1
|
McMullan A, Zwierzynski JB, Jain N, Haneline LS, Shou W, Kua KL, Hota SK, Durbin MD. Role of Maternal Obesity in Offspring Cardiovascular Development and Congenital Heart Defects. J Am Heart Assoc 2025; 14:e039684. [PMID: 40314345 DOI: 10.1161/jaha.124.039684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Congenital heart disease is a leading cause of death in newborns, yet many of its molecular mechanisms remain unknown. Both maternal obesity and diabetes increase the risk of congenital heart disease in offspring, with recent studies suggesting these conditions may have distinct teratogenic mechanisms. The global prevalence of obesity is rising, and while maternal obesity is a known risk factor for fetal congenital heart disease, the specific mechanisms are largely unexplored. METHODS AND RESULTS We used a murine model of diet-induced maternal obesity, without diabetes, to produce dams that were overweight but had normal blood glucose levels. Embryos were generated and their developing hearts analyzed. Transcriptome analysis was performed using single-nucleus and bulk RNA sequencing. Global and phospho-enriched proteome analysis was performed using tandem mass tag-mass spectroscopy. Immunobloting and histologic evaluation were also performed. Analysis revealed disrupted oxidative phosphorylation and reactive oxygen species formation, with reduced antioxidant capacity, evidenced by downregulation of genes Sod1 and Gp4x, and disrupted Hif1a signaling. Evidence of oxidative stress, cell death signaling, and alteration in Rho GTPase and actin cytoskeleton signaling was also observed. Genes involved in cardiac morphogenesis, including Hand2, were downregulated, and fewer mature cardiomyocytes were present. Histologic analysis confirmed increased cardiac defects in embryos exposed to maternal obesity. CONCLUSIONS These findings demonstrate that maternal obesity alone can result in cardiac defects through mechanisms similar to those associated with maternal hyperglycemia. This study provides valuable insight into the role of maternal obesity, a growing and modifiable risk factor, in the development of the most common birth defect, congenital heart disease.
Collapse
Affiliation(s)
- Ashleigh McMullan
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | | | - Nina Jain
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Laura S Haneline
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Weinian Shou
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Kok Lim Kua
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
- Center for Diabetes and Metabolic Disease Research Indiana University School of Medicine Indianapolis IN USA
| | - Swetansu K Hota
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Matthew D Durbin
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
2
|
Derrick CJ, Eley L, Alqahtani A, Henderson DJ, Chaudhry B. Zebrafish arterial valve development occurs through direct differentiation of second heart field progenitors. Cardiovasc Res 2025; 121:157-173. [PMID: 39460530 PMCID: PMC11998914 DOI: 10.1093/cvr/cvae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
AIMS Bicuspid aortic valve (BAV) is the most common congenital heart defect, affecting at least 2% of the population. The embryonic origins of BAV remain poorly understood, with few assays for validating patient variants, limiting the identification of causative genes for BAV. In both human and mouse, the left and right leaflets of the arterial valves arise from the outflow tract cushions, with interstitial cells originating from neural crest cells and the overlying endocardium through endothelial-to-mesenchymal transition (EndoMT). In contrast, an EndoMT-independent mechanism of direct differentiation of cardiac progenitors from the second heart field (SHF) is responsible for the formation of the anterior and posterior leaflets. Defects in either of these developmental mechanisms can result in BAV. Although zebrafish have been suggested as a model for human variant testing, their naturally bicuspid arterial valve has not been considered suitable for understanding human arterial valve development. Here, we have set out to investigate to what extent the processes involved in arterial valve development are conserved in zebrafish and, ultimately, whether functional testing of BAV variants could be carried out. METHODS AND RESULTS Using a combination of live imaging, immunohistochemistry, and Cre-mediated lineage tracing, we show that the zebrafish arterial valve primordia develop directly from SHF progenitors with no contribution from EndoMT or neural crest, in keeping with the human and mouse anterior and posterior leaflets. Moreover, once formed, these primordia share common subsequent developmental events with all three aortic valve leaflets. CONCLUSION Our work highlights a conserved ancestral mechanism of arterial valve leaflet formation from the SHF and identifies that development of the arterial valve is distinct from that of the atrioventricular valve in zebrafish. Crucially, this confirms the utility of zebrafish for understanding the development of specific BAV subtypes and arterial valve dysplasia, offering potential for high-throughput variant testing.
Collapse
Affiliation(s)
- Christopher J Derrick
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Ahlam Alqahtani
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
3
|
Soto-Navarrete MT, Pozo-Vilumbrales B, López-Unzu MÁ, Martín-Chaves L, Durán AC, Fernández B. Endocardial-to-mesenchymal transition underlies cardiac outflow tract septation and bicuspid aortic valve formation in the Syrian hamster model. Sci Rep 2025; 15:8583. [PMID: 40074779 PMCID: PMC11903957 DOI: 10.1038/s41598-025-91454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Right-left bicuspid aortic valve (R-L BAV) is the most frequent phenotype of the most common congenital heart disease. Its etiology is based on two associated morphogenetic defects during cardiac outflow tract (OFT) septation: abnormal migration of cardiac neural crest (CNC) cells, and excessive fusion of the conal ridges (CRs). The aim of this study is to elucidate the mechanism involved in the fusion of the CRs responsible for normal and abnormal OFT septation and BAV formation. Two mechanisms have been proposed: endocardial apoptosis and endocardial-mesenchymal transition (EMT). The involvement of these mechanisms in the fusion event was tested in embryos of the hamster model with BAV. Apoptotic cells were absent in the fusion area of the CRs. However, we detected endocardial cells (CD34+;VE-Cadherin+) showing positive signals for migration markers (α-actin+) in the fusion area of the CRs of embryos developing both normal aortic valve and BAV. These cells showed an intermediate morphological phenotype between endocardial and mesenchymal cells. The findings clearly indicate that EMT, and not apoptosis, is the cellular mechanism underlying the normal and excessive fusion of CRs that give rise to tricuspid aortic valve and BAV, respectively. Furthermore, our results show that the fusion of CRs in embryos developing BAV continues after the OFT septation, suggesting over-induction of EMT by abnormally distributed CNC cells.
Collapse
Affiliation(s)
- María Teresa Soto-Navarrete
- Department of Animal Biology, Faculty of Science, University of Malaga, Malaga, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform-IBIMA BIONAND Platform, Malaga, Spain
| | - Bárbara Pozo-Vilumbrales
- Department of Animal Biology, Faculty of Science, University of Malaga, Malaga, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform-IBIMA BIONAND Platform, Malaga, Spain
| | | | - Laura Martín-Chaves
- Biomedical Research Institute of Malaga and Nanomedicine Platform-IBIMA BIONAND Platform, Malaga, Spain
- Heart Area, Virgen de la Victoria University Hospital, Malaga, Spain
- Center for Biomedical Research Network - Cardiovascular Diseases (CIBERCV), Malaga, Spain
| | - Ana C Durán
- Department of Animal Biology, Faculty of Science, University of Malaga, Malaga, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform-IBIMA BIONAND Platform, Malaga, Spain
| | - Borja Fernández
- Department of Animal Biology, Faculty of Science, University of Malaga, Malaga, Spain.
- Biomedical Research Institute of Malaga and Nanomedicine Platform-IBIMA BIONAND Platform, Malaga, Spain.
