development with the potential to reduce vision loss in each of these conditions.
Collapse
Affiliation(s)
- Amy K Stark
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| | - John S Penn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Xiong L, Liu Y, Wang Y, Zhao H, Song X, Fan W, Zhang L, Zhang Y. The protective effect of Lonicera japonica Thunb. against lipopolysaccharide-induced acute lung injury in mice: Modulation of inflammation, oxidative stress, and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118333. [PMID: 38750986 DOI: 10.1016/j.jep.2024.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Various components of Lonicera japonica Thunb. (LJT) exhibit pharmacological activities, including anti-inflammatory and antioxidant effects. Nevertheless, the relationship between LJT and ferroptosis remains largely unexplored. AIM OF THE STUDY The purpose of this research was to look into the role of LJT in regulating LPS-induced ferroptosis in ALI and to compare the effects of different parts of LJT. MATERIALS AND METHODS We established a mice ALI model by treating with LPS. Administered mice with different doses of Lonicerae Japonicae Flos (LJF), Lonicera Japonica Leaves (LJL) and Lonicerae Caulis (LRC) extracts, respectively. The levels of IL-6, IL-1β, TNF-α, IL-4, IL-10, and PGE2 in bronchoalveolar lavage fluid (BALF) were measured using enzyme-linked immunosorbent assay. Furthermore, the concentrations of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), and total ferrous ions (Fe2+) in lung tissues were evaluated. Hematoxylin and eosin staining was conducted to examine the morphological structure of lung tissues. Transmission electron microscopy was used to investigate the ultrastructural morphology of mitochondria. Furthermore, the effects of LJT were evaluated via immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction analyses. Finally, employing molecular docking and molecular dynamics research techniques, we aimed to identify crucial components in LJT that might inhibit ferroptosis by targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4). RESULTS We observed that pretreatment with LJT significantly mitigated LPS-induced lung injury and suppressed ferroptosis. This was supported by reduced accumulation of pro-inflammatory cytokines, ROS, MDA, and Fe2+, along with increased levels of anti-inflammatory cytokines, SOD, GSH, Nrf2, and GPX4 in the lung tissues of ALI mice. Luteolin-7-O-rutinoside, apigenin-7-O-rutinoside, and amentoflavone in LJT exhibit excellent docking effects with key targets of ferroptosis, Nrf2 and GPX4. CONCLUSIONS Pretreatment with LJT may alleviate LPS-induced ALI, possibly by suppressing ferroptosis. Our initial results indicate that LJT activates the Nrf2/GPX4 axis, providing protection against ferroptosis in ALI. This finding offers a promising therapeutic candidate for ALI treatment.
Collapse
Affiliation(s)
- Lewen Xiong
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yan Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongwei Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaochen Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenjing Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Longfei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
22
|
Lee SY, Hwang G, Choi M, Jo CH, Oh SJ, Jin YB, Lee WJ, Rho GJ, Lee HC, Lee SL, Hwang TS. Histological and Molecular Biological Changes in Canine Skin Following Acute Radiation Therapy-Induced Skin Injury. Animals (Basel) 2024; 14:2505. [PMID: 39272290 PMCID: PMC11394491 DOI: 10.3390/ani14172505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Radiation therapy is a crucial cancer treatment, but it can damage healthy tissues, leading to side effects like skin injuries and molecular alterations. This study aimed to elucidate histological and molecular changes in canine skin post-radiation therapy (post-RT) over nine weeks, focusing on inflammation, stem cell activity, angiogenesis, keratinocyte regeneration, and apoptosis. Four male beagles received a cumulative radiation dose of 48 Gy, followed by clinical observations, histological examinations, and an RT-qPCR analysis of skin biopsies. Histological changes correlated with clinical recovery from inflammation. A post-RT analysis revealed a notable decrease in the mRNA levels of Oct4, Sox2, and Nanog from weeks 1 to 9. VEGF 188 levels initially saw a slight increase at week 1, but they had significantly declined by week 9. Both mRNA and protein levels of COX-2 and Keratin 10 significantly decreased over the 9 weeks following RT, although COX-2 expression surged in the first 2 weeks, and Keratin 10 levels increased at weeks 4 to 5 compared to normal skin. Apoptosis peaked at 2 weeks and diminished, nearing normal by 9 weeks. These findings offer insights into the mechanisms of radiation-induced skin injury and provide guidance for managing side effects in canine radiation therapy.
