1
|
Gu Q, Liu J, Shen LL. FXR activation reduces the formation of macrophage foam cells and atherosclerotic plaque, possibly by down regulating hepatic lipase in macrophages. FEBS Open Bio 2025; 15:311-323. [PMID: 39601316 PMCID: PMC11788749 DOI: 10.1002/2211-5463.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Macrophages are the most important immune cells affecting the formation of atherosclerotic plaque. Nevertheless, the mechanisms that promote formation of foamy macrophages during atherogenesis remain poorly understood. This study explored the effects of Farnesoid X receptor (FXR) and hepatic lipase (HL, encoded by LIPC) on atherogenesis, particularly in foamy macrophage formation. A luciferase reporter assay indicated that FXR could bind to the LIPC promoter and inhibit LIPC transcription. FXR agonist GW4064 decreased HL expression, foam cell formation, and increased the expression of FXR downstream genes and polarization to M2 in ox-LDL-induced THP-1 and U937 foam cells. In addition, GW4064 exerted anti-atherosclerotic effects in ApoE-/- mice, manifested as decreased serum cholesterol and triglyceride levels, and alleviated atherosclerotic plaque formation. Collectively, FXR exerted anti-atherosclerotic effects, possibly by negatively regulating HL expression in macrophages.
Collapse
Affiliation(s)
- Qiang Gu
- Institute of Cardiovascular Surgery, Xinqiao HospitalSecond Affiliated Hospital of the Army Military Medical UniversityChongqingChina
| | - Jia Liu
- Department of PathologyChongqing University Cancer HospitalChina
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC)Chongqing University Cancer HospitalChina
| | - Li Li Shen
- Department of PathologyChongqing University Cancer HospitalChina
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC)Chongqing University Cancer HospitalChina
| |
Collapse
|
2
|
Kirsch A, Gindlhuber J, Zabini D, Osto E. Bile acids and incretins as modulators of obesity-associated atherosclerosis. Front Cardiovasc Med 2025; 11:1510148. [PMID: 39834741 PMCID: PMC11743266 DOI: 10.3389/fcvm.2024.1510148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Obesity is one of the major global health concerns of the 21st century, associated with many comorbidities such as type 2 diabetes mellitus (T2DM), metabolic dysfunction-associated steatotic liver disease, and early and aggressive atherosclerotic cardiovascular disease, which is the leading cause of death worldwide. Bile acids (BAs) and incretins are gut hormones involved in digestion and absorption of fatty acids, and insulin secretion, respectively. In recent years BAs and incretins are increasingly recognized as key signaling molecules, which target multiple tissues and organs, beyond the gastro-intestinal system. Moreover, incretin-based therapy has revolutionized the treatment of T2DM and obesity. This mini review highlights the current knowledge about dysregulations in BA homeostasis in obesity with a special focus on atherosclerosis as well as athero-modulating roles of incretins and currently available incretin-based therapies.
Collapse
Affiliation(s)
- Andrijana Kirsch
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Juergen Gindlhuber
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Diana Zabini
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
- Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
4
|
Gao K, Wang PX, Mei X, Yang T, Yu K. Untapped potential of gut microbiome for hypertension management. Gut Microbes 2024; 16:2356278. [PMID: 38825779 PMCID: PMC11152106 DOI: 10.1080/19490976.2024.2356278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.
Collapse
Affiliation(s)
- Kan Gao
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pu Xiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Mei
- School of Pharmacy, Institute of Materia Medica, North Sichuan Medical College, Nanchang, Sichuan, China
| | - Tao Yang
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Kai Yu
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Wang C, Ma Q, Yu X. Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clin Interv Aging 2023; 18:1749-1767. [PMID: 37885621 PMCID: PMC10599251 DOI: 10.2147/cia.s431220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Bile acids play a crucial role in promoting intestinal nutrient absorption and biliary cholesterol excretion, thereby protecting the liver from cholesterol accumulation and bile acid toxicity. Additionally, bile acids can bind to specific nuclear and membrane receptors to regulate energy expenditure and specific functions of particular tissues. Vascular calcification refers to the pathological process of calcium-phosphate deposition in blood vessel walls, which serves as an independent predictor for cardiovascular adverse events. In addition to aging, this pathological change is associated with aging-related diseases such as atherosclerosis, hypertension, chronic kidney disease, diabetes mellitus, and osteoporosis. Emerging evidence suggests a close association between the bile acid network and these aforementioned vascular calcification-associated conditions. Several bile acids have been proven to participate in calcium-phosphate metabolism, affecting the transdifferentiation of vascular smooth muscle cells and thus influencing vascular calcification. Targeting the bile acid network shows potential for ameliorating these diseases and their concomitant vascular calcification by regulating pathways such as energy metabolism, inflammatory response, oxidative stress, and cell differentiation. Here, we present a summary of the metabolism and functions of the bile acid network and aim to provide insights into the current research on the profound connections between the bile acid network and these vascular calcification-associated diseases, as well as the therapeutic potential.
Collapse
Affiliation(s)
- Cui Wang
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
6
|
Yntema T, Koonen DPY, Kuipers F. Emerging Roles of Gut Microbial Modulation of Bile Acid Composition in the Etiology of Cardiovascular Diseases. Nutrients 2023; 15:nu15081850. [PMID: 37111068 PMCID: PMC10141989 DOI: 10.3390/nu15081850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite advances in preventive measures and treatment options, cardiovascular disease (CVD) remains the number one cause of death globally. Recent research has challenged the traditional risk factor profile and highlights the potential contribution of non-traditional factors in CVD, such as the gut microbiota and its metabolites. Disturbances in the gut microbiota have been repeatedly associated with CVD, including atherosclerosis and hypertension. Mechanistic studies support a causal role of microbiota-derived metabolites in disease development, such as short-chain fatty acids, trimethylamine-N-oxide, and bile acids, with the latter being elaborately discussed in this review. Bile acids represent a class of cholesterol derivatives that is essential for intestinal absorption of lipids and fat-soluble vitamins, plays an important role in cholesterol turnover and, as more recently discovered, acts as a group of signaling molecules that exerts hormonal functions throughout the body. Studies have shown mediating roles of bile acids in the control of lipid metabolism, immunity, and heart function. Consequently, a picture has emerged of bile acids acting as integrators and modulators of cardiometabolic pathways, highlighting their potential as therapeutic targets in CVD. In this review, we provide an overview of alterations in the gut microbiota and bile acid metabolism found in CVD patients, describe the molecular mechanisms through which bile acids may modulate CVD risk, and discuss potential bile-acid-based treatment strategies in relation to CVD.
Collapse
Affiliation(s)
- Tess Yntema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Debby P Y Koonen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
7
|
Deng B, Tao L, Wang Y. Natural products against inflammation and atherosclerosis: Targeting on gut microbiota. Front Microbiol 2022; 13:997056. [PMID: 36532443 PMCID: PMC9751351 DOI: 10.3389/fmicb.2022.997056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) has become recognized as a crucial element in preserving human fitness and influencing disease consequences. Commensal and pathogenic gut microorganisms are correlated with pathological progress in atherosclerosis (AS). GM may thus be a promising therapeutic target for AS. Natural products with cardioprotective qualities might improve the inflammation of AS by modulating the GM ecosystem, opening new avenues for researches and therapies. However, it is unclear what components of natural products are useful and what the actual mechanisms are. In this review, we have summarized the natural products relieving inflammation of AS by regulating the GM balance and active metabolites produced by GM.