- Center for Biomedical Research Network - Cardiovascular Diseases (CIBERCV), Malaga, Spain.
| |
Collapse
|
4
|
Sedmera D, Olejnickova V, Sankova B, Kolesova H, Bartos M, Kvasilova A, Phillips LC, Bamforth SD, Phillips HM. Morphological, electrophysiological, and molecular alterations in foetal noncompacted cardiomyopathy induced by disruption of ROCK signalling. Front Cell Dev Biol 2024; 12:1471751. [PMID: 39435333 PMCID: PMC11491540 DOI: 10.3389/fcell.2024.1471751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Left ventricular noncompaction cardiomyopathy is associated with heart failure, arrhythmia, and sudden cardiac death. The developmental mechanism underpinning noncompaction in the adult heart is still not fully understood, with lack of trabeculae compaction, hypertrabeculation, and loss of proliferation cited as possible causes. To study this, we utilised a mouse model of aberrant Rho kinase (ROCK) signalling in cardiomyocytes, which led to a noncompaction phenotype during embryogenesis, and monitored how this progressed after birth and into adulthood. The cause of the early noncompaction at E15.5 was attributed to a decrease in proliferation in the developing ventricular wall. By E18.5, the phenotype became patchy, with regions of noncompaction interspersed with thick compacted areas of ventricular wall. To study how this altered myoarchitecture of the heart influenced impulse propagation in the developing and adult heart, we used histology with immunohistochemistry for gap junction protein expression, optical mapping, and electrocardiography. At the prenatal stages, a clear reduction in left ventricular wall thickness, accompanied by abnormal conduction of the ectopically paced beat in that area, was observed in mutant hearts. This correlated with increased expression of connexin-40 and connexin-43 in noncompacted trabeculae. In postnatal stages, left ventricular noncompaction was resolved, but the right ventricular wall remained structurally abnormal through to adulthood with cardiomyocyte hypertrophy and retention of myocardial crypts. Thus, this is a novel model of self-correcting embryonic hypertrabeculation cardiomyopathy, but it highlights that remodelling potential differs between the left and right ventricles. We conclude that disruption of ROCK signalling induces both morphological and electrophysiological changes that evolve over time, highlighting the link between myocyte proliferation and noncompaction phenotypes and electrophysiological differentiation.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Bartos
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lauren C. Phillips
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon D. Bamforth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M. Phillips
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Piñeiro-Sabarís R, MacGrogan D, de la Pompa JL. Deficient GATA6-CXCR7 signaling leads to bicuspid aortic valve. Dis Model Mech 2024; 17:dmm050934. [PMID: 39253784 PMCID: PMC11413932 DOI: 10.1242/dmm.050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
The cardiac outflow tract (OFT) transiently links the ventricles to the aortic sac and forms the arterial valves. Abnormalities in these valves, such as bicuspid aortic valve (BAV), are common congenital anomalies. GATA6-inactivating variants cause cardiac OFT defects and BAV, but their mechanisms are unclear. We generated Gata6STOP/+ mice using CRISPR-Cas9, which show highly penetrant BAV (70%) and membranous ventricular septal defects (43%). These mice exhibited decreased proliferation and increased ISL1-positive progenitor cells in the OFT, indicating abnormal cardiovascular differentiation. Gata6 deletion with the Mef2cCre driver line recapitulated Gata6STOP/+ phenotypes, indicating a cell-autonomous role for Gata6 in the second heart field. Gata6STOP/+ mice showed reduced OFT length and caliber, associated with deficient cardiac neural crest cell contribution, which may cause valvulo-septal defects. RNA-sequencing analysis showed depletion in pathways related to cell proliferation and migration, highlighting Cxcr7 (also known as Ackr3) as a candidate gene. Reduced mesenchymal cell migration and invasion were observed in Gata6STOP/+ OFT tissue. CXCR7 agonists reduced mesenchymal cell migration and increased invasion in wild-type but not in Gata6STOP/+ explants, indicating the GATA6-dependent role of CXCR7 in OFT development and its potential link to BAV.
Collapse
Affiliation(s)
- Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
6
|
Bargagna M, Ascione G, Zancanaro E, Fioravanti F, Sala A, Trumello C, Chang G, Verzini A, Castiglioni A, Maisano F. Bicuspid Aortic Valve, from the Unknown till the Perfection of the Species. Rev Cardiovasc Med 2024; 25:310. [PMID: 39228478 PMCID: PMC11366994 DOI: 10.31083/j.rcm2508310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 09/05/2024] Open
Abstract
The bicuspid aortic valve (BAV) is the most common congenital cardiac abnormality. Though most often isolated, BAV may be associated with other cardiovascular malformations. BAV-related aortopathy is the most common, sharing genetic alterations and phenotypic heterogeneity characteristics. Sometimes silent for a lifetime, BAV may manifest as aortic valve dysfunction, aortic aneurysm, or more emergent situations, such as endocarditis or aortic dissection. Its embryological origin and the characterization of the genes involved, as well as the histopathological and hemodynamic aspects of its natural history, are becoming increasingly clear. In addition, emerging evidence of rhythm disorders associated with BAV has been identified. A new international nomenclature and classification has been introduced to interpret all the advances made in recent years for the comprehension of this condition. In the guidelines, more attention has been paid to the diagnosis of BAV and related aortopathy, together with surveillance, and family screening. Surgical treatment remains the gold standard, especially in young low-risk patients, and valve repair techniques have been shown to be effective and durable. Finally, the new era of transcatheter techniques is also being applied to dysfunctional BAV, allowing the treatment of patients at high surgical risk, with increasingly promising results, and the possibility of expanding indications through the introduction of more advanced devices. This review aims to comprehensively describe the BAV conundrum, focusing on anatomy, pathophysiology, genetics, diagnosis of BAV-related disorders, and the different treatment options available in the transcatheter era.
Collapse
Affiliation(s)
- Marta Bargagna
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San-Raffaele University, 20132 Milan, Italy
| | - Guido Ascione
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San-Raffaele University, 20132 Milan, Italy
| | - Edoardo Zancanaro
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San-Raffaele University, 20132 Milan, Italy
| | - Francesco Fioravanti
- Department of Cardiac-Electrophysiology and Arrhythmia, IRCCS San Raffaele Hospital, Vita-Salute San-Raffaele University, 20132 Milan, Italy
| | - Alessandra Sala
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San-Raffaele University, 20132 Milan, Italy
| | - Cinzia Trumello
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San-Raffaele University, 20132 Milan, Italy
| | - Guohao Chang
- Department of Cardiac Surgery, National University Heart Center, 119074 Singapore, Singapore
| | - Alessandro Verzini
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San-Raffaele University, 20132 Milan, Italy
| | - Alessandro Castiglioni
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San-Raffaele University, 20132 Milan, Italy
| | - Francesco Maisano
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San-Raffaele University, 20132 Milan, Italy
| |
Collapse
|
7
|
Vignard V, Baruteau AE, Toutain B, Mercier S, Isidor B, Redon R, Schott JJ, Küry S, Bézieau S, Monsoro-Burq AH, Ebstein F. Exploring the origins of neurodevelopmental proteasomopathies associated with cardiac malformations: are neural crest cells central to certain pathological mechanisms? Front Cell Dev Biol 2024; 12:1370905. [PMID: 39071803 PMCID: PMC11272537 DOI: 10.3389/fcell.2024.1370905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Neurodevelopmental proteasomopathies constitute a recently defined class of rare Mendelian disorders, arising from genomic alterations in proteasome-related genes. These alterations result in the dysfunction of proteasomes, which are multi-subunit protein complexes essential for maintaining cellular protein homeostasis. The clinical phenotype of these diseases manifests as a syndromic association involving impaired neural development and multisystem abnormalities, notably craniofacial anomalies and malformations of the cardiac outflow tract (OFT). These observations suggest that proteasome loss-of-function variants primarily affect specific embryonic cell types which serve as origins for both craniofacial structures and the conotruncal portion of the heart. In this hypothesis article, we propose that neural crest cells (NCCs), a highly multipotent cell population, which generates craniofacial skeleton, mesenchyme as well as the OFT of the heart, in addition to many other derivatives, would exhibit a distinctive vulnerability to protein homeostasis perturbations. Herein, we introduce the diverse cellular compensatory pathways activated in response to protein homeostasis disruption and explore their potential implications for NCC physiology. Altogether, the paper advocates for investigating proteasome biology within NCCs and their early cranial and cardiac derivatives, offering a rationale for future exploration and laying the initial groundwork for therapeutic considerations.