Collapse
Affiliation(s)
- Sang-Yun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gunha Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonyeong Choi
- Yangsan S Animal Cancer Center, Yangsan 50638, Republic of Korea
| | - Chan-Hee Jo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Chun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
23
|
Dahal A, Hong Y, Mathew JS, Geber A, Eckl S, Renner S, Sailer CJ, Ryan AT, Mir S, Lim K, Linehan DC, Gerber SA, Kim M. Platelet-activating factor (PAF) promotes immunosuppressive neutrophil differentiation within tumors. Proc Natl Acad Sci U S A 2024; 121:e2406748121. [PMID: 39178229 PMCID: PMC11363292 DOI: 10.1073/pnas.2406748121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/25/2024] Open
Abstract
Chronic inflammatory milieu in the tumor microenvironment (TME) leads to the recruitment and differentiation of myeloid-derived suppressor cells (MDSCs). Polymorphonuclear (PMN)-MDSCs, which are phenotypically and morphologically defined as a subset of neutrophils, cause major immune suppression in the TME, posing a significant challenge in the development of effective immunotherapies. Despite recent advances in our understanding of PMN-MDSC functions, the mechanism that gives rise to immunosuppressive neutrophils within the TME remains elusive. Both in vivo and in vitro, newly recruited neutrophils into the tumor sites remained activated and highly motile for several days and developed immunosuppressive phenotypes, as indicated by increased arginase 1 (Arg1) and dcTrail-R1 expression and suppressed anticancer CD8 T cell cytotoxicity. The strong suppressive function was successfully recapitulated by incubating naive neutrophils with cancer cell culture supernatant in vitro. Cancer metabolite secretome analyses of the culture supernatant revealed that both murine and human cancers released lipid mediators to induce the differentiation of immunosuppressive neutrophils. Liquid chromatography-mass spectrometry (LC-MS) lipidomic analysis identified platelet-activation factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) as a common tumor-derived lipid mediator that induces neutrophil differentiation. Lysophosphatidylcholine acyltransferase 2 (LPCAT2), the PAF biosynthetic enzyme, is up-regulated in human pancreatic ductal adenocarcinoma (PDAC) and shows an unfavorable correlation with patient survival across multiple cancer types. Our study identifies PAF as a lipid-driven mechanism of MDSC differentiation in the TME, providing a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Ankit Dahal
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Yeonsun Hong
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Jocelyn S. Mathew
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Adam Geber
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Sarah Eckl
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Stephanie Renner
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Cooper J. Sailer
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Allison T. Ryan
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Sana Mir
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Kihong Lim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Scott A. Gerber
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
24
|
Xu F, Ren Y, Teng Y, Mu J, Tang J, Sundaram K, Zhang L, Park JW, Hwang JY, Yan J, Dryden G, Zhang H. Tryptophan As a New Member of RNA-Induced Silencing Complexes Prevents Colon Cancer Liver Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307937. [PMID: 39031551 PMCID: PMC11336974 DOI: 10.1002/advs.202307937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/15/2024] [Indexed: 07/22/2024]
Abstract
Essential amino acids (EAA) and microRNAs (miRs) control biological activity of a cell. Whether EAA regulates the activity of miR has never been demonstrated. Here, as proof-of-concept, a tryptophan (Trp, an EAA) complex containing Argonaute 2 (Ago2) and miRs including miR-193a (Trp/Ago2/miR-193a) is identified. Trp binds miR-193a-3p and interacts with Ago2. Trp/Ago2/miR-193a increases miR-193a-3p activity via enhancing Argonaute 2 (Ago2) RNase activity. Other miRs including miR-103 and miR-107 in the Trp complex enhance miR-193a activity by targeting the same genes. Mechanistically, the Trp/Ago2/miR-193a complex interacts with Trp-binding pockets of the PIWI domain of Ago2 to enhance Ago2 mediated miR activity. This newly formed Ago2/Trp/miR-193a-3p complex is more efficient than miR-193a-3p alone in inhibiting the expression of targeted genes and inhibiting colon cancer liver metastasis. The findings show that Trp regulates miR activity through communication with the RNA-induced silencing complexes (RISC), which provides the basis for tryptophan based miR therapy.
Collapse
Affiliation(s)
- Fangyi Xu
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
- Department of Central LaboratoryCancer CenterThe affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'an223300China
| | - Yi Ren
- Department of Breast and Thyroid SurgeryThe affiliated Huaian first People's Hospital of Nanjing Medical UniversityHuaianJiangsu223300China
| | - Yun Teng
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Jingyao Mu
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Jie Tang
- Department of Breast and Thyroid SurgeryThe affiliated Huaian first People's Hospital of Nanjing Medical UniversityHuaianJiangsu223300China
| | | | - Lifeng Zhang
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Juw Won Park
- Department of Computer Science and EngineeringUniversity of LouisvilleLouisvilleKY40202USA
| | - Jae Yeon Hwang
- Department of Computer Science and EngineeringUniversity of LouisvilleLouisvilleKY40202USA
| | - Jun Yan
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Gerald Dryden
- Robley Rex Veterans Affairs Medical CenterLouisvilleKY40206USA
| | - Huang‐Ge Zhang
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKY40206USA
- Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKY40202USA
| |
Collapse
|
25
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
26
|
Buján S, Pontillo C, Miret N, Leguizamón MA, Chiappini F, Cocca C, Randi A. Triple negative breast cancer cells exposed to aryl hydrocarbon receptor ligands hexachlorobenzene and chlorpyrifos activate endothelial cells. Chem Biol Interact 2024; 398:111096. [PMID: 38844257 DOI: 10.1016/j.cbi.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/17/2024]
Abstract
Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 μM) and CPF (0.05, 0.5, 5 and 50 μM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.
Collapse
Affiliation(s)
- Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - María Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Wojtkowska A, Małek A, Giziński S, Sapierzyński R, Rodo A, Sokołowska J, Zabielska-Koczywąs KA, Wojtalewicz A, Walewska M, Kautz E, Ostrzeszewicz M, Lechowski R. Comparison of MMP-2, MMP-9, COX-2, and PGP Expression in Feline Injection-Site and Feline Noninjection-Site Sarcomas-Pilot Study. Animals (Basel) 2024; 14:2110. [PMID: 39061572 PMCID: PMC11273489 DOI: 10.3390/ani14142110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Feline injection-site sarcomas (FISSs) are aggressive neoplasms that have been associated mostly with vaccination. Feline noninjection-site sarcomas (non-FISSs) are less frequently observed in cats and may arise in any anatomic site. This study aimed to determine the differences in the expression of the selected proteins (matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), cyclooxygenase-2 (COX-2), and P-glycoprotein (PGP)) and their correlation with the mitotic count in FISS and non-FISS, in order to characterize their immunohistochemical features. A preliminary study of eleven samples of FISS and eight samples of non-FISS was performed using immunohistochemistry. Among all the tested sarcomas, 80.4% of the tumors were positive for COX-2, 90.2% were positive for MMP-9, and 100% were positive for PGP. The results showed that the expressions of COX-2, MMP-9, and PGP were significantly higher in FISS than in non-FISS (COX-2-p ≤ 0.001; MMP-9-p ≤ 0.05; and PGP-p ≤ 0.05). A Spearman rank correlation analysis showed a moderate negative correlation between the expression of COX-2 and MMP-9 in FISS (r = -0.52). A strong negative correlation between COX-2 and PGP (r = -0.81), a moderate positive correlation between MMP-2 and MMP-9 (r = +0.69), and a moderate negative correlation between MMP-2 and PGP (r = -0.44) were observed in non-FISS. In summary, our study presents the immunohistochemical profile of the proteins involved with inflammation and carcinogenesis in FISS and non-FISS, which can contribute to expanding the knowledge of tumor biology.
Collapse
Affiliation(s)
- Agata Wojtkowska
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Anna Małek
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Sławomir Giziński
- Department of Large Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Science, 02-787 Warsaw, Poland; (S.G.); (E.K.)
