1
|
Jie H, Zhang J, Wu S, Yu L, Li S, Dong B, Yan F. Interplay between energy metabolism and NADPH oxidase-mediated pathophysiology in cardiovascular diseases. Front Pharmacol 2025; 15:1503824. [PMID: 39867658 PMCID: PMC11757639 DOI: 10.3389/fphar.2024.1503824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Sustained production of reactive oxygen species (ROS) and an imbalance in the antioxidant system have been implicated in the development of cardiovascular diseases (CVD), especially when combined with diabetes, hypercholesterolemia, and other metabolic disorders. Among them, NADPH oxidases (NOX), including NOX1-5, are major sources of ROS that mediate redox signaling in both physiological and pathological processes, including fibrosis, hypertrophy, and remodeling. Recent studies have demonstrated that mitochondria produce more proteins and energy in response to adverse stress, corresponding with an increase in superoxide radical anions. Novel NOX4-mediated modulatory mechanisms are considered crucial for maintaining energy metabolism homeostasis during pathological states. In this review, we integrate the latest data to elaborate on the interactions between oxidative stress and energy metabolism in various CVD, aiming to elucidate the higher incidence of CVD in individuals with metabolic disorders. Furthermore, the correlations between NOX and ferroptosis, based on energy metabolism, are preliminarily discussed. Further discoveries of these mechanisms might promote the development of novel therapeutic drugs targeting NOX and their crosstalk with energy metabolism, potentially offering efficient management strategies for CVD.
Collapse
Affiliation(s)
- Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuzhen Wu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Luyao Yu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengnan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Hughes MC, Ramos SV, Brahmbhatt AN, Turnbull PC, Polidovitch NN, Garibotti MC, Schlattner U, Hawke TJ, Simpson JA, Backx PH, Perry CG. Mitohormesis during advanced stages of Duchenne muscular dystrophy reveals a redox-sensitive creatine pathway that can be enhanced by the mitochondrial-targeting peptide SBT-20. Redox Biol 2024; 76:103319. [PMID: 39178732 PMCID: PMC11388197 DOI: 10.1016/j.redox.2024.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Mitochondrial creatine kinase (mtCK) regulates the "fast" export of phosphocreatine to support cytoplasmic phosphorylation of ADP to ATP which is more rapid than direct ATP export. Such "creatine-dependent" phosphate shuttling is attenuated in several muscles, including the heart, of the D2.mdx mouse model of Duchenne muscular dystrophy at only 4 weeks of age. However, the degree to which creatine-dependent and -independent systems of phosphate shuttling progressively worsen or potentially adapt in a hormetic manner throughout disease progression remains unknown. Here, we performed a series of proof-of-principle investigations designed to determine how phosphate shuttling pathways worsen or adapt in later disease stages in D2.mdx (12 months of age). We also determined whether changes in creatine-dependent phosphate shuttling are linked to alterations in mtCK thiol redox state. In permeabilized muscle fibres prepared from cardiac left ventricles, we found that 12-month-old male D2.mdx mice have reduced creatine-dependent pyruvate oxidation and elevated complex I-supported H2O2 emission (mH2O2). Surprisingly, creatine-independent ADP-stimulated respiration was increased and mH2O2 was lowered suggesting that impairments in the faster mtCK-mediated phosphocreatine export system resulted in compensation of the alternative slower pathway of ATP export. The apparent impairments in mtCK-dependent bioenergetics occurred independent of mtCK protein content but were related to greater thiol oxidation of mtCK and a more oxidized cellular environment (lower GSH:GSSG). Next, we performed a proof-of-principle study to determine whether creatine-dependent bioenergetics could be enhanced through chronic administration of the mitochondrial-targeting, ROS-lowering tetrapeptide, SBT-20. We found that 12 weeks of daily treatment with SBT-20 (from day 4-∼12 weeks of age) increased respiration and lowered mH2O2 only in the presence of creatine in D2.mdx mice without affecting calcium-induced mitochondrial permeability transition activity. In summary, creatine-dependent mitochondrial bioenergetics are attenuated in older D2.mdx mice in relation to mtCK thiol oxidation that seem to be countered by increased creatine-independent phosphate shuttling as a unique form of mitohormesis. Separate results demonstrate that creatine-dependent bioenergetics can also be enhanced with a ROS-lowering mitochondrial-targeting peptide. These results demonstrate a specific relationship between redox stress and mitochondrial hormetic reprogramming during dystrophin deficiency with proof-of-principle evidence that creatine-dependent bioenergetics could be modified with mitochondrial-targeting small peptide therapeutics.
Collapse
Affiliation(s)
- Meghan C Hughes
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Sofhia V Ramos
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Aditya N Brahmbhatt
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Patrick C Turnbull
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Nazari N Polidovitch
- Department of Biology and the Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Madison C Garibotti
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Uwe Schlattner
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and Institut Universitaire de France, Grenoble, France.
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences and Cardiovascular Research Group, University of Guelph, Guelph, ON, Canada; IMPART Team Canada Investigator Network, Saint John, New Brunswick, Canada.
| | - Peter H Backx
- Department of Biology and the Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Christopher Gr Perry
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada.
| |
Collapse
|
3
|
Aldridge JL, Alexander ED, Franklin AA, Frasier CR. Decreased ability to manage increases in reactive oxygen species may underlie susceptibility to arrhythmias in mice lacking Scn1b. Am J Physiol Heart Circ Physiol 2024; 327:H723-H732. [PMID: 39120465 PMCID: PMC11482272 DOI: 10.1152/ajpheart.00265.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Scn1b plays essential roles in the heart, where it encodes β1-subunits that serve as modifiers of gene expression, cell surface channel activity, and cardiac conductivity. Reduced β1 function is linked to electrical instability in various diseases with cardiac manifestations and increased susceptibility to arrhythmias. Recently, we demonstrated that loss of Scn1b in mice leads to compromised mitochondria energetics and reactive oxygen species (ROS) production. In this study, we examined the link between increased ROS and arrhythmia susceptibility in Scn1b-/- mice. In addition, ROS-scavenging capacity can be overwhelmed during prolonged oxidative stress, increasing arrhythmia susceptibility. Therefore, we isolated whole hearts and cardiomyocytes from Scn1b-/- and Scn1b+/+ mice and subjected them to an oxidative challenge with diamide, a glutathione oxidant. Next, we analyzed gene expression and activity of antioxidant enzymes in Scn1b-/- hearts. Cells isolated from Scn1b-/- hearts died faster and displayed higher rates of ROS accumulation preceding cell death compared with those from Scn1b+/+. Furthermore, Scn1b-/- hearts showed higher arrhythmia scores and spent less time free of arrhythmia. Lastly, we found that protein expression and enzymatic activity of glutathione peroxidase is increased in Scn1b-/- hearts compared with wild type. Our results indicate that Scn1b-/- mice have decreased capability to manage ROS during prolonged oxidative stress. ROS accumulation is elevated and appears to overwhelm ROS scavenging through the glutathione system. This imbalance creates the potential for altered cell energetics that may underlie increased susceptibility to arrhythmias or other adverse cardiac outcomes.NEW & NOTEWORTHY Using an oxidative challenge, we demonstrated that isolated cells from Scn1b-/- mice are more susceptible to cell death and surges in reactive oxygen species accumulation. At the whole organ level, they were also more susceptible to the formation of cardiac arrhythmias. This may in part be due to changes to the glutathione antioxidant system.
Collapse
Affiliation(s)
- Jessa L Aldridge
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States
| | - Emily Davis Alexander
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States
| | - Allison A Franklin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States
| | - Chad R Frasier
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States
| |
Collapse
|
4
|
Aldridge JL, Alexander ED, Franklin AA, Harrington E, Al-Ghzawi F, Frasier CR. Sex differences in cardiac mitochondrial respiration and reactive oxygen species production may predispose Scn1a -/+ mice to cardiac arrhythmias and Sudden Unexpected Death in Epilepsy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100090. [PMID: 39390983 PMCID: PMC11466061 DOI: 10.1016/j.jmccpl.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dravet Syndrome (DS) is a pediatric-onset epilepsy with an elevated risk of Sudden Unexpected Death in Epilepsy (SUDEP). Most individuals with DS possess mutations in the voltage-gated sodium channel gene Scn1a, expressed in both the brain and heart. Previously, mutations in Scn1a have been linked to arrhythmia. We used a Scn1a -/+ DS mouse model to investigate changes to cardiac mitochondrial function that may underlie arrhythmias and SUDEP. We detected significant alterations in mitochondrial bioenergetics that were sex-specific. Mitochondria from male Scn1a -/+ hearts had deficits in maximal (p = 0.02) and Complex II-linked respiration (p = 0.03). Male Scn1a -/+ mice were also more susceptible to cardiac arrhythmias under increased workload. When isolated cardiomyocytes were subjected to diamide, cardiomyocytes from male Scn1a -/+ hearts were less resistant to thiol oxidation. They had decreased survivability compared to Scn1a +/+ (p = 0.02) despite no whole-heart differences. Lastly, there were no changes in mitochondrial ROS production between DS and wild-type mitochondria at basal conditions, but Scn1a -/+ mitochondria accumulated more ROS during hypoxia/reperfusion. This study determines novel sex-linked differences in mitochondrial and antioxidant function in Scn1a-linked DS. Importantly, we found that male Scn1a -/+ mice are more susceptible to cardiac arrhythmias than female Scn1a -/+ mice. When developing new therapeutics to address SUDEP risk in DS, sex should be considered.