Collapse
Affiliation(s)
- Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyu Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Panzitt K, Zollner G, Marschall HU, Wagner M. Recent advances on FXR-targeting therapeutics. Mol Cell Endocrinol 2022; 552:111678. [PMID: 35605722 DOI: 10.1016/j.mce.2022.111678] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
The bile acid receptor FXR has emerged as a bona fide drug target for chronic cholestatic and metabolic liver diseases, ahead of all non-alcoholic fatty liver disease (NAFLD). FXR is highly expressed in the liver and intestine and activation at both sites differentially contributes to its desired metabolic effects. Unrestricted FXR activation, however, also comes along with undesired effects such as a pro-atherogenic lipid profile, pruritus and hepatocellular toxicity under certain conditions. Several pre-clinical studies have confirmed the potency of FXR activation for cholestatic and metabolic liver diseases, but overall it remains still open whether selective activation of intestinal FXR is advantageous over pan-FXR activation and whether restricted or modulated FXR activation can limit some of the side effects. Even more, FXR antagonist also bear the potential as intestinal-selective drugs in NAFLD models. In this review we will discuss the molecular prerequisites for FXR activation, pan-FXR activation and intestinal FXR in/activation from a therapeutic point of view, different steroidal and non-steroidal FXR agonists, ways to restrict FXR activation and finally what we have learned from pre-clinical models and clinical trials with different FXR therapeutics.
Collapse
Affiliation(s)
- Katrin Panzitt
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Gernot Zollner
- Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria.
| |
Collapse
|
9
|
Shulpekova Y, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Synitsyna A, Izotov A, Butkova T, Shulpekova N, Lapina N, Nechaev V, Kardasheva S, Okhlobystin A, Ivashkin V. The Role of Bile Acids in the Human Body and in the Development of Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113401. [PMID: 35684337 PMCID: PMC9182388 DOI: 10.3390/molecules27113401] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Bile acids are specific and quantitatively important organic components of bile, which are synthesized by hepatocytes from cholesterol and are involved in the osmotic process that ensures the outflow of bile. Bile acids include many varieties of amphipathic acid steroids. These are molecules that play a major role in the digestion of fats and the intestinal absorption of hydrophobic compounds and are also involved in the regulation of many functions of the liver, cholangiocytes, and extrahepatic tissues, acting essentially as hormones. The biological effects are realized through variable membrane or nuclear receptors. Hepatic synthesis, intestinal modifications, intestinal peristalsis and permeability, and receptor activity can affect the quantitative and qualitative bile acids composition significantly leading to extrahepatic pathologies. The complexity of bile acids receptors and the effects of cross-activations makes interpretation of the results of the studies rather difficult. In spite, this is a very perspective direction for pharmacology.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Maria Zharkova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Pyotr Tkachenko
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Alexandra Synitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | | | - Natalia Lapina
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Nechaev
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Svetlana Kardasheva
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexey Okhlobystin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| |
Collapse
|
10
|
Ishimwe JA, Dola T, Ertuglu LA, Kirabo A. Bile acids and salt-sensitive hypertension: a role of the gut-liver axis. Am J Physiol Heart Circ Physiol 2022; 322:H636-H646. [PMID: 35245132 PMCID: PMC8957326 DOI: 10.1152/ajpheart.00027.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
Abstract
Salt-sensitivity of blood pressure (SSBP) affects 50% of the hypertensive and 25% of the normotensive populations. Importantly, SSBP is associated with increased risk for mortality in both populations independent of blood pressure. Despite its deleterious effects, the pathogenesis of SSBP is not fully understood. Emerging evidence suggests a novel role of bile acids in salt-sensitive hypertension and that they may play a crucial role in regulating inflammation and fluid volume homeostasis. Mechanistic evidence implicates alterations in the gut microbiome, the epithelial sodium channel (ENaC), the farnesoid X receptor, and the G protein-coupled bile acid receptor TGR5 in bile acid-mediated effects on cardiovascular function. The mechanistic interplay between excess dietary sodium-induced alterations in the gut microbiome and immune cell activation, bile acid signaling, and whether such interplay may contribute to the etiology of SSBP is still yet to be defined. The main goal of this review is to discuss the potential role of bile acids in the pathogenesis of cardiovascular disease with a focus on salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thanvi Dola
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
11
|
Song X, Zou X, Ge W, Hou C, Cao Z, Zhao H, Zhang T, Jin L, Fu Y, Kong W, Yan C, Cai J, Wang J. Blocking FcγRIIB in Smooth Muscle Cells Reduces Hypertension. Circ Res 2021; 129:308-325. [PMID: 33980031 DOI: 10.1161/circresaha.120.318447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antihypertensive Agents/pharmacology
- Blood Pressure/drug effects
- Case-Control Studies
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- HEK293 Cells
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/prevention & control
- Immunoglobulin G/blood
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Xiaomin Song
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Xuan Zou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Weipeng Ge
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Cuiliu Hou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Zhujie Cao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Tiantian Zhang
- Department Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (T.Z.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Ling Jin
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases (L.J., J.C.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yi Fu
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.F., W.K.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education (Y.F., W.K.)
| | - Wei Kong
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.F., W.K.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education (Y.F., W.K.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, Medicine, University of Rochester School of Medicine and Dentistry, NY (C.Y.)
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases (L.J., J.C.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| |
Collapse
|
12
|
Chinetti G, Neels JG. Roles of Nuclear Receptors in Vascular Calcification. Int J Mol Sci 2021; 22:6491. [PMID: 34204304 PMCID: PMC8235358 DOI: 10.3390/ijms22126491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is defined as an inappropriate accumulation of calcium depots occurring in soft tissues, including the vascular wall. Growing evidence suggests that vascular calcification is an actively regulated process, sharing similar mechanisms with bone formation, implicating both inhibitory and inducible factors, mediated by osteoclast-like and osteoblast-like cells, respectively. This process, which occurs in nearly all the arterial beds and in both the medial and intimal layers, mainly involves vascular smooth muscle cells. In the vascular wall, calcification can have different clinical consequences, depending on the pattern, localization and nature of calcium deposition. Nuclear receptors are transcription factors widely expressed, activated by specific ligands that control the expression of target genes involved in a multitude of pathophysiological processes, including metabolism, cancer, inflammation and cell differentiation. Some of them act as drug targets. In this review we describe and discuss the role of different nuclear receptors in the control of vascular calcification.