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (R.S.); (A.R.)
| | - Anna Rodo
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (R.S.); (A.R.)
| | - Justyna Sokołowska
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Katarzyna A. Zabielska-Koczywąs
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Anna Wojtalewicz
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Magdalena Walewska
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Ewa Kautz
- Department of Large Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Science, 02-787 Warsaw, Poland; (S.G.); (E.K.)
| | - Magdalena Ostrzeszewicz
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Roman Lechowski
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| |
Collapse
|
28
|
An S, Gunathilake M, Lee J, Kim M, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Relationship Between Aspirin Use and Site-Specific Colorectal Cancer Risk Among Individuals With Metabolic Comorbidity. J Korean Med Sci 2024; 39:e199. [PMID: 38978486 PMCID: PMC11231443 DOI: 10.3346/jkms.2024.39.e199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/22/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The relationship between aspirin usage and the risk of colorectal cancer (CRC) among individuals with both hypertension (HTN) and diabetes mellitus (DM) remains unclear. This study aims to explore the impact of aspirin use on the site-specific CRC risk in patients with metabolic comorbidity. METHODS A case-control study was conducted among 1,331 CRC patients and 2,771 controls recruited from the Nation Cancer Center in Korea. Multinomial logistic regression analyses were used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for the association between aspirin use, metabolic disease status, and site-specific CRC risk. RESULTS Among the 4,102 participants, 1,191 individuals had neither HTN nor DM, 2,044 were diagnosed with HTN, 203 with DM, and 664 presented with HTN and DM comorbidity. An increasing number of HTN and DM was associated with an increased risk of overall CRC (HTN or DM: OR, 1.70; 95% CI, 1.39-2.07; HTN and DM: OR, 8.43; 95% CI, 6.37-11.16), while aspirin use was associated with a decreased risk of overall CRC (OR, 0.31; 95% CI, 0.21-0.46). These results remained consistent across anatomical sites. Among individuals with HTN and DM comorbidity, aspirin use notably associated with lower risk of overall CRC (OR, 0.39; 95% CI, 0.21-0.72), proximal colon (OR, 0.32; 95% CI, 0.13-0.71) and rectal cancer (OR, 0.27; 95% CI, 0.08-0.97), but not distal colon cancer (OR, 0.58; 95% CI, 0.27-1.24). CONCLUSION This study showed that aspirin use is negatively associated with overall and site-specific CRC, even among individuals with HTN and DM comorbidity.
Collapse
Affiliation(s)
- Seokyung An
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Madhawa Gunathilake
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Minji Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| |
Collapse
|
29
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
30
|
Rahimlouy Aghdam A, Hamedeyazdan S. Promising leads against lung cancer from the plants in Lamiaceae family. BIOIMPACTS : BI 2024; 15:30074. [PMID: 39963559 PMCID: PMC11830130 DOI: 10.34172/bi.30074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2025]
Abstract
Introduction Ceaselessly, management of cancer has been the major global challenge for healthcare professionals. As regards, lung cancer (LC) has been introduced as the second most common form of cancer in both men and women, taking the lives of more than a million people each year, statistically holding the highest mortality rate among all cancer types. Although much effort has been made for the management of LC, current therapies are quite ineffective. With reference to the fact that the most current chemotherapeutic agents for LC are of plant origin, the authors hereby collected the acclaimed plants from the Lamiaceae family which have shown remarkable activity against LC. Methods The incorporated papers were published between the years of 1997 and 2023. The principal search keywords for this review article were "lung cancer", "Lamiaceae", "cytotoxic effect", "anti-tumor" and "anti-proliferative" in Medline, Springer, Scopus, ScienceDirect and Google Scholar databases. Results To the furthest extent, different responsible mechanism(s) of action for the anti-cancer properties of each plant are discussed. The respected IC50 values for plant extracts, essential oils or pure isolated compounds are underlined as well. Conclusion Many plants and isolated relative phytochemicals have shown exceptional anti-cancer potency against LC; nonetheless, they still remain undisclosed. We believe that this assembled data would globally inspire scientists on the passing way of LC treatment.
Collapse
Affiliation(s)
- Alireza Rahimlouy Aghdam
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedeyazdan
- Food and Drug Safety Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Takanashi Y, Kahyo T, Sekihara K, Kawase A, Setou M, Funai K. Prognostic potential of lipid profiling in cancer patients: a systematic review of mass spectrometry-based studies. Lipids Health Dis 2024; 23:154. [PMID: 38796445 PMCID: PMC11128116 DOI: 10.1186/s12944-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024] Open
Abstract
Cancer prognosis remains a critical clinical challenge. Lipidomic analysis via mass spectrometry (MS) offers the potential for objective prognostic prediction, leveraging the distinct lipid profiles of cancer patient-derived specimens. This review aims to systematically summarize the application of MS-based lipidomic analysis in prognostic prediction for cancer patients. Our systematic review summarized 38 studies from the past decade that attempted prognostic prediction of cancer patients through lipidomics. Commonly analyzed cancers included colorectal, prostate, and breast cancers. Liquid (serum and urine) and tissue samples were equally used, with liquid chromatography-tandem MS being the most common analytical platform. The most frequently evaluated prognostic outcomes were overall survival, stage, and recurrence. Thirty-eight lipid markers (including phosphatidylcholine, ceramide, triglyceride, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, diacylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylethanolamine, lysophosphatidic acid, dihydroceramide, prostaglandin, sphingosine-1-phosphate, phosphatidylinosito, fatty acid, glucosylceramide and lactosylceramide) were identified as prognostic factors, demonstrating potential for clinical application. In conclusion, the potential for developing lipidomics in cancer prognostic prediction was demonstrated. However, the field is still nascent, necessitating future studies for validating and establishing lipid markers as reliable prognostic tools in clinical practice.