Collapse
Affiliation(s)
- Jessa L. Aldridge
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Emily Davis Alexander
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Allison A. Franklin
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Elizabeth Harrington
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Farah Al-Ghzawi
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| | - Chad R. Frasier
- East Tennessee State University, Quillen College of Medicine, Department of Biomedical Sciences, Johnson City, TN, United States of America
| |
Collapse
|
5
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
6
|
Alexander ED, Aldridge JL, Burleson TS, Frasier CR. Teriflunomide treatment exacerbates cardiac ischemia reperfusion injury in isolated rat hearts. Cardiovasc Drugs Ther 2023; 37:1021-1026. [PMID: 35488973 PMCID: PMC9055010 DOI: 10.1007/s10557-022-07341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Previous work suggests that Dihydroorotate dehydrogenase (DHODH) inhibition via teriflunomide (TERI) may provide protection in multiple disease models. To date, little is known about the effect of TERI on the heart. This study was performed to assess the potential effects of TERI on cardiac ischemia reperfusion injury. METHODS Male and female rat hearts were subjected to global ischemia (25 min) and reperfusion (120 min) on a Langendorff apparatus. Hearts were given either DMSO (VEH) or teriflunomide (TERI) for 5 min prior to induction of ischemia and during the reperfusion period. Left ventricular pressure, ECG, coronary flow, and infarct size were determined using established methods. Mitochondrial respiration was assessed via respirometry. RESULTS Perfusion of hearts with TERI led to no acute effects in any values measured across 500 pM-50 nM doses. However, following ischemia-reperfusion injury, we found that 50 nM TERI-treated hearts had an increase in myocardial infarction (p < 0.001). In 50 nM TERI-treated hearts, we also observed a marked increase in the severity of contracture (p < 0.001) at an earlier time-point (p = 0.004), as well as reductions in coronary flow (p = 0.037), left ventricular pressure development (p = 0.025), and the rate-pressure product (p = 0.008). No differences in mitochondrial respiration were observed with 50 nM TERI treatment (p = 0.24-0.87). CONCLUSION This study suggests that treatment with TERI leads to more negative outcomes following cardiac ischemia reperfusion, and administration of TERI to at-risk populations should receive special considerations.
Collapse
Affiliation(s)
- Emily Davis Alexander
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Jessa L Aldridge
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - T Samuel Burleson
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Chad R Frasier
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
7
|
El Kodsi DN, Tokarew JM, Sengupta R, Lengacher NA, Chatterji A, Nguyen AP, Boston H, Jiang Q, Palmberg C, Pileggi C, Holterman CE, Shutinoski B, Li J, Fehr TK, LaVoie MJ, Ratan RR, Shaw GS, Takanashi M, Hattori N, Kennedy CR, Harper ME, Holmgren A, Tomlinson JJ, Schlossmacher MG. Parkin coregulates glutathione metabolism in adult mammalian brain. Acta Neuropathol Commun 2023; 11:19. [PMID: 36691076 PMCID: PMC9869535 DOI: 10.1186/s40478-022-01488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/24/2023] Open
Abstract
We recently discovered that the expression of PRKN, a young-onset Parkinson disease-linked gene, confers redox homeostasis. To further examine the protective effects of parkin in an oxidative stress model, we first combined the loss of prkn with Sod2 haploinsufficiency in mice. Although adult prkn-/-//Sod2± animals did not develop dopamine cell loss in the S. nigra, they had more reactive oxidative species and a higher concentration of carbonylated proteins in the brain; bi-genic mice also showed a trend for more nitrotyrosinated proteins. Because these redox changes were seen in the cytosol rather than mitochondria, we next explored the thiol network in the context of PRKN expression. We detected a parkin deficiency-associated increase in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in murine brain, PRKN-linked human cortex and several cell models. This shift resulted from enhanced recycling of GSSG back to GSH via upregulated glutathione reductase activity; it also correlated with altered activities of redox-sensitive enzymes in mitochondria isolated from mouse brain (e.g., aconitase-2; creatine kinase). Intriguingly, human parkin itself showed glutathione-recycling activity in vitro and in cells: For each GSSG dipeptide encountered, parkin regenerated one GSH molecule and was S-glutathionylated by the other (GSSG + P-SH [Formula: see text] GSH + P-S-SG), including at cysteines 59, 95 and 377. Moreover, parkin's S-glutathionylation was reversible by glutaredoxin activity. In summary, we found that PRKN gene expression contributes to the network of available thiols in the cell, including by parkin's participation in glutathione recycling, which involves a reversible, posttranslational modification at select cysteines. Further, parkin's impact on redox homeostasis in the cytosol can affect enzyme activities elsewhere, such as in mitochondria. We posit that antioxidant functions of parkin may explain many of its previously described, protective effects in vertebrates and invertebrates that are unrelated to E3 ligase activity.
Collapse
Affiliation(s)
- Daniel N El Kodsi
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jacqueline M Tokarew
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rajib Sengupta
- Department of Biochemistry, Karolinska Institute, Stockholm, Sweden
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Nathalie A Lengacher
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ajanta Chatterji
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Angela P Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Snyder Institute, University of Calgary, Calgary, AB, Canada
| | - Heather Boston
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Qiubo Jiang
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Carina Palmberg
- Department of Biochemistry, Karolinska Institute, Stockholm, Sweden
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine, and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chet E Holterman
- Kidney Research Center, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Juan Li
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Travis K Fehr
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew J LaVoie
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rajiv R Ratan
- Burke Neurological Institute, Weill Cornell Medical School, White Plains, NY, USA
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Masashi Takanashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine, and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Arne Holmgren
- Department of Biochemistry, Karolinska Institute, Stockholm, Sweden
| | - Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Stress-induced cardiometabolic perturbations, increased oxidative stress and ACE/ACE2 imbalance are improved by endurance training in rats. Life Sci 2022; 305:120758. [DOI: 10.1016/j.lfs.2022.120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
|
9
|
Lee H, Yun HJ, Ding Y. Timing is everything: Exercise therapy and remote ischemic conditioning for acute ischemic stroke patients. Brain Circ 2021; 7:178-186. [PMID: 34667901 PMCID: PMC8459690 DOI: 10.4103/bc.bc_35_21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise is a promising rehabilitative strategy for acute ischemic stroke. Preclinical trials suggest that exercise restores cerebral blood circulation and re-establishes the blood–brain barrier’s integrity with neurological function and motor skill improvement. Clinical trials demonstrated that exercise improves prognosis and decreases complications after ischemic events. Due to these encouraging findings, early exercise rehabilitation has been quickly adopted into stroke rehabilitation guidelines. Unfortunately, preclinical trials have failed to warn us of an adverse effect. Trials with very early exercise rehabilitation (within 24 h of ischemic attack) found an inferior prognosis at 3 months. It was not immediately clear as to why exercise was detrimental when performed very early while it was ameliorative just a few short days later. This review aimed to explore the potential mechanisms of harm seen in very early exercise administered to acute ischemic stroke patients. To begin, the mechanisms of exercise’s benefit were transposed onto the current understanding of acute ischemic stroke’s pathogenesis, specifically during the acute and subacute phases. Then, exercise rehabilitation’s mechanisms were compared to that of remote ischemic conditioning (RIC). This comparison may reveal how RIC may be providing clinical benefit during the acute phase of ischemic stroke when exercise proved to be harmful.