Collapse
Affiliation(s)
- Virginie Vignard
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Alban-Elouen Baruteau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, Nantes, France
- Nantes Université, CHU Nantes, INSERM, CIC FEA 1413, Nantes, France
| | - Bérénice Toutain
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Richard Redon
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | | | - Sébastien Küry
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Anne H. Monsoro-Burq
- Faculté des Sciences d'Orsay, CNRS, UMR 3347, INSERM, Université Paris-Saclay, Orsay, France
- Institut Curie, PSL Research University, CNRS, UMR 3347, INSERM, Orsay, France
- Institut Universitaire de France, Paris, France
| | - Frédéric Ebstein
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| |
Collapse
|
8
|
Kwartler CS, Pinelo JEE. Use of iPSC-Derived Smooth Muscle Cells to Model Physiology and Pathology. Arterioscler Thromb Vasc Biol 2024; 44:1523-1536. [PMID: 38695171 PMCID: PMC11209779 DOI: 10.1161/atvbaha.123.319703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The implementation of human induced pluripotent stem cell (hiPSC) models has introduced an additional tool for identifying molecular mechanisms of disease that complement animal models. Patient-derived or CRISPR/Cas9-edited induced pluripotent stem cells differentiated into smooth muscle cells (SMCs) have been leveraged to discover novel mechanisms, screen potential therapeutic strategies, and model in vivo development. The field has evolved over almost 15 years of research using hiPSC-SMCs and has made significant strides toward overcoming initial challenges such as the lineage specificity of SMC phenotypes. However, challenges both specific (eg, the lack of specific markers to thoroughly validate hiPSC-SMCs) and general (eg, a lack of transparency and consensus around methodology in the field) remain. In this review, we highlight the recent successes and remaining challenges of the hiPSC-SMC model.
Collapse
Affiliation(s)
- Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Jose Emiliano Esparza Pinelo
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
9
|
Soliman O, Acharya Y, Gilard M, Duffy G, Wijns W, Kannan V, Sultan S. Systematic review of cardiovascular neurocristopathy-contemporary insights and future perspectives. Front Cardiovasc Med 2024; 11:1333265. [PMID: 38660479 PMCID: PMC11040563 DOI: 10.3389/fcvm.2024.1333265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Neural crest cells (NCCs) are multipotent and are attributed to the combination of complex multimodal gene regulatory mechanisms. Cardiac neural crest (CNC) cells, originating from the dorsal neural tube, are pivotal architects of the cardio-neuro-vascular domain, which orchestrates the embryogenesis of critical cardiac and vascular structures. Remarkably, while the scientific community compiled a comprehensive inventory of neural crest derivatives by the early 1980s, our understanding of the CNC's role in various cardiovascular disease processes still needs to be explored. This review delves into the differentiation of NCC, specifically the CNC cells, and explores the diverse facets of non-syndromic cardiovascular neurocristopathies. Methods A systematic review was conducted as per the PRISMA Statement. Three prominent databases, PubMed, Scopus, and Embase, were searched, which yielded 1,840 studies. We excluded 1,796 studies, and the final selection of 44 studies formed the basis of this comprehensive review. Results Neurocristopathies are a group of genetic disorders that affect the development of cells derived from the NC. Cardiovascular neurocristopathy, i.e., cardiopathy and vasculopathy, associated with the NCC could occur in the form of (1) cardiac septation disorders, mainly the aortico-pulmonary septum; (2) great vessels and vascular disorders; (3) myocardial dysfunction; and (4) a combination of all three phenotypes. This could result from abnormalities in NCC migration, differentiation, or proliferation leading to structural abnormalities and are attributed to genetic, familial, sporadic or acquired causes. Discussion Phenotypic characteristics of cardiovascular neurocristopathies, such as bicuspid aortic valve and thoracic aortic aneurysm, share a common embryonic origin and are surprisingly prevalent in the general population, necessitating further research to identify the underlying pathogenic and genetic factors responsible for these cardiac anomalies. Such discoveries are essential for enhancing diagnostic screening and refining therapeutic interventions, ultimately improving the lives of individuals affected by these conditions.
Collapse
Affiliation(s)
- Osama Soliman
- Department of Cardiology, Galway University Hospital, Galway, Ireland
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
| | - Yogesh Acharya
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, University of Galway, Galway, Ireland
| | - Martine Gilard
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Department of Cardiology, La Cavale Blanche Hospital, Brest, France
| | - Garry Duffy
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - William Wijns
- Department of Cardiology, Galway University Hospital, Galway, Ireland
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
| | - Venkatesh Kannan
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Irish Centre for High-End Computing (ICHEC), University of Galway, Galway, Ireland
| | - Sherif Sultan
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, University of Galway, Galway, Ireland
- Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland and University of Galway Affiliated Hospital, Galway, Ireland
| |
Collapse
|
10
|
Anderson RH, Lamers WH, Hikspoors JPJM, Mohun TJ, Bamforth SD, Chaudhry B, Eley L, Kerwin J, Crosier M, Henderson DJ. Development of the arterial roots and ventricular outflow tracts. J Anat 2024; 244:497-513. [PMID: 37957890 PMCID: PMC10862166 DOI: 10.1111/joa.13973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The separation of the outflow tract of the developing heart into the systemic and pulmonary arterial channels remains controversial and poorly understood. The definitive outflow tracts have three components. The developing outflow tract, in contrast, has usually been described in two parts. When the tract has exclusively myocardial walls, such bipartite description is justified, with an obvious dogleg bend separating proximal and distal components. With the addition of non-myocardial walls distally, it becomes possible to recognise three parts. The middle part, which initially still has myocardial walls, contains within its lumen a pair of intercalated valvar swellings. The swellings interdigitate with the distal ends of major outflow cushions, formed by the remodelling of cardiac jelly, to form the primordiums of the arterial roots. The proximal parts of the major cushions, occupying the proximal part of the outflow tract, which also has myocardial walls, themselves fuse and muscularise. The myocardial shelf thus formed remodels to become the free-standing subpulmonary infundibulum. Details of all these processes are currently lacking. In this account, we describe the anatomical changes seen during the overall remodelling. Our interpretations are based on the interrogation of serially sectioned histological and high-resolution episcopic microscopy datasets prepared from developing human and mouse embryos, with some of the datasets processed and reconstructed to reveal the specific nature of the tissues contributing to the separation of the outflow channels. Our findings confirm that the tripartite postnatal arrangement can be correlated with the changes occurring during development.