Collapse
Affiliation(s)
- Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo- ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Keigo Sekihara
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo- ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo- ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo- ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
32
|
Yoon YE, Jung YJ, Lee SJ. The Anticancer Activities of Natural Terpenoids That Inhibit Both Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2024; 25:4423. [PMID: 38674007 PMCID: PMC11050645 DOI: 10.3390/ijms25084423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of two major types of skin cancer, melanoma and non-melanoma skin cancer, has been increasing worldwide. Skin cancer incidence is estimated to rise continuously over the next 20 years due to ozone depletion and an increased life expectancy. Chemotherapeutic agents could affect healthy cells, and thus may be toxic to them and cause numerous side effects or drug resistance. Phytochemicals that are naturally occurring in fruits, plants, and herbs are known to possess various bioactive properties, including anticancer properties. Although the effects of phytochemicals are relatively milder than chemotherapeutic agents, the long-term intake of phytochemicals may be effective and safe in preventing tumor development in humans. Diverse phytochemicals have shown anti-tumorigenic activities for either melanoma or non-melanoma skin cancer. In this review, we focused on summarizing recent research findings of the natural and dietary terpenoids (eucalyptol, eugenol, geraniol, linalool, and ursolic acid) that have anticancer activities for both melanoma and non-melanoma skin cancers. These terpenoids may be helpful to protect skin collectively to prevent tumorigenesis of both melanoma and nonmelanoma skin cancers.
Collapse
Affiliation(s)
- Ye Eun Yoon
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea;
| | - Young Jae Jung
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea;
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
33
|
Choudhary V, Choudhary M, Bollag WB. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci 2024; 25:3790. [PMID: 38612601 PMCID: PMC11011291 DOI: 10.3390/ijms25073790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Cutaneous wound healing is a complex biological process involving a series of well-coordinated events aimed at restoring skin integrity and function. Various experimental models have been developed to study the mechanisms underlying skin wound repair and to evaluate potential therapeutic interventions. This review explores the diverse array of skin wound healing models utilized in research, ranging from rodent excisional wounds to advanced tissue engineering constructs and microfluidic platforms. More importantly, the influence of lipids on the wound healing process is examined, emphasizing their role in enhancing barrier function restoration, modulating inflammation, promoting cell proliferation, and promoting remodeling. Lipids, such as phospholipids, sphingolipids, and ceramides, play crucial roles in membrane structure, cell signaling, and tissue repair. Understanding the interplay between lipids and the wound microenvironment provides valuable insights into the development of novel therapeutic strategies for promoting efficient wound healing and tissue regeneration. This review highlights the significance of investigating skin wound healing models and elucidating the intricate involvement of lipids in the healing process, offering potential avenues for improving clinical outcomes in wound management.
Collapse
Affiliation(s)
- Vivek Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mrunal Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
34
|
Okumura T, Raja Xavier JP, Pasternak J, Yang Z, Hang C, Nosirov B, Singh Y, Admard J, Brucker SY, Kommoss S, Takeda S, Staebler A, Lang F, Salker MS. Rel Family Transcription Factor NFAT5 Upregulates COX2 via HIF-1α Activity in Ishikawa and HEC1a Cells. Int J Mol Sci 2024; 25:3666. [PMID: 38612478 PMCID: PMC11012216 DOI: 10.3390/ijms25073666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) and cyclooxygenase 2 (COX2; PTGS2) both participate in diverse pathologies including cancer progression. However, the biological role of the NFAT5-COX2 signaling pathway in human endometrial cancer has remained elusive. The present study explored whether NFAT5 is expressed in endometrial tumors and if NFAT5 participates in cancer progression. To gain insights into the underlying mechanisms, NFAT5 protein abundance in endometrial cancer tissue was visualized by immunohistochemistry and endometrial cancer cells (Ishikawa and HEC1a) were transfected with NFAT5 or with an empty plasmid. As a result, NFAT5 expression is more abundant in high-grade than in low-grade endometrial cancer tissue. RNA sequencing analysis of NFAT5 overexpression in Ishikawa cells upregulated 37 genes and downregulated 20 genes. Genes affected included cyclooxygenase 2 and hypoxia inducible factor 1α (HIF1A). NFAT5 transfection and/or treatment with HIF-1α stabilizer exerted a strong stimulating effect on HIF-1α promoter activity as well as COX2 expression level and prostaglandin E2 receptor (PGE2) levels. Our findings suggest that activation of NFAT5-HIF-1α-COX2 axis could promote endometrial cancer progression.
Collapse
Affiliation(s)
- Toshiyuki Okumura
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Janet P. Raja Xavier
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Jana Pasternak
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Zhiqi Yang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Cao Hang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Bakhtiyor Nosirov
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Yogesh Singh
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Sara Y. Brucker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Stefan Kommoss
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Annette Staebler
- Institute of Pathology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Florian Lang
- Institute of Physiology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Madhuri S. Salker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| |
Collapse
|
35
|
Zhang C, Hu Z, Pan Z, Ji Z, Cao X, Yu H, Qin X, Guan M. The arachidonic acid metabolome reveals elevation of prostaglandin E2 biosynthesis in colorectal cancer. Analyst 2024; 149:1907-1920. [PMID: 38372525 DOI: 10.1039/d3an01723k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Arachidonic acid metabolites are a family of bioactive lipids derived from membrane phospholipids. They are involved in cancer progression, but arachidonic acid metabolite profiles and their related biosynthetic pathways remain uncertain in colorectal cancer (CRC). To compare the arachidonic acid metabolite profiles between CRC patients and healthy controls, quantification was performed using a liquid chromatography-mass spectrometry-based analysis of serum and tissue samples. Metabolomics analysis delineated the distinct oxidized lipids in CRC patients and healthy controls. Prostaglandin (PGE2)-derived metabolites were increased, suggesting that the PGE2 biosynthetic pathway was upregulated in CRC. The qRT-PCR and immunohistochemistry analyses showed that the expression level of PGE2 synthases, the key protein of PGE2 biosynthesis, was upregulated in CRC and positively correlated with the CD68+ macrophage density and CRC development. Our study indicates that the PGE2 biosynthetic pathway is associated with macrophage infiltration and progression of CRC tumors.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Zuojian Hu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ziyue Pan
- Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Xinyi Cao
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Hongxiu Yu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ming Guan
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
36
|
Al Qutami F, AlHalabi W, Vijayakumar A, Rawat SS, Mossa AH, Jayakumar MN, Samreen B, Hachim MY. Characterizing the Inflammatory Profile of Neutrophil-Rich Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:747. [PMID: 38398138 PMCID: PMC10886617 DOI: 10.3390/cancers16040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer (BC) is one of the most common types of cancer in women in the United Arab Emirates. Immunogenic tumours, such as triple-negative breast cancer (TNBC), show increased neutrophil infiltration, which is associated with poor prognosis and limited efficacy of immunotherapy. This study aims to investigate in vitro the bidirectional effect of neutrophils on metastatic TNBC (MDA-MB-231) compared to less-metastatic luminal breast cancer (MCF-7) cell lines. We found that BC cells or their conditioned medium (CM) reduced the viability of neutrophil-like cells (HL60). This was supported by increased cellular stress and NETosis in differentiated HL60 cells (dHL60) upon exposure to MDA-MB-231 compared to MCF-7-CM using nucleic acid staining essays. Flow cytometry showed comparable expression of inflammatory markers by polymorphonuclear cells (PMN) when treated with MDA-MB-231-CM and standard polarizing cocktails. Furthermore, MDA-MB-231-CM triggered an inflammatory pattern with evidence of stronger adhesion (CD62L) and degranulation (CD11b and CD66b) phenotypes. The proinflammatory polarization of dHL60 by MDA-MB-231-CM was additionally confirmed by the elevated CD54 expression, myeloperoxidase, and CD11b protein levels, which matched an increased transwell migratory capacity. In conclusion, BC might use neutrophils to their benefit through NETosis and complement system activation, which makes this crosstalk a potential mechanism for understanding tumour progression.