Collapse
Affiliation(s)
- Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
10
|
Regmi S, Raut PK, Pathak S, Shrestha P, Park PH, Jeong JH. Enhanced viability and function of mesenchymal stromal cell spheroids is mediated via autophagy induction. Autophagy 2020; 17:2991-3010. [PMID: 33206581 DOI: 10.1080/15548627.2020.1850608] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have received attention as promising therapeutic agents for the treatment of various diseases. However, poor post-transplantation viability is a major hurdle in MSC-based therapy, despite encouraging results in many inflammatory disorders. Recently, three dimensional (3D)-cultured MSCs (MSC3D) were shown to have higher cell survival and enhanced anti-inflammatory effects, although the underlying mechanisms have not yet been elucidated. In this study, we investigated the molecular mechanisms by which MSC3D gain the potential for enhanced cell viability. Herein, we found that macroautophagy/autophagy was highly induced and ROS production was suppressed in MSC3D as compared to 2D-cultured MSCs (MSC2D). Interestingly, inhibition of autophagy induction caused decreased cell viability and increased apoptotic activity in MSC3D. Furthermore, modulation of ROS production was closely related to the survival and apoptosis of MSC3D. We also observed that HMOX1 (heme oxygenase 1) was significantly up-regulated in MSC3D. In addition, gene silencing of HMOX1 caused upregulation of ROS production and suppression of the genes related to autophagy. Moreover, inhibition of HIF1A (hypoxia inducible factor 1 subunit alpha) caused suppression of HMOX1 expression in MSC3D, indicating that the HIF1A-HMOX1 axis plays a crucial role in the modulation of ROS production and autophagy induction in MSC3D. Finally, the critical role of autophagy induction on improved therapeutic effects of MSC3D was further verified in dextran sulfate sodium (DSS)-induced murine colitis. Taken together, these results indicated that autophagy activation and modulation of ROS production mediated via the HIF1A-HMOX1 axis play pivotal roles in enhancing the viability of MSC3D.List of abbreviations:3D: three dimensional; 3MA: 3 methlyadenine; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CFSE: carboxyfluorescein succinimidyl ester; CoCl2: cobalt chloride; CoPP: cobalt protoporphyrin; DSS: dextran sulfate sodium; ECM: extracellular matrix; FOXO3/FOXO3A: forkhead box O3; HIF1A: hypoxia inducible factor 1 subunit alpha; HMOX1/HO-1: heme oxygenase 1; HSCs: hematopoietic stem cells; IL1A/IL-1α: interleukin 1 alpha; IL1B/IL-1β: interleukin 1 beta; IL8: interleukin 8; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; MSC2D: 2D-cultured MSCs; MSC3D: 3D-cultured MSCs; MSCs: mesenchymal stromal cells; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; PGE2: prostaglandin E2; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; ROS: reactive oxygen species; siRNA: small interfering RNA; SIRT1: sirtuin 1; SOD2: superoxide dismutase 2; SQSTM1/p62: sequestosome 1; TGFB/TGF-β: transforming growth factor beta.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Department of Radiology, Stanford Medicine, Palo Alto, CA, USA
| | - Pawan Kumar Raut
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Prakash Shrestha
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| |
Collapse
|
11
|
Kostoff RN, Briggs MB, Shores DR. Treatment repurposing for inflammatory bowel disease using literature-related discovery and innovation. World J Gastroenterol 2020; 26:4889-4899. [PMID: 32952337 PMCID: PMC7476176 DOI: 10.3748/wjg.v26.i33.4889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) incidence has been increasing steadily, most dramatically in the Western developed countries. Treatment often includes lifelong immunosuppressive therapy and surgery. There is a critical need to reduce the burden of IBD and to discover medical therapies with better efficacy and fewer potential side-effects. Repurposing of treatments originally studied in other diseases with similar pathogenesis is less costly and time intensive than de novo drug discovery. This study used a treatment repurposing methodology, the literature-related discovery and innovation (LRDI) text mining system, to identify potential treatments (developed for non-IBD diseases) with sufficient promise for extrapolation to treatment of IBD. By searching for desirable patterns of twenty key biomarkers relevant to IBD (e.g., inflammation, reactive oxygen species, autophagy, barrier function), the LRDI-based query retrieved approximately 9500 records from Medline. The most recent 350 records were further analyzed for proof-of-concept. Approximately 18% (64/350) met the criteria for discovery (not previously studied in IBD human or animal models) and relevance for application to IBD treatment. Many of the treatments were compounds derived from herbal remedies, and the majority of treatments were being studied in cancer, diabetes, and central nervous system disease, such as depression and dementia. As further validation of the search strategy, the query identified ten treatments that have just recently begun testing in IBD models in the last three years. Literature-related discovery and innovation text mining contains a unique search strategy with tremendous potential to identify treatments for repurposing. A more comprehensive query with additional key biomarkers would have retrieved many thousands more records, further increasing the yield of IBD treatment repurposing discovery.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, United States
| | | | - Darla Roye Shores
- The Hopkins Resource for Intestinal Vitality and Enhancement, the Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
12
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
13
|
Allen ME, Pennington ER, Perry JB, Dadoo S, Makrecka-Kuka M, Dambrova M, Moukdar F, Patel HD, Han X, Kidd GK, Benson EK, Raisch TB, Poelzing S, Brown DA, Shaikh SR. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Commun Biol 2020; 3:389. [PMID: 32680996 PMCID: PMC7368046 DOI: 10.1038/s42003-020-1101-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction contributes to cardiac pathologies. Barriers to new therapies include an incomplete understanding of underlying molecular culprits and a lack of effective mitochondria-targeted medicines. Here, we test the hypothesis that the cardiolipin-binding peptide elamipretide, a clinical-stage compound under investigation for diseases of mitochondrial dysfunction, mitigates impairments in mitochondrial structure-function observed after rat cardiac ischemia-reperfusion. Respirometry with permeabilized ventricular fibers indicates that ischemia-reperfusion induced decrements in the activity of complexes I, II, and IV are alleviated with elamipretide. Serial block face scanning electron microscopy used to create 3D reconstructions of cristae ultrastructure reveals that disease-induced fragmentation of cristae networks are improved with elamipretide. Mass spectrometry shows elamipretide did not protect against the reduction of cardiolipin concentration after ischemia-reperfusion. Finally, elamipretide improves biophysical properties of biomimetic membranes by aggregating cardiolipin. The data suggest mitochondrial structure-function are interdependent and demonstrate elamipretide targets mitochondrial membranes to sustain cristae networks and improve bioenergetic function.
Collapse
Affiliation(s)
- Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, USA
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Maija Dambrova
- Latvian Institute for Organic Synthesis Riga Latvia, Norwich, UK
| | - Fatiha Moukdar
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Hetal D Patel
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Grahame K Kidd
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
- Renovo Neural Inc, Cleveland, OH, USA
| | | | - Tristan B Raisch
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
| | - Steven Poelzing
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Virginia Tech Center for Drug Discovery, Blacksburg, VA, USA
- Virginia Tech Metabolism Core Virginia Tech, Blacksburg, VA, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Penna C, Alloatti G, Crisafulli A. Mechanisms Involved in Cardioprotection Induced by Physical Exercise. Antioxid Redox Signal 2020; 32:1115-1134. [PMID: 31892282 DOI: 10.1089/ars.2019.8009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Regular exercise training can reduce myocardial damage caused by acute ischemia/reperfusion (I/R). Exercise can reproduce the phenomenon of ischemic preconditioning, due to the capacity of brief periods of ischemia to reduce myocardial damage caused by acute I/R. In addition, exercise may also activate the multiple kinase cascade responsible for cardioprotection even in the absence of ischemia. Recent Advances: Animal and human studies highlighted the fact that, besides to reduce risk factors related to cardiovascular disease, the beneficial effects of exercise are also due to its ability to induce conditioning of the heart. Exercise behaves as a physiological stress that triggers beneficial adaptive cellular responses, inducing a protective phenotype in the heart. The factors contributing to the exercise-induced heart preconditioning include stimulation of the anti-radical defense system and nitric oxide production, opioids, myokines, and adenosine-5'-triphosphate (ATP) dependent potassium channels. They appear to be also involved in the protective effect exerted by exercise against cardiotoxicity related to chemotherapy. Critical Issues and Future Directions: Although several experimental evidences on the protective effect of exercise have been obtained, the mechanisms underlying this phenomenon have not yet been fully clarified. Further studies are warranted to define precise exercise prescriptions in patients at risk of myocardial infarction or undergoing chemotherapy.
Collapse
Affiliation(s)
- Claudia Penna
- National Institute for Cardiovascular Research (INRC), Bologna, Italy.,Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | | | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Cagliari, Italy
| |
Collapse
|
15
|
Boulghobra D, Coste F, Geny B, Reboul C. Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria? Free Radic Biol Med 2020; 152:395-410. [PMID: 32294509 DOI: 10.1016/j.freeradbiomed.2020.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Ischemic heart disease is one of the main causes of morbidity and mortality worldwide. Physical exercise is an effective lifestyle intervention to reduce the risk factors for cardiovascular disease and also to improve cardiac function and survival in patients with ischemic heart disease. Among the strategies that contribute to reduce heart damages during ischemia and reperfusion, regular physical exercise is efficient both in rodent experimental models and in humans. However, the cellular and molecular mechanisms of the cardioprotective effects of exercise remain unclear. During ischemia and reperfusion, mitochondria are crucial players in cell death, but also in cell survival. Although exercise training can influence mitochondrial function, the consequences on heart sensitivity to ischemic insults remain elusive. In this review, we describe the effects of physical activity on cardiac mitochondria and their potential key role in exercise-induced cardioprotection against ischemia-reperfusion damage. Based on recent scientific data, we discuss the role of different pathways that might help to explain why mitochondria are a key target of exercise-induced cardioprotection.
Collapse
Affiliation(s)
| | - Florence Coste
- LAPEC EA4278, Avignon Université, F-84000, Avignon, France
| | - Bernard Geny
- EA3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», Université de Strasbourg, 67000, Strasbourg, France
| | - Cyril Reboul
- LAPEC EA4278, Avignon Université, F-84000, Avignon, France.
| |
Collapse
|
16
|
Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165768. [PMID: 32173461 DOI: 10.1016/j.bbadis.2020.165768] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Despite major progress in interventional and medical treatments, myocardial infarction (MI) and subsequent development of heart failure (HF) are still associated with high mortality. Both during ischemia reperfusion (IR) in the acute setting of MI, as well as in the chronic remodeling process following MI, oxidative stress substantially contributes to cardiac damage. Reactive oxygen species (ROS) generated within mitochondria are particular drivers of mechanisms contributing to IR injury, including induction of mitochondrial permeability transition or oxidative damage of intramitochondrial structures and molecules. But even beyond the acute setting, mechanisms like inflammatory signaling, extracellular remodeling, or pro-apoptotic signaling that contribute to post-infarction remodeling are regulated by mitochondrial ROS. In the current review, we discuss both sources and consequences of mitochondrial ROS during IR and in the chronic setting following MI, thereby emphasizing the potential therapeutic value of attenuating mitochondrial ROS to improve outcome and prognosis for patients suffering MI.