Collapse
Affiliation(s)
| | - Wouter H. Lamers
- Department of Anatomy & EmbryologyMaastricht UniversityMaastrichtThe Netherlands
| | | | | | | | - Bill Chaudhry
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lorraine Eley
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Janet Kerwin
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Moira Crosier
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
11
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:777-796. [PMID: 38884748 DOI: 10.1007/978-3-031-44087-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The great arteries of the vertebrate carry blood from the heart to the systemic circulation and are derived from the pharyngeal arch arteries. In higher vertebrates, the pharyngeal arch arteries are a symmetrical series of blood vessels that rapidly remodel during development to become the asymmetric aortic arch arteries carrying oxygenated blood from the left ventricle via the outflow tract. At the base of the aorta, as well as the pulmonary trunk, are the semilunar valves. These valves each have three leaflets and prevent the backflow of blood into the heart. During development, the process of aortic arch and valve formation may go wrong, resulting in cardiovascular defects, and these may, at least in part, be caused by genetic mutations. In this chapter, we will review models harboring genetic mutations that result in cardiovascular defects affecting the great arteries and the semilunar valves.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Simon D Bamforth
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. Human Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:3-55. [PMID: 38884703 DOI: 10.1007/978-3-031-44087-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Many aspects of heart development are topographically complex and require three-dimensional (3D) reconstruction to understand the pertinent morphology. We have recently completed a comprehensive primer of human cardiac development that is based on firsthand segmentation of structures of interest in histological sections. We visualized the hearts of 12 human embryos between their first appearance at 3.5 weeks and the end of the embryonic period at 8 weeks. The models were presented as calibrated, interactive, 3D portable document format (PDF) files. We used them to describe the appearance and the subsequent remodeling of around 70 different structures incrementally for each of the reconstructed stages. In this chapter, we begin our account by describing the formation of the single heart tube, which occurs at the end of the fourth week subsequent to conception. We describe its looping in the fifth week, the formation of the cardiac compartments in the sixth week, and, finally, the septation of these compartments into the physically separated left- and right-sided circulations in the seventh and eighth weeks. The phases are successive, albeit partially overlapping. Thus, the basic cardiac layout is established between 26 and 32 days after fertilization and is described as Carnegie stages (CSs) 9 through 14, with development in the outlet component trailing that in the inlet parts. Septation at the venous pole is completed at CS17, equivalent to almost 6 weeks of development. During Carnegie stages 17 and 18, in the seventh week, the outflow tract and arterial pole undergo major remodeling, including incorporation of the proximal portion of the outflow tract into the ventricles and transfer of the spiraling course of the subaortic and subpulmonary channels to the intrapericardial arterial trunks. Remodeling of the interventricular foramen, with its eventual closure, is complete at CS20, which occurs at the end of the seventh week. We provide quantitative correlations between the age of human and mouse embryos as well as the Carnegie stages of development. We have also set our descriptions in the context of variations in the timing of developmental features.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Present address: Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Eley L, Richardson RV, Alqahtani A, Chaudhry B, Henderson DJ. eNOS plays essential roles in the developing heart and aorta linked to disruption of Notch signalling. Dis Model Mech 2024; 17:dmm050265. [PMID: 38111957 PMCID: PMC10846539 DOI: 10.1242/dmm.050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
eNOS (NOS3) is the enzyme that generates nitric oxide, a signalling molecule and regulator of vascular tone. Loss of eNOS function is associated with increased susceptibility to atherosclerosis, hypertension, thrombosis and stroke. Aortopathy and cardiac hypertrophy have also been found in eNOS null mice, but their aetiology is unclear. We evaluated eNOS nulls before and around birth for cardiac defects, revealing severe abnormalities in the ventricular myocardium and pharyngeal arch arteries. Moreover, in the aortic arch, there were fewer baroreceptors, which sense changes in blood pressure. Adult eNOS null survivors showed evidence of cardiac hypertrophy, aortopathy and cartilaginous metaplasia in the periductal region of the aortic arch. Notch1 and neuregulin were dysregulated in the forming pharyngeal arch arteries and ventricles, suggesting that these pathways may be relevant to the defects observed. Dysregulation of eNOS leads to embryonic and perinatal death, suggesting mutations in eNOS are candidates for causing congenital heart defects in humans. Surviving eNOS mutants have a deficiency of baroreceptors that likely contributes to high blood pressure and may have relevance to human patients who suffer from hypertension associated with aortic arch abnormalities.
Collapse
Affiliation(s)
- Lorraine Eley
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rachel V. Richardson
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ahlam Alqahtani
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Bill Chaudhry
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Deborah J. Henderson
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
14
|
Blair G, Cardona JJ, Chaiyamoon A, Shekhawat D, Iwanaga J, Loukas M, Tubbs RS. Quadricuspid Pulmonary Valve With Fenestration: Cadaveric Findings. Cureus 2023; 15:e42705. [PMID: 37654910 PMCID: PMC10465817 DOI: 10.7759/cureus.42705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2023] [Indexed: 09/02/2023] Open
Abstract
Quadricuspid pulmonary valves (QPV) are rare entities. Such valves can be associated with other cardiac anatomical anomalies. In this report, we present a case of a quadricuspid valve with an additional variant and discuss the morphometrics of this anatomical variation. During the routine dissection of an adult male body, two anatomical variations were found within the pulmonary trunk. This individual had a QPV. In addition, one of the leaflets of this valve contained fenestrations. No additional cardiac anomalies were identified. Clinicians who review imaging of the heart or treat patients with cardiac conditions should be well-informed about QPV.
Collapse
Affiliation(s)
- Graham Blair
- Anatomy, Tulane University School of Medicine, New Orleans, USA
| | - Juan J Cardona
- Department of Neurosurgery, Tulane University School of Medicine Center for Clinical Neurosciences, New Orleans, USA
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, THA
| | - Devendra Shekhawat
- Department of Neurosurgery, Tulane University School of Medicine Center for Clinical Neurosciences, New Orleans, USA
| | - Joe Iwanaga
- Department of Neurosurgery, Tulane University School of Medicine Center for Clinical Neurosciences, New Orleans, USA
- Department of Oral and Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, JPN
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, USA
| | - Marios Loukas
- Department of Anatomical Sciences, St. George's University, St. George's, GRD
| | - R Shane Tubbs
- Department of Neurosurgery, Tulane University School of Medicine Center for Clinical Neurosciences, New Orleans, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, USA
- Department of Anatomical Sciences, St. George's University, St. George's, GRD
- Department of Neurosurgery, Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, USA
| |
Collapse
|
15
|
Freiholtz D, Bergman O, Lång K, Poujade FA, Paloschi V, Granath C, Lindeman JHN, Olsson C, Franco-Cereceda A, Eriksson P, Björck HM. Bicuspid aortic valve aortopathy is characterized by embryonic epithelial to mesenchymal transition and endothelial instability. J Mol Med (Berl) 2023; 101:801-811. [PMID: 37162557 PMCID: PMC10299957 DOI: 10.1007/s00109-023-02316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart malformation frequently associated with ascending aortic aneurysm (AscAA). Epithelial to mesenchymal transition (EMT) may play a role in BAV-associated AscAA. The aim of the study was to investigate the type of EMT associated with BAV aortopathy using patients with a tricuspid aortic valve (TAV) as a reference. The state of the endothelium was further evaluated. Aortic biopsies were taken from patients undergoing open-heart surgery. Aortic intima/media miRNA and gene expression was analyzed using Affymetrix human transcriptomic array. Histological staining assessed structure, localization, and protein expression. Migration/proliferation was assessed using ORIS migration assay. We show different EMT types associated with BAV and TAV AscAA. Specifically, in BAV-associated aortopathy, EMT genes related to endocardial cushion formation were enriched. Further, BAV vascular smooth muscle cells were less proliferative and migratory. In contrast, TAV aneurysmal aortas displayed a fibrotic EMT phenotype with medial degenerative insults. Further, non-dilated BAV aortas showed a lower miRNA-200c-associated endothelial basement membrane LAMC1 expression and lower CD31 expression, accompanied by increased endothelial permeability indicated by increased albumin infiltration. Embryonic EMT is a characteristic of BAV aortopathy, associated with endothelial instability and vascular permeability of the non-dilated aortic wall. KEY MESSAGES: Embryonic EMT is a feature of BAV-associated aortopathy. Endothelial integrity is compromised in BAV aortas prior to dilatation. Non-dilated BAV ascending aortas are more permeable than aortas of tricuspid aortic valve patients.