Collapse
Affiliation(s)
- Fatma Al Qutami
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Walaa AlHalabi
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Aswathy Vijayakumar
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Surendra Singh Rawat
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Abubakr H. Mossa
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (M.N.J.)
| | - Manju Nidagodu Jayakumar
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (M.N.J.)
| | - Baila Samreen
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Mahmood Y. Hachim
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| |
Collapse
|
37
|
Geng Y, Li W, Wong NK, Xue F, Li Q, Zhang Y, Xu J, Deng Z, Zhou Y. Discovery of Artemisinins as Microsomal Prostaglandins Synthase-2 Inhibitors for the Treatment of Colorectal Cancer via Chemoproteomics. J Med Chem 2024; 67:2083-2094. [PMID: 38287228 DOI: 10.1021/acs.jmedchem.3c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Colorectal cancer remains the second leading cause of cancer-related mortalities worldwide. While artemisinin (ART), a key active compound from the traditional Chinese medicinal herb Artemisia annua, has been recognized for its antiproliferative activity against colon cancer cells, its underlying molecular underpinnings remain elusive. Whereas promiscuity of heme-dependent alkylating of macromolecules, mainly proteins, has been seen pivotal as a universal and primary mode of action of ART in cancer cells, accumulating evidence suggests the existence of unique targets and mechanisms of actions contingent on cell or tissue specificities. Here, we employed photoaffinity probes to identify the specific targets responsible for ART's anti-colon cancer actions. Upon validation, microsomal prostaglandins synthase-2 emerged as a specific and reversible target of ART in HCT116 colorectal cancer cells, whose inhibition resulted in reduced cellular prostaglandin E2 biosynthesis and cell growth. Our discovery opens new opportunities for pharmacological treatment of colon cancer.
Collapse
Affiliation(s)
- Yiyun Geng
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Fuchong Xue
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Qing Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
38
|
Caldas ÁMC, Nunes WA, Taboada R, Cesca MG, Germano JN, Riechelmann RP. Loss of CDX2 and high COX2 ( PTGS2) expression in metastatic colorectal cancer. Ecancermedicalscience 2024; 18:1666. [PMID: 38439814 PMCID: PMC10911677 DOI: 10.3332/ecancer.2024.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 03/06/2024] Open
Abstract
Lack of expression of the tumour suppressor gene caudal-type homeobox 2 (CDX2) associates with poor outcomes in early stage colorectal cancer (CRC). Yet its prognostic value in the context of other prognostic biomarkers in metastatic CRC (mCRC) is unknown. Overexpressed cyclooxygenase-2 (COX2) has been reported in advanced CRC. However, CDX2 and COX2 relationship in mCRC remains undetermined. We aimed to assess their expression in mCRC tumours from a clinically characterised cohort and their influence on overall survival (OS) and progression-free survival (PFS) in first line. Among 720 consecutive mCRC patients, 346 had tumour samples appropriate for tissue microarray assembly and immunohistochemistry analyses. Clinical and survival data were retrospectively assessed. Loss of CDX2 expression was detected in 27 (7.8%) samples, enriched in poorly differentiated tumours (20%; p < 0.01) and in those with the BRAF p.V600E variant (40%; p < 0.01). Most tumours (93.4%) expressed COX2. COX2-negative samples were enriched in poorly differentiated mCRC. In unadjusted analyses, median OS (p < 0.001) and median PFS (p < 0.05) were inferior for patients with CDX2-negative versus CDX2-positive tumours. In conclusion, loss of CDX2 was significantly associated with poorly differentiated mCRC and BRAF p.V600E allele and a prognostic marker of worse OS.
Collapse
Affiliation(s)
- Álvaro M C Caldas
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Warley A Nunes
- Department of Pathology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Rodrigo Taboada
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Marcelle G Cesca
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Janaína N Germano
- Statistic Group at the International Research Center (CIPE), AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Rachel P Riechelmann
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| |
Collapse
|
39
|
Cai J, Yang Y, Zhang J, Bai Z, Zhang X, Li K, Shi M, Liu Z, Gao L, Wang J, Li J. Multilayer nanodrug delivery system with spatiotemporal drug release improves tumor microenvironment for synergistic anticancer therapy. Biofabrication 2024; 16:025012. [PMID: 38277678 DOI: 10.1088/1758-5090/ad22ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The inflammatory response is one of the general symptoms that accompany tumorigenesis, the pro-inflammatory factors cyclooxygenase-2 (COX-2) and COX-2-derived prostaglandin-2 (PGE-2) in the inflammatory environment surrounding tumors possess promoting tumor development, metastasis and angiogenesis effects. In addition, the hypoxic environment of tumors severely limits the effectiveness of photodynamic therapy (PDT). In this study, a universal extracellular-intracellular 'on-demand' release nanomedicine DOX@PDA-ICG@MnO2@GN-CEL was developed for the combined fight against malignant tumors using a spatiotemporal controlled gelatin coated polydopamine (PDA@GN) as the carrier and loaded with the chemotherapeutic drug doxorubicin (DOX), the photosensitizer indocyanine green (ICG), the PDT enhancer MnO2and the anti-inflammatory drug celecoxib (CEL) individually. Our results showed that DOX@PDA-ICG@MnO2@GN-CEL could release CEL extracellularly by matrix metalloproteinase-2 response and inhibit the COX-2/PGE-2 pathway, reduce chemotherapy resistance and attenuate the concurrent inflammation. After entering the tumor cells, the remaining DOX@PDA-ICG@MnO2released DOX, ICG and MnO2intracellularly through PDA acid response. MnO2promoted the degradation of endogenous H2O2to generate oxygen under acidic conditions to alleviate the tumor hypoxic environment, enhance PDT triggered by ICG. PDA and ICG exhibited photothermal therapy synergistically, and DOX exerted chemotherapy with reduced chemotherapy resistance. The dual responsive drug release switch enabled the chemotherapeutic, photothermal, photodynamic and anti-inflammatory drugs precisely acted on different sites of tumor tissues and realized a promising multimodal combination therapy.