Collapse
|
17
|
Ikhlas S, Ahmad M. Acute and sub-acute bisphenol-B exposures adversely affect sperm count and quality in adolescent male mice. CHEMOSPHERE 2020; 242:125286. [PMID: 31896186 DOI: 10.1016/j.chemosphere.2019.125286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 05/21/2023]
Abstract
Bisphenol-B (BPB), an analogue of bisphenol-A is used in the plastic industry. It has been found to leach from plastic containers leading to its contamination in canned food products. Moreover, it has also been detected in human samples such as sera and urine. BPB is recognized as a potential endocrine disrupting chemical owing to its estrogenic and anti-androgenic nature. Therefore, it was pertinent to study the effect of BPB exposure during the adolescence age (5-6 weeks old) in male mice. Weekly intraperitoneal injections of 5, 10 and 15% LD50 of BPB were given for 2 weeks to acute exposure groups and for 4 weeks to sub-acute exposure groups. BPB exposure induces change in enzymatic and non-enzymatic oxidative stress markers in sperm samples. DNA damage was also observed in sperm cells on acute and sub-acute exposures. Furthermore, BPB exposure led to a marked decline in sperm count and compromised sperm morphology. Computer assisted sperm analysis (CASA) revealed a significant decrease in sperm quality and progressive motility. Thus, both the acute and sub-acute exposures of adolescent male mice to BPB adversely affect the sperms' quality, functions and morphology.
Collapse
Affiliation(s)
- Shoeb Ikhlas
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
18
|
The Oxidative Stress Markers in the Erythrocytes and Heart Muscle of Obese Rats: Relate to a High-Fat Diet but Not to DJOS Bariatric Surgery. Antioxidants (Basel) 2020; 9:antiox9020183. [PMID: 32098399 PMCID: PMC7070542 DOI: 10.3390/antiox9020183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity and high-fat diet (HF) are prevalent causes of oxidative stress (OS). Duodenal-jejunal omega switch (DJOS) is a bariatric procedure used for body mass reduction, extensively tested in animal models. We studied the long-term impact of bariatric surgery and an HF diet on the oxidative stress markers in erythrocytes and heart muscles of rats. We analyzed superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) activity and malondialdehyde (MDA) concentration in DJOS or SHAM (control) operated rats fed with different dietary protocols (control diet (CD) and high-fat diet (HF)), before and after the surgery (CD/CD, HF/HF, CD/HF, and HF/CD). We observed higher erythrocytes CAT, GST and GPx activity in DJOS-operated (vs. SHAM) rats fed with an HF/HF diet. For DJOS-operated rats, erythrocytes CAT and GPx activity and MDA concentration were significantly lower in CD/CD group. We observed increased heart muscle GR activity in SHAM-operated rats (vs. DJOS bariatric surgery) fed with an HF/HF diet. Change from HF to CD diet increased heart muscle GPx activity after DJOS bariatric surgery. Heart muscle SOD activity was lower in HF/HF and CD/CD groups after DJOS bariatric surgery (vs. SHAM). DJOS surgery significantly reduced heart muscle MDA concentration in HF/HF and HF/CD groups (vs. SHAM). We conclude that the selected dietary patterns had a stronger impact on oxidative stress markers in erythrocytes and heart muscle than DJOS bariatric surgery.
Collapse
|
19
|
Loro E, Jang C, Quinn WJ, Baur JA, Arany ZP, Khurana TS. Effect of Interleukin-15 Receptor Alpha Ablation on the Metabolic Responses to Moderate Exercise Simulated by in vivo Isometric Muscle Contractions. Front Physiol 2019; 10:1439. [PMID: 31849697 PMCID: PMC6901992 DOI: 10.3389/fphys.2019.01439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
Lack of interleukin 15 receptor alpha (IL15RA) increases spontaneous activity, exercise capacity and protects from diet-induced obesity by enhancing muscle energy metabolism, suggesting a role as exercise mimetic for IL15RA antagonists. Using controlled in vivo muscle stimulation mimicking moderate exercise in normal and Il15ra-/- mice, we mapped and contrasted the metabolic pathways activated upon stimulation or deletion of IL15RA. Stimulation caused the differential regulation of 123 out of the 321 detected metabolites (FDR ≤ 0.05 and fold change ≥ ±1.5). The main energy pathways activated were fatty acid oxidation, nucleotide metabolism, and anaplerotic reactions. Notably, resting Il15ra-/- muscles were primed in a semi-exercised state, characterized by higher pool sizes of fatty acids oxidized to support muscle activity. These studies identify the role of IL15RA in the system-wide metabolic response to exercise and should enable translational studies to harness the potential of IL15RA blockade as a novel exercise mimetic strategy.
Collapse
Affiliation(s)
- Emanuele Loro
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Cholsoon Jang
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - William J Quinn
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zoltan P Arany
- Department of Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tejvir S Khurana
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Perina EA, Ivanov VV, Pershina AG, Perekucha NA, Dzyuman AN, Kaminskii IP, Saltykova IV, Sazonov AE, Ogorodova LM. Imbalance in the glutathione system in Opisthorchis felineus infected liver promotes hepatic fibrosis. Acta Trop 2019; 192:41-48. [PMID: 30684449 DOI: 10.1016/j.actatropica.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023]
Abstract
Although data on oxidative stress during liver fluke infection have been previously presented, a comprehensive study of the glutathione system that plays a crucial role in scavenging of reactive oxygen species (ROS) and detoxification of primary and secondary oxidation products has not been addressed yet. In the present study, the hepatic glutathione system was investigated in a hamster model of experimental opisthorchiasis infection. It was shown that chronic oxidative stress in an Opisthorchis felineus infected liver, evidenced by abundant hydroperoxide accumulation, leads to strong imbalance in the hepatic glutathione system, namely the depletion of reduced form of glutathione (GSH), lowering of the GSH/GSSG ratio, and a decrease in the glutathione peroxidase and glyoxalase 1 activity. O. felineus infection provokes hepatocellular damage that results in the progression of liver fibrosis, accompanied by an increase in collagen deposition in the hepatic tissue. Modulation of hepatic GSH levels in the O. felineus infected liver through N-acetylcysteine (NAC) or l-buthionine-S, R-sulfoxinine (BSO) treatments lead to changes in expression and activity of glutathione S-transferase and glyoxalase I as well as markedly decreases or increases collagen content in the O. felineus infected liver and the severity of liver fibrosis, respectively. Thus, the glutathione system can be considered as a target for liver protection from O. felineus-induced injury.
Collapse
Affiliation(s)
- Ekaterina A Perina
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Vladimir V Ivanov
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Alexandra G Pershina
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia; National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk, 634050, Russia.
| | - Natalya A Perekucha
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia; National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk, 634050, Russia
| | - Anna N Dzyuman
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Ilya P Kaminskii
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Irina V Saltykova
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Alexey E Sazonov
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Ludmila M Ogorodova
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| |
Collapse
|
21
|
Chowdhury MA, Sholl HK, Sharrett MS, Haller ST, Cooper CC, Gupta R, Liu LC. Exercise and Cardioprotection: A Natural Defense Against Lethal Myocardial Ischemia-Reperfusion Injury and Potential Guide to Cardiovascular Prophylaxis. J Cardiovasc Pharmacol Ther 2019; 24:18-30. [PMID: 30041547 PMCID: PMC7236859 DOI: 10.1177/1074248418788575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Similar to ischemic preconditioning, high-intensity exercise has been shown to decrease infarct size following myocardial infarction. In this article, we review the literature on beneficial effects of exercise, exercise requirements for cardioprotection, common methods utilized in laboratories to study this phenomenon, and discuss possible mechanisms for exercise-mediated cardioprotection.
Collapse
Affiliation(s)
- Mohammed Andaleeb Chowdhury
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Haden K Sholl
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Megan S Sharrett
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Steven T Haller
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Christopher C Cooper
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Rajesh Gupta
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lijun C Liu
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
22
|
Feng R, Wang L, Li Z, Yang R, Liang Y, Sun Y, Yu Q, Ghartey-Kwansah G, Sun Y, Wu Y, Zhang W, Zhou X, Xu M, Bryant J, Yan G, Isaacs W, Ma J, Xu X. A systematic comparison of exercise training protocols on animal models of cardiovascular capacity. Life Sci 2018; 217:128-140. [PMID: 30517851 DOI: 10.1016/j.lfs.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is a major global cause of mortality, which has prompted numerous studies seeking to reduce the risk of heart failure and sudden cardiac death. While regular physical activity is known to improve CVD associated morbidity and mortality, the optimal duration, frequency, and intensity of exercise remains unclear. To address this uncertainty, various animal models have been used to study the cardioprotective effects of exercise and related molecular mechanism such as the mice training models significantly decrease size of myocardial infarct by affecting Kir6.1, VSMC sarc-KATP channels, and pulmonary eNOS. Although these findings cement the importance of animal models in studying exercise induced cardioprotection, the vast assortment of exercise protocols makes comparison across studies difficult. To address this issue, we review and break down the existent exercise models into categories based on exercise modality, intensity, frequency, and duration. The timing of sample collection is also compared and sorted into four distinct phases: pre-exercise (Phase I), mid-exercise (Phase II), exercise recovery (Phase III), and post-exercise (Phase IV). Finally, because the life-span of animals so are limited, small changes in animal exercise duration can corresponded to untenable amounts of human exercise. To address this limitation, we introduce the Life-Span Relative Exercise Time (RETlife span) as a method of accurately defining short-term, medium-term and long-term exercise relative to the animal's life expectancy. Systematic organization of existent protocols and this new system of defining exercise duration will allow for a more solid framework from which researchers can extrapolate animal model data to clinical application.
Collapse
Affiliation(s)
- Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhonguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Rong Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yu Liang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yuting Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Qiuxia Yu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Yanping Sun
- College of Pharmacy, Xi'an Medical University, Xi'an 710062, China
| | - Yajun Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Wei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Mengmeng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27708, USA
| | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD 21287, USA
| | - Guifang Yan
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - William Isaacs
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China.
| |
Collapse
|
23
|
Kramer PA, Duan J, Gaffrey MJ, Shukla AK, Wang L, Bammler TK, Qian WJ, Marcinek DJ. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol 2018; 17:367-376. [PMID: 29857311 PMCID: PMC6007084 DOI: 10.1016/j.redox.2018.05.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023] Open
Abstract
Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 min after the last stimulation and processed for redox proteomics assay of S-glutathionylation. Using selective reduction with a glutaredoxin enzyme cocktail and resin-assisted enrichment technique, we quantified the levels of site-specific protein S-glutathionylation at rest and following fatiguing contractions. Redox proteomics revealed over 2200 sites of S-glutathionylation modifications, of which 1290 were significantly increased after fatiguing contractions. Muscle contraction leads to the greatest increase in S-glutathionylation in the mitochondria (1.03%) and the smallest increase in the nucleus (0.47%). Regulatory cysteines were significantly S-glutathionylated on mitochondrial complex I and II, GAPDH, MDH1, ACO2, and mitochondrial complex V among others. Similarly, S-glutathionylation of RYR1, SERCA1, titin, and troponin I2 are known to regulate muscle contractility and were significantly S-glutathionylated after just 15 min of fatiguing contractions. The largest fold changes (> 1.6) in the S-glutathionylated proteome after fatigue occurred on signaling proteins such as 14-3-3 protein gamma and MAP2K4, as well as proteins like SERCA1, and NDUV2 of mitochondrial complex I, at previously unknown glutathionylation sites. These findings highlight the important role of redox control over muscle physiology, metabolism, and the exercise adaptive response. This study lays the groundwork for future investigation into the altered exercise adaptation associated with chronic conditions, such as sarcopenia. A single bout of fatiguing contractions increase muscle protein S-glutathionylation. Mitochondrial proteins are sensitive to oxidative modifications following fatigue. The glutathionylated proteome includes cysteines of known functional importance.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Radiology, University of Washington, Seattle, WA 98105, United States
| | - Jicheng Duan
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Matthew J Gaffrey
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Anil K Shukla
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Lu Wang
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
24
|
Done AJ, Newell MJ, Traustadóttir T. Effect of exercise intensity on Nrf2 signalling in young men. Free Radic Res 2018; 51:646-655. [PMID: 28693341 DOI: 10.1080/10715762.2017.1353689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The transcription factor Nrf2 is the master regulator of antioxidant defence. Recent data indicate a single bout of moderate-intensity stationary cycling at a constant workload upregulates Nrf2 signalling in young, but not older men; however, the role of exercise intensity on Nrf2 activation has not been tested. We hypothesised that a high-intensity interval session would elicit a greater Nrf2 response than moderate aerobic exercise. METHODS Nrf2 signalling in response to two 30-min cycling protocols (high-intensity interval and constant workload) was compared in young men (25 ± 1y, n = 16). Participants completed exercise trials in random order with blood collected pre-, immediately post-, and 30-mins post exercise. Five participants completed a control trial without any physical activity. Nrf2 signalling was determined by measuring protein expression of Nrf2 in whole cell and nuclear fractions. Plasma 8-isoprostanes as well as peripheral mononuclear cell glutathione reductase (GR) and superoxide dismutase activity were measured as markers of oxidative stress. RESULTS The exercise trials elicited significant increases in nuclear Nrf2 (p < .01), but increases in whole cell Nrf2 did not reach statistical significance. GR activity and plasma 8-isoprostanes increased significantly in response to exercise (p < .05), and GR response was higher in the high-intensity trial (p < .05). CONCLUSION Our findings indicate that acute aerobic exercise elicits activation of nuclear Nrf2, regardless of exercise intensity, but that higher-intensity exercise results in greater activity of GR. Future experiments should explore the effect of exercise mode and duration on Nrf2 signalling, and the role of intensity in compromised populations.
Collapse
Affiliation(s)
- Aaron J Done
- a Department of Biological Sciences , Northern Arizona University , Flagstaff , AZ , USA
| | - Michael J Newell
- a Department of Biological Sciences , Northern Arizona University , Flagstaff , AZ , USA
| | - Tinna Traustadóttir
- a Department of Biological Sciences , Northern Arizona University , Flagstaff , AZ , USA
| |
Collapse
|
25
|
Zhao W, Li S, Ren C, Meng R, Ji X. Chronic Remote Ischemic Conditioning May Mimic Regular Exercise:Perspective from Clinical Studies. Aging Dis 2018; 9:165-171. [PMID: 29392091 PMCID: PMC5772854 DOI: 10.14336/ad.2017.1015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/15/2017] [Indexed: 11/01/2022] Open
Abstract
Chronic remote ischemic conditioning (RIC), particularly long-term repeated RIC, has been applied in clinical trials with the expectation that it could play its protective roles for protracted periods. In sports medicine, chronic RIC has also been demonstrated to improve exercise performance, akin to improvements seen with regular exercise training. Therefore, chronic RIC may mimic regular exercise, and they may have similar underlying mechanisms. In this study, we explored the common underlying mechanisms of chronic RIC and physical exercise in protecting multiple organs and benefiting various populations, the advantages of chronic RIC, and the challenges for its popularization. Intriguingly, several underlying mechanisms of RIC and exercise have been shown to overlap. These include the production of many autacoids, enhanced ability for antioxidant activity, modulating immune and inflammatory responses. Therefore, it appears that chronic RIC, just like regular exercise, has beneficial effects in unhealthy, sub-healthy and healthy individuals. Compared with regular exercise, chronic RIC has several advantages, which may provide novel insights into the area of exercise and health. Chronic RIC may enrich the modes of exercise, and benefit individuals with severe diseases. Also, the disabled, and sub-healthy individuals are likely to benefit from chronic RIC either as an alternative to exercise or an adjunct to pharmacological or non-pharmacological therapy.
Collapse
Affiliation(s)
- Wenbo Zhao
- ¹Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- 2Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Municipal Geriatric Medical Research Center, Beijing, China.,4National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Changhong Ren
- 2Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Ran Meng
- ¹Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- 2Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,4National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
26
|
Plecevic S, Jakovljevic B, Savic M, Zivkovic V, Nikolic T, Jeremic J, Milosavljevic I, Srejovic I, Tasic N, Djuric D, Jakovljevic V. Comparison of short-term and medium-term swimming training on cardiodynamics and coronary flow in high salt-induced hypertensive and normotensive rats. Mol Cell Biochem 2018; 447:33-45. [DOI: 10.1007/s11010-018-3291-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022]
|
27
|
Quindry JC, Franklin BA. Cardioprotective Exercise and Pharmacologic Interventions as Complementary Antidotes to Cardiovascular Disease. Exerc Sport Sci Rev 2018; 46:5-17. [PMID: 28885265 DOI: 10.1249/jes.0000000000000134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise and pharmacologic therapies to prevent and treat cardiovascular disease have advanced largely through independent efforts. Understanding of first-line drug therapies, findings from preclinical animal studies, and the need for research initiatives related to complementary cardioprotective exercise-pharma interventions are reviewed from the premise that contemporary cardioprotective therapies must include adjunctive exercise and lifestyle interventions in addition to pharmacologic agents.
Collapse
Affiliation(s)
- John C Quindry
- Health and Human Performance, University of Montana, Missoula, MT
| | - Barry A Franklin
- Health and Human Performance, University of Montana, Missoula, MT
| |
Collapse
|
28
|
Kloner RA, Brown DA, Csete M, Dai W, Downey JM, Gottlieb RA, Hale SL, Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 2017; 14:679-693. [PMID: 28748958 PMCID: PMC5991096 DOI: 10.1038/nrcardio.2017.102] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.
Collapse
Affiliation(s)
- Robert A Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Marie Csete
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90017, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, USA
| | - Roberta A Gottlieb
- Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Sharon L Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
| | - Jianru Shi
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
29
|
Bei Y, Fu S, Chen X, Chen M, Zhou Q, Yu P, Yao J, Wang H, Che L, Xu J, Xiao J. Cardiac cell proliferation is not necessary for exercise-induced cardiac growth but required for its protection against ischaemia/reperfusion injury. J Cell Mol Med 2017; 21:1648-1655. [PMID: 28304151 PMCID: PMC5542911 DOI: 10.1111/jcmm.13078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023] Open
Abstract
The adult heart retains a limited ability to regenerate in response to injury. Although exercise can reduce cardiac ischaemia/reperfusion (I/R) injury, the relative contribution of cardiac cell proliferation including newly formed cardiomyocytes remains unclear. A 4-week swimming murine model was utilized to induce cardiac physiological growth. Simultaneously, the antineoplastic agent 5-fluorouracil (5-FU), which acts during the S phase of the cell cycle, was given to mice via intraperitoneal injections. Using EdU and Ki-67 immunolabelling, we showed that exercise-induced cardiac cell proliferation was blunted by 5-FU. In addition, the growth of heart in size and weight upon exercise was unaltered, probably due to the fact that exercise-induced cardiomyocyte hypertrophy was not influenced by 5-FU as demonstrated by wheat germ agglutinin staining. Meanwhile, the markers for pathological hypertrophy, including ANP and BNP, were not changed by either exercise or 5-FU, indicating that physiological growth still developed in the presence of 5-FU. Furthermore, we showed that CITED4, a key regulator for cardiomyocyte proliferation, was blocked by 5-FU. Meanwhile, C/EBPβ, a transcription factor responsible for both cellular proliferation and hypertrophy, was not altered by treatment with 5-FU. Importantly, the effects of exercise in reducing cardiac I/R injury could be abolished when cardiac cell proliferation was attenuated in mice treated with 5-FU. In conclusion, cardiac cell proliferation is not necessary for exercise-induced cardiac physiological growth, but it is required for exercise-associated protection against I/R injury.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
| | - Siyi Fu
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
| | - Xiangming Chen
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
- Department of Clinical laboratoryNanxiang Hospital of JiadingShanghaiChina
| | - Mei Chen
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
- Department of GeriatricsXuhui Central HospitalShanghai Clinical CenterChinese Academy of ScienceShanghaiChina
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
| | - Pujiao Yu
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Jianhua Yao
- Department of CardiologyShanghai Yangpu District HospitalTongji University School of MedicineShanghaiChina
| | - Hongbao Wang
- Department of CardiologyShanghai Yangpu District HospitalTongji University School of MedicineShanghaiChina
| | - Lin Che
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Jiahong Xu
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Junjie Xiao
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
| |
Collapse
|
30
|
Phillips C. Lifestyle Modulators of Neuroplasticity: How Physical Activity, Mental Engagement, and Diet Promote Cognitive Health during Aging. Neural Plast 2017; 2017:3589271. [PMID: 28695017 PMCID: PMC5485368 DOI: 10.1155/2017/3589271] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/01/2017] [Accepted: 05/28/2017] [Indexed: 12/24/2022] Open
Abstract
The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors-including physical activity, cognitive engagement, and diet-are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging.
Collapse
|
31
|
Powers SK. Exercise: Teaching myocytes new tricks. J Appl Physiol (1985) 2017; 123:460-472. [PMID: 28572498 DOI: 10.1152/japplphysiol.00418.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/31/2022] Open
Abstract
Endurance exercise training promotes numerous cellular adaptations in both cardiac myocytes and skeletal muscle fibers. For example, exercise training fosters changes in mitochondrial function due to increased mitochondrial protein expression and accelerated mitochondrial turnover. Additionally, endurance exercise training alters the abundance of numerous cytosolic and mitochondrial proteins in both cardiac and skeletal muscle myocytes, resulting in a protective phenotype in the active fibers; this exercise-induced protection of cardiac and skeletal muscle fibers is often referred to as "exercise preconditioning." As few as 3-5 consecutive days of endurance exercise training result in a preconditioned cardiac phenotype that is sheltered against ischemia-reperfusion-induced injury. Similarly, endurance exercise training results in preconditioned skeletal muscle fibers that are resistant to a variety of stresses (e.g., heat stress, exercise-induced oxidative stress, and inactivity-induced atrophy). Many studies have probed the mechanisms responsible for exercise-induced preconditioning of cardiac and skeletal muscle fibers; these studies are important, because they provide an improved understanding of the biochemical mechanisms responsible for exercise-induced preconditioning, which has the potential to lead to innovative pharmacological therapies aimed at minimizing stress-induced injury to cardiac and skeletal muscle. This review summarizes the development of exercise-induced protection of cardiac myocytes and skeletal muscle fibers and highlights the putative mechanisms responsible for exercise-induced protection in the heart and skeletal muscles.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
The Effects of Copenhagen Football Test on Glutathione Reductase and Catalase Activity in Female Football Players. Asian J Sports Med 2017. [DOI: 10.5812/asjsm.41473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Borges JP, da Silva Verdoorn K. Cardiac Ischemia/Reperfusion Injury: The Beneficial Effects of Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:155-179. [PMID: 29022263 DOI: 10.1007/978-981-10-4307-9_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiac ischemia reperfusion injury (IRI) occurs when the myocardium is revascularized after an episode of limited or absent blood supply. Many changes, including free radical production, calcium overload, protease activation, altered membrane lipids and leukocyte activation, contribute to IRI-induced myocardium damage. Aerobic exercise is the only countermeasure against IRI that can be sustained on a regular basis in clinical practice. Interestingly, both short-term (3-5 days) and long-term (several weeks) exercise increase myocardial tolerance, reduce infarct size area and arrhythmias induced by IRI. Exercise protects the heart against IRI in a biphasic manner. The early phase of cardioprotection occurs between 30 min and 3 h following an acute exercise bout, whilst the late phase is achieved within 24 h after the exercise bout and persists for several days. As for the exercise intensity, although controversial data exists, it is feasible that the amount of cardioprotection is proportional to exercise intensity and only achieved above a critical threshold. It is known that aerobic exercise produces a cardioprotective phenotype, however the mechanisms responsible for this phenomenon remain unclear. Apparently, aerobic exercise-induced preconditioning is dependent on several factors that work together to protect the heart. Altered nitric oxide (NO) signaling, increased levels of heat shock proteins (HSPs), enhanced function of ATP-sensitive potassium channels, increased activation of opioids system, and enhanced antioxidant capacity may contribute to exercise-induced cardioprotection. Much has been discovered from animal models involving exercise-induced cardioprotection against cardiac IRI, however translating these findings to clinical practice still represents the major challenge in this field.
Collapse
Affiliation(s)
- Juliana Pereira Borges
- Institute of Physical Education and Sports, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
34
|
Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 2016; 14:238-250. [PMID: 28004807 PMCID: PMC5350035 DOI: 10.1038/nrcardio.2016.203] [Citation(s) in RCA: 542] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria.
Collapse
Affiliation(s)
- David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Hani N Sabbah
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, 12700 East 19th Avenue, B139, Aurora, Colorado 80045, USA
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - John G F Cleland
- National Heart &Lung Institute, National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton &Harefield Hospitals, Imperial College, London, UK
| | - Wilson S Colucci
- Cardiovascular Medicine Section, Boston University School of Medicine and Boston Medical Center, 88 East Newton Street, C-8, Boston, Massachusetts 02118, USA
| | - Javed Butler
- Division of Cardiology, Health Sciences Center, T-16 Room 080, SUNY at Stony Brook, New York 11794, USA
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen 9713 GZ, Netherlands
| | - Stefan D Anker
- Department of Innovative Clinical Trials, University Medical Centre Göttingen (UMG), Robert-Koch-Straße, D-37075, Göttingen, Germany
| | - Bertram Pitt
- University of Michigan School of Medicine, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Burkert Pieske
- Department of Cardiology, Charité University Medicine, Campus Virchow Klinikum, and German Heart Center Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gerasimos Filippatos
- National and Kopodistrian University of Athens, School of Medicine, Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon, Rimini 1, Athens 12462, Greece
| | - Stephen J Greene
- Division of Cardiology, Duke University Medical Center, 2301 Erwin Road Suite 7400, Durham, North Carolina 27705, USA
| | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, 201 East Huron, Galter 3-150, Chicago, Illinois 60611, USA
| |
Collapse
|
35
|
Dai W, Cheung E, Alleman RJ, Perry JB, Allen ME, Brown DA, Kloner RA. Cardioprotective Effects of Mitochondria-Targeted Peptide SBT-20 in two Different Models of Rat Ischemia/Reperfusion. Cardiovasc Drugs Ther 2016; 30:559-566. [PMID: 27747447 PMCID: PMC5501324 DOI: 10.1007/s10557-016-6695-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Dysfunctional mitochondria are considered to be the major source of intracellular reactive oxygen species and play a central role in the pathophysiology of myocardial ischemia/reperfusion. This study sought to determine effects of mitochondria-targeted cytoprotective peptide SBT-20 on myocardial infarct size in two different models of ischemia/reperfusion. METHODS For in vivo studies, anesthetized Sprague Dawley rats were subjected to 30 min of coronary artery occlusion followed by 3 h of reperfusion. Rats received saline (control), low dose SBT-20 (0.3 mg/kg/h) or high dose SBT-20 (3 mg/kg/h) treatment (n = 15 rats in each group). Saline or SBT-20 were delivered into the jugular vein starting 5 min after coronary artery occlusion and were continued for one hour post coronary artery reperfusion. Body temperature, heart rate and blood pressure were monitored during the procedure. At the end of 3 h reperfusion, the ischemic risk area, no-reflow area, and infarct size were measured. In separate in vitro studies, isolated rat hearts were exposed to 20 min global ischemia, followed by SBT-20 administration (1 μM) or no SBT-20 (control) throughout the 2 h reperfusion. In vitro studies were conducted in cells and heart mitochondria to ascertain the mitochondrial effects of SBT-20 on mitochondrial respiration and reactive oxygen species production. RESULTS In the in vivo study, the ischemic risk areas (as a percentage of the left ventricle) were similar among the saline (49.5 ± 2.3 %), low dose SBT-20 (48.6 ± 2.1 %), and high dose SBT-20 groups (48.7 ± 3.0 %). Treatment with SBT-20 significantly reduced infarct size ( as a percentage of risk area) in low dose (62.1 ± 4.4 %) and high dose (64.0 ± 4.9 %) compared with saline treatment (77.6 ± 2.6 %, p = 0.001 for both doses). There was no difference in infarct size between low and high dose SBT-20 treatment. The no-reflow areas (as a percentage of the risk area) were comparable among the saline (23.9 ± 1.7 %), low dose SBT-20 (23.7 ± 2.8 %), and high dose groups (25.0 ± 2.1 %). Body temperature, heart rate and blood pressure were comparable among the 3 groups at baseline, during ischemia, and at the end of 3 h of reperfusion. In the in vitro study, infarct size was reduced from 43.3 ± 2.6 % in control group (n = 11) to 17.2 ± 2.8 % in the SBT-20 treatment group (n = 5, p < 0.05). There were no benefits of SBT-20 on recovery of left ventricular developed pressure, coronary flow, or maximal rates of contraction/relaxation. In cell studies, treatment with SBT-20 significantly improved maximal mitochondrial respiration in response to an H2O2 challenge. In isolated mitochondria, reactive oxygen species production was significantly blunted following treatment with SBT-20. CONCLUSIONS In summary, SBT-20 significantly reduced infarct size in two different models of myocardial injury, but did not affect hemodynamics or no-reflow area in rat heart. The reduction in injury is postulated to involve stabilization of mitochondrial function and reduced mitochondrial production of ROS.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 10 Pico Street, Pasadena, CA, 91105, USA.
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California, 90017-2395, USA.
| | - Elissa Cheung
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 10 Pico Street, Pasadena, CA, 91105, USA
| | - Rick J Alleman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Justin B Perry
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Mitchell E Allen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - David A Brown
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 10 Pico Street, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California, 90017-2395, USA
| |
Collapse
|
36
|
Castro LSEPW, Kviecinski MR, Ourique F, Parisotto EB, Grinevicius VMAS, Correia JFG, Wilhelm Filho D, Pedrosa RC. Albendazole as a promising molecule for tumor control. Redox Biol 2016; 10:90-99. [PMID: 27710854 PMCID: PMC5053114 DOI: 10.1016/j.redox.2016.09.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
This work evaluated the antitumor effects of albendazole (ABZ) and its relationship with modulation of oxidative stress and induction of DNA damage. The present results showed that ABZ causes oxidative cleavage on calf-thymus DNA suggesting that this compound can break DNA. ABZ treatment decreased MCF-7 cell viability (EC50=44.9 for 24h) and inhibited MCF-7 colony formation (~67.5% at 5μM). Intracellular ROS levels increased with ABZ treatment (~123%). The antioxidant NAC is able to revert the cytotoxic effects, ROS generation and loss of mitochondrial membrane potential of MCF-7 cells treated with ABZ. Ehrlich carcinoma growth was inhibited (~32%) and survival time was elongated (~50%) in animals treated with ABZ. Oxidative biomarkers (TBARS and protein carbonyl levels) and activity of antioxidant enzymes (CAT, SOD and GR) increased, and reduced glutathione (GSH) was depleted in animals treated with ABZ, indicating an oxidative stress condition, leading to a DNA damage causing phosphorylation of histone H2A variant, H2AX, and triggering apoptosis signaling, which was confirmed by increasing Bax/Bcl-xL rate, p53 and Bax expression. We propose that ABZ induces oxidative stress promoting DNA fragmentation and triggering apoptosis and inducing cell death, making this drug a promising leader molecule for development of new antitumor drugs.
Collapse
Affiliation(s)
- L S E P W Castro
- Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - M R Kviecinski
- Postgraduate Programe of Health Science, Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC, Brazil
| | - F Ourique
- Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - E B Parisotto
- Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - V M A S Grinevicius
- Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - J F G Correia
- Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - D Wilhelm Filho
- Departament of Ecology and Zoology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - R C Pedrosa
- Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
37
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
38
|
Ávila P, Marcotte F, Dore A, Mercier LA, Shohoudi A, Mongeon FP, Mondésert B, Proietti A, Ibrahim R, Asgar A, Poirier N, Khairy P. The impact of exercise on ventricular arrhythmias in adults with tetralogy of Fallot. Int J Cardiol 2016; 219:218-24. [DOI: 10.1016/j.ijcard.2016.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/12/2016] [Indexed: 12/19/2022]
|
39
|
Villa-Correa YA, Isaza-Guzmán DM, Tobón-Arroyave SI. Influence of Periodontal Clinical Status on Salivary Levels of Glutathione Reductase. J Periodontol 2016; 87:716-24. [PMID: 26777764 DOI: 10.1902/jop.2016.150618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Inadequate antioxidant balance may play a role in the excessive tissue breakdown in periodontitis. Because aggressive periodontitis (AgP) not only differs from chronic periodontitis (CP) in terms of clinical manifestations, this study investigates whether the salivary levels of glutathione reductase (GR) may be linked with periodontal status. METHODS Saliva samples from patients with CP (n = 121), patients with AgP (n = 18), and healthy controls (n = 69) were collected. Periodontal status was assessed by criteria based on probing depth, clinical attachment level, and extent and severity of periodontal breakdown. GR salivary levels were analyzed by spectrophotometry. The association among GR concentration and CP or AgP was analyzed individually and adjusted for confounding using multivariate binary logistic regression models. RESULTS GR levels not only differed significantly between the two periodontitis groups, being significantly greater in patients with AgP, but also were significantly greater than those observed in healthy controls. Synchronously, positive significant correlations between salivary GR concentration and clinical parameters were observed. After binary logistic regression analysis, both GR salivary levels ≥15.38 and ≥24.20 mU/mL were associated independently with CP and AgP, respectively. A significant interaction effect was also detected between increased GR salivary concentration and aging in the CP group. CONCLUSIONS Increased GR salivary concentration may be a strong/independent prognostic indicator of the amount and extent of oxidative stress-induced periodontal damage in both CP and AgP. Likewise, saliva samples might reflect an interactive effect of GR levels associated with the aging-related cumulative characteristics of periodontal damage in CP.
Collapse
Affiliation(s)
| | - Diana María Isaza-Guzmán
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Sergio Iván Tobón-Arroyave
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| |
Collapse
|
40
|
Alleman RJ, Tsang AM, Ryan TE, Patteson DJ, McClung JM, Spangenburg EE, Shaikh SR, Neufer PD, Brown DA. Exercise-induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics. Am J Physiol Heart Circ Physiol 2016; 310:H1360-70. [PMID: 26945082 PMCID: PMC4888539 DOI: 10.1152/ajpheart.00858.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/26/2016] [Indexed: 11/22/2022]
Abstract
Mitochondria influence cardiac electrophysiology through energy- and redox-sensitive ion channels in the sarcolemma, with the collapse of energetics believed to be centrally involved in arrhythmogenesis. This study was conducted to determine if preservation of mitochondrial membrane potential (ΔΨm) contributes to the antiarrhythmic effect of exercise. We utilized perfused hearts, isolated myocytes, and isolated mitochondria exposed to metabolic challenge to determine the effects of exercise on cardiac mitochondria. Hearts from sedentary (Sed) and exercised (Ex; 10 days of treadmill running) Sprague-Dawley rats were perfused on a two-photon microscope stage for simultaneous measurement of ΔΨm and ECG. After ischemia-reperfusion, the collapse of ΔΨm was commensurate with the onset of arrhythmia. Exercise preserved ΔΨm and decreased the incidence of fibrillation/tachycardia (P < 0.05). Our findings in intact hearts were corroborated in isolated myocytes exposed to in vitro hypoxia-reoxygenation, with Ex rats demonstrating enhanced redox control and sustained ΔΨm during reoxygenation. Finally, we induced anoxia-reoxygenation in isolated mitochondria using high-resolution respirometry with simultaneous measurement of respiration and H2O2 Mitochondria from Ex rats sustained respiration with lower rates of H2O2 emission than Sed rats. Exercise helps sustain postischemic mitochondrial bioenergetics and redox homeostasis, which is associated with preserved ΔΨm and protection against reperfusion arrhythmia. The reduction of fatal ventricular arrhythmias through exercise-induced mitochondrial adaptations indicates that mitochondrial therapeutics may be an effective target for the treatment of heart disease.
Collapse
Affiliation(s)
- Rick J Alleman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Alvin M Tsang
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Terence E Ryan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Daniel J Patteson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Espen E Spangenburg
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Saame Raza Shaikh
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - P Darrell Neufer
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - David A Brown
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| |
Collapse
|
41
|
Abstract
We showed that exercise induces early and late myocardial preconditioning in dogs and that these effects are mediated through nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase activation. As the intracoronary administration of calcium induces preconditioning and exercise enhances the calcium inflow to the cell, we studied if this effect of exercise triggers exercise preconditioning independently of its hemodynamic effects. We analyzed in 81 dogs the effect of blocking sarcolemmal L-type Ca channels with a low dose of verapamil on early and late preconditioning by exercise, and in other 50 dogs, we studied the effect of verapamil on NADPH oxidase activation in early exercise preconditioning. Exercise reduced myocardial infarct size by 76% and 52% (early and late windows respectively; P < 0.001 both), and these effects were abolished by a single low dose of verapamil given before exercise. This dose of verapamil did not modify the effect of exercise on metabolic and hemodynamic parameters. In addition, verapamil blocked the activation of NADPH oxidase during early preconditioning. The protective effect of exercise preconditioning on myocardial infarct size is triggered, at least in part, by calcium inflow increase to the cell during exercise and, during the early window, is mediated by NADPH oxidase activation.
Collapse
|
42
|
Kramer PA, Duan J, Qian WJ, Marcinek DJ. The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function. Front Physiol 2015; 6:347. [PMID: 26635632 PMCID: PMC4658434 DOI: 10.3389/fphys.2015.00347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar, and excitation-contraction (EC) coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Radiology, University of Washington Seattle, WA, USA
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington Seattle, WA, USA ; Department of Bioengineering, University of Washington Seattle, WA, USA
| |
Collapse
|
43
|
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6:524-551. [PMID: 26484802 PMCID: PMC4625011 DOI: 10.1016/j.redox.2015.08.020] [Citation(s) in RCA: 1011] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022] Open
Abstract
Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. Reperfusion injury is implicated in a variety of human diseases and disorders. Evidence implicating ROS in reperfusion injury continues to grow. Several enzymes are candidate sources of ROS in post-ischemic tissue. Inter-enzymatic ROS-dependent signaling enhances the oxidative stress caused by I/R. .
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.
| | - Peter R Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Babu D, Leclercq G, Goossens V, Remijsen Q, Vandenabeele P, Motterlini R, Lefebvre RA. Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells. Toxicol Appl Pharmacol 2015; 288:161-78. [PMID: 26187750 DOI: 10.1016/j.taap.2015.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/26/2022]
Abstract
Targeting excessive production of reactive oxygen species (ROS) could be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in the mouse intestinal epithelial cell line, MODE-K. In the current study, the influence of a polyphenolic compound (resveratrol) and a water-soluble carbon monoxide (CO)-releasing molecule (CORM-A1) on the different sources of TNF-α/CHX-induced ROS production in MODE-K cells was assessed. This was compared with H2O2-, rotenone- or antimycin-A-induced ROS-generating systems. Intracellular total ROS, mitochondrial-derived ROS and mitochondrial superoxide anion (O2(-)) production levels were assessed. Additionally, the influence on TNF-α/CHX-induced changes in mitochondrial membrane potential (Ψm) and mitochondrial function was studied. In basal conditions, CORM-A1 did not affect intracellular total or mitochondrial ROS levels, while resveratrol increased intracellular total ROS but reduced mitochondrial ROS production. TNF-α/CHX- and H2O2-mediated increase in intracellular total ROS production was reduced by both resveratrol and CORM-A1, whereas only resveratrol attenuated the increase in mitochondrial ROS triggered by TNF-α/CHX. CORM-A1 decreased antimycin-A-induced mitochondrial O2(-) production without any influence on TNF-α/CHX- and rotenone-induced mitochondrial O2(-) levels, while resveratrol abolished all three effects. Finally, resveratrol greatly reduced and abolished TNF-α/CHX-induced mitochondrial depolarization and mitochondrial dysfunction, while CORM-A1 only mildly affected these parameters. These data indicate that the cytoprotective effect of resveratrol is predominantly due to mitigation of mitochondrial ROS, while CORM-A1 acts solely on NOX-derived ROS to protect MODE-K cells from TNF-α/CHX-induced cell death. This might explain the more pronounced cytoprotective effect of resveratrol.
Collapse
Affiliation(s)
- Dinesh Babu
- Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Vera Goossens
- Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - Quinten Remijsen
- Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - Roberto Motterlini
- Inserm U955, Equipe 12 and University Paris-Est Créteil, Faculty of Medicine, F-94000 Créteil, France
| | - Romain A Lefebvre
- Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| |
Collapse
|
45
|
Borges JP, Lessa MA. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review. Arq Bras Cardiol 2015; 105:71-81. [PMID: 25830711 PMCID: PMC4523290 DOI: 10.5935/abc.20150024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/11/2014] [Accepted: 12/26/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. OBJECTIVE To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. METHODS A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. RESULTS The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. CONCLUSION On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions.
Collapse
Affiliation(s)
- Juliana Pereira Borges
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ − Brazil
| | - Marcos Adriano Lessa
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ − Brazil
| |
Collapse
|
46
|
Zuo L, Chuang CC, Hemmelgarn BT, Best TM. Heart failure with preserved ejection fraction: Defining the function of ROS and NO. J Appl Physiol (1985) 2015; 119:944-51. [PMID: 25977452 DOI: 10.1152/japplphysiol.01149.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/05/2015] [Indexed: 12/12/2022] Open
Abstract
The understanding of complex molecular mechanisms underlying heart failure (HF) is constantly under revision. Recent research has paid much attention to understanding the growing number of patients that exhibit HF symptoms yet have an ejection fraction similar to a normal phenotype. Termed heart failure with preserved ejection fraction (HFpEF), this novel hypothesis traces its roots to a proinflammatory state initiated in part by the existence of comorbidities that create a favorable environment for the production of reactive oxygen species (ROS). Triggering a cascade that involves reduced nitric oxide (NO) availability, elevated ROS levels in the coronary endothelium eventually contribute to hypertrophy and increased resting tension in cardiomyocytes. Improved understanding of the molecular pathways associated with HFpEF has led to studies that concentrate on reducing ROS production in the heart, boosting NO availability, and increasing exercise capacity for HFpEF patients. This review will explore the latest research into the role of ROS and NO in the progression of HFpEF, as well as discuss the encouraging results of numerous therapeutic studies.
Collapse
Affiliation(s)
- Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Benjamin T Hemmelgarn
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Thomas M Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health & Performance Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
47
|
Alleman RJ, Stewart LM, Tsang AM, Brown DA. Why Does Exercise "Trigger" Adaptive Protective Responses in the Heart? Dose Response 2015; 13:10.2203_dose-response.14-023.Alleman. [PMID: 26674259 PMCID: PMC4674163 DOI: 10.2203/dose-response.14-023.alleman] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Numerous epidemiological studies suggest that individuals who exercise have decreased cardiac morbidity and mortality. Pre-clinical studies in animal models also find clear cardioprotective phenotypes in animals that exercise, specifically characterized by lower myocardial infarction and arrhythmia. Despite the clear benefits, the underlying cellular and molecular mechanisms that are responsible for exercise preconditioning are not fully understood. In particular, the adaptive signaling events that occur during exercise to "trigger" cardioprotection represent emerging paradigms. In this review, we discuss recent studies that have identified several different factors that appear to initiate exercise preconditioning. We summarize the evidence for and against specific cellular factors in triggering exercise adaptations and identify areas for future study.
Collapse
Affiliation(s)
- Rick J Alleman
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| | - Luke M Stewart
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| | - Alvin M Tsang
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| | - David A Brown
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| |
Collapse
|
48
|
Powers SK, Smuder AJ, Kavazis AN, Quindry JC. Mechanisms of exercise-induced cardioprotection. Physiology (Bethesda) 2014; 29:27-38. [PMID: 24382869 DOI: 10.1152/physiol.00030.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury can cause ventricular cell death and is a major pathological event leading to morbidity and mortality in those with coronary artery disease. Interestingly, as few as five bouts of exercise on consecutive days can rapidly produce a cardiac phenotype that resists IR-induced myocardial injury. This review summarizes the development of exercise-induced cardioprotection and the mechanisms responsible for this important adaptive response.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | | | | |
Collapse
|
49
|
Alleman RJ, Katunga LA, Nelson MAM, Brown DA, Anderson EJ. The "Goldilocks Zone" from a redox perspective-Adaptive vs. deleterious responses to oxidative stress in striated muscle. Front Physiol 2014; 5:358. [PMID: 25278906 PMCID: PMC4166897 DOI: 10.3389/fphys.2014.00358] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023] Open
Abstract
Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system's position on the “hormetic curve” is governed by the source and temporality of reactive oxygen species (ROS) production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage) is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g., months to years) inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning) and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome).
Collapse
Affiliation(s)
- Rick J Alleman
- Departments of Physiology, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA
| | - Lalage A Katunga
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Margaret A M Nelson
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - David A Brown
- Departments of Physiology, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA
| | - Ethan J Anderson
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
50
|
Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014; 5:282. [PMID: 25132820 PMCID: PMC4116787 DOI: 10.3389/fphys.2014.00282] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022] Open
Abstract
Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete. Cells store fatty acids (FAs) as triacylglycerol and package them into cytoplasmic lipid droplets (LDs). New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates. Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g., exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain reactive oxygen species (ROS) within levels compatible with signaling while ensuring robust and reliable energy supply.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Niraj Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Sonia C Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|