Collapse
Affiliation(s)
- David Freiholtz
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Otto Bergman
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Karin Lång
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Flore-Anne Poujade
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Valentina Paloschi
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Carl Granath
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jan H N Lindeman
- Department of Vascular Surgery, Department of Surgery, Medical Center Leiden, Leiden University, Leiden, the Netherlands
| | - Christian Olsson
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden
| | - Hanna M Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm Solna, Sweden.
| |
Collapse
|
16
|
Yoon SH, Kim GY, Choi GT, Do JT. Organ Abnormalities Caused by Turner Syndrome. Cells 2023; 12:1365. [PMID: 37408200 DOI: 10.3390/cells12101365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Turner syndrome (TS), a genetic disorder due to incomplete dosage compensation of X-linked genes, affects multiple organ systems, leading to hypogonadotropic hypogonadism, short stature, cardiovascular and vascular abnormalities, liver disease, renal abnormalities, brain abnormalities, and skeletal problems. Patients with TS experience premature ovarian failure with a rapid decline in ovarian function caused by germ cell depletion, and pregnancies carry a high risk of adverse maternal and fetal outcomes. Aortic abnormalities, heart defects, obesity, hypertension, and liver abnormalities, such as steatosis, steatohepatitis, biliary involvement, liver cirrhosis, and nodular regenerative hyperplasia, are commonly observed in patients with TS. The SHOX gene plays a crucial role in short stature and abnormal skeletal phenotype in patients with TS. Abnormal structure formation of the ureter and kidney is also common in patients with TS, and a non-mosaic 45,X karyotype is significantly associated with horseshoe kidneys. TS also affects brain structure and function. In this review, we explore various phenotypic and disease manifestations of TS in different organs, including the reproductive system, cardiovascular system, liver, kidneys, brain, and skeletal system.
Collapse
Affiliation(s)
- Sang Hoon Yoon
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ga Yeon Kim
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyu Tae Choi
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Schuchardt EL, Grossfeld P, Kingsmore S, Ding Y, Vargas LA, Dyar DA, Mendoza A, Dummer KB. Isolated Absent Aortic Valve: A Unique Fetal Case With Echocardiographic, Pathologic, and Genetic Correlation. JACC: CASE REPORTS 2023; 11:101790. [PMID: 37077433 PMCID: PMC10107044 DOI: 10.1016/j.jaccas.2023.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
We present a 22-week fetus with isolated absent aortic valve and inverse circular shunt. The pregnancy was interrupted. Here, echocardiography and pathology images demonstrate this rare entity. Whole genome sequencing revealed a potentially disease-causing variant in the APC gene. Whole genome sequencing should be considered in severe and rare fetal diseases. (Level of Difficulty: Advanced.).
Collapse
|
18
|
De Bono C, Liu Y, Ferrena A, Valentine A, Zheng D, Morrow BE. Single-cell transcriptomics uncovers a non-autonomous Tbx1-dependent genetic program controlling cardiac neural crest cell development. Nat Commun 2023; 14:1551. [PMID: 36941249 PMCID: PMC10027855 DOI: 10.1038/s41467-023-37015-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Disruption of cardiac neural crest cells (CNCCs) results in congenital heart disease, yet we do not understand the cell fate dynamics as these cells differentiate to vascular smooth muscle cells. Here we performed single-cell RNA-sequencing of NCCs from the pharyngeal apparatus with the heart in control mouse embryos and when Tbx1, the gene for 22q11.2 deletion syndrome, is inactivated. We uncover three dynamic transitions of pharyngeal NCCs expressing Tbx2 and Tbx3 through differentiated CNCCs expressing cardiac transcription factors with smooth muscle genes. These transitions are altered non-autonomously by loss of Tbx1. Further, inactivation of Tbx2 and Tbx3 in early CNCCs results in aortic arch branching defects due to failed smooth muscle differentiation. Loss of Tbx1 interrupts mesoderm to CNCC cell-cell communication with upregulation and premature activation of BMP signaling and reduced MAPK signaling, as well as alteration of other signaling, and failed dynamic transitions of CNCCs leading to disruption of aortic arch artery formation and cardiac outflow tract septation.
Collapse
Affiliation(s)
- Christopher De Bono
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aneesa Valentine
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Obstetrics and Gynecology; and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
19
|
Odelin G, Faucherre A, Marchese D, Pinard A, Jaouadi H, Le Scouarnec S, Chiarelli R, Achouri Y, Faure E, Herbane M, Théron A, Avierinos JF, Jopling C, Collod-Béroud G, Rezsohazy R, Zaffran S. Variations in the poly-histidine repeat motif of HOXA1 contribute to bicuspid aortic valve in mouse and zebrafish. Nat Commun 2023; 14:1543. [PMID: 36941270 PMCID: PMC10027860 DOI: 10.1038/s41467-023-37110-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Damien Marchese
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Amélie Pinard
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Hager Jaouadi
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | | | | | - Raphaël Chiarelli
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emilie Faure
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Marine Herbane
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Alexis Théron
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - René Rezsohazy
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France.
| |
Collapse
|
20
|
Jaouadi H, Jopling C, Bajolle F, Théron A, Faucherre A, Gerard H, Al Dybiat S, Ovaert C, Bonnet D, Avierinos JF, Zaffran S. Expanding the phenome and variome of the ROBO-SLIT pathway in congenital heart defects: toward improving the genetic testing yield of CHD. J Transl Med 2023; 21:160. [PMID: 36855159 PMCID: PMC9976407 DOI: 10.1186/s12967-023-03994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Recent studies have shown the implication of the ROBO-SLIT pathway in heart development. Within this study, we aimed to further assess the implication of the ROBO and SLIT genes mainly in bicuspid aortic valve (BAV) and other human congenital heart defects (CHD). METHODS We have analyzed a cohort of singleton exome sequencing data comprising 40 adult BAV patients, 20 pediatric BAV patients generated by the Pediatric Cardiac Genomics Consortium, 10 pediatric cases with tetralogy of Fallot (ToF), and one case with coarctation of the aorta. A gene-centered analysis of data was performed. To further advance the interpretation of the variants, we intended to combine more than 5 prediction tools comprising the assessment of protein structure and stability. RESULTS A total of 24 variants were identified. Only 4 adult BAV patients (10%) had missense variants in the ROBO and SLIT genes. In contrast, 19 pediatric cases carried variants in ROBO or SLIT genes (61%). Three BAV patients with a severe phenotype were digenic. Segregation analysis was possible for two BAV patients. For the homozygous ROBO4: p.(Arg776Cys) variant, family segregation was consistent with an autosomal recessive pattern of inheritance. The ROBO4: c.3001 + 3G > A variant segregates with the affected family members. Interestingly, these variants were also found in two unrelated patients with ToF highlighting that the same variant in the ROBO4 gene may underlie different cardiac phenotypes affecting the outflow tract development. CONCLUSION Our results further reinforce the implication of the ROBO4 gene not only in BAV but also in ToF hence the importance of its inclusion in clinical genetic testing. The remaining ROBO and SLIT genes may be screened in patients with negative or inconclusive genetic tests.
Collapse
Affiliation(s)
- Hager Jaouadi
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, LabEx ICST, Montpellier, France
| | - Fanny Bajolle
- Service de Cardiologie Congénitale Et Pédiatrique, Centre de Référence Malformations Cardiaques Congénitales Complexes - M3C, Hôpital Necker-Enfants Malades, APHP and Université Paris Cité, Paris, France
| | - Alexis Théron
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, 13005, Marseille, France
- Department of Cardiac Surgery, La Timone Hospital, AP-HM, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, LabEx ICST, Montpellier, France
| | - Hilla Gerard
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Sarab Al Dybiat
- Department of Pediatric Cardiology, Timone Enfant Hospital, AP-HM, Marseille, France
| | - Caroline Ovaert
- Department of Pediatric Cardiology, Timone Enfant Hospital, AP-HM, Marseille, France
| | - Damien Bonnet
- Service de Cardiologie Congénitale Et Pédiatrique, Centre de Référence Malformations Cardiaques Congénitales Complexes - M3C, Hôpital Necker-Enfants Malades, APHP and Université Paris Cité, Paris, France
| | - Jean-François Avierinos
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, 13005, Marseille, France
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Stéphane Zaffran
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, 13005, Marseille, France.
| |
Collapse
|
21
|
Gravholt CH, Viuff M, Just J, Sandahl K, Brun S, van der Velden J, Andersen NH, Skakkebaek A. The Changing Face of Turner Syndrome. Endocr Rev 2023; 44:33-69. [PMID: 35695701 DOI: 10.1210/endrev/bnac016] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 01/20/2023]
Abstract
Turner syndrome (TS) is a condition in females missing the second sex chromosome (45,X) or parts thereof. It is considered a rare genetic condition and is associated with a wide range of clinical stigmata, such as short stature, ovarian dysgenesis, delayed puberty and infertility, congenital malformations, endocrine disorders, including a range of autoimmune conditions and type 2 diabetes, and neurocognitive deficits. Morbidity and mortality are clearly increased compared with the general population and the average age at diagnosis is quite delayed. During recent years it has become clear that a multidisciplinary approach is necessary toward the patient with TS. A number of clinical advances has been implemented, and these are reviewed. Our understanding of the genomic architecture of TS is advancing rapidly, and these latest developments are reviewed and discussed. Several candidate genes, genomic pathways and mechanisms, including an altered transcriptome and epigenome, are also presented.