Collapse
Affiliation(s)
- Jiahui Cai
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Yibo Yang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jia Zhang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Zhimin Bai
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Xin Zhang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Kun Li
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Ming Shi
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Zhiwei Liu
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Liming Gao
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jidong Wang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jian Li
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| |
Collapse
|
40
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
41
|
Xu Y, Wang J, He Z, Rao Z, Zhang Z, Zhou J, Zhou T, Wang H. A review on the effect of COX-2-mediated mechanisms on development and progression of gastric cancer induced by nicotine. Biochem Pharmacol 2024; 220:115980. [PMID: 38081368 DOI: 10.1016/j.bcp.2023.115980] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Smoking is a documented risk factor for cancer, e.g., gastric cancer. Nicotine, the principal tobacco alkaloid, would exert its role of contribution to gastric cancer development and progression through nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-ARs), which then promote cancer cell proliferation, migration and invasion. As a key isoenzyme in conversion of arachidonic acid to prostaglandins, cyclooxygenase-2 (COX-2) has been demonstrated to have a wide range of effects in carcinogenesis and tumor development. At present, many studies have reported the effect of nicotine on gastric cancer by binding to nAChR, as well as indirectly stimulating β-AR to mediate COX-2-related pathways. This review summarizes these studies, and also proposes more potential COX-2-mediated mechanisms. These events might contribute to the growth and progression of gastric cancer exposed to nicotine through tobacco smoke or cigarette substitutes. Also, this review article has therefore the potential not only to make a significant contribution to the treatment and prognosis of gastric cancer for smokers but also to the clinical application of COX-2 antagonists. In addition, this work also discusses the considerable challenges of this field with special reference to the future perspective of COX-2-mediated mechanisms in development and progression of gastric cancer induced by nicotine.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Juan Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
42
|
Wang J, Yang C, Xu H, Fan X, Jia L, Du Y, Liu S, Wang W, Zhang J, Zhang Y, Wang X, Liu Z, Bao J, Li S, Yang J, Wu C, Tang J, Chen G, Wang L. The Interplay Between HIF-1α and EZH2 in Lung Cancer and Dual-Targeted Drug Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303904. [PMID: 38072662 PMCID: PMC10870044 DOI: 10.1002/advs.202303904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/26/2023] [Indexed: 02/17/2024]
Abstract
Interactions between oncogenic proteins contribute to the phenotype and drug resistance. Here, EZH2 (enhancer of zest homolog 2) is identified as a crucial factor that mediates HIF-1 (hypoxia-inducible factor) inhibitor resistance. Mechanistically, targeting HIF-1 enhanced the activity of EZH2 through transcription activation of SUZ12 (suppressor of zest 12 protein homolog). Conversely, inhibiting EZH2 increased HIF-1α transcription, but not the transcription of other HIF family members. Additionally, the negative feedback regulation between EZH2 and HIF-1α is confirmed in lung cancer patient tissues and a database of cell lines. Moreover, molecular prediction showed that a newly screened dual-target compound, DYB-03, forms multiple hydrogen bonds with HIF-1α and EZH2 to effectively inhibit the activity of both targets. Subsequent studies revealed that DYB-03 could better inhibit migration, invasion, and angiogenesis of lung cancer cells and HUVECs in vitro and in vivo compared to single agent. DYB-03 showed promising antitumor activity in a xenograft tumor model by promoting apoptosis and inhibiting angiogenesis, which could be almost abolished by the deletion of HIF-1α and EZH2. Notably, DYB-03 could reverse 2-ME2 and GSK126-resistance in lung cancer. These findings clarified the molecular mechanism of cross-regulation of HIF-1α and EZH2, and the potential of DYB-03 for clinical combination target therapy.
Collapse
Affiliation(s)
- Jianmin Wang
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Cheng Yang
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Huashen Xu
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of EducationSchool of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyang110016P. R. China
| | - Xinyu Fan
- Department of PharmacyShengjing Hospital of China Medical UniversityShenyang110004P. R. China
| | - Lina Jia
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Yang Du
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of EducationSchool of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyang110016P. R. China
| | - Shougeng Liu
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Wenjing Wang
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Jie Zhang
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Yu Zhang
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Xiaoxue Wang
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Zhongbo Liu
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016P. R. China
| | - Jie Bao
- Research Program in Systems OncologyFaculty of MedicineUniversity of HelsinkiHelsinki00290Finland
| | - Songping Li
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
| | - Jingyu Yang
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Chunfu Wu
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| | - Jing Tang
- Research Program in Systems OncologyFaculty of MedicineUniversity of HelsinkiHelsinki00290Finland
| | - Guoliang Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of EducationSchool of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyang110016P. R. China
| | - Lihui Wang
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyang110016P. R. China
- Benxi Institute of Pharmaceutical ResearchShenyang Pharmaceutical UniversityBenxi117004P. R. China
| |
Collapse
|
43
|
Fu Q, Zhang F, Vijayalakshmi A. The Protective Effect of Sanggenol L Against DMBA-induced Hamster Buccal Pouch Carcinogenesis Induces Apoptosis and Inhibits Cell Proliferative Signalling Pathway. Comb Chem High Throughput Screen 2024; 27:885-893. [PMID: 37496247 DOI: 10.2174/1386207326666230726140706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has a poor prognosis when treated with surgery and chemotherapy. Therefore, a new therapy and preventative strategy for OSCC and its underlying mechanisms are desperately needed. The purpose of this study was to examine the chemopreventive effects of sanggenol L on oral squamous cell carcinoma (OSCC). The research focused on molecular signalling pathways in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. AIM The purpose of this study was to look at the biochemical and chemopreventive effects of sanggenol L on 7,12-dimethylbenz(a)anthracene (DMBA)-induced HBP (hamster buccal pouch) carcinogenesis via cell proliferation and the apoptotic pathway. METHODS After developing squamous cell carcinoma, oral tumours continued to progress leftward into the pouch 3 times per week for 10 weeks while being exposed to 0.5 % reactive DMBA three times per week. Tumour growth was caused by biochemical abnormalities that induced inflammation, increased cell proliferation, and decreased apoptosis. RESULTS Oral sanggenol L (10 mg/kg bw) supplementation with cancer-induced model DMBApainted hamsters prevented tumour occurrences, improved biochemistry, inhibited inflammatory markers, decreased cell proliferation marker expression of tumour necrosis factor-alpha (TNF- α), nuclear factor (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and induced apoptosis. CONCLUSION Sanggenol L could be developed into a new medicine for the treatment of oral carcinogenesis.
Collapse
Affiliation(s)
- Qing Fu
- Department of Stomatology, People's Hospital of Qijiang District, Chongqing, 401420, China
| | - Fangming Zhang
- Department of Stomatology, The Fifth People's Hospital Of Wuxi, Wuxi, 214000, China
| | - Annamalai Vijayalakshmi
- Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, Tamil Nadu, 610001, India
| |
Collapse
|
44
|
Sahu A, Pradhan D, Veer B, Kumar S, Singh R, Raza K, Rizvi MA, Jain AK, Verma S. In silico screening, synthesis, characterization and biological evaluation of novel anticancer agents as potential COX-2 inhibitors. Daru 2023; 31:119-133. [PMID: 37454036 PMCID: PMC10624798 DOI: 10.1007/s40199-023-00467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cyclooxygenase enzyme is frequently overexpressed in various types of cancer and found to play a crucial role in poor prognosis in cancer patients. In current research, we have reported the new COX-2 inhibitors for cancer treatment using computer-aided drug design and experimental validation. METHODS A total of 12,795 compounds from the different databases were used to screen against the COX-2 enzyme. It perceived three new compounds with better binding affinity to the enzyme. Afterwards, physicochemical properties and in silico bioactivity were assessed for efficacy, safety, and structural features required for binding. The molecules were synthesized and confirmed by spectroscopic techniques. Later on, molecules were evaluated for their anti-cancer activity using MCF-7, MDA-MB-231 and SiHa cancer cell lines. RESULTS Compound ZINC5921547 and ZINC48442590 (4a, and 4b) reduced the MCF-7, MDA-MB-231, and SiHa cells proliferation potently than parent compounds. The PG-E2 estimation shown, both compounds act through the COX-2 PGE2 axis. Compound 4a and 4b block the cell cycle at G1-S phase and induce cancer cell death. CONCLUSIONS We concluded that compounds 4a and 4b effectively promotes cancer cell death via COX-2 PGE2 axis, and further in vivo studies can be evaluated for development in both compounds as anticancer agents. The compilation of this information will help us to generate better outcome through robust computational methods. The high-quality experimental results may pave the way for identifying effective drug candidates for cancer treatment.
Collapse
Affiliation(s)
- Ankita Sahu
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Dibyabhaba Pradhan
- Indian Biological Data Center, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Babita Veer
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Sumit Kumar
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Moshahid A Rizvi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, 110025, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Saurabh Verma
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India.
| |
Collapse
|
45
|
Maghsoudi H, Sheikhnia F, Sitarek P, Hajmalek N, Hassani S, Rashidi V, Khodagholi S, Mir SM, Malekinejad F, Kheradmand F, Ghorbanpour M, Ghasemzadeh N, Kowalczyk T. The Potential Preventive and Therapeutic Roles of NSAIDs in Prostate Cancer. Cancers (Basel) 2023; 15:5435. [PMID: 38001694 PMCID: PMC10670652 DOI: 10.3390/cancers15225435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PC) is the second most common type of cancer and the leading cause of death among men worldwide. Preventing the progression of cancer after treatments such as radical prostatectomy, radiation therapy, and hormone therapy is a major concern faced by prostate cancer patients. Inflammation, which can be caused by various factors such as infections, the microbiome, obesity and a high-fat diet, is considered to be the main cause of PC. Inflammatory cells are believed to play a crucial role in tumor progression. Therefore, nonsteroidal anti-inflammatory drugs along with their effects on the treatment of inflammation-related diseases, can prevent cancer and its progression by suppressing various inflammatory pathways. Recent evidence shows that nonsteroidal anti-inflammatory drugs are effective in the prevention and treatment of prostate cancer. In this review, we discuss the different pathways through which these drugs exert their potential preventive and therapeutic effects on prostate cancer.
Collapse
Affiliation(s)
- Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 90-151 Lodz, Poland
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol 47176-47754, Iran;
| | - Sepideh Hassani
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
| | - Sadaf Khodagholi
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 49189-36316, Iran;
| | - Faezeh Malekinejad
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57147-83734, Iran
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57147-83734, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-88349, Iran;
| | - Navid Ghasemzadeh
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
46
|
Holt AK, Najumudeen AK, Collard TJ, Li H, Millett LM, Hoskin AJ, Legge DN, Mortensson EMH, Flanagan DJ, Jones N, Kollareddy M, Timms P, Hitchings MD, Cronin J, Sansom OJ, Williams AC, Vincent EE. Aspirin reprogrammes colorectal cancer cell metabolism and sensitises to glutaminase inhibition. Cancer Metab 2023; 11:18. [PMID: 37858256 PMCID: PMC10588174 DOI: 10.1186/s40170-023-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND To support proliferation and survival within a challenging microenvironment, cancer cells must reprogramme their metabolism. As such, targeting cancer cell metabolism is a promising therapeutic avenue. However, identifying tractable nodes of metabolic vulnerability in cancer cells is challenging due to their metabolic plasticity. Identification of effective treatment combinations to counter this is an active area of research. Aspirin has a well-established role in cancer prevention, particularly in colorectal cancer (CRC), although the mechanisms are not fully understood. METHODS We generated a model to investigate the impact of long-term (52 weeks) aspirin exposure on CRC cells, which has allowed us comprehensively characterise the metabolic impact of long-term aspirin exposure (2-4mM for 52 weeks) using proteomics, Seahorse Extracellular Flux Analysis and Stable Isotope Labelling (SIL). Using this information, we were able to identify nodes of metabolic vulnerability for further targeting, investigating the impact of combining aspirin with metabolic inhibitors in vitro and in vivo. RESULTS We show that aspirin regulates several enzymes and transporters of central carbon metabolism and results in a reduction in glutaminolysis and a concomitant increase in glucose metabolism, demonstrating reprogramming of nutrient utilisation. We show that aspirin causes likely compensatory changes that render the cells sensitive to the glutaminase 1 (GLS1) inhibitor-CB-839. Of note given the clinical interest, treatment with CB-839 alone had little effect on CRC cell growth or survival. However, in combination with aspirin, CB-839 inhibited CRC cell proliferation and induced apoptosis in vitro and, importantly, reduced crypt proliferation in Apcfl/fl mice in vivo. CONCLUSIONS Together, these results show that aspirin leads to significant metabolic reprogramming in colorectal cancer cells and raises the possibility that aspirin could significantly increase the efficacy of metabolic cancer therapies in CRC.
Collapse
Affiliation(s)
- Amy K Holt
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Arafath K Najumudeen
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tracey J Collard
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Hao Li
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Ashley J Hoskin
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Danny N Legge
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Eleanor M H Mortensson
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | | | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Madhu Kollareddy
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Penny Timms
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Matthew D Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - James Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ann C Williams
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Emma E Vincent
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- MRC Integrative Epidemiology Unit, Oakfield House, University of Bristol, Bristol, BS8 2BN, UK.
| |
Collapse
|
47
|
Le DD, Yu S, Dang T, Lee M. Molecular Networking and Bioassay-Guided Preparation and Separation of Active Extract and Constituents from Vicia tenuifolia Roth. Antioxidants (Basel) 2023; 12:1876. [PMID: 37891955 PMCID: PMC10604256 DOI: 10.3390/antiox12101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Molecular networking drove the selection of material from V. tenuifolia organs that targeted active flavonoid glycosides. To optimize the extraction process, the flowers of V. tenuifolia were used to produce an anti-inflammatory extract. The effects of variables-organic solvent ratio; extraction time; and temperature-were investigated by the response of anti-inflammatory activity. Bioactivities-guided experiments helped identify fractions with high total phenolic and flavonoid content as well as antioxidant potential. Furthermore, one new compound (1), 19 first isolated together, and two known compounds were obtained and identified from the active fraction of this plant. Among them, compounds (15 and 22) were first reported for nuclear magnetic resonance (NMR) data from this study. All the isolates were evaluated for their anti-inflammatory capacity throughout, modulating nitric oxide (NO), interleukin (IL)-1β, and IL-8 production. Active compounds were further investigated for their regulation and binding affinity to the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins by Western blot and in silico approaches, respectively. The findings of this study suggested that the developed extract method, active fraction, and pure components should be further investigated as promising candidates for treating inflammation and oxidation.
Collapse
Affiliation(s)
| | | | | | - Mina Lee
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (S.Y.); (T.D.)
| |
Collapse
|
48
|
Cheng K, Chahdi A, Larabee SM, Tolaymat M, Sundel MH, Drachenberg CB, Zhan M, Hu S, Said AH, Shang AC, Xie G, Alizadeh M, Moura NS, Bafford AC, Williams RT, Hanna NN, Raufman JP. Muscarinic receptor agonist-induced βPix binding to β-catenin promotes colon neoplasia. Sci Rep 2023; 13:16920. [PMID: 37805544 PMCID: PMC10560271 DOI: 10.1038/s41598-023-44158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
M3 muscarinic receptors (M3R) modulate β-catenin signaling and colon neoplasia. CDC42/RAC guanine nucleotide exchange factor, βPix, binds to β-catenin in colon cancer cells, augmenting β-catenin transcriptional activity. Using in silico, in vitro, and in vivo approaches, we explored whether these actions are regulated by M3R. At the invasive fronts of murine and human colon cancers, we detected co-localized nuclear expression of βPix and β-catenin in stem cells overexpressing M3R. Using immunohistochemistry, immunoprecipitation, proximity ligand, and fluorescent cell sorting assays in human tissues and established and primary human colon cancer cell cultures, we detected time-dependent M3R agonist-induced cytoplasmic and nuclear association of βPix with β-catenin. βPix knockdown attenuated M3R agonist-induced human colon cancer cell proliferation, migration, invasion, and expression of PTGS2, the gene encoding cyclooxygenase-2, a key player in colon neoplasia. Overexpressing βPix dose-dependently augmented β-catenin binding to the transcription factor TCF4. In a murine model of sporadic colon cancer, advanced neoplasia was attenuated in conditional knockout mice with intestinal epithelial cell deficiency of βPix. Expression levels of β-catenin target genes and proteins relevant to colon neoplasia, including c-Myc and Ptgs2, were reduced in colon tumors from βPix-deficient conditional knockout mice. Targeting the M3R/βPix/β-catenin axis may have therapeutic potential.
Collapse
Affiliation(s)
- Kunrong Cheng
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ahmed Chahdi
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shannon M Larabee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shien Hu
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anan H Said
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Aaron C Shang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Guofeng Xie
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 20201, USA
| | - Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andrea C Bafford
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Richelle T Williams
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nader N Hanna
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jean-Pierre Raufman
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA.
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
49
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
50
|
Choudhury H, Pandey M, Saravanan V, Mun ATY, Bhattamisra SK, Parikh A, Garg S, Gorain B. Recent progress of targeted nanocarriers in diagnostic, therapeutic, and theranostic applications in colorectal cancer. BIOMATERIALS ADVANCES 2023; 153:213556. [PMID: 37478770 DOI: 10.1016/j.bioadv.2023.213556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Vilashini Saravanan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Amanda Tan Yee Mun
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ankit Parikh
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|