Collapse
Affiliation(s)
- Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06204 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| |
Collapse
|
13
|
Zhu R, Tu Y, Chang J, Xu H, Li JC, Liu W, Do AD, Zhang Y, Wang J, Li B. The Orphan Nuclear Receptor Gene NR0B2 Is a Favorite Prognosis Factor Modulated by Multiple Cellular Signal Pathways in Human Liver Cancers. Front Oncol 2021; 11:691199. [PMID: 34055653 PMCID: PMC8162207 DOI: 10.3389/fonc.2021.691199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liver cancer is a leading cause of cancer death worldwide, and novel prognostic factor is needed for early detection and therapeutic responsiveness monitoring. The orphan nuclear receptor NR0B2 was reported to suppress liver cancer development in a mouse model, and its expression levels were reduced in liver cancer tissues and cell lines due to hypermethylation within its promoter region. However, it is not clear if NR0B2 expression is associated with cancer survival or disease progression and how NR0B2 gene expression is regulated at the molecular level. METHODS Multiple cancer databases were utilized to explore NR0B2 gene expression profiles crossing a variety of human cancers, including liver cancers, on several publicly assessable bioinformatics platforms. NR0B2 gene expression with or without kinase inhibitor treatment was analyzed using the qPCR technique, and NR0B2 protein expression was assessed in western blot assays. Two human hepatocellular carcinoma cell lines HepG2 and Huh7, were used in these experiments. NR0B2 gene activation was evaluated using NR0B2 promoter-driven luciferase reporter assays. RESULTS NR0B2 gene is predominantly expressed in liver tissue crossing human major organs or tissues, but it is significantly downregulated in liver cancers. NR0B2 expression is mostly downregulated in most common cancers but also upregulated in a few intestinal cancers. NR0B2 gene expression significantly correlated with patient overall survival status in multiple human malignancies, including lung, kidney, breast, urinary bladder, thyroid, colon, and head-neck cancers, as well as liposarcoma and B-cell lymphoma. In liver cancer patients, higher NR0B2 expression is associated with favorite relapse-free and progression-free survival, especially in Asian male patients with viral infection history. In addition, NR0B2 expression negatively correlated with immune infiltration and PIK3CA and PIK3CG gene expression in liver cancer tissues. In HepG2 and Huh7 cells, NR0B2 expression at the transcription level was drastically reduced after MAPK inhibition but was significantly enhanced after PI3K inhibition. CONCLUSION NR0B2 gene expression is altered mainly in most human malignancies and significantly reduced in liver cancers. NR0B2 is a prognosis factor for patient survival in liver cancers. MAPK and PI3K oppositely modulate NR0B2 expression, and NR0B2 gene upregulation might serve as a therapeutic responsiveness factor in anti-PI3K therapy for liver cancer.
Collapse
Affiliation(s)
- Runzhi Zhu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,Zhejiang University Cancer Center, Hangzhou, China,Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Runzhi Zhu, ; Benyi Li,
| | - Yanjie Tu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jingxia Chang
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Haixia Xu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jean C. Li
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Ahn-Dao Do
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jinhu Wang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,Zhejiang University Cancer Center, Hangzhou, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Runzhi Zhu, ; Benyi Li,
| |
Collapse
|
14
|
The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021; 226:107867. [PMID: 33895191 DOI: 10.1016/j.pharmthera.2021.107867] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid X receptor (FXR) influences bile acid homeostasis and the progression of various diseases. While the roles of hepatic and intestinal FXR in enterohepatic transport of bile acids and metabolic diseases were reviewed previously, the pathophysiological functions of FXR in non-gastrointestinal cells and tissues have received little attention. Thus, the roles of FXR in the liver, immune system, nervous system, cardiovascular system, kidney, and pancreas beyond the gastrointestinal system are reviewed herein. Gain of FXR function studies in non-gastrointestinal tissues reveal that FXR signaling improves various experimentally-induced metabolic and immune diseases, including non-alcoholic fatty liver disease, type 2 diabetes, primary biliary cholangitis, sepsis, autoimmune diseases, multiple sclerosis, and diabetic nephropathy, while loss of FXR promotes regulatory T cells production, protects the brain against ischemic injury, atherosclerosis, and inhibits pancreatic tumor progression. The downstream pathways regulated by FXR are diverse and tissue/cell-specific, and FXR has both ligand-dependent and ligand-independent activities, all of which may explain why activation and inhibition of FXR signaling could produce paradoxical or even opposite effects in some experimental disease models. FXR signaling is frequently compromised by diseases, especially during the progressive stage, and rescuing FXR expression may provide a promising strategy for boosting the therapeutic effect of FXR agonists. Tissue/cell-specific modulation of non-gastrointestinal FXR could influence the treatment of various diseases. This review provides a guide for drug discovery and clinical use of FXR modulators.
Collapse
|
15
|
Zhang R, Ma WQ, Fu MJ, Li J, Hu CH, Chen Y, Zhou MM, Gao ZJ, He YL. Overview of bile acid signaling in the cardiovascular system. World J Clin Cases 2021; 9:308-320. [PMID: 33521099 PMCID: PMC7812903 DOI: 10.12998/wjcc.v9.i2.308] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are classically known to play a vital role in the metabolism of lipids and in absorption. It is now well established that BAs act as signaling molecules, activating different receptors (such as farnesoid X receptor, vitamin D receptor, Takeda G-protein-coupled receptor 5, sphingosine-1-phosphate, muscarinic receptors, and big potassium channels) and participating in the regulation of energy homeostasis and lipid and glucose metabolism. In addition, increased BAs can impair cardiovascular function in liver cirrhosis. Approximately 50% of patients with cirrhosis develop cirrhotic cardiomyopathy. Exposure to high concentrations of hydrophobic BAs has been shown to be related to adverse effects with respect to vascular tension, endothelial function, arrhythmias, coronary atherosclerotic heart disease, and heart failure. The BAs in the serum BA pool have relevant through their hydrophobicity, and the lipophilic BAs are more harmful to the heart. Interestingly, ursodeoxycholic acid is a hydrophilic BA, and it is used as a therapeutic drug to reverse and protect the harmful cardiac effects caused by hydrophobic elevated BAs. In order to elucidate the mechanism of BAs and cardiovascular function, abundant experiments have been conducted in vitro and in vivo. The aim of this review was to explore the mechanism of BAs in the cardiovascular system.
Collapse
Affiliation(s)
- Rou Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Wen-Qi Ma
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Meng-Jun Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Chun-Hua Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Mi-Mi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhi-Jie Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ying-Li He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
16
|
Xia Y, Zhang F, Zhao S, Li Y, Chen X, Gao E, Xu X, Xiong Z, Zhang X, Zhang J, Zhao H, Wang W, Wang H, Guo Y, Liu Y, Li C, Wang S, Zhang L, Yan W, Tao L. Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodelling and dysfunction. Cardiovasc Res 2019; 114:1335-1349. [PMID: 29668847 DOI: 10.1093/cvr/cvy093] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Aims The farnesoid X receptor (FXR) is a member of the metabolic nuclear receptor superfamily that plays a critical regulatory role in cardiovascular physiology/pathology. However, the role of systemic FXR activation in the chronic phase in myocardial infarction (MI)-induced cardiac remodelling and dysfunction remains unclear. In this study, we aimed to elucidate the role of long-term FXR activation on post-MI cardiac remodelling and dysfunction. Methods and results Mice underwent either MI surgery or sham operation. At 1 week after MI, both sham and MI mice were gavaged with 25 mg/kg/d of a synthetic FXR agonist (GW4064) or a vehicle control for 7 weeks, and cardiac performance was assessed by consecutive echocardiography studies. Administration of GW4064 significantly increased left ventricular ejection fraction at 4 weeks and 8 weeks after MI (both P < 0.01). Moreover, GW4064 treatment increased angiogenesis and mitochondrial biogenesis, reduced cardiomyocyte loss and inflammation, and ameliorated cardiac remodelling as evidenced by heart weight, lung weight, atrial natriuretic peptide/brain natriuretic peptide levels, and myocardial fibrosis at 8 weeks post-MI. At the molecular level, GW4064 significantly increased FXR mRNA expression and transcriptional activity in heart tissue. Moreover, over-expression of myocardial FXR failed to exert significant cardioprotection in vivo, indicating that GW4064 improved post-MI heart remodelling and function independent of myocardial FXR expression/activity. Among the four down-stream soluble molecules of FXR, plasma adiponectin was most significantly increased by GW4064. In cultured adipocytes, GW4064 increased mRNA levels and protein expression of adiponectin. Conditioned medium of GW4064-treated adipocytes activated AMPK-PGC-1α signalling and reduced hypoxia-induced cardiomyocyte apoptosis, all of which were attenuated by an adiponectin neutralizing anti-body. More importantly, when knocking-out adiponectin in mice, the cardioprotective effects of GW4064 were attenuated. Conclusions We are the first to show that FXR agonism ameliorated post-MI cardiac dysfunction and remodelling by stimulating adiponectin secretion. Thus, we demonstrated that FXR agonism is a potential therapeutic strategy in post-MI heart failure.
Collapse
Affiliation(s)
- Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Shihao Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China.,Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya 572013, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Xiyao Chen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xinyue Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Jinglong Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Wei Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Helin Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Yanjie Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| |
Collapse
|
17
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
18
|
Pan Y, Zhou F, Song Z, Huang H, Chen Y, Shen Y, Jia Y, Chen J. Oleanolic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin (Ang)-(1-7) upregulation. Biomed Pharmacother 2018; 97:1694-1700. [PMID: 29793333 DOI: 10.1016/j.biopha.2017.11.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis, the leading cause of cardiovascular diseases in the world, is a chronic inflammatory disorder characterized by the dysfunction of arteries. Oleanolic acid (OA) is a bioactive nature product which exists in various plants and herbs. Previous studies have demonstrated that OA was involved in numerous of biological processes, including atherosclerosis. However, the exact mechanisms of the anti-atherosclerosis effects of OA remain unknown. Here, in our study, we analyzed the effects and possible underlying mechanisms of OA in atherosclerosis depending a cell model and an animal model of atherosclerosis. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL, 100 μg/mL) for 24 h to establish an atherosclerotic cell model. New Zealand white (NZW) rabbits were fed with high-fat (HF) diets for three months to establish an atherosclerotic animal model. Then, cell viability and expression of cytokines (ANG, NO, eNOS, IL-1β, TNF-α, and IL-6) were measured with CCK-8 assay and ELISA kits, cell apoptosis and cell cycle distribution were analyzed by flow cytometry in the atherosclerotic cell model. Results showed that ox-LDL induced effects of anti-proliferation, cytokines alterations, and cell apoptosis were abolished by the application of OA or Ang (1-7). Further study indicated that OA increased the expression of ANG by upregulating the FXR expression in the ox-LDL induced HUVECs arthrosclerosis model. And the in vivo experiment in the HF diet induced animal model suggested that OA may inhibit the development of atherosclerosis. The atherosclerosis of aortas was assessed by Hematoxylin Eosin (HE), Oil Red O and Picrosirius Red staining; the expression levels of total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HDL-C) were determined by the fully automatic biochemical analyzer, in the atherosclerotic animal model. All the results showed that OA treatment improved the cell viability in the cell model, inhibited the atherosclerosis development in the animal model. OA play as an anti-atherosclerosis agent in both the cell model and animal model by upregulating the production of Angiotensin (Ang)-(1-7) through FXR.
Collapse
Affiliation(s)
- Yunyun Pan
- Department of Pharmaceutical, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China; Department of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhenhua Song
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Huiping Huang
- Department of Pharmaceutical, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China; Department of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yong Chen
- Department of Pharmaceutical, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China; Department of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yonggang Shen
- Department of Pharmaceutical, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China; Department of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Jisheng Chen
- Department of Pharmaceutical, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China; Department of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| |
Collapse
|
19
|
Voiosu A, Wiese S, Voiosu T, Bendtsen F, Møller S. Bile acids and cardiovascular function in cirrhosis. Liver Int 2017; 37:1420-1430. [PMID: 28222247 DOI: 10.1111/liv.13394] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 02/13/2023]
Abstract
Cirrhotic cardiomyopathy and the hyperdynamic syndrome are clinically important complications of cirrhosis, but their exact pathogenesis is still partly unknown. Experimental models have proven the cardiotoxic effects of bile acids and recent studies of their varied receptor-mediated functions offer new insight into their involvement in cardiovascular dysfunction in cirrhosis. Bile acid receptors such as farnesoid X-activated receptor and TGR5 are currently under investigation as potential therapeutic targets in a variety of pathological conditions. These receptors have also recently been identified in cardiomyocytes, vascular endothelial cells and smooth muscle cells where they seem to play an important role in cellular metabolism. Chronic cholestasis leading to abnormal levels of circulating bile acids alters the normal signalling pathways and contributes to the development of profound cardiovascular disturbances. This review summarizes the evidence regarding the role of bile acids and their receptors in the generation of cardiovascular dysfunction in cirrhosis.
Collapse
Affiliation(s)
- Andrei Voiosu
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Signe Wiese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Theodor Voiosu
- Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Flemming Bendtsen
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Gastro Unit, Medical Division, Hvidovre Hospital, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Dopico AM, Bukiya AN. Regulation of Ca 2+-Sensitive K + Channels by Cholesterol and Bile Acids via Distinct Channel Subunits and Sites. CURRENT TOPICS IN MEMBRANES 2017; 80:53-93. [PMID: 28863822 DOI: 10.1016/bs.ctm.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cholesterol (CLR) conversion into bile acids (BAs) in the liver constitutes the major pathway for CLR elimination from the body. Moreover, these steroids regulate each other's metabolism. While the roles of CLR and BAs in regulating metabolism and tissue function are well known, research of the last two decades revealed the existence of specific protein receptors for CLR or BAs in tissues with minor contribution to lipid metabolism, raising the possibility that these lipids serve as signaling molecules throughout the body. Among other lipids, CLR and BAs regulate ionic current mediated by the activity of voltage- and Ca2+-gated, K+ channels of large conductance (BK channels) and, thus, modulate cell physiology and participate in tissue pathophysiology. Initial work attributed modification of BK channel function by CLR or BAs to the capability of these steroids to directly interact with bilayer lipids and thus alter the physicochemical properties of the bilayer with eventual modification of BK channel function. Based on our own work and that of others, we now review evidence that supports direct interactions between CLR or BA and specific BK protein subunits, and the consequence of such interactions on channel activity and organ function, with a particular emphasis on arterial smooth muscle. For each steroid type, we will also briefly discuss several mechanisms that may underlie modification of channel steady-state activity. Finally, we will present novel computational data that provide a chemical basis for differential recognition of CLR vs lithocholic acid by distinct BK channel subunits and recognition sites.
Collapse
Affiliation(s)
- Alex M Dopico
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Anna N Bukiya
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
21
|
Abstract
Infections have been linked to the development of cardiovascular disease and atherosclerosis. Findings from the past decade have identified microbial ecosystems residing in different habitats of the human body that contribute to metabolic and cardiovascular-related disorders. In this Review, we describe three pathways by which microbiota might affect atherogenesis. First, local or distant infections might cause a harmful inflammatory response that aggravates plaque development or triggers plaque rupture. Second, metabolism of cholesterol and lipids by gut microbiota can affect the development of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based on microbiota.
Collapse
Affiliation(s)
- Annika Lindskog Jonsson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Bruna Stråket 16, 41345 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Bruna Stråket 16, 41345 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| |
Collapse
|
22
|
Zhang R, Ran H, Peng L, Zhang Y, Shen W, Sun T, Cao F, Chen Y. Farnesoid X receptor regulates vasoreactivity via Angiotensin II type 2 receptor and the kallikrein-kinin system in vascular endothelial cells. Clin Exp Pharmacol Physiol 2016; 43:327-34. [PMID: 26710942 DOI: 10.1111/1440-1681.12535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/02/2023]
Abstract
Vascular farnesoid X receptor (FXR) ligands have been shown previously to regulate vascular tension. This study investigated whether FXR activation regulates vasoreactivity via the angiotensin II (Ang II) type 2 receptor (AT2 R) and the kallikrein-kinin system in rat aortic vascular endothelial cells (RAECs). Protein abundances of Ang II type 1 receptor (AT1 R), AT2 R, bradykinin type 1/2 receptor (B1 R, B2 R), small heterodimer partner-1 (SHP-1) and the endothelial and inducible NO synthases (eNOS/iNOS) were analysed by Western blotting. Real-time quantitative polymerase chain reaction was performed to analyse expression of eNOS and iNOS mRNA. Kallikrein activity and bradykinin content were assayed using spectrophotometry and a bradykinin assay kit, respectively. Aortic vasoconstriction and vasodilation were also investigated following FXR activation in the presence or absence of AT2 R and B2 R blockade. It was found that the FXR agonists GW4064 and INT-747, in a dose-dependent manner, increased the protein abundance of AT2 R, B2 R and SHP-1 and decreased that of AT1 R. AT2 R blockade with PD123319 reversed effects of FXR agonists on kallikrein activity and levels of SHP-1, B2 R and bradykinin. Moreover, it was found that GW4064 and INT-747 upregulated expression of eNOS and enhanced NOS activity, which attenuated vasoconstriction and induced vasodilation, respectively. These effects were partially reversed by PD123319 and by B2 R blockade with HOE140. The current work suggests that FXR regulates vascular tension by controlling the eNOS-NO system via activation of a pathway mediated by AT2 R-B2 R pathway in RAECs.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Haihong Ran
- Department of Geriatric Haematology, Chinese PLA General Hospital, Beijing, China
| | - Liang Peng
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Wenbin Shen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Ting Sun
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Shimizu H, Hagio M, Iwaya H, Tsuneki I, Lee JY, Fukiya S, Yokota A, Miyazaki H, Hara H, Ishizuka S. Deoxycholic acid is involved in the proliferation and migration of vascular smooth muscle cells. J Nutr Sci Vitaminol (Tokyo) 2016; 60:450-4. [PMID: 25866311 DOI: 10.3177/jnsv.60.450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Obesity is increasingly becoming associated with increased risk of atherosclerosis. Serum levels of the bile acid deoxycholic acid (DCA) are elevated in mice with obesity induced by a high-fat (HF) diet. Therefore, we investigated the influence of DCA on the functions of vascular smooth muscle cells (VSMCs) because the initiation and progression of atherosclerosis are associated with VSMC proliferation and migration. DCA induced c-jun N-terminal kinase (JNK) activation whereas a JNK inhibitor prevented DCA-induced VSMC proliferation and migration. Based on these findings, we examined whether DCA promotes the expression of platelet-derived growth factor β-receptor (PDGFRβ) that has a c-Jun binding site in its promoter region. The mRNA and protein expression levels of PDGFRβ were upregulated in VSMCs after a 24- and 48-h incubation with DCA, respectively. The effects of PDGF such as proliferation and migration of VSMCs were promoted after a 48-h incubation with DCA despite the absence of DCA during PDGF stimulation. These findings suggest that elevated serum concentrations of DCA are involved in the pathogenesis of atherosclerosis in HF-induced obesity.
Collapse
Affiliation(s)
- Hidehisa Shimizu
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Taurochenodeoxycholate relaxes rat mesenteric arteries through activating eNOS: Comparing with glycochenodeoxycholate and tauroursodeoxycholate. Eur J Pharmacol 2016; 774:118-26. [DOI: 10.1016/j.ejphar.2016.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 01/09/2023]
|
25
|
Ye L, Jiang Y, Zuo X. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure. Biochem Biophys Res Commun 2015; 467:164-70. [PMID: 26392308 DOI: 10.1016/j.bbrc.2015.09.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. METHODS AND RESULTS Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague-Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. CONCLUSIONS The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH.
Collapse
Affiliation(s)
- Lusi Ye
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015, China
| | - Ying Jiang
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.
| |
Collapse
|
26
|
Li C, Li J, Weng X, Lan X, Chi X. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2015; 9:507-516.e7. [DOI: 10.1016/j.jash.2015.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/20/2022]
|
27
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
28
|
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
29
|
Jiang Y, Jin J, Iakova P, Hernandez JC, Jawanmardi N, Sullivan E, Guo GL, Timchenko NA, Darlington GJ. Farnesoid X receptor directly regulates xenobiotic detoxification genes in the long-lived Little mice. Mech Ageing Dev 2013; 134:407-15. [PMID: 24007921 DOI: 10.1016/j.mad.2013.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022]
Abstract
Activation of xenobiotic metabolism pathways has been linked to lifespan extension in different models of aging. However, the mechanisms underlying activation of xenobiotic genes remain largely unknown. Here we showed that although farnesoid X receptor (FXR, Nr1h4) mRNA levels do not change significantly, FXR protein levels are elevated in the livers of the long-lived Little mice, leading to increased DNA binding activity of FXR. Hepatic FXR expression is sex-dependent in wild-type mice but not in Little mice, implying that up-regulation of FXR might be dependent on the reduction of growth hormone in Little mice. Growth hormone treatment decreased hepatic expression of FXR and xenobiotic genes Abcb1a, Fmo3 and Gsta2 in both wild-type and Little mice, suggesting an association between FXR and xenobiotic gene expression. We found that Abcb1a is transactivated by FXR via direct binding of FXR/retinoid X receptor α (RXRα) heterodimer to a response element at the proximal promoter. FXR also positively controls Fmo3 and Gsta2 expression through direct interaction with the response elements in these genes. Our study demonstrates that xenobiotic genes are direct transcriptional targets of FXR and suggests that FXR signaling may play a critical role in the lifespan extension observed in Little mice.
Collapse
Affiliation(s)
- Yanjun Jiang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kurakula K, Hamers AAJ, de Waard V, de Vries CJM. Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'. Mol Cell Endocrinol 2013; 368:71-84. [PMID: 22664910 DOI: 10.1016/j.mce.2012.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
Abstract
Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in atherosclerosis, which is a multifactorial disease of the vessel wall. Various cell types are involved in this chronic inflammatory pathology in which multiple cellular processes and numerous genes are dysregulated. Systemic risk factors for atherosclerosis are among others adverse blood lipid profiles, enhanced circulating cytokine levels, as well as increased blood pressure. Since many Nuclear Receptors modulate lipid profiles or regulate blood pressure they indirectly affect atherosclerosis. In the present review, we focus on the functional involvement of Nuclear Receptors within the atherosclerotic vessel wall, more specifically on their modulation of cellular functions in endothelial cells, smooth muscle cells and macrophages. Collectively, this overview shows that most of the Nuclear Receptors are athero-protective in atherosclerotic lesions.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
Stojancevic M, Stankov K, Mikov M. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2012; 26:631-7. [PMID: 22993736 PMCID: PMC3441172 DOI: 10.1155/2012/538452] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/30/2011] [Indexed: 12/14/2022]
Abstract
The most important function of the intestinal mucosa is to form a barrier that separates luminal contents from the intestine. Defects in the intestinal epithelial barrier have been observed in several intestinal disorders such as inflammatory bowel disease (IBD). Recent studies have identified a number of factors that contribute to development of IBD including environmental triggers, genetic factors, immunoregulatory defects and microbial exposure. The current review focuses on the influence of the farnesoid X receptor (FXR) on the inhibition of intestinal inflammation in patients with IBD. The development and investigation of FXR agonists provide strong support for the regulatory role of FXR in mucosal innate immunity. Activation of FXR in the intestinal tract decreases the production of proinflammatory cytokines such as interleukin (IL) 1-beta, IL-2, IL-6, tumour necrosis factor-alpha and interferon-gamma, thus contributing to a reduction in inflammation and epithelial permeability. In addition, intestinal FXR activation induces the transcription of multiple genes involved in enteroprotection and the prevention of bacterial translocation in the intestinal tract. These data suggest that FXR agonists are potential candidates for exploration as a novel therapeutic strategy for IBD in humans.
Collapse
Affiliation(s)
- Maja Stojancevic
- Department of Pharmacology, University of Novi Sad, Hajduk Veljkova, Serbia.
| | | | | |
Collapse
|
32
|
Porez G, Prawitt J, Gross B, Staels B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res 2012; 53:1723-37. [PMID: 22550135 DOI: 10.1194/jlr.r024794] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dyslipidemia is an important risk factor for cardiovascular disease (CVD) and atherosclerosis. When dyslipidemia coincides with other metabolic disorders such as obesity, hypertension, and glucose intolerance, defined as the metabolic syndrome (MS), individuals present an elevated risk to develop type 2 diabetes (T2D) as well as CVD. Because the MS epidemic represents a growing public health problem worldwide, the development of therapies remains a major challenge. Alterations of bile acid pool regulation in T2D have revealed a link between bile acid and metabolic homeostasis. The bile acid receptors farnesoid X receptor (FXR) and TGR5 both regulate lipid, glucose, and energy metabolism, rendering them potential pharmacological targets for MS therapy. This review discusses the mechanisms of metabolic regulation by FXR and TGR5 and the utility relevance of natural and synthetic modulators of FXR and TGR5 activity, including bile acid sequestrants, in the treatment of the MS.
Collapse
|
33
|
Khurana S, Raina H, Pappas V, Raufman JP, Pallone TL. Effects of deoxycholylglycine, a conjugated secondary bile acid, on myogenic tone and agonist-induced contraction in rat resistance arteries. PLoS One 2012; 7:e32006. [PMID: 22359652 PMCID: PMC3281111 DOI: 10.1371/journal.pone.0032006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/17/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bile acids (BAs) regulate cardiovascular function via diverse mechanisms. Although in both health and disease serum glycine-conjugated BAs are more abundant than taurine-conjugated BAs, their effects on myogenic tone (MT), a key determinant of systemic vascular resistance (SVR), have not been examined. METHODOLOGY/PRINCIPAL FINDINGS Fourth-order mesenteric arteries (170-250 µm) isolated from Sprague-Dawley rats were pressurized at 70 mmHg and allowed to develop spontaneous constriction, i.e., MT. Deoxycholylglycine (DCG; 0.1-100 µM), a glycine-conjugated major secondary BA, induced reversible, concentration-dependent reduction of MT that was similar in endothelium-intact and -denuded arteries. DCG reduced the myogenic response to stepwise increase in pressure (20 to 100 mmHg). Neither atropine nor the combination of L-NAME (a NOS inhibitor) plus indomethacin altered DCG-mediated reduction of MT. K(+) channel blockade with glibenclamide (K(ATP)), 4-aminopyradine (K(V)), BaCl(2) (K(IR)) or tetraethylammonium (TEA, K(Ca)) were also ineffective. In Fluo-2-loaded arteries, DCG markedly reduced vascular smooth muscle cell (VSM) Ca(2+) fluorescence (∼50%). In arteries incubated with DCG, physiological salt solution (PSS) with high Ca(2+) (4 mM) restored myogenic response. DCG reduced vascular tone and VSM cytoplasmic Ca(2+) responses (∼50%) of phenylephrine (PE)- and Ang II-treated arteries, but did not affect KCl-induced vasoconstriction. CONCLUSION In rat mesenteric resistance arteries DCG reduces pressure- and agonist-induced vasoconstriction and VSM cytoplasmic Ca(2+) responses, independent of muscarinic receptor, NO or K(+) channel activation. We conclude that BAs alter vasomotor responses, an effect favoring reduced SVR. These findings are likely pertinent to vascular dysfunction in cirrhosis and other conditions associated with elevated serum BAs.
Collapse
Affiliation(s)
- Sandeep Khurana
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Atherosclerosis is the leading cause of illness and death. Therapeutic strategies aimed at reducing cholesterol plasma levels have shown efficacy in either reducing progression of atherosclerotic plaques and atherosclerosis-related mortality. The farnesoid-X-receptor (FXR) is a member of metabolic nuclear receptors (NRs) superfamily activated by bile acids. In entero-hepatic tissues, FXR functions as a bile acid sensor regulating bile acid synthesis, detoxification and excretion. In the liver FXR induces the expression of an atypical NR, the small heterodimer partner, which subsequently inhibits the activity of hepatocyte nuclear factor 4α repressing the transcription of cholesterol 7a-hydroxylase, the critical regulatory gene in bile acid synthesis. In the intestine FXR induces the release of fibroblast growth factor 15 (FGF15) (or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signalling to inhibit bile acid synthesis. In rodents, FXR activation decreases bile acid synthesis and lipogenesis and increases lipoprotein clearance, and regulates glucose homeostasis by reducing liver gluconeogenesis. FXR exerts counter-regulatory effects on macrophages, vascular smooth muscle cells and endothelial cells. FXR deficiency in mice results in a pro-atherogenetic lipoproteins profile and insulin resistance but FXR−/– mice fail to develop any detectable plaques on high-fat diet. Synthetic FXR agonists protect against development of aortic plaques formation in murine models characterized by pro-atherogenetic lipoprotein profile and accelerated atherosclerosis, but reduce HDL levels. Because human and mouse lipoprotein metabolism is modulated by different regulatory pathways the potential drawbacks of FXR ligands on HDL and bile acid synthesis need to addressed in relevant clinical settings.
Collapse
Affiliation(s)
- Andrea Mencarelli
- Dipartimento di Medicina Clinica e Sperimentale, Università Degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|
35
|
Abstract
Research over the last decade has uncovered roles for bile acids (BAs) that extend beyond their traditional functions in regulating lipid digestion and cholesterol metabolism. BAs are now recognized as signaling molecules that interact with both plasma membrane and nuclear receptors. Emerging evidence indicates that by interacting with these receptors, BAs regulate their own synthesis, glucose and energy homeostasis, and other important physiological events. Herein, we provide a comprehensive review of the actions of BAs on cardiovascular function. In the heart and the systemic circulation, BAs interact with plasma membrane G-protein-coupled receptors, for example, TGR5 and muscarinic receptors, and nuclear receptors, for example, the farnesoid (FXR) and pregnane (PXR) xenobiotic receptors. BA receptors are expressed in cardiovascular tissue, however, the mechanisms underlying BA-mediated regulation of cardiovascular function remain poorly understood. BAs reduce heart rate by regulating channel conductance and calcium dynamics in sino-atrial and ventricular cardiomyocytes and regulate vascular tone via both endothelium-dependent and -independent mechanisms. End-stage liver disease, obstructive jaundice, and intrahepatic cholestasis of pregnancy are prominent conditions in which elevated serum BAs alter vascular dynamics. This review focuses on BAs as newly recognized signaling molecules that modulate cardiovascular function.
Collapse
Affiliation(s)
- Sandeep Khurana
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
36
|
Chao F, Gong W, Zheng Y, Li Y, Huang G, Gao M, Li J, Kuruba R, Gao X, Li S, He F. Upregulation of scavenger receptor class B type I expression by activation of FXR in hepatocyte. Atherosclerosis 2010; 213:443-8. [DOI: 10.1016/j.atherosclerosis.2010.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022]
|
37
|
Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. NUCLEAR RECEPTOR SIGNALING 2010; 8:e005. [PMID: 21383957 PMCID: PMC3049226 DOI: 10.1621/nrs.08005] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 10/14/2010] [Indexed: 12/12/2022]
Abstract
Originally called retinoid X receptor interacting protein 14 (RIP14), the farnesoid X receptor (FXR) was renamed after the ability of its rat form to bind supra-physiological concentrations of farnesol. In 1999 FXR was de-orphanized since primary bile acids were identified as natural ligands. Strongly expressed in the liver and intestine, FXR has been shown to be the master transcriptional regulator of several entero-hepatic metabolic pathways with relevance to the pathophysiology of conditions such as cholestasis, fatty liver disease, cholesterol gallstone disease, intestinal inflammation and tumors. Furthermore, given the importance of FXR in the gut-liver axis feedbacks regulating lipid and glucose homeostasis, FXR modulation appears to have great input in diseases such as metabolic syndrome and diabetes. Exciting results from several cellular and animal models have provided the impetus to develop synthetic FXR ligands as novel pharmacological agents. Fourteen years from its discovery, FXR has gone from bench to bedside; a novel nuclear receptor ligand is going into clinical use.
Collapse
Affiliation(s)
- Salvatore Modica
- Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | |
Collapse
|
38
|
Hageman J, Herrema H, Groen AK, Kuipers F. A role of the bile salt receptor FXR in atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30:1519-28. [PMID: 20631352 DOI: 10.1161/atvbaha.109.197897] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study reviews current insights into the role of bile salts and bile salt receptors on the progression and regression of atherosclerosis. Bile salts have emerged as important modifiers of lipid and energy metabolism. At the molecular level, bile salts regulate lipid and energy homeostasis mainly via the bile salt receptors FXR and TGR5. Activation of FXR has been shown to improve plasma lipid profiles, whereas Fxr(-/-) mice have increased plasma triglyceride and very-low-density lipoprotein levels. Nevertheless, high-density lipoprotein cholesterol levels are increased in these mice, suggesting that FXR has both anti- and proatherosclerotic properties. Interestingly, there is increasing evidence for a role of FXR in "nonclassical" bile salt target tissues, eg, vasculature and macrophages. In these tissues, FXR has been shown to influence vascular tension and regulate the unloading of cholesterol from foam cells, respectively. Recent publications have provided insight into the antiinflammatory properties of FXR in atherosclerosis. Bile salt signaling via TGR5 might regulate energy homeostasis, which could serve as an attractive target to increase energy expenditure and weight loss. Interventions aiming to increase cholesterol turnover (eg, by bile salt sequestration) significantly improve plasma lipid profiles and diminish atherosclerosis in animal models. Bile salt metabolism and bile salt signaling pathways represent attractive therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jurre Hageman
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, Hanzeplein 1, 9713 EZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Miyazaki-Anzai S, Levi M, Kratzer A, Ting TC, Lewis LB, Miyazaki M. Farnesoid X receptor activation prevents the development of vascular calcification in ApoE-/- mice with chronic kidney disease. Circ Res 2010; 106:1807-17. [PMID: 20431060 PMCID: PMC2909765 DOI: 10.1161/circresaha.109.212969] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Vascular calcification is highly associated with cardiovascular morbidity and mortality, especially in patients with chronic kidney disease. The nuclear receptor farnesoid X receptor (FXR) has been implicated in the control of lipid, carbohydrate and bile acid metabolism in several cell types. Although recent studies have shown that FXR is also expressed in vascular smooth muscle cells, its physiological role in vasculature tissue remains obscure. OBJECTIVE Here, we have examined the role of FXR in vascular calcification. METHODS AND RESULTS The FXR gene, a bile acid nuclear receptor, was highly induced during osteogenic differentiation of bovine calcifying vascular cells (CVCs) and in the aorta of apolipoprotein (Apo)E(-/-) mice with chronic kidney disease which are common tissue culture and mouse model, respectively, for aortic calcification. FXR activation by a synthetic FXR agonist, 6alpha-ethyl chenodeoxycholic acid (INT-747) inhibited phosphate induced-mineralization and triglyceride accumulation in CVCs. FXR dominant negative expression augmented mineralization of CVCs and blocked the anticalcific effect of INT-747 whereas VP16FXR that is a constitutively active form reduced mineralization of CVCs. INT-747 treatment also increased phosphorylated c-Jun N-terminal kinase (JNK). SP600125 (specific JNK inhibitor) significantly induced mineralization of CVCs and alkaline phosphatase expression, suggesting that the anticalcific effect of INT-747 is attributable to JNK activation. We also found that INT-747 ameliorates chronic kidney disease induced-vascular calcification in 5/6 nephrectomized ApoE(-/-) mice without affecting the development of atherosclerosis. CONCLUSIONS These observations provide direct evidence that FXR is a key signaling component in regulation of vascular osteogenic differentiation and, thus representing a promising target for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver VA Medical Center and University of Colorado Denver, Denver, Colorado
| | - Moshe Levi
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver VA Medical Center and University of Colorado Denver, Denver, Colorado
| | - Adelheid Kratzer
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver VA Medical Center and University of Colorado Denver, Denver, Colorado
| | - Tabitha C. Ting
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver VA Medical Center and University of Colorado Denver, Denver, Colorado
| | - Linda B. Lewis
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver VA Medical Center and University of Colorado Denver, Denver, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver VA Medical Center and University of Colorado Denver, Denver, Colorado
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Denver VA Medical Center and University of Colorado Denver, Denver, Colorado
| |
Collapse
|
40
|
Meng Z, Wang Y, Wang L, Jin W, Liu N, Pan H, Liu L, Wagman L, Forman BM, Huang W. FXR regulates liver repair after CCl4-induced toxic injury. Mol Endocrinol 2010; 24:886-97. [PMID: 20211986 PMCID: PMC3284774 DOI: 10.1210/me.2009-0286] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 02/04/2010] [Indexed: 01/08/2023] Open
Abstract
Liver repair is key to resuming homeostasis and preventing fibrogenesis as well as other liver diseases. Farnesoid X receptor (FXR, NR1H4) is an emerging liver metabolic regulator and cell protector. Here we show that FXR is essential to promote liver repair after carbon tetrachloride (CCl(4))-induced injury. Expression of hepatic FXR in wild-type mice was strongly suppressed by CCl(4) treatment, and bile acid homeostasis was disrupted. Liver injury was induced in both wild-type and FXR(-/-) mice by CCl(4), but FXR(-/-) mice had more severe defects in liver repair than wild-type mice. FXR(-/-) livers had a decreased peak of regenerative DNA synthesis and reduced induction of genes involved in liver regeneration. Moreover, FXR(-/-) mice displayed increased mortality and enhanced hepatocyte deaths. During the early stages of liver repair after CCl(4) treatment, we observed overproduction of TNFalpha and a strong decrease of phosphorylation and DNA-binding activity of signal transducer and activator of transcription 3 in livers from FXR(-/-) mice. Exogenous expression of a constitutively active signal transducer and activator of transcription 3 protein in FXR(-/-) liver effectively reduced hepatocyte death and liver injury after CCl(4) treatment. These results suggest that FXR is required to regulate normal liver repair by promoting regeneration and preventing cell death.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Gene Regulation and Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 89:147-91. [PMID: 19126757 DOI: 10.1152/physrev.00010.2008] [Citation(s) in RCA: 1222] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an increased risk of cardiovascular disease and diabetes. The metabolic syndrome can be defined as a cluster of cardiovascular disease risk factors including visceral obesity, insulin resistance, dyslipidemia, increased blood pressure, and hypercoagulability. The farnesoid X receptor (FXR) belongs to the superfamily of ligand-activated nuclear receptor transcription factors. FXR is activated by bile acids, and FXR-deficient (FXR(-/-)) mice display elevated serum levels of triglycerides and high-density lipoprotein cholesterol, demonstrating a critical role of FXR in lipid metabolism. In an opposite manner, activation of FXR by bile acids (BAs) or nonsteroidal synthetic FXR agonists lowers plasma triglycerides by a mechanism that may involve the repression of hepatic SREBP-1c expression and/or the modulation of glucose-induced lipogenic genes. A cross-talk between BA and glucose metabolism was recently identified, implicating both FXR-dependent and FXR-independent pathways. The first indication for a potential role of FXR in diabetes came from the observation that hepatic FXR expression is reduced in animal models of diabetes. While FXR(-/-) mice display both impaired glucose tolerance and decreased insulin sensitivity, activation of FXR improves hyperglycemia and dyslipidemia in vivo in diabetic mice. Finally, a recent report also indicates that BA may regulate energy expenditure in a FXR-independent manner in mice, via activation of the G protein-coupled receptor TGR5. Taken together, these findings suggest that modulation of FXR activity and BA metabolism may open new attractive pharmacological approaches for the treatment of the metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Philippe Lefebvre
- Institut National de la Sante et de la Recherche Medicale, Lille, France
| | | | | | | | | |
Collapse
|
42
|
Prawitt J, Caron S, Staels B. How to modulate FXR activity to treat the Metabolic Syndrome. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.ddmec.2010.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Kida T, Murata T, Hori M, Ozaki H. Chronic stimulation of farnesoid X receptor impairs nitric oxide sensitivity of vascular smooth muscle. Am J Physiol Heart Circ Physiol 2008; 296:H195-201. [PMID: 19011043 DOI: 10.1152/ajpheart.00679.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily that is highly expressed in enterohepatic tissue, is implicated in bile acid, lipid, and glucose metabolisms. Although recent studies showed that FXR is also expressed in vascular endothelial cells and smooth muscle cells, its physiological and/or pathological roles in vasculature tissue remain unknown. The aim of this study is to examine the chronic effect of synthetic FXR agonist GW4064 on vascular contraction and endothelium-dependent relaxation using tissue culture procedure. In cultured rabbit mesenteric arteries, the treatment with 0.1-10 microM GW4064 for 7 days did not influence vascular contractility induced by high K(+) (15-65 mM), norepinephrine (0.1-100 microM), and endothelin-1 (0.1-100 nM). However, the chronic treatment with GW4064 (1-10 microM for 7 days) dose dependently impaired endothelium-dependent relaxation induced by substance P (0.1-30 nM). In hematoxylin-eosin cross sectioning and en face immunostaining, GW4064 had no effects on the morphology of endothelial and smooth muscle cells. In endothelium-denuded arteries treated with GW4064 (1-10 microM) for 7 days, 3 nM-100 microM sodium nitroprusside-induced vasorelaxation, but not membrane-permeable cGMP analog 8-bromoguanosine-cGMP (8-Br-cGMP; 1-100 microM)-induced vasorelaxation, was significantly impaired. In these GW4064-treated arteries, 1 muM sodium nitroprusside-induced intracellular cGMP elevations were impaired. In RT-PCR, any changes were detected in mRNA expression level of alpha(1)- and beta(1)-subunit of soluble guanylyl cyclase. These results suggest that chronic stimulation of FXR impairs endothelium-dependent relaxation, which is due to decreased sensitivity of smooth muscle cells to nitric oxide.
Collapse
Affiliation(s)
- Taiki Kida
- Dept. of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The Univ. of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
44
|
He F, Zhang Q, Kuruba R, Gao X, Li J, Li Y, Gong W, Jiang Y, Xie W, Li S. Upregulation of decorin by FXR in vascular smooth muscle cells. Biochem Biophys Res Commun 2008; 372:746-51. [PMID: 18514055 PMCID: PMC2526039 DOI: 10.1016/j.bbrc.2008.05.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/20/2008] [Indexed: 12/31/2022]
Abstract
Decorin is a member of the family of small leucine-rich proteoglycans that are present in blood vessels and synthesized by vascular smooth muscle cells (VSMCs). Decorin plays complex roles in both normal vascular physiology and the pathogenesis of various types of vascular disorders. However, the mechanisms of regulation of decorin expression in vasculature are not clearly understood. Particularly little information is available about a role of nuclear receptors in the regulation of decorin expression. In the present study, we report that activation of vascular FXR by a specific ligand resulted in upregulation of decorin at the levels of both mRNA and protein. FXR appears to induce decorin expression at a transcriptional level because (1) upregulation of decorin mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) decorin promoter activity was significantly increased by activation of FXR. Functional analysis of human decorin promoter identified an imperfect inverted repeat DNA motif, IR8 (-2313TGGTCAtagtgtcaTGACCT-2294), as a likely FXR-responsive element that is involved in decorin regulation.
Collapse
MESH Headings
- Cells, Cultured
- DNA-Binding Proteins/agonists
- DNA-Binding Proteins/metabolism
- Decorin
- Extracellular Matrix Proteins/genetics
- Gene Expression Regulation
- Humans
- Isoxazoles/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Proteoglycans/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repetitive Sequences, Nucleic Acid
- Response Elements/drug effects
- Sequence Analysis, DNA
- Transcription Factors/agonists
- Transcription Factors/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Fengtian He
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Qiuhong Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ramalinga Kuruba
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang Gao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yong Li
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wei Gong
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yu Jiang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|