Collapse
Affiliation(s)
- Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Mette Viuff
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Kristian Sandahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Sara Brun
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Janielle van der Velden
- Department of Pediatrics, Radboud University Medical Centre, Amalia Children's Hospital, 6525 Nijmegen, the Netherlands
| | - Niels H Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg 9000, Denmark
| | - Anne Skakkebaek
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus 8200 N, Denmark
| |
Collapse
|
22
|
Miyake T, Inoue T, Mushiake S. Quadricuspid Pulmonary Valve: Case Report and the Comparison with Quadricuspid Aortic Valve. Curr Cardiol Rev 2023; 19:e220322202505. [PMID: 35319379 PMCID: PMC10201900 DOI: 10.2174/1573403x18666220322092706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Quadricuspid pulmonary valve (QPV) is a rare congenital anomaly. Simple QPV had been mainly diagnosed at the time of autopsy before 2000, and the frequency rates of QPV are approximately 0.02%-0.41%. QPV was initially diagnosed using transthoracic echocardiography (TTE) after 2000 and with contrast computed tomography (CT) or cardiac magnetic resonance imaging (CMR) after 2009. Obtaining the cross-sectional view of the pulmonary valve using TTE is difficult. We aimed to review the papers regarding the incidence, embryology, diagnosis, associated congenital heart anomalies, and prognosis in patients with QPV, and furthermore to compare with those in patients with quadricuspid aortic valve (QAV). CASE PRESENTATION We diagnosed QPV with mild stenosis in a 12-month-old infant. With a slight angulation of the transducer superiorly from the left high parasternal short-axis view, a short-axis view of QPV was obtained. RESULTS In QPV cases diagnosed at autopsy, Hurwitz's type-b with three equal cusps and one smaller cusp is dominant, whereas Hurwitz's type-a with four equal cusps is dominant in clinically diagnosed cases. Congenital heart anomaly and valvular stenosis are more frequent in patients with QPV than in patients with QAV. Coronary artery anomalies and infectious endocarditis are more frequent in patients with QAV than in patients with QPV. The incidence of PR is more common in type-a QPV than in type-b QPV. There is no difference between type-a QAV and type-b QAV with respect to the incidence of aortic regurgitation (AR). It is assumed that QPV is a risk factor for a Ross operation. However, QPVs have been used as autografts in certain patients. CONCLUSION Between QPV and QAV, various differences were found in frequency rates, diagnostic methods, valve morphology, valve function, associated congenital heart diseases, and frequencies of infectious endocarditis.
Collapse
Affiliation(s)
- Toshiharu Miyake
- Department of Pediatrics, Kindai University Nara Hospital, 1248-1, Otoda, Ikoma, Nara, 630-0293, Japan
| | - Tomohiro Inoue
- Department of Pediatrics, Kindai University Nara Hospital, 1248-1, Otoda, Ikoma, Nara, 630-0293, Japan
| | - Sotaro Mushiake
- Department of Pediatrics, Kindai University Nara Hospital, 1248-1, Otoda, Ikoma, Nara, 630-0293, Japan
| |
Collapse
|
23
|
Nappi F, Giacinto O, Lusini M, Garo M, Caponio C, Nenna A, Nappi P, Rousseau J, Spadaccio C, Chello M. Patients with Bicuspid Aortopathy and Aortic Dilatation. J Clin Med 2022; 11:jcm11206002. [PMID: 36294323 PMCID: PMC9605389 DOI: 10.3390/jcm11206002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Bicuspid aortic valve (BAV) is the most frequent congenital cardiac disease. Alteration of ascending aorta diameter is a consequence of shear stress alterations due to haemodynamic abnormalities developed from inadequate valve cusp coaptation. (2) Objective: This narrative review aims to discuss anatomical, pathophysiological, genetical, ultrasound, and radiological aspects of BAV disease, focusing on BAV classification related to imaging patterns and flux models involved in the onset and developing vessel dilatation. (3) Methods: A comprehensive search strategy was implemented in PubMed from January to May 2022. English language articles were selected independently by two authors and screened according to the following criteria. (4) Key Contents and Findings: Ultrasound scan is the primary step in the diagnostic flowchart identifying structural and doppler patterns of the valve. Computed tomography determines aortic vessel dimensions according to the anatomo-pathology of the valve. Magnetic resonance identifies hemodynamic alterations. New classifications and surgical indications derive from these diagnostic features. Currently, indications correlate morphological results, dissection risk factors, and genetic alterations. Surgical options vary from aortic valve and aortic vessel substitution to aortic valve repair according to the morphology of the valve. In selected patients, transcatheter aortic valve replacement has an even more impact on the treatment choice. (5) Conclusions: Different imaging approaches are an essential part of BAV diagnosis. Morphological classifications influence the surgical outcome.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
- Correspondence: ; Tel.: +33-1-4933-4104; Fax: +33-1-4933-4119
| | - Omar Giacinto
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marialuisa Garo
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Claudio Caponio
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Pierluigi Nappi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Juliette Rousseau
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Cristiano Spadaccio
- Department of Cardiac Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
24
|
Modica G, Sollazzo F, Bianco M, Cammarano M, Pella R, Monti R, Palmieri V, Zeppilli P. Bicuspid Aortic Valve and Premature Ventricular Beats in Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12188. [PMID: 36231488 PMCID: PMC9566530 DOI: 10.3390/ijerph191912188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The aim of this study was to identify a possible link between bicuspid aortic valve (BAV) and premature ventricular beats (PVBs), particularly from left and right ventricular outflow tracts, and to investigate possible associations between these arrhythmias and echocardiographic abnormalities. METHODS A comparison of sportspeople with and without BAV was performed to identify PVBs' occurrence in these two series. Then, subdividing the BAV group on the presence of cardiovascular complications due to BAV, we compared arrhythmic features between these two subgroups and echocardiographic findings between athletes with and without left and right outflow tract PVBs. RESULTS PVBs in 343 athletes with BAV were compared with 309 athletes without BAV, showing an increased frequency (29% vs. 11.8%, p < 0.001; OR 3.1; CI 2.1-4.7) and origin from the left (18.4% vs. 3.2%, p < 0.001, OR 6.7; CI 3.4-13.4) and right (15.2% vs. 3.6%, p < 0.001, OR 4.8; CI 2.5-9.5) outflow tracts compared to other ventricular areas (fascicular PVBs p = 0.81, other morphologies p = 0.58). No difference in PVBs' occurrence was found between near normal valve BAV and pathological BAV, nor was a difference in echocardiographic characteristics found between patients with and without outflow tract arrhythmias. CONCLUSIONS A possible causal link between BAV and PVBs was highlighted, but no association between PVBs and complicated BAV was emphasized.
Collapse
|
25
|
Jaouadi H, Gérard H, Théron A, Collod-Béroud G, Collart F, Avierinos JF, Zaffran S. Identification of non-synonymous variations in ROBO1 and GATA5 genes in a family with bicuspid aortic valve disease. J Hum Genet 2022; 67:515-518. [PMID: 35534675 DOI: 10.1038/s10038-022-01036-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect with a high index of heritability. Patients with BAV have different clinical courses and disease progression. Herein, we report three siblings with BAV and clinical differences. Their clinical presentations include moderate to severe aortic regurgitation, aortic stenosis, and ascending aortic aneurysm. Genetic investigation was carried out using Whole-Exome Sequencing for the three patients. We identified two non-synonymous variants in ROBO1 and GATA5 genes. The ROBO1: p.(Ser327Pro) variant is shared by the three BAV-affected siblings. The GATA5: p.(Gln3Arg) variant is shared only by the two brothers who presented BAV and ascending aortic aneurysm. Their sister, affected by BAV without aneurysm, does not harbor the GATA5: p.(Gln3Arg) variant. Both variants were absent in the patients' fourth brother who is clinically healthy with tricuspid aortic valve. To our knowledge, this is the first association of ROBO1 and GATA5 variants in familial BAV with a potential genotype-phenotype correlation. Our findings are suggestive of the implication of ROBO1 gene in BAV and the GATA5: p.(Gln3Arg) variant in ascending aortic aneurysm. Our family-based study further confirms the intrafamilial incomplete penetrance of BAV and the complex pattern of inheritance of the disease.
Collapse
Affiliation(s)
- Hager Jaouadi
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, Marseille, France
| | - Hilla Gérard
- AP-HM, Hôpital de la Timone, Département de Cardiologie, Marseille, France
| | - Alexis Théron
- Hôpital de la Timone, Département de Chirurgie Cardiaque, Marseille, France
| | | | - Frédéric Collart
- Hôpital de la Timone, Département de Chirurgie Cardiaque, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, Marseille, France.
- AP-HM, Hôpital de la Timone, Département de Cardiologie, Marseille, France.
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, Marseille, France.
| |
Collapse
|
26
|
Gonzalez DM, Schrode N, Ebrahim TAM, Broguiere N, Rossi G, Drakhlis L, Zweigerdt R, Lutolf MP, Beaumont KG, Sebra R, Dubois NC. Dissecting mechanisms of chamber-specific cardiac differentiation and its perturbation following retinoic acid exposure. Development 2022; 149:dev200557. [PMID: 35686629 PMCID: PMC9340554 DOI: 10.1242/dev.200557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 05/30/2025]
Abstract
The specification of distinct cardiac lineages occurs before chamber formation and acquisition of bona fide atrial or ventricular identity. However, the mechanisms underlying these early specification events remain poorly understood. Here, we performed single cell analysis at the murine cardiac crescent, primitive heart tube and heart tube stages to uncover the transcriptional mechanisms underlying formation of atrial and ventricular cells. We find that progression towards differentiated cardiomyocytes occurs primarily based on heart field progenitor identity, and that progenitors contribute to ventricular or atrial identity through distinct differentiation mechanisms. We identify new candidate markers that define such differentiation processes and examine their expression dynamics using computational lineage trajectory methods. We further show that exposure to exogenous retinoic acid causes defects in ventricular chamber size, dysregulation in FGF signaling and a shunt in differentiation towards orthogonal lineages. Retinoic acid also causes defects in cell-cycle exit resulting in formation of hypomorphic ventricles. Collectively, our data identify, at a single cell level, distinct lineage trajectories during cardiac specification and differentiation, and the precise effects of manipulating cardiac progenitor patterning via retinoic acid signaling.
Collapse
Affiliation(s)
- David M. Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nadine Schrode
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tasneem A. M. Ebrahim
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, School of Life Sciences, EPFL, Lausanne CH-1015, Switzerland
| | - Giuliana Rossi
- Laboratory of Stem Cell Bioengineering, School of Life Sciences, EPFL, Lausanne CH-1015, Switzerland
| | - Lika Drakhlis
- Roche Institute for Translational Bioengineering, Roche Pharma Research and Early Development, Basel 4052, Switzerland
| | - Robert Zweigerdt
- Roche Institute for Translational Bioengineering, Roche Pharma Research and Early Development, Basel 4052, Switzerland
| | - Matthias P. Lutolf
- Laboratory of Stem Cell Bioengineering, School of Life Sciences, EPFL, Lausanne CH-1015, Switzerland
- Roche Institute for Translational Bioengineering, Roche Pharma Research and Early Development, Basel 4052, Switzerland
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH–Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Robert Sebra
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Nicole C. Dubois
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
27
|
Gordon DM, Cunningham D, Zender G, Lawrence PJ, Penaloza JS, Lin H, Fitzgerald-Butt SM, Myers K, Duong T, Corsmeier DJ, Gaither JB, Kuck HC, Wijeratne S, Moreland B, Kelly BJ, Baylor-Johns Hopkins Center for Mendelian Genomics, Garg V, White P, McBride KL. Exome sequencing in multiplex families with left-sided cardiac defects has high yield for disease gene discovery. PLoS Genet 2022; 18:e1010236. [PMID: 35737725 PMCID: PMC9258875 DOI: 10.1371/journal.pgen.1010236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Congenital heart disease (CHD) is a common group of birth defects with a strong genetic contribution to their etiology, but historically the diagnostic yield from exome studies of isolated CHD has been low. Pleiotropy, variable expressivity, and the difficulty of accurately phenotyping newborns contribute to this problem. We hypothesized that performing exome sequencing on selected individuals in families with multiple members affected by left-sided CHD, then filtering variants by population frequency, in silico predictive algorithms, and phenotypic annotations from publicly available databases would increase this yield and generate a list of candidate disease-causing variants that would show a high validation rate. In eight of the nineteen families in our study (42%), we established a well-known gene/phenotype link for a candidate variant or performed confirmation of a candidate variant’s effect on protein function, including variants in genes not previously described or firmly established as disease genes in the body of CHD literature: BMP10, CASZ1, ROCK1 and SMYD1. Two plausible variants in different genes were found to segregate in the same family in two instances suggesting oligogenic inheritance. These results highlight the need for functional validation and demonstrate that in the era of next-generation sequencing, multiplex families with isolated CHD can still bring high yield to the discovery of novel disease genes. Congenital heart disease is a common group of birth defects that are a leading cause of death in children under one year of age. There is strong evidence that genetics plays a role in causing congenital heart disease. While studies using individual cases have identified causative genes for those with a heart defect when accompanied by other birth defects or intellectual disabilities, for individuals who have only a heart defect without other problems, a genetic cause can be found in fewer than 10%. In this study, we enrolled families where there was more than one individual with a heart defect. This allowed us to take advantage of inheritance by searching for potential disease-causing genetic variants in common among all affected individuals in the family. Among 19 families studied, we were able to find a plausible disease-causing variant in eight of them and identified new genes that may cause or contribute to the presence of a heart defect. Two families had potential disease-causing variants in two different genes. We designed assays to test if the variants led to altered function of the protein coded by the gene, demonstrating a functional consequence that support the gene and variant as contributing to the heart defect. These findings show that studying families may be more effective than using individuals to find causes of heart defects. In addition, this family-based method suggests that changes in more than one gene may be required for a heart defect to occur.
Collapse
Affiliation(s)
- David M. Gordon
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - David Cunningham
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gloria Zender
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Patrick J. Lawrence
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jacqueline S. Penaloza
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Hui Lin
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sara M. Fitzgerald-Butt
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Katherine Myers
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Tiffany Duong
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Donald J. Corsmeier
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jeffrey B. Gaither
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Harkness C. Kuck
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Saranga Wijeratne
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Blythe Moreland
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Benjamin J. Kelly
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | | | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| | - Peter White
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| | - Kim L. McBride
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| |
Collapse
|
28
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development. Commun Biol 2022; 5:226. [PMID: 35277594 PMCID: PMC8917235 DOI: 10.1038/s42003-022-03153-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is topographically complex and requires visualization to understand its progression. No comprehensive 3-dimensional primer of human cardiac development is currently available. We prepared detailed reconstructions of 12 hearts between 3.5 and 8 weeks post fertilization, using Amira® 3D-reconstruction and Cinema4D®-remodeling software. The models were visualized as calibrated interactive 3D-PDFs. We describe the developmental appearance and subsequent remodeling of 70 different structures incrementally, using sequential segmental analysis. Pictorial timelines of structures highlight age-dependent events, while graphs visualize growth and spiraling of the wall of the heart tube. The basic cardiac layout is established between 3.5 and 4.5 weeks. Septation at the venous pole is completed at 6 weeks. Between 5.5 and 6.5 weeks, as the outflow tract becomes incorporated in the ventricles, the spiraling course of its subaortic and subpulmonary channels is transferred to the intrapericardial arterial trunks. The remodeling of the interventricular foramen is complete at 7 weeks.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Henderson DJ, Eley L, Turner JE, Chaudhry B. Development of the Human Arterial Valves: Understanding Bicuspid Aortic Valve. Front Cardiovasc Med 2022; 8:802930. [PMID: 35155611 PMCID: PMC8829322 DOI: 10.3389/fcvm.2021.802930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Abnormalities in the arterial valves are some of the commonest congenital malformations, with bicuspid aortic valve (BAV) occurring in as many as 2% of the population. Despite this, most of what we understand about the development of the arterial (semilunar; aortic and pulmonary) valves is extrapolated from investigations of the atrioventricular valves in animal models, with surprisingly little specifically known about how the arterial valves develop in mouse, and even less in human. In this review, we summarise what is known about the development of the human arterial valve leaflets, comparing this to the mouse where appropriate.
Collapse
Affiliation(s)
- Deborah J. Henderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
30
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022; 14:1-40. [PMID: 35126826 PMCID: PMC8788183 DOI: 10.4252/wjsc.v14.i1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/02/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
31
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022. [PMID: 35126826 DOI: 10.4252/wjsc.v14.i1.1]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
32
|
Michelena HI, Corte AD, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkaar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Radiol Cardiothorac Imaging 2021; 3:e200496. [PMID: 34505060 DOI: 10.1148/ryct.2021200496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes. © 2021 Jointly between the RSNA, the European Association for Cardio-Thoracic Surgery, The Society of Thoracic Surgeons, and the American Association for Thoracic Surgery. The articles are identical except for minor stylistic and spelling differences in keeping with each journal's style. All rights reserved. Keywords: Bicuspid Aortic Valve, Aortopathy, Nomenclature, Classification.
Collapse
Affiliation(s)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Borja Fernández
- Departamento de Biologia Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, GA, USA
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, CT, USA
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Raj Makkaar
- Cedars Sinai Heart Institute, Los Angeles, CA, USA
| | - Martin B Leon
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael Markl
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, CT, USA
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, PA, USA
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A&M School of Medicine, Dallas Campus, Dallas, TX, USA
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, BC, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, ON, Canada
| | - Lars G Svensson
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gebrine El Khoury
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine M Otto
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
33
|
Ridge LA, Kewbank D, Schütz D, Stumm R, Scambler PJ, Ivins S. Dual role for CXCL12 signaling in semilunar valve development. Cell Rep 2021; 36:109610. [PMID: 34433040 PMCID: PMC8411116 DOI: 10.1016/j.celrep.2021.109610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/29/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Cxcl12-null embryos have dysplastic, misaligned, and hyperplastic semilunar valves (SLVs). In this study, we show that CXCL12 signaling via its receptor CXCR4 fulfills distinct roles at different stages of SLV development, acting initially as a guidance cue to pattern cellular distribution within the valve primordia during the endocardial-to-mesenchymal transition (endoMT) phase and later regulating mesenchymal cell proliferation during SLV remodeling. Transient, anteriorly localized puncta of internalized CXCR4 are observed in cells undergoing endoMT. In vitro, CXCR4+ cell orientation in response to CXCL12 requires phosphatidylinositol 3-kinase (PI3K) signaling and is inhibited by suppression of endocytosis. This dynamic intracellular localization of CXCR4 during SLV development is related to CXCL12 availability, potentially enabling activation of divergent downstream signaling pathways at key developmental stages. Importantly, Cxcr7-/- mutants display evidence of excessive CXCL12 signaling, indicating a likely role for atypical chemokine receptor CXCR7 in regulating ligand bioavailability and thus CXCR4 signaling output during SLV morphogenesis.
Collapse
Affiliation(s)
- Liam A Ridge
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dania Kewbank
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Peter J Scambler
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sarah Ivins
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
34
|
Kern CB. Excess Provisional Extracellular Matrix: A Common Factor in Bicuspid Aortic Valve Formation. J Cardiovasc Dev Dis 2021; 8:92. [PMID: 34436234 PMCID: PMC8396938 DOI: 10.3390/jcdd8080092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
A bicuspid aortic valve (BAV) is the most common cardiac malformation, found in 0.5% to 2% of the population. BAVs are present in approximately 50% of patients with severe aortic stenosis and are an independent risk factor for aortic aneurysms. Currently, there are no therapeutics to treat BAV, and the human mutations identified to date represent a relatively small number of BAV patients. However, the discovery of BAV in an increasing number of genetically modified mice is advancing our understanding of molecular pathways that contribute to BAV formation. In this study, we utilized the comparison of BAV phenotypic characteristics between murine models as a tool to advance our understanding of BAV formation. The collation of murine BAV data indicated that excess versican within the provisional extracellular matrix (P-ECM) is a common factor in BAV development. While the percentage of BAVs is low in many of the murine BAV models, the remaining mutant mice exhibit larger and more amorphous tricuspid AoVs, also with excess P-ECM compared to littermates. The identification of common molecular characteristics among murine BAV models may lead to BAV therapeutic targets and biomarkers of disease progression for this highly prevalent and heterogeneous cardiovascular malformation.
Collapse
Affiliation(s)
- Christine B Kern
- Department of Regenerative Medicine and Cell Biology, 171 Ashley Avenue, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
35
|
Michelena HI, Della Corte A, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. J Thorac Cardiovasc Surg 2021; 162:e383-e414. [PMID: 34304896 DOI: 10.1016/j.jtcvs.2021.06.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.
Collapse
Affiliation(s)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | | | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, NY
| | | | - Borja Fernández
- Departamento de Biologia Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, Calif; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, Tex
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Ga
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium; Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, Conn
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - Raj Makkar
- Cedars Sinai Heart Institute, Los Angeles, Calif
| | - Martin B Leon
- Division of Cardiology, Columbia University Irving Medical Center/NY Presbyterian Hospital, New York, NY
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, Pa
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A& M School of Medicine, Dallas Campus, Dallas, Tex
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, Md
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Lars G Svensson
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Mo
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Mass
| | - Gebrine El Khoury
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
36
|
Michelena HI, Della Corte A, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. Eur J Cardiothorac Surg 2021; 60:448-476. [PMID: 34293102 DOI: 10.1093/ejcts/ezab038] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.
Collapse
Affiliation(s)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, GA, USA
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, CT, USA
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Raj Makkar
- Cedars Sinai Heart Institute, Los Angeles, CA, USA
| | - Martin B Leon
- Division of Cardiology, Columbia University Irving Medical Center/NY Presbyterian Hospital, New York, NY, USA
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, PA, USA
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A & M School of Medicine, Dallas Campus, Dallas, TX, USA
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, BC, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, ON, Canada
| | - Lars G Svensson
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gebrine El Khoury
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine M Otto
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
37
|
Michelena HI, Della Corte A, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Ann Thorac Surg 2021; 112:e203-e235. [PMID: 34304860 DOI: 10.1016/j.athoracsur.2020.08.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/30/2020] [Indexed: 01/17/2023]
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.
Collapse
Affiliation(s)
- Hector I Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, New York
| | | | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, California; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, California
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Georgia
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium; Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, Connecticut
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Raj Makkar
- Cedars Sinai Heart Institute, Los Angeles, California
| | - Martin B Leon
- Division of Cