1
|
Drozhdev AI, Gorbatenko VO, Goriainov SV, Chistyakov DV, Sergeeva MG. ATP Alters the Oxylipin Profiles in Astrocytes: Modulation by High Glucose and Metformin. Brain Sci 2025; 15:293. [PMID: 40149814 PMCID: PMC11940397 DOI: 10.3390/brainsci15030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Astrocytes play a key role in the inflammatory process accompanying various neurological diseases. Extracellular ATP accompanies inflammatory processes in the brain, but its effect on lipid mediators (oxylipins) in astrocytes remains elusive. Metformin is a hypoglycemic drug with an anti-inflammatory effect that has been actively investigated in the context of therapy for neuroinflammation, but its mechanisms of action are not fully elucidated. Therefore, we aimed to characterize the effects of ATP on inflammatory markers and oxylipin profiles; determine the dependence of these effects on the adaptation of astrocytes to high glucose levels; and evaluate the possibility of modulating ATP effects using metformin. Methods: We estimated the ATP-mediated response of primary rat astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation. Cell responses were assessed by monitoring changes in the expression of inflammatory markers (TNFα, IL-6, IL-10, IL-1β, iNOS, and COX-2) and the synthesis of oxylipins (41 compounds), assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Intracellular pathways were assessed by analyzing the phosphorylation of p38; ERK MAPK; transcription factors STAT3 and NF-κB; and the enzymes mediating oxylipin synthesis, COX-1 and cPLA2. Results: The stimulation of cells with ATP does not affect the expression of pro-inflammatory markers, increases the activities of p38 and ERK MAPKs, and activates oxylipin synthesis, shifting the profiles toward an increase in anti-inflammatory compounds (PGD2, PGA2, 12-HHT, and 18-HEPE). The ATP effects are reduced in HG astrocytes. Metformin potentiated ATP-induced oxylipin synthesis (11-HETE, PGD2, 12-HHT, 15-HETE, 13-HDoHE, and 15-HETrE), which was predominantly evident in NG cells. Conclusions: Our data provide new evidence showing that ATP induces the release of anti-inflammatory oxylipins, and metformin enhances these effects. These results should be considered in the development of anti-inflammatory therapeutic approaches aimed at modulating astrocyte function in various pathologies.
Collapse
Affiliation(s)
- Alexey I. Drozhdev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.I.D.); (V.O.G.)
| | - Vladislav O. Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.I.D.); (V.O.G.)
| | - Sergey V. Goriainov
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Dmitry V. Chistyakov
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
2
|
Chatzikalil E, Arvanitakis K, Kalopitas G, Florentin M, Germanidis G, Koufakis T, Solomou EE. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers (Basel) 2025; 17:392. [PMID: 39941760 PMCID: PMC11815926 DOI: 10.3390/cancers17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is rising in global incidence and mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disease, is strongly linked to metabolic conditions that can progress to liver cirrhosis and HCC. Iron overload (IO), whether inherited or acquired, results in abnormal iron hepatic deposition, significantly impacting MASLD development and progression to HCC. While the pathophysiological connections between hepatic IO, MASLD, and HCC are not fully understood, dysregulation of glucose and lipid metabolism and IO-induced oxidative stress are being investigated as the primary drivers. Genomic analyses of inherited IO conditions reveal inconsistencies in the association of certain mutations with liver malignancies. Moreover, hepatic IO is also associated with hepcidin dysregulation and activation of ferroptosis, representing promising targets for HCC risk assessment and therapeutic intervention. Understanding the relationship between hepatic IO, MASLD, and HCC is essential for advancing clinical strategies against liver disease progression, particularly with recent IO-targeted therapies showing potential at improving liver biochemistry and insulin sensitivity. In this review, we summarize the current evidence on the pathophysiological association between hepatic IO and the progression of MASLD to HCC, underscoring the importance of early diagnosis, risk stratification, and targeted treatment for these interconnected conditions.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Matilda Florentin
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
3
|
Kirchhoff R, Kampschulte N, Rothweiler C, Rohwer N, Weylandt K, Schebb NH. An Optimized Ex Vivo n-3 PUFA Supplementation Strategy for Primary Human Macrophages Shows That DHA Suppresses Prostaglandin E2 Formation. Mol Nutr Food Res 2025; 69:e202400716. [PMID: 39676434 PMCID: PMC11704825 DOI: 10.1002/mnfr.202400716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Evidence suggests beneficial effects of long-chain n-3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n-3 PUFA supplementation strategy. M2-like macrophages were supplemented for 2-3 days with 20-40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA-preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n-3 PUFA <0.25 mM for the selection of donors of plasma as well as %n-6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n-3 and lower n-6 PUFAs. This was accompanied by a decrease of arachidonic acid-derived oxylipins in a dose- and time-dependent manner in favor of n-3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro-inflammatory prostaglandins in the DHA-supplemented cells, but no changes in cytokines. In vitro supplementation studies with n-3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n-3 PUFAs in primary human immune cells, offering an alternative for intervention studies.
Collapse
Affiliation(s)
- Rebecca Kirchhoff
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Nadja Kampschulte
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Carina Rothweiler
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and OncologyUniversity Hospital Ruppin‐Brandenburg, Brandenburg Medical SchoolNeuruppinGermany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of TechnologyBrandenburg Medical School and University of PotsdamPotsdamGermany
- Department of Molecular ToxicologyGerman Institute of Human NutritionPotsdam‐Rehbruecke, NuthetalGermany
| | - Karsten‐Henrich Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and OncologyUniversity Hospital Ruppin‐Brandenburg, Brandenburg Medical SchoolNeuruppinGermany
| | - Nils Helge Schebb
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| |
Collapse
|
4
|
Cayer LGJ, Buhrke T, Roberts J, Nunnikhoven A, Sommerkorn K, Reinhold A, Braeuning A, Raju J, Aukema HM, Karakach T. An integrated multi-omics analysis of the effects of the food processing-induced contaminant 2-monochloropropane-1,3-diol (2-MCPD) in rat heart. Arch Toxicol 2024; 98:4033-4045. [PMID: 39316134 PMCID: PMC11496350 DOI: 10.1007/s00204-024-03856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Many foods including edible oils contain 2-monochloropropane-1,3-diol (2-MCPD), a processing-induced chemical contaminant. Cardiotoxic effects have been shown to result from oral 2-MCPD exposure in rodents, but the underlying mechanisms of action remain poorly understood. We undertook a comprehensive multi-omics approach to assess changes at the transcriptomic, proteomic, and oxylipin levels in heart tissues from male F344 rats that were exposed to 0 or 40 mg/kg BW/day of 2-MCPD in the diet for 90 days, in a regulatory compliant rodent bioassay. Heart tissues were collected for RNA sequencing, quantitative PCR analysis, proteomic analysis via two-dimensional gel electrophoresis and mass spectrometry, and targeted lipidomic profiling by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Transcriptomic and proteomic data analyses revealed upregulation of immune/inflammatory response processes and downregulation of energy metabolism and cardiac structure and functions. Among differentially expressed gene-protein pairs, coronin-1A, a key leukocyte-regulating protein, emerged as markedly up-regulated. Oxylipin profiling highlighted a selective suppression of docosahexaenoic acid-derived metabolites, suggesting a disruption in cardioprotective lipid pathways. These findings suggest that 2-MCPD disrupts homeostasis through inflammatory activation and suppression of metabolic and cardiac function. This research provides insights into 2-MCPD's cardiotoxicity, emphasizing the need for further studies to support hazard characterization.
Collapse
Affiliation(s)
- Lucien G J Cayer
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | - Katharina Sommerkorn
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Reinhold
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jayadev Raju
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Health Canada, Bureau of Chemical Safety, Ottawa, Canada.
| | - Harold M Aukema
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Tobias Karakach
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Martin M, Debenay E, Bardinet J, Peltier A, Pourtau L, Gaudout D, Layé S, Pallet V, Dinel AL, Joffre C. Plant extracts and omega-3 supplementation modulate hippocampal oxylipin profile in response to LPS-induced neuroinflammation. Inflamm Res 2024; 73:2023-2042. [PMID: 39340661 PMCID: PMC11541341 DOI: 10.1007/s00011-024-01947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE AND DESIGN Neuroinflammation is a protective mechanism but can become harmful if chronic and/or unregulated, leading to neuronal damage and cognitive alterations. Limiting inflammation and promoting resolution could be achieved with nutrients such as grapes and blueberries polyphenols, saffron carotenoids, and omega-3, which have anti-inflammatory and proresolutive properties. METHODS This study explored the impact of 18-day supplementation with plant extracts (grape, blueberry and saffron), omega-3 or both (mix) on neuroinflammation induced by lipopolysaccharide (LPS, 250 µg/kg) in 149 mice at different time points post-LPS treatment (30 min, 2 h, 6 h). Inflammatory, oxidative and neuroprotective gene expression; oxylipin quantification; and fatty acid composition were analyzed at each time point. PCA analysis was performed with all these biomarkers. RESULTS Mix supplementation induced changes in the resolution of inflammation. In fact, the production of proinflammatory mediators in the hippocampus started earlier in the supplemented group than in the LPS group. Pro-resolving mediators were also found in higher quantities in supplemented mice. These changes were associated with increased hippocampal antioxidant status at 6 h post-LPS. CONCLUSIONS These findings suggest that such dietary interventions with plant extracts, and omega-3 could be beneficial in preventing neuroinflammation and, consequently, age-related cognitive decline. Further research is needed to explore the effects of these supplements on chronic inflammation in the context of aging.
Collapse
Affiliation(s)
- Marie Martin
- Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France
- Activ'Inside, ZA du Grand Cazeau, 12 route de Beroy, Beychac-et-Caillau, 33750, France
| | - Emie Debenay
- Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France
| | - Jeanne Bardinet
- Activ'Inside, ZA du Grand Cazeau, 12 route de Beroy, Beychac-et-Caillau, 33750, France
- Université Bordeaux, INSERM, BPH, Bordeaux, U1219, 33000, France
| | - Adrien Peltier
- Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France
- NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, 33076, France
| | - Line Pourtau
- Activ'Inside, ZA du Grand Cazeau, 12 route de Beroy, Beychac-et-Caillau, 33750, France
| | - David Gaudout
- Activ'Inside, ZA du Grand Cazeau, 12 route de Beroy, Beychac-et-Caillau, 33750, France
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France
| | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France
- NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, 33076, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France.
| |
Collapse
|
6
|
Cayer LGJ, Roberts J, Raju J, Aukema HM. Bioactive lipids are altered in the heart, kidney, and serum of male and female F344 rats sub-chronically exposed to dietary 2-MCPD. Food Chem Toxicol 2024; 193:115004. [PMID: 39284412 DOI: 10.1016/j.fct.2024.115004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 11/13/2024]
Abstract
Chloropropanols have been identified as processing-induced food contaminants that occur as by-products of the manufacturing of refined food oils and hydrolyzed vegetable protein. There has been a paucity of research on the 2-monochloropropane-1,3-diol (2-MCPD) isomer, thus forming a data gap for regulatory risk assessment. Previous studies suggest 2-MCPD causes adverse cardiotoxic, nephrotoxic, and myotoxic effects, but were inconclusive for hazard identification; thus a dose-response OECD TG-408-compliant study was conducted by Health Canada. Our study profiled the effects of 2-MCPD on oxylipins and oxidized phosphatidylcholines, using HPLC-MS/MS, in heart, kidney, serum, and skeletal muscle of male and female F344 rats orally exposed to 2-MCPD (40 mg/kg BW/d) for 90 days. Cardiac n-3 polyunsaturated fatty acid-derived oxylipins, particularly DHA-derived oxylipins, were lower with 2-MCPD exposure, coincident with cardiac lesions. Lipoxygenase-derived oxylipins were decreased in the serum with a greater effect in the male 2-MCPD treatment group. Few oxylipin alterations were seen in the kidney and there was an absence of alterations in the tibialis anterior. Oxidized phosphatidylcholines and isoprostanes were not altered in this study, indicating that oxidative stress was not elevated by 2-MCPD. These findings add to the weight of the evidence for 2-MCPD toxicity and support the use of serum oxylipins as potential biomarkers of 2-MCPD exposure.
Collapse
Affiliation(s)
- Lucien G J Cayer
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Jennifer Roberts
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Jayadev Raju
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada.
| | - Harold M Aukema
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Tang R, Harasymowicz NS, Wu CL, Choi YR, Lenz K, Oswald SJ, Guilak F. Gene therapy for fat-1 prevents obesity-induced metabolic dysfunction, cellular senescence, and osteoarthritis. Proc Natl Acad Sci U S A 2024; 121:e2402954121. [PMID: 39401356 PMCID: PMC11513907 DOI: 10.1073/pnas.2402954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
Obesity is one of the primary risk factors for osteoarthritis (OA), acting through cross talk among altered biomechanics, metabolism, adipokines, and dietary free fatty acid (FA) composition. Obesity and aging have been linked to cellular senescence in various tissues, resulting in increased local and systemic inflammation and immune dysfunction. We hypothesized that obesity and joint injury lead to cellular senescence that is typically associated with increased OA severity or with aging and that the ratio of omega-6 (ω-6) to omega-3 (ω-3) FAs regulates these pathologic effects. Mice were placed on an ω-6-rich high-fat diet or a lean control diet and underwent destabilization of the medial meniscus to induce OA. Obesity and joint injury significantly increased cellular senescence in subcutaneous and visceral fat as well as joint tissues such as synovium and cartilage. Using adeno-associated virus (AAV) gene therapy for fat-1, a fatty acid desaturase that converts ω-6 to ω-3 FAs, decreasing the serum ω-6:ω-3 FA ratio had a strong senomorphic and therapeutic effect, mitigating metabolic dysfunction, cellular senescence, and joint degeneration. In vitro coculture of bone marrow-derived macrophages and chondrocytes from control and AAV8-fat1-treated mice were used to examine the roles of various FA mediators in regulating chondrocyte senescence. Our results suggest that obesity and joint injury result in a premature "aging" of the joint as measured by senescence markers, and these changes can be ameliorated by altering FA composition using fat-1 gene therapy. These findings support the potential for fat-1 gene therapy to treat obesity- and/or injury-induced OA clinically.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Kristin Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| |
Collapse
|
8
|
Ali AH, Hachem M, Ahmmed MK. Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications. Heliyon 2024; 10:e30946. [PMID: 38774069 PMCID: PMC11107210 DOI: 10.1016/j.heliyon.2024.e30946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development. However, DHA susceptibility to chemical oxidation, poor water solubility, and unpleasant order could restrict its applications for nutritional and therapeutic purposes. To avoid these drawbacks and enhance its bioavailability, DHA can be encapsulated using an effective delivery system. Several encapsulation methods are recognized, and DHA-loaded nanoparticles have demonstrated numerous benefits. In clinical studies, positive influences on the development of several diseases have been reported, but some assumptions are conflicting and need more exploration, since DHA has a systemic and not a targeted release at the required level. This might cause the applications of nanoparticles that could allow DHA release at the required level and improve its efficiency, thus resulting in a better controlling of several diseases. In the current review, we focused on researches investigating the formulation and development of DHA-loaded nanoparticles using different delivery systems, including low-density lipoprotein, zinc oxide, silver, zein, and resveratrol-stearate. Silver-DHA nanoparticles presented a typical particle size of 24 nm with an incorporation level of 97.67 %, while the entrapment efficiency of zinc oxide-DHA nanoparticles represented 87.3 %. By using zein/Poly (lactic-co-glycolic acid) stabilized nanoparticles, DHA's encapsulation level reached 84.6 %. We have also highlighted the characteristics, functionality and medical implementation of these nanoparticles in the treatment of inflammations, brain disorders, diabetes as well as hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdelmoneim H. Ali
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Rohwer N, Jelleschitz J, Höhn A, Weber D, Kühl AA, Wang C, Ohno RI, Kampschulte N, Pietzner A, Schebb NH, Weylandt KH, Grune T. Prevention of colitis-induced liver oxidative stress and inflammation in a transgenic mouse model with increased omega-3 polyunsaturated fatty acids. Redox Biol 2023; 64:102803. [PMID: 37392516 DOI: 10.1016/j.redox.2023.102803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated gut dysfunction, which might also be associated with an inflammatory phenotype in the liver. It is known that the nutritional intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is inversely correlated to the severity and occurrence of IBD. In order to investigate whether n-3 PUFA can also reduce liver inflammation and oxidative liver damage due to colon inflammation, we explored the dextran sulfate sodium (DSS)-induced colitis model in wild-type and fat-1 mice with endogenously increased n-3 PUFA tissue content. Besides confirming previous data of alleviated DSS-induced colitis in the fat-1 mouse model, the increase of n-3 PUFA also resulted in a significant reduction of liver inflammation and oxidative damage in colitis-affected fat-1 mice as compared to wild-type littermates. This was accompanied by a remarkable increase of established inflammation-dampening n-3 PUFA oxylipins, namely docosahexaenoic acid-derived 19,20-epoxydocosapentaenoic acid and eicosapentaenoic acid-derived 15-hydroxyeicosapentaenoic acid and 17,18-epoxyeicosatetraenoic acid. Taken together, these observations demonstrate a strong inverse correlation between the anti-inflammatory lipidome derived from n-3 PUFA and the colitis-triggered inflammatory changes in the liver by reducing oxidative liver stress.
Collapse
Affiliation(s)
- Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Julia Jelleschitz
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anja A Kühl
- iPATH.Berlin-Immunopathology for Experimental Models, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Chaoxuan Wang
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany; Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rei-Ichi Ohno
- University of Wuppertal, Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Wuppertal, Germany
| | - Nadja Kampschulte
- University of Wuppertal, Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Wuppertal, Germany
| | - Anne Pietzner
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Nils Helge Schebb
- University of Wuppertal, Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Wuppertal, Germany
| | - Karsten-H Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany.
| |
Collapse
|
10
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
11
|
Effect of omega-3 ethyl esters on the triglyceride-rich lipoprotein response to endotoxin challenge in healthy young men. J Lipid Res 2023; 64:100353. [PMID: 36907552 PMCID: PMC10123374 DOI: 10.1016/j.jlr.2023.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023] Open
Abstract
Oxylipins are produced enzymatically from polyunsaturated fatty acids, are abundant in triglyceride-rich lipoproteins (TGRL), and mediate inflammatory processes. Inflammation elevates TGRL concentrations, but it is unknown if the fatty acid and oxylipin composition change. In this study, we investigated the effects of prescription ω-3 acid ethyl esters (P-OM3; 3.4 g/d EPA + DHA) on the lipid response to an endotoxin challenge (lipopolysaccharide (LPS); 0.6 ng/kg body weight). Healthy young men (N=17) were assigned 8-12 weeks of P-OM3 and olive oil control in a randomized order crossover study. Following each treatment period, subjects received endotoxin challenge, and the time-dependent TGRL composition was observed. Post-challenge, arachidonic acid (AA) was 16% [95% CI: 4%, 28%] lower than baseline at 8 hours with control. P-OM3 increased TGRL ω-3 fatty acids (EPA 24% [15%, 34%]; DHA 14% [5%, 24%]). The timing of ω-6 oxylipin responses differed by class; AA-derived alcohols peaked at 2 hrs, while linoleic acid (LA)-derived alcohols peaked at 4 hrs (pint = 0.006). P-OM3 increased EPA alcohols by 161% [68%, 305%] and DHA epoxides by 178% [47%, 427%] at 4 hrs compared to control. In conclusion, this study shows that TGRL fatty acid and oxylipin composition changes following endotoxin challenge. P-OM3 alters the TGRL response by increasing availability of ω-3 oxylipins for resolution of the inflammatory response.
Collapse
|
12
|
Leineweber CG, Rabehl M, Pietzner A, Rohwer N, Rothe M, Pech M, Sangro B, Sharma R, Verslype C, Basu B, Sengel C, Ricke J, Schebb NH, Weylandt KH, Benckert J. Sorafenib increases cytochrome P450 lipid metabolites in patient with hepatocellular carcinoma. Front Pharmacol 2023; 14:1124214. [PMID: 36937889 PMCID: PMC10020374 DOI: 10.3389/fphar.2023.1124214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death, and medical treatment options are limited. The multikinase inhibitor sorafenib was the first approved drug widely used for systemic therapy in advanced HCC. Sorafenib might affect polyunsaturated fatty acids (PUFA)-derived epoxygenated metabolite levels, as it is also a potent inhibitor of the soluble epoxide hydrolase (sEH), which catalyzes the conversion of cytochrome-P450 (CYP)-derived epoxide metabolites derived from PUFA, such as omega-6 arachidonic acid (AA) and omega-3 docosahexaenoic acid (DHA), into their corresponding dihydroxy metabolites. Experimental studies with AA-derived epoxyeicosatrienoic acids (EETs) have shown that they can promote tumor growth and metastasis, while DHA-derived 19,20-epoxydocosapentaenoic acid (19,20-EDP) was shown to have anti-tumor activity in mice. In this study, we found a significant increase in EET levels in 43 HCC patients treated with sorafenib and a trend towards increased levels of DHA-derived 19,20-EDP. We demonstrate that the effect of sorafenib on CYP- metabolites led to an increase of 19,20-EDP and its dihydroxy metabolite, whereas DHA plasma levels decreased under sorafenib treatment. These data indicate that specific supplementation with DHA could be used to increase levels of the epoxy compound 19,20-EDP with potential anti-tumor activity in HCC patients receiving sorafenib therapy.
Collapse
Affiliation(s)
- Can G. Leineweber
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology, and Diabetes, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miriam Rabehl
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology, and Diabetes, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Anne Pietzner
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology, and Diabetes, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology, and Diabetes, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Maciej Pech
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Chris Verslype
- Department of Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Christian Sengel
- Radiology Department, Grenoble University Hospital, La Tronche, France
| | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany
| | - Karsten-H. Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology, and Diabetes, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Julia Benckert
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Weylandt KH, Karber M, Xiao Y, Zhang IW, Pevny S, Blüthner E, von Schacky C, Rothe M, Schunck WH, Pape UF. Impact of intravenous fish oil on omega-3 fatty acids and their derived lipid metabolites in patients with parenteral nutrition. JPEN J Parenter Enteral Nutr 2023; 47:287-300. [PMID: 36164258 DOI: 10.1002/jpen.2448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Long-term parenteral nutrition (PN) can lead to intestinal failure-associated liver disease (IFALD). Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were shown to prevent IFALD. EPA-derived and DHA-derived oxylipins could contribute to this protective effect. METHODS We analyzed the effect of parenteral fish oil on oxylipins in patients with chronic intestinal failure receiving PN (n = 8). Patients first received no fish oil for 8 weeks and then switched to PN with 25% of fat as fish oil for another 8 weeks. Fatty acid profiles of red blood cells, PUFA-derived oxylipins generated by cyclooxygenase, lipoxygenase (LOX), and cytochrome P450 (CYP) pathways, inflammatory markers, and liver function were assessed before and during fish-oil PN. RESULTS EPA plus DHA in erythrocytes (the Omega-3 Index) was high with a median of 11.96% at baseline and decreased to 9.57% without fish oil in PN. Addition of fish oil in PN increased the median Omega-3-Index to 12.75%. EPA-derived and DHA-derived CYP-dependent and LOX-dependent metabolites increased significantly with fish oil in PN, with less pronounced changes in arachidonic acid and its oxylipins. There were no significant changes of inflammation and liver function parameters. CONCLUSIONS This study shows that fish oil-containing PN leads to primarily CYP- and LOX-dependent n-3 PUFA-derived inflammation-dampening oxylipins arising from EPA and DHA. Within this short (16-week) study, there were no significant changes in inflammation and clinical readout parameters.
Collapse
Affiliation(s)
- Karsten H Weylandt
- Department of Gastroenterology, Metabolism and Oncology, Division of Medicine, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Medical Department, Division of Medicine, Department of Gastroenterology, Campus Mitte, Berlin, Germany
| | - Mirjam Karber
- Department of Gastroenterology, Metabolism and Oncology, Division of Medicine, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Medical Department, Division of Medicine, Department of Gastroenterology, Campus Mitte, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Yanan Xiao
- Department of Gastroenterology, Metabolism and Oncology, Division of Medicine, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Medical Department, Division of Medicine, Department of Gastroenterology, Campus Mitte, Berlin, Germany
| | - Ingrid W Zhang
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Medical Department, Division of Medicine, Department of Gastroenterology, Campus Mitte, Berlin, Germany.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sophie Pevny
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Medical Department, Division of Medicine, Department of Gastroenterology, Campus Mitte, Berlin, Germany
| | - Elisabeth Blüthner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Medical Department, Division of Medicine, Department of Gastroenterology, Campus Mitte, Berlin, Germany
| | | | | | - Wolf H Schunck
- Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Ulrich F Pape
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Medical Department, Division of Medicine, Department of Gastroenterology, Campus Mitte, Berlin, Germany.,Department of Internal Medicine and Gastroenterology, Asklepios Klinik St. Georg, Asklepios Tumorzentrum, Hamburg, Germany
| |
Collapse
|
14
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
15
|
Pflieger FJ, Wolf J, Feldotto M, Nockher A, Wenderoth T, Hernandez J, Roth J, Ott D, Rummel C. Norepinephrine Inhibits Lipopolysaccharide-Stimulated TNF-α but Not Oxylipin Induction in n-3/n-6 PUFA-Enriched Cultures of Circumventricular Organs. Int J Mol Sci 2022; 23:ijms23158745. [PMID: 35955879 PMCID: PMC9368774 DOI: 10.3390/ijms23158745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sensory circumventricular organs (sCVOs) are pivotal brain structures involved in immune-to-brain communication with a leaky blood-brain barrier that detect circulating mediators such as lipopolysaccharide (LPS). Here, we aimed to investigate the potential of sCVOs to produce n-3 and n-6 oxylipins after LPS-stimulation. Moreover, we investigated if norepinephrine (NE) co-treatment can alter cytokine- and oxylipin-release. Thus, we stimulated rat primary neuroglial sCVO cultures under n-3- or n-6-enriched conditions with LPS or saline combined with NE or vehicle. Supernatants were assessed for cytokines by bioassays and oxylipins by HPLC-MS/MS. Expression of signaling pathways and enzymes were analyzed by RT-PCR. Tumor necrosis factor (TNF)α bioactivity and signaling, IL-10 expression, and cyclooxygenase (COX)2 were increased, epoxide hydroxylase (Ephx)2 was reduced, and lipoxygenase 15-(LOX) was not changed by LPS stimulation. Moreover, LPS induced increased levels of several n-6-derived oxylipins, including the COX-2 metabolite 15d-prostaglandin-J2 or the Ephx2 metabolite 14,15-DHET. For n-3-derived oxylipins, some were down- and some were upregulated, including 15-LOX-derived neuroprotectin D1 and 18-HEPE, known for their anti-inflammatory potential. While the LPS-induced increase in TNFα levels was significantly reduced by NE, oxylipins were not significantly altered by NE or changes in TNFα levels. In conclusion, LPS-induced oxylipins may play an important functional role in sCVOs for immune-to-brain communication.
Collapse
Affiliation(s)
- Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jacqueline Wolf
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Nockher
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
| | - Daniela Ott
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
- Correspondence:
| |
Collapse
|
16
|
Bekric D, Ocker M, Mayr C, Stintzing S, Ritter M, Kiesslich T, Neureiter D. Ferroptosis in Hepatocellular Carcinoma: Mechanisms, Drug Targets and Approaches to Clinical Translation. Cancers (Basel) 2022; 14:1826. [PMID: 35406596 PMCID: PMC8998032 DOI: 10.3390/cancers14071826] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis, an iron and reactive oxygen species (ROS)-dependent non-apoptotic type of regulated cell death, is characterized by a massive iron overload and peroxidation of polyunsaturated fatty acids (PUFAs), which finally results in cell death. Recent studies suggest that ferroptosis can influence carcinogenesis negatively and therefore may be used as a novel anti-cancer strategy. Hepatocellular carcinoma (HCC) is a deadly malignancy with poor chances of survival and is the second leading cause of cancer deaths worldwide. Diagnosis at an already late stage and general resistance to current therapies may be responsible for the dismal outcome. As the liver acts as a key factor in iron metabolism, ferroptosis is shown to play an important role in HCC carcinogenesis and, more importantly, may hold the potential to eradicate HCC. In this review, we summarize the current knowledge we have of the role of ferroptosis in HCC and the application of ferroptosis as a therapy option and provide an overview of the potential translation of ferroptosis in the clinical practice of HCC.
Collapse
Affiliation(s)
- Dino Bekric
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (C.M.); (M.R.); (T.K.)
| | - Matthias Ocker
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 55216 Ingelheim, Germany;
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus Charité Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany;
| | - Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (C.M.); (M.R.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria
| | - Sebastian Stintzing
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus Charité Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany;
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (C.M.); (M.R.); (T.K.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (C.M.); (M.R.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
17
|
Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep 2022; 4:100479. [PMID: 35469167 PMCID: PMC9034302 DOI: 10.1016/j.jhepr.2022.100479] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.
Collapse
|
18
|
Abstract
Ferroptosis is a recently recognized iron-dependent form of non-apoptotic regulated cell death (RCD) characterized by lipid peroxide accumulation to lethal levels. Cancer cells, which show an increased iron dependency to enable rapid growth, seem vulnerable to ferroptosis. There is also increasing evidence that ferroptosis might be immunogenic and therefore could synergize with immunotherapies. Hepatocellular carcinoma (HCC) is the most common primary liver tumor with a low survival rate due to frequent recurrence and limited efficacy of conventional chemotherapies, illustrating the urgent need for novel drug approaches or combinatorial strategies. Immunotherapy is a new treatment approach for advanced HCC patients. In this setting, ferroptosis inducers may have substantial clinical potential. However, there are still many questions to answer before the mystery of ferroptosis is fully unveiled. This review discusses the existing studies and our current understanding regarding the molecular mechanisms of ferroptosis with the goal of enhancing response to immunotherapy of liver cancer. In addition, challenges and opportunities in clinical applications of potential candidates for ferroptosis-driven therapeutic strategies will be summarized. Unraveling the role of ferroptosis in the immune response could benefit the development of promising anti-cancer therapies that overcome drug resistance and prevent tumor metastasis.
Collapse
|
19
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
20
|
Jeyakumar SM, Vajreswari A. Pharmaconutrition strategy to resolve SARS-CoV-2-induced inflammatory cytokine storm in non-alcoholic fatty liver disease: Omega-3 long-chain polyunsaturated fatty acids. World J Clin Cases 2021; 9:9333-9349. [PMID: 34877270 PMCID: PMC8610854 DOI: 10.12998/wjcc.v9.i31.9333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is one of the primary factors associated with the causation and/or progression of several lifestyle disorders, including obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). NAFLD is a spectrum of disorders, and starts with simple steatosis, progresses to non-alcoholic steatohepatitis, and then advances to fibrosis, cirrhosis and finally, hepatocellular carcinoma, due to perpetual cycles of insults caused by inflammation and other cellular stress. Emerging evidence has documented that patients with NAFLD have severe coronavirus disease 2019 (COVID-19), and patients with COVID-19 have a higher liver injury and mortality. Although the exact cause or mechanism is not known, inflammatory cytokine storm is a characteristic feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is known to be associated with higher mortality among COVID-19 patients. Therefore, the COVID-19 pandemic seems to be a major concern in NAFLD patients, who have contracted SARS-CoV-2 infection and develop COVID-19. This is evident in patients at any stage of the NAFLD spectrum, as the inflammatory cytokine storm may cause and/or aggravate the progression or severity of NAFLD. Thus, there is a need for resolution of the inflammatory cytokine storm in these patients. A large body of evidence has demonstrated the efficacy of omega-3 long-chain polyunsaturated fatty acids (ω-3 LCPUFA) in NAFLD conditions, due to their anti-inflammatory, immunomodulatory and anti-viral properties. Therefore, intervention with ω-3 LCPUFA, an effective pharmaconutrient along with the standard treatment for COVID-19 may be useful in the management of the NAFLD spectrum in COVID-19 patients with pre-existing NAFLD conditions by resolving the inflammatory cytokine storm and thereby attenuating its progression. Although there are challenges in implementation, optimistically they can be circumvented and the pharmaconutrition strategy may be potentially helpful in tackling both the pandemics; NAFLD and COVID-19 at least in this subset of patients.
Collapse
Affiliation(s)
- Shanmugam M Jeyakumar
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | | |
Collapse
|
21
|
Herrera Vielma F, Valenzuela R, Videla LA, Zúñiga-Hernández J. N-3 Polyunsaturated Fatty Acids and Their Lipid Mediators as A Potential Immune-Nutritional Intervention: A Molecular and Clinical View in Hepatic Disease and Other Non-Communicable Illnesses. Nutrients 2021; 13:3384. [PMID: 34684386 PMCID: PMC8539469 DOI: 10.3390/nu13103384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the beneficial effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) intake on human health has been widely accepted in the field of immunonutrition. Today, we find a diversity of supplements based on n-3 PUFAs and/or minerals, vitamins and other substances. The main objective of this review is to discuss the importance of n-3 PUFAs and their derivatives on immunity and inflammatory status related to liver disease and other non-communicable illnesses. Based on the burden of liver diseases in 2019, more than two million people die from liver pathologies per year worldwide, because it is the organ most exposed to agents such as viruses, toxins and medications. Consequently, research conducted on n-3 PUFAs for liver disease has been gaining prominence with encouraging results, given that these fatty acids have anti-inflammatory and cytoprotective effects. In addition, it has been described that n-3 PUFAs are converted into a novel species of lipid intermediaries, specialized pro-resolving mediators (SPMs). At specific levels, SPMs improve the termination of inflammation as well as the repairing and regeneration of tissues, but they are deregulated in liver disease. Since evidence is still insufficient to carry out pharmacological trials to benefit the resolution of acute inflammation in non-communicable diseases, there remains a call for continuing preclinical and clinical research to better understand SPM actions and outcomes.
Collapse
Affiliation(s)
- Francisca Herrera Vielma
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Jessica Zúñiga-Hernández
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| |
Collapse
|
22
|
Liao H, Shi J, Wen K, Lin J, Liu Q, Shi B, Yan Y, Xiao Z. Molecular Targets of Ferroptosis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:985-996. [PMID: 34466409 PMCID: PMC8403010 DOI: 10.2147/jhc.s325593] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is a special form of regulatory cell death caused by the accumulation of intracellular iron and lipid peroxidation. Here, we summarize the research progress on ferroptosis in hepatocellular carcinoma (HCC), trace the development of the concept of ferroptosis and its key regulatory factors, and discuss the application value of ferroptosis in the treatment of HCC from different perspectives. We believe that exploring the relationship between ferroptosis and HCC and clarifying the metabolism and expression of ferroptosis-specific genes and molecules will accelerate the development of novel ferroptosis-related molecules as HCC markers and therapeutic targets. We hope to provide a theoretical basis for better diagnosis and treatment to effectively improve the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jianhong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Qinghua Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Bingchao Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| |
Collapse
|
23
|
Dong L, Li Y, Wu H. Platelet activating-factor acetylhydrolase II: A member of phospholipase A2 family that hydrolyzes oxidized phospholipids. Chem Phys Lipids 2021; 239:105103. [PMID: 34116047 DOI: 10.1016/j.chemphyslip.2021.105103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Intracellular platelet activating-factor acetylhydrolase type II (PAF-AH II) is a 40-kDa monomeric enzyme. It was originally identified as an enzyme that hydrolyzes the acetyl group of PAF (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). As a member of phospholipase A2 super family, PAF-AH II has broad substrate specificity. It can hydrolyze phospholipids with relatively short-length or oxidatively modified sn-2 chains which endows it with various functions such as protection against oxidative stress, transacetylase activity and producing lipid mediators. PAF-AH II has been proven to be involved in several diseases such as allergic diseases, oxidative stress-induced injury and ischemia injury, thus it has drawn more attention from researchers. In this paper, we outline an entire summary of PAF-AH II, including its structure, substrate specificity, activity assay, inhibitors and biological activities.
Collapse
Affiliation(s)
- Linyue Dong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- Department of TCM Chemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Huali Wu
- Department of TCM Chemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
24
|
Khan IM, Gjuka D, Jiao J, Song X, Wang Y, Wang J, Wei P, El-Serag HB, Marrero JA, Beretta L. A Novel Biomarker Panel for the Early Detection and Risk Assessment of Hepatocellular Carcinoma in Patients with Cirrhosis. Cancer Prev Res (Phila) 2021; 14:667-674. [PMID: 33685927 DOI: 10.1158/1940-6207.capr-20-0600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
Novel biomarkers for hepatocellular carcinoma (HCC) surveillance in patients with cirrhosis are urgently needed. We previously identified osteopontin (OPN) as a promising biomarker for the early detection of HCC. This study is to further validate the performance of OPN and identify fatty acids (FA) that could improve OPN's performance in HCC risk assessment in patients with cirrhosis. To that end, we selected 103 patients with cirrhosis under surveillance. Among them, 40 patients developed HCC during follow-up. We investigated in these 103 patients, the association between HCC incidence and prediagnostic serum levels of AFP, OPN, and 46 FAs. OPN performance was higher than AFP in detecting prediagnosis HCCs and the combination with AFP further improved OPN's performance. For patients with a diagnosis of HCC within 18 months of follow-up (HCC < 18 months), AUC for OPN + AFP was 0.77. Abundance of 11 FAs [four long-chain saturated FAs (SFA), four n-3 poly-unsaturated FAs (PUFA), and three n-6 PUFAs] were statistically different between patients who developed HCC and those who did not. Abundance changes correlated with time to diagnosis for the PUFAs, but not for the SFAs. Adding arachidic acid (20:0) and n-3 docosapentaenoic acid (22:5n3) to OPN and AFP improved the discriminatory performance (AUC = 0.83). AUC for this panel reached 0.87 for HCC < 18 months (82% sensitivity at 81% specificity). In conclusion, we identified a panel of 4 markers with strong performances that could have significant utility in HCC early detection in patients with cirrhosis under surveillance. PREVENTION RELEVANCE: This study identified a panel of 4 biomarkers that identifies with high performance patients with cirrhosis at high risk for HCC. This panel could have utility in HCC early detection in patients with cirrhosis under surveillance.
Collapse
Affiliation(s)
- Ilvira M Khan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donjeta Gjuka
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jingjing Jiao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoling Song
- Cancer Prevention Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peng Wei
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Jorge A Marrero
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
25
|
Leslie E, Lopez V, Anti NAO, Alvarez R, Kafeero I, Welsh DG, Romero M, Kaushal S, Johnson CM, Bosviel R, Blaženović I, Song R, Brito A, Frano MRL, Zhang L, Newman JW, Fiehn O, Wilson SM. Gestational long-term hypoxia induces metabolomic reprogramming and phenotypic transformations in fetal sheep pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2021; 320:L770-L784. [PMID: 33624555 DOI: 10.1152/ajplung.00469.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gestational long-term hypoxia increases the risk of myriad diseases in infants including persistent pulmonary hypertension. Similar to humans, fetal lamb lung development is susceptible to long-term intrauterine hypoxia, with structural and functional changes associated with the development of pulmonary hypertension including pulmonary arterial medial wall thickening and dysregulation of arterial reactivity, which culminates in decreased right ventricular output. To further explore the mechanisms associated with hypoxia-induced aberrations in the fetal sheep lung, we examined the premise that metabolomic changes and functional phenotypic transformations occur due to intrauterine, long-term hypoxia. To address this, we performed electron microscopy, Western immunoblotting, calcium imaging, and metabolomic analyses on pulmonary arteries isolated from near-term fetal lambs that had been exposed to low- or high-altitude (3,801 m) hypoxia for the latter 110+ days of gestation. Our results demonstrate that the sarcoplasmic reticulum was swollen with high luminal width and distances to the plasma membrane in the hypoxic group. Hypoxic animals were presented with higher endoplasmic reticulum stress and suppressed calcium storage. Metabolically, hypoxia was associated with lower levels of multiple omega-3 polyunsaturated fatty acids and derived lipid mediators (e.g., eicosapentaenoic acid, docosahexaenoic acid, α-linolenic acid, 5-hydroxyeicosapentaenoic acid (5-HEPE), 12-HEPE, 15-HEPE, prostaglandin E3, and 19(20)-epoxy docosapentaenoic acid) and higher levels of some omega-6 metabolites (P < 0.02) including 15-keto prostaglandin E2 and linoleoylglycerol. Collectively, the results reveal broad evidence for long-term hypoxia-induced metabolic reprogramming and phenotypic transformations in the pulmonary arteries of fetal sheep, conditions that likely contribute to the development of persistent pulmonary hypertension.
Collapse
Affiliation(s)
- Eric Leslie
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Vanessa Lopez
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Nana A O Anti
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Rafael Alvarez
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Isaac Kafeero
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Donald G Welsh
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shawn Kaushal
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Catherine M Johnson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Remy Bosviel
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Ivana Blaženović
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare," I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California.,Center for Health Research, California Polytechnic State University, San Luis Obispo, California.,Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - John W Newman
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,Department of Nutrition, University of California, Davis, California.,USDA-ARS Western Human Nutrition Research Center, Davis, California
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,West Coast Metabolomics Center, University of California, Davis, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
26
|
Shan C, Wang R, Wang S, Zhang Z, Xing C, Feng W, Zhao Z, Zhou S, Zhao AZ, Mu Y, Li F. Endogenous production of n-3 polyunsaturated fatty acids protects mice from carbon tetrachloride-induced liver fibrosis by regulating mTOR and Bcl-2/Bax signalling pathways. Exp Physiol 2021; 106:983-993. [PMID: 33605486 DOI: 10.1113/ep089328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the protective benefit of n-3 polyunsaturated fatty acids (PUFAs) on liver fibrosis and what are the relevant signalling pathways in a transgenic mouse model overexpressing the mfat-1 enzyme? What is the main finding and its importance? n-3 PUFA elevation strongly prevented carbon tetrachloride (CCl4 )-induced hepatic damage and inhibited the activation of hepatic stellate cells. n-3 PUFAs suppressed CCl4 -induced activation of mTOR, elevated Bcl-2 expression, and reduced Bax level, suggesting that n-3 PUFAs can render strong protective effects against liver fibrosis and point to the potential of mfat-1 gene therapy as a treatment modality. ABSTRACT Liver fibrosis is a reversible wound healing response with excessive accumulation of extracellular matrix proteins. It is a globally prevalent disease with ultimately severe pathological consequences. However, very few current clinical therapeutic options are available. Nutritional addition of n-3 polyunsaturated fatty acids (PUFAs) can delay and lessen the development of liver fibrosis. Herein, this study examined the protective benefit of n-3 PUFAs on liver fibrosis and the relevant signalling pathways using a transgenic mouse model overexpressing the mfat-1 enzyme that converts n-6 to n-3 PUFAs. Male C57BL/6 wild-type and mfat-1 transgenic mice were administered carbon tetrachloride (CCl4 ) or control corn oil by intraperitoneal injection. Blood alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were subsequently measured. CCl4 -induced hepatic damage and fibrosis were assessed using haematoxylin-eosin and Masson's trichrome staining. Western blot assays were used to detect and quantify fibrosis-related proteins and mechanistic target of rapamycin (mTOR) and B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) signalling components. The direct effect of docosahexaenoic acid (DHA) on primary hepatic stellate cells (HSCs) was also investigated in a co-culture experiment. n-3 PUFAs, as a result of mfat-1 activity, had a strong protective effect on liver fibrosis. The elevation of ALT and AST induced by CCl4 was significantly lessened in the mfat-1 mice. Histological determination revealed the protective effects of n-3 PUFAs on liver inflammation and collagen deposition. Co-incubation with DHA reduced the expression of profibrogenic factors in the primary HSCs. Moreover, mfat-1 transgenic mice showed significant reduction of proteins that are involved in mTOR and Bcl-2/Bax signalling pathways. Collectively, these results suggest that n-3 PUFA elevation strongly prevents CCl4 -induced hepatic damage by directly inhibiting the activation of HSCs and regulating the basal activity of the mTOR and Bcl-2/Bax signalling pathways. Gene therapy applying mfat-1 and elevating n-3 PUFAs represents a promising treatment strategy to prevent liver fibrosis.
Collapse
Affiliation(s)
- Changfeng Shan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Ronghua Wang
- Rural Work Office of Longmen County Committee of the Communist Party of China, Longmen County Agricultural and Rural Bureau, Huizhou, Guangdong Province, People's Republic of China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Chaofeng Xing
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Wenbin Feng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
27
|
Yu Q, Wang T, Wang F, Yang Y, He C, Yang W, Zhang J, Zou Z. High n-3 fatty acids counteract hyperglycemia-induced insulin resistance in fat-1 mice via pre-adipocyte NLRP3 inflammasome inhibition. Food Funct 2021; 12:230-240. [PMID: 33295913 DOI: 10.1039/d0fo02092c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although n-3 polyunsaturated fatty acids (n-3 PUFAs) have potential anti-insulin resistance activity, the mechanism remains largely unknown. In this study, increased glucose resistance, insulin sensitivity, and lower glycemia were observed upon streptozotocin (STZ) treatment in n-3 PUFA-enriched fat-1 mice compared to wild type (WT) mice. Endogenous n-3 PUFAs in fat-1 mice were found to impair hyperglycemia or high glucose level-induced nucleotide-binding domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome activation and inhibit IL-1β secretion in adipose tissues. In addition, endogenous n-3 PUFAs also inhibited high glucose-induced caspase-1 activity and IL-1β secretion in pre-adipocyte-enriched stromal vascular fractions (SVF) isolated from adipose tissues. Furthermore, in 3T3-L1 pre-adipocytes, high levels of glucose induced thioredoxin interacting protein (TXNIP) expression and activated the NLRP3 inflammasome, which was counteracted by docosahexaenoic acid (DHA), the major n-3 PUFA in fat-1 mice, by downregulating TXNIP via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Our results suggest that n-3 PUFA-mediated insulin sensitivity is at least partly associated with inflammasome inhibition in pre-adipocytes. Our findings highlight the potential clinical use of dietary n-3 PUFAs in the prevention or intervention of T2D and other NLRP3 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Qingyao Yu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Tiantian Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Yong Yang
- Department of Clinical laboratory, the affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Canxia He
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - JinJie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Zuquan Zou
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
28
|
So J, Wu D, Lichtenstein AH, Tai AK, Matthan NR, Maddipati KR, Lamon-Fava S. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study. Atherosclerosis 2021; 316:90-98. [PMID: 33303222 DOI: 10.1016/j.atherosclerosis.2020.11.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. METHODS After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. RESULTS Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. CONCLUSIONS EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.
Collapse
Affiliation(s)
- Jisun So
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
29
|
Suganuma H, Collins CT, McPhee AJ, Leemaqz S, Liu G, Andersen CC, Bonney D, Gibson RA. Effect of parenteral lipid emulsion on preterm infant PUFAs and their downstream metabolites. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102217. [PMID: 33291053 DOI: 10.1016/j.plefa.2020.102217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Oxylipins synthesized by oxidation of long-chain polyunsaturated fatty acids (LCPUFAs) are bioactive downstream lipid mediators. The aim of this study was to describe oxylipin levels in preterm infants born 30 to 33 weeks' gestation who were enrolled in a randomized controlled trial in which peripheral parenteral nutrition (P-PN), including lipid emulsion (containing soy, medium chain triglyceride, olive and fish oil), was compared with 10% glucose on growth during the transition to enteral feeds. METHODS Of the 92 infants randomized to the P-PN study, the first 72 (P-PN n = 34, control n = 38) had blood taken for fatty acid analyses. P-PN infants received parenteral nutrition including 3% protein, 8% glucose and 17% SMOFlipid® lipid (containing soy, medium chain triglyceride, olive and fish oil), and control infants 10% glucose. Both groups commenced enteral feeds when clinically stable. 32 oxylipins and 5 free fatty acids were screened (using ultra-high-performance liquid chromatography-tandem mass spectrometry), and 5 total LCPUFA were measured (using gas chromatography), on study days 1 (baseline), 2, 4, 7, 14 and 21. RESULTS Both total and free LA, ALA and EPA were significantly higher in the P-PN group compared with control over the first week of life. Whereas total AA was significantly lower and free DHA significantly higher over the same time period. All LA, ALA, EPA and four DHA derived oxylipins detected were significantly higher in the P-PN group compared with the control group during the first week of life, with three AA derived oxylipins significantly lower and one significantly higher. CONCLUSIONS Parenteral lipid emulsion resulted in a change in total and free fatty acids and related oxylipins with the profiles suggesting increased omega-6 driven inflammation. Further studies to investigate the association between the oxylipin levels and nutrition and to determine whether the oxylipin profiles influence the clinical outcome in preterm infants are warranted.
Collapse
Affiliation(s)
- Hiroki Suganuma
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Discipline of Paediatrics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carmel T Collins
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Discipline of Paediatrics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Andrew J McPhee
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Shalem Leemaqz
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Ge Liu
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Agriculture Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - Chad C Andersen
- Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Dennis Bonney
- Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Robert A Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Agriculture Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, Adelaide, South Australia 5064, Australia.
| |
Collapse
|
30
|
Abshagen K, Hartmann A, Grüner L, Liebig M, Vollmar B. Limited potential of resolvin D1 in treatment of cholestatic liver fibrosis. Hepatobiliary Surg Nutr 2020; 9:587-596. [PMID: 33163509 DOI: 10.21037/hbsn.2019.08.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Several studies suggest a role for EPA- and DHA-derived pro-resolving mediators like resolvins in reversing metabolic and inflammatory disturbances seen in various chronic diseases. Here, we investigated the effects of resolvin D1 (RvD1) on bile duct ligation (BDL)-induced cholestatic liver injury. Methods Mice were treated daily with RvD1 or 0.1% ethanol (control) from the day of BDL until the final observation time points. Blood and liver tissue were collected 2, 5 and 14 days after BDL for different analyses. Results RvD1 treatment of mice had no impact on the extent of cholestatic liver injury upon BDL, neither in the acute phase nor in the progressive state of liver fibrosis. Although RvD1 treatment resulted in a significantly reduced activity of hepatic stellate cells as well as reduced deposition of extracellular matrix 2 days after BDL, mice were not protected from inflammation and further fibrosis progression. Conclusions These data indicate that RvD1 has a limited therapeutic potential to treat cholestatic liver diseases, as it has no significant impact on regression of hepatic necroinflammation and fibrotic changes in bile duct-ligated mice.
Collapse
Affiliation(s)
- Kerstin Abshagen
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Alexander Hartmann
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Laura Grüner
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Marie Liebig
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
31
|
Simon TG, Chan AT. Lifestyle and Environmental Approaches for the Primary Prevention of Hepatocellular Carcinoma. Clin Liver Dis 2020; 24:549-576. [PMID: 33012445 PMCID: PMC7536356 DOI: 10.1016/j.cld.2020.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with chronic liver disease are at increased risk of developing hepatocellular carcinoma (HCC). Most patients diagnosed with HCC have limited treatment options and a poor overall prognosis, with a 5-year survival less than 15%. Preventing the development of HCC represents the most important strategy. However, current guidelines lack specific recommendations for primary prevention. Lifestyle factors may be central in the pathogenesis of HCC, and primary prevention strategies focused on lifestyle modification could represent an important approach to the prevention of HCC. Both experimental and epidemiologic studies have identified promising chemopreventive agents for the primary prevention of HCC.
Collapse
Affiliation(s)
- Tracey G. Simon
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA
| | - Andrew T. Chan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston MA,Broad Institute, Boston MA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston MA
| |
Collapse
|
32
|
Kutzner L, Esselun C, Franke N, Schoenfeld K, Eckert GP, Schebb NH. Effect of dietary EPA and DHA on murine blood and liver fatty acid profile and liver oxylipin pattern depending on high and low dietary n6-PUFA. Food Funct 2020; 11:9177-9191. [PMID: 33030169 DOI: 10.1039/d0fo01462a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intake of long-chain n3-polyunsaturated fatty acids (PUFA), which are associated with beneficial health effects, is low in the Western diet, while the portion of dietary n6-PUFA and hence the n6/n3-PUFA ratio is high. Strategies to improve the n3-PUFA status are n3-PUFA supplementation and/or lowering n6-PUFA intake. In the present study, mice were fed with two different sunflower oil-based control diets rich in linoleic (n6-high) or oleic acid (n6-low), either with low n3-PUFA content (∼0.02%) as control or with ∼0.6% eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). The n6-low diet had only little or no effect on levels of arachidonic acid (ARA) and its free oxylipins in liver tissue. Supplementation with EPA or DHA lowered ARA levels with an effect size of n6-high < n6-low. Blood cell %EPA + DHA reached >8% and >11% in n6-high and n6-low groups, respectively. Elevation of EPA levels and EPA derived oxylipins was most pronounced in n6-low groups in liver tissue, while levels of DHA and DHA derived oxylipins were generally unaffected by the background diet. While the n6-low diet alone had no effect on blood and liver tissue ARA levels or n3-PUFA status, a supplementation of EPA or DHA was more effective in combination with an n6-low diet. Thus, supplementation of long-chain n3-PUFA combined with a reduction of dietary n6-PUFA is the most effective way to improve the endogenous n3-PUFA status.
Collapse
Affiliation(s)
- Laura Kutzner
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany.
| | - Carsten Esselun
- Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Nicole Franke
- Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Kirsten Schoenfeld
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany.
| | - Gunter P Eckert
- Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany.
| |
Collapse
|
33
|
O'Connell TD, Mason RP, Budoff MJ, Navar AM, Shearer GC. Mechanistic insights into cardiovascular protection for omega-3 fatty acids and their bioactive lipid metabolites. Eur Heart J Suppl 2020; 22:J3-J20. [PMID: 33061864 PMCID: PMC7537803 DOI: 10.1093/eurheartj/suaa115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with well-controlled low-density lipoprotein cholesterol levels, but persistent high triglycerides, remain at increased risk for cardiovascular events as evidenced by multiple genetic and epidemiologic studies, as well as recent clinical outcome trials. While many trials of low-dose ω3-polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have shown mixed results to reduce cardiovascular events, recent trials with high-dose ω3-PUFAs have reignited interest in ω3-PUFAs, particularly EPA, in cardiovascular disease (CVD). REDUCE-IT demonstrated that high-dose EPA (4 g/day icosapent-ethyl) reduced a composite of clinical events by 25% in statin-treated patients with established CVD or diabetes and other cardiovascular risk factors. Outcome trials in similar statin-treated patients using DHA-containing high-dose ω3 formulations have not yet shown the benefits of EPA alone. However, there are data to show that high-dose ω3-PUFAs in patients with acute myocardial infarction had reduced left ventricular remodelling, non-infarct myocardial fibrosis, and systemic inflammation. ω3-polyunsaturated fatty acids, along with their metabolites, such as oxylipins and other lipid mediators, have complex effects on the cardiovascular system. Together they target free fatty acid receptors and peroxisome proliferator-activated receptors in various tissues to modulate inflammation and lipid metabolism. Here, we review these multifactorial mechanisms of ω3-PUFAs in view of recent clinical findings. These findings indicate physico-chemical and biological diversity among ω3-PUFAs that influence tissue distributions as well as disparate effects on membrane organization, rates of lipid oxidation, as well as various receptor-mediated signal transduction pathways and effects on gene expression.
Collapse
Affiliation(s)
- Timothy D O'Connell
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Richard Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew J Budoff
- Cardiovascular Division, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ann Marie Navar
- Cardiovascular Division, Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
| |
Collapse
|
34
|
Suzumura A, Terao R, Kaneko H. Protective Effects and Molecular Signaling of n-3 Fatty Acids on Oxidative Stress and Inflammation in Retinal Diseases. Antioxidants (Basel) 2020; 9:E920. [PMID: 32993153 PMCID: PMC7600094 DOI: 10.3390/antiox9100920] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation play crucial roles in the development and progression of retinal diseases. Retinal damage by various etiologies can result in retinopathy of prematurity (ROP), diabetic retinopathy (DR), and age-related macular degeneration (AMD). n-3 fatty acids are essential fatty acids and are necessary for homeostasis. They are important retinal membrane components and are involved in energy storage. n-3 fatty acids also have antioxidant and anti-inflammatory properties, and their suppressive effects against ROP, DR, and AMD have been previously evaluated. α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and their metabolites have been shown to alleviate retinal oxidative stress and inflammation involving various biological signaling pathways. In this review, we summarize the current understanding of the n-3 fatty acids effects on the mechanisms of these retinal diseases and how they exert their therapeutic effects, focusing on ALA, EPA, DHA, and their metabolites. This knowledge may provide new remedial strategies for n-3 fatty acids in the prevention and treatment of retinal diseases associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
35
|
Chen Y, Qiu X, Yang J. Comparing the In Vitro Antitumor, Antioxidant and Anti-Inflammatory Activities between Two New Very Long Chain Polyunsaturated Fatty Acids, Docosadienoic Acid (DDA) and Docosatrienoic Acid (DTA), and Docosahexaenoic Acid (DHA). Nutr Cancer 2020; 73:1697-1707. [PMID: 32781843 DOI: 10.1080/01635581.2020.1804949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Very long chain polyunsaturated fatty acids (VLCPUFAs) are widely used as nutraceutical supplements for human health. Recently, a high level of two new VLCPUFAs, docosadienoic acid (DDA, 22:2n-6) and docosatrienoic acid (DTA, 22:3n-3), was produced in oilseed crop Brassica carinata using a biotechnology approach. This study investigated the functional properties of these two VLCPUFAs in human cells. Compared to docosahexaenoic acid (DHA), the golden standard in evaluating the health-promoting activities of VLCPUFAs, both DDA and DTA exhibited comparable or even better antitumor and antioxidant effects against human breast cancer SK-BR-3 and MDA-MB-231 cells. Especially, DTA elicited much stronger antioxidant and pro-apoptotic effects than DHA. Furthermore, DDA and DTA showed strong anti-inflammatory effects in human macrophages differentiated from monocyte THP-1 cells through lowering the protein expression levels of pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interferon γ (IFN-γ), monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α (TNF-α). Future In Vivo and In Vivo studies are warranted to identify the mechanism of action (MOA) for the antitumor, antioxidant and anti-inflammatory functions of DDA and DTA and explore potential applications of these two VLCPUFAs as novel nutraceutical supplements in preventing inflammatory conditions, aging and even cancer.
Collapse
Affiliation(s)
- Yi Chen
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
36
|
Lipid Metabolism in Development and Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12061419. [PMID: 32486341 PMCID: PMC7352397 DOI: 10.3390/cancers12061419] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
: Metabolic reprogramming is critically involved in the development and progression of cancer. In particular, lipid metabolism has been investigated as a source of energy, micro-environmental adaptation, and cell signalling in neoplastic cells. However, the specific role of lipid metabolism dysregulation in hepatocellular carcinoma (HCC) has not been widely described yet. Alterations in fatty acid synthesis, β-oxidation, and cellular lipidic composition contribute to initiation and progression of HCC. The aim of this review is to elucidate the mechanisms by which lipid metabolism is involved in hepatocarcinogenesis and tumour adaptation to different conditions, focusing on the transcriptional aberrations with new insights in lipidomics and lipid zonation. This will help detect new putative therapeutic approaches in the second most frequent cause of cancer-related death.
Collapse
|
37
|
Suganuma H, McPhee AJ, Collins CT, Liu G, Leemaqz S, Andersen CC, Ikeda N, Ohkawa N, Taha AY, Gibson RA. Intravenous fat induces changes in PUFA and their bioactive metabolites: Comparison between Japanese and Australian preterm infants. Prostaglandins Leukot Essent Fatty Acids 2020; 156:102026. [PMID: 31753522 DOI: 10.1016/j.plefa.2019.102026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Oxylipins are biologically active signaling molecules that initiate and resolve inflammation; they are synthesized by oxidation of polyunsaturated fatty acids (PUFAs) and reflect PUFA intake and status. The PUFA intake in preterm infants differs between countries because of the type of lipid emulsions used and the PUFA content of breast milk. We compared total blood PUFA, free PUFA and their oxylipin levels in dried whole blood samples from preterm infants born in Australia and Japan. METHODS We enrolled 30 and 14 preterm infants born less than 31 weeks' gestation, from Adelaide and Japan respectively. Blood samples were obtained from cord blood, and on postnatal days 4, 7, 14 and 28. Total PUFAs were measured using gas chromatography, while free fatty acids and oxylipins were screened using ultra high-performance liquid chromatography mass spectroscopy. RESULTS Differences in the levels of blood PUFA between the centres were found which were in line with the timing and type of lipid emulsion administration. Significant differences in longitudinal levels were seen more often in free PUFA and their oxylipins than in total blood PUFA. This was particularly true for AA and DHA. In contrast, differences in the levels could be seen in total blood EPA, as well as in free EPA and its oxylipins. Further, levels of many free PUFA and their oxylipins were higher in Japanese infants than in Australian infants. CONCLUSION Differences in total and free fatty acids and unesterified oxylipins, were observed during the first weeks of life and between preterm infants born in Australia and Japan, which were likely a reflection of the type of lipid emulsion and timing of administration. The clinical significance of these changes remains to be explored.
Collapse
Affiliation(s)
- Hiroki Suganuma
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Discipline of Paediatrics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J McPhee
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Carmel T Collins
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Discipline of Paediatrics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ge Liu
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shalem Leemaqz
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Chad C Andersen
- Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Naho Ikeda
- Neonatal Center, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Natsuki Ohkawa
- Neonatal Center, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California Davis, California, United States of America
| | - Robert A Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
38
|
Shoieb SM, El-Ghiaty MA, Alqahtani MA, El-Kadi AO. Cytochrome P450-derived eicosanoids and inflammation in liver diseases. Prostaglandins Other Lipid Mediat 2020; 147:106400. [DOI: 10.1016/j.prostaglandins.2019.106400] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
|
39
|
Assessment of the Effect of Sorafenib on Omega-6 and Omega-3 Epoxyeicosanoid Formation in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21051875. [PMID: 32182938 PMCID: PMC7084535 DOI: 10.3390/ijms21051875] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death. The multikinase inhibitor sorafenib is widely used for systemic therapy in advanced HCC. Sorafenib might affect epoxyeicosanoids, as it is also a potent inhibitor of the soluble epoxide hydrolase (sEH), which catalyzes the conversion of epoxides derived from long-chain polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA) and omega-3 docosahexaenoic acid (DHA), into their corresponding diols. Experimental studies with AA-derived epoxyeicosatrienoic acids (EETs) showed that they can promote tumor growth and metastasis, while DHA-derived 19,20-epoxydocosapentaenoic acid (19,20-EDP) was shown to have anti-tumor activity in mice. In this pilot study, we assessed the effect of sorafenib treatment on the presence of lipid mediators, such as EETs, in blood of the patients with HCC using the lipidomics technology. We found a significant increase in 11,12-EET and 14,15-EET levels in HCC patients treated with sorafenib. Furthermore, while not significant in this small sample set, the data presented indicate that sorafenib can also increase the level of omega-3 DHA-derived 19,20-EDP. While the effect on EETs might hamper the anti-tumor effect of sorafenib, we hypothesize that supplementation of DHA in sorafenib-treated HCC patients could increase the level of 19,20-EDP and thereby enhance its anti-tumor effect.
Collapse
|
40
|
Docosahexaenoic acid slows inflammation resolution and impairs the quality of healed skin tissue. Clin Sci (Lond) 2019; 133:2345-2360. [DOI: 10.1042/cs20190753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 02/01/2023]
Abstract
Abstract
There is no consensus on the effects of omega-3 (ω-3) fatty acids (FA) on cutaneous repair. To solve this problem, we used 2 different approaches: (1) FAT-1 transgenic mice, capable of producing endogenous ω-3 FA; (2) wild-type (WT) mice orally supplemented with DHA-enriched fish oil. FAT-1 mice had higher systemic (serum) and local (skin tissue) ω-3 FA levels, mainly docosahexaenoic acid (DHA), in comparison with WT mice. FAT-1 mice had increased myeloperoxidase (MPO) activity and content of CXCL-1 and CXCL-2, and reduced IL-10 in the skin wound tissue three days after the wound induction. Inflammation was maintained by an elevated TNF-α concentration and presence of inflammatory cells and edema. Neutrophils and macrophages, isolated from FAT-1 mice, also produced increased TNF-α and reduced IL-10 levels. In these mice, the wound closure was delayed, with a wound area 6-fold bigger in relation with WT group, on the last day of analysis (14 days post-wounding). This was associated with poor orientation of collagen fibers and structural aspects in repaired tissue. Similarly, DHA group had a delay during late inflammatory phase. This group had increased TNF-α content and CD45+F4/80+ cells at the third day after skin wounding and increased concentrations of important metabolites derived from ω-3, like 18-HEPE, and reduced concentrations of those from ω-6 FA. In conclusion, elevated DHA content, achieved in both FAT-1 and DHA groups, slowed inflammation resolution and impaired the quality of healed skin tissue.
Collapse
|
41
|
Liebig M, Dannenberger D, Vollmar B, Abshagen K. n-3 PUFAs reduce tumor load and improve survival in a NASH-tumor mouse model. Ther Adv Chronic Dis 2019; 10:2040622319872118. [PMID: 31523414 PMCID: PMC6728677 DOI: 10.1177/2040622319872118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Background With 9.1% of all cancer deaths, hepatocellular carcinoma is the second leading cause of cancer deaths worldwide. Due to the increasing prevalence of metabolic syndrome, nonalcoholic fatty liver disease (NAFLD) has evolved into a major risk factor for hepatocellular carcinoma development. Herein, we investigated whether a dietary n-3 polyunsaturated fatty acid (PUFA) supplementation improves the outcome of progressive NAFLD. Methods Feeding three high-fat diets, differing in n-3 and n-6 PUFA contents and ratios (n-3/n-6: 1:8, 1:1, 5:1), the impact of n-3 PUFAs and n-3/n-6 PUFA ratios on NAFLD-related liver fibrosis and tumorigenesis was analyzed in 12- and 20-week-old streptozotocin/high-fat diet (STZ/HFD)-treated mice. Results Feeding of n-3 PUFA-rich diets (1:1 and 5:1) resulted in increased hepatic n-3 PUFA content and n-3/n-6 PUFA ratio with decreased hepatic lipid accumulation. In 20-week-old mice, n-3 PUFA-rich diets alleviated tumor load significantly, with reduced liver/body weight index, tumor size, and tumor number. Finally, these effects were accompanied by a significant improvement of survival of these mice. Conclusions Herein, we showed that increased n-3 PUFA content and n-3/n-6 PUFA ratios lead to improved survival and attenuated tumor progression in STZ/HFD-treated mice. Thus, n-3 PUFAs could be the basis for new therapeutic options against NAFLD-related tumorigenesis.
Collapse
Affiliation(s)
- Marie Liebig
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| | - Kerstin Abshagen
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| |
Collapse
|
42
|
Darwesh AM, Sosnowski DK, Lee TYT, Keshavarz-Bahaghighat H, Seubert JM. Insights into the cardioprotective properties of n-3 PUFAs against ischemic heart disease via modulation of the innate immune system. Chem Biol Interact 2019; 308:20-44. [DOI: 10.1016/j.cbi.2019.04.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
|
43
|
AlRaddadi EA, Winter T, Aukema HM, Miller DW. Effects of various dietary supplements on inflammatory processes in primary canine chondrocytes as a model of osteoarthritis. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2019; 83:206-217. [PMID: 31308593 PMCID: PMC6587887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 06/10/2023]
Abstract
The use of dietary supplements as an alternative treatment for joint-related pathologies such as osteoarthritis (OA) is increasing. However, there is little scientific evidence to support the intended use. The aim of this study was to evaluate the anti-inflammatory effects of creatine- and amino acid-based supplements in primary cultured canine chondrocytes (CnCs) as an in-vitro model of OA and compare the effects to more commonly used agents, such as the non-steroidal anti-inflammatory drug (NSAID), carprofen, and the joint supplement, glucosamine (GS). CnCs were stimulated with interleukin-1β (IL-1β) and the subsequent release of prostaglandin E2 (PGE2) and tumor necrosis factor alpha (TNFα) was measured using an enzyme-linked immunosorbent assay (ELISA). Changes in oxylipins were also assessed using high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). All compounds examined were able to significantly reduce the release of PGE2 and TNFα and were associated with reductions in cyclooxygenase-2 (COX-2) expression and nuclear factor-kappaB (NF-κB) phosphorylation. The creatine- and amino acids-based supplements also altered the profile of oxylipins produced. All compounds examined were less effective at reducing the release of PGE2 than carprofen. Carprofen significantly increased release of TNFα from CnCs, however, while the other agents reduced TNFα release. This study suggests that creatine- and amino acid-based supplements may have a beneficial role in preventing inflammation within the joint and that further studies are warranted.
Collapse
Affiliation(s)
- Eman A AlRaddadi
- Department of Pharmacology and Therapeutics, The Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3J7 (AlRaddadi, Miller); Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Winter, Aukema)
| | - Tanja Winter
- Department of Pharmacology and Therapeutics, The Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3J7 (AlRaddadi, Miller); Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Winter, Aukema)
| | - Harold M Aukema
- Department of Pharmacology and Therapeutics, The Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3J7 (AlRaddadi, Miller); Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Winter, Aukema)
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, The Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3J7 (AlRaddadi, Miller); Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Winter, Aukema)
| |
Collapse
|
44
|
Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples. Molecules 2019; 24:molecules24081639. [PMID: 31027298 PMCID: PMC6515351 DOI: 10.3390/molecules24081639] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Oxylipins are potent lipid mediators derived from polyunsaturated fatty acids, which play important roles in various biological processes. Being important regulators and/or markers of a wide range of normal and pathological processes, oxylipins are becoming a popular subject of research; however, the low stability and often very low concentration of oxylipins in samples are a significant challenge for authors and continuous improvement is required in both the extraction and analysis techniques. In recent years, the study of oxylipins has been directly related to the development of new technological platforms based on mass spectrometry (LC–MS/MS and gas chromatography–mass spectrometry (GC–MS)/MS), as well as the improvement in methods for the extraction of oxylipins from biological samples. In this review, we systematize and compare information on sample preparation procedures, including solid-phase extraction, liquid–liquid extraction from different biological tissues.
Collapse
|
45
|
Wachtel N, Rohwer N, Pietzner A, Loew A, Weylandt KH. Omega-3 fatty acid supplementation – A possible dietary adjunct to enhance immune checkpoint inhibition therapy in cancer? ACTA ACUST UNITED AC 2019. [DOI: 10.3233/jcb-180013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nikolaus Wachtel
- Department of Medical, Division of Gastroenterology, Campus Virchow-Klinikum, Charité University Medicine, Berlin, Germany
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Germany
| | - Nadine Rohwer
- Department of Medical, Division of Gastroenterology, Campus Virchow-Klinikum, Charité University Medicine, Berlin, Germany
| | - Anne Pietzner
- Department of Medical, Division of Gastroenterology, Oncology, Hematology, Rheumatology and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
| | - Andreas Loew
- Department of Medical, Division of Gastroenterology, Oncology, Hematology, Rheumatology and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
| | - Karsten H. Weylandt
- Department of Medical, Division of Gastroenterology, Campus Virchow-Klinikum, Charité University Medicine, Berlin, Germany
- Department of Medical, Division of Gastroenterology, Oncology, Hematology, Rheumatology and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
46
|
Enguita M, Razquin N, Pamplona R, Quiroga J, Prieto J, Fortes P. The cirrhotic liver is depleted of docosahexaenoic acid (DHA), a key modulator of NF-κB and TGFβ pathways in hepatic stellate cells. Cell Death Dis 2019; 10:14. [PMID: 30622239 PMCID: PMC6325107 DOI: 10.1038/s41419-018-1243-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Liver cirrhosis results from chronic hepatic damage and is characterized by derangement of the organ architecture with increased liver fibrogenesis and defective hepatocellular function. It frequently evolves into progressive hepatic insufficiency associated with high mortality unless liver transplantation is performed. We have hypothesized that the deficiency of critical nutrients such as essential omega-3 fatty acids might play a role in the progression of liver cirrhosis. Here we evaluated by LC-MS/MS the liver content of omega-3 docosahexaenoic fatty acid (DHA) in cirrhotic patients and investigated the effect of DHA in a murine model of liver injury and in the response of hepatic stellate cells (HSCs) (the main producers of collagen in the liver) to pro-fibrogenic stimuli. We found that cirrhotic livers exhibit a marked depletion of DHA and that this alteration correlates with the progression of the disease. Administration of DHA exerts potent anti-fibrogenic effects in an acute model of liver damage. Studies with HSCs show that DHA inhibits fibrogenesis more intensely than other omega-3 fatty acids. Data from expression arrays revealed that DHA blocks TGFβ and NF-κB pathways. Mechanistically, DHA decreases late, but not early, SMAD3 nuclear accumulation and inhibits p65/RelA-S536 phosphorylation, which is required for HSC survival. Notably, DHA increases ADRP expression, leading to the formation of typical quiescence-associated perinuclear lipid droplets. In conclusion, a marked depletion of DHA is present in the liver of patients with advanced cirrhosis. DHA displays anti-fibrogenic activities on HSCs targeting NF-κB and TGFβ pathways and inducing ADPR expression and quiescence in these cells.
Collapse
Affiliation(s)
- Mónica Enguita
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (IRB), Lleida, Spain
| | - Jorge Quiroga
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Liver Unit, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
| | | | - Puri Fortes
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain. .,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
47
|
Li J, Chen CY, Arita M, Kim K, Li X, Zhang H, Kang JX. An omega-3 polyunsaturated fatty acid derivative, 18-HEPE, protects against CXCR4-associated melanoma metastasis. Carcinogenesis 2018; 39:1380-1388. [PMID: 30184109 PMCID: PMC7191087 DOI: 10.1093/carcin/bgy117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/23/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022] Open
Abstract
Melanoma has a high propensity to metastasize and exhibits a poor response to classical therapies. Dysregulation of the chemokine receptor gene CXCR4 is associated with melanoma progression, and although n-3 polyunsaturated fatty acids (PUFAs) are known to be beneficial for melanoma prevention, the underlying mechanism of this effect is unclear. Here, we used the n-3 fatty acid desaturase (Fat-1) transgenic mouse model of endogenous n-3 PUFA synthesis to investigate the influence of elevated n-3 PUFA levels in a mouse model of metastatic melanoma. We found that relative to wild-type (WT) mice, Fat-1 mice exhibited fewer pulmonary metastatic colonies and improved inflammatory indices, including reduced serum tumor necrosis factor alpha (TNF-α) levels and pulmonary myeloperoxidase activity. Differential PUFA metabolites in serum were considered a key factor to alter cancer cell travelling to lung, and we found that n-6 PUFAs such as arachidonic acid induced CXCR4 protein expression although n-3 PUFAs such as eicosapentaenoic acid (EPA) decreased CXCR4 levels. In addition, serum levels of the bioactive EPA metabolite, 18-HEPE, were elevated in Fat-1 mice relative to WT mice, and 18-HEPE suppressed CXCR4 expression in B16-F0 cells. Moreover, relative to controls, numbers of pulmonary metastatic colonies were reduced in WT mice receiving intravenous injections either of 18-HEPE or 18-HEPE-pretreated melanoma cells. Our results indicate that 18-HEPE is a potential anticancer metabolite that mediates, at least in part, the preventive effect of n-3 PUFA on melanoma metastasis.
Collapse
Affiliation(s)
- Jieping Li
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Clinic Medical Laboratory, General Hospital of Fujian Corps of CAPF, Fuzhou, China
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kuijin Kim
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiangyong Li
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongman Zhang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
McCarty MF, DiNicolantonio JJ. Minimizing Membrane Arachidonic Acid Content as a Strategy for Controlling Cancer: A Review. Nutr Cancer 2018; 70:840-850. [DOI: 10.1080/01635581.2018.1470657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - James J. DiNicolantonio
- Preventive Cardiology Department, St. Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
49
|
Lee HJ, Han YM, An JM, Kang EA, Park YJ, Cha JY, Hahm KB. Role of omega-3 polyunsaturated fatty acids in preventing gastrointestinal cancers: current status and future perspectives. Expert Rev Anticancer Ther 2018; 18:1189-1203. [DOI: 10.1080/14737140.2018.1524299] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ho-Jae Lee
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| | - Young-Min Han
- Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Jeong Min An
- CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, Korea
| | - Eun A. Kang
- CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, Korea
| | | | - Ji-Young Cha
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, Korea
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
50
|
Athuluri-Divakar SK, Hoshida Y. Generic chemoprevention of hepatocellular carcinoma. Ann N Y Acad Sci 2018; 1440:23-35. [PMID: 30221358 DOI: 10.1111/nyas.13971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
Chronic fibrotic liver disease caused by viral or metabolic etiologies is a high-risk condition for developing hepatocellular carcinoma (HCC). Even after curative treatment of early-stage HCC tumor, the carcinogenic microenvironment persists in the remnant diseased liver and supports the development of de novo HCC tumors (de novo HCC recurrence). Therefore, prevention of HCC development in patients at risk of not only first-primary but also second-primary HCC tumors is theoretically the most impactful strategy to improve patient prognosis. However, no such therapy has been established to date. One major challenge is the identification of clinically relevant targets that can be achieved by utilizing the reverse-engineering strategy of chemoprevention discovery, which integrates omics information from clinical cohorts with completed follow-up for cancer development. Clinical and experimental studies have suggested etiology-specific and generic candidate HCC chemoprevention strategies, including statins, antidiabetic drugs, selective molecular targeted agents, and dietary and nutritional substances. Clinical testing of the candidate compounds can be cost-effectively performed by combining it with HCC risk biomarker evaluation to specify the target patient population most likely to benefit from the therapy. Nontoxic, generic agents will have broad clinical applicability across the diverse HCC etiologies and clinical contexts and are expected to substantially improve the still dismal prognosis of HCC.
Collapse
Affiliation(s)
- Sai Krishna Athuluri-Divakar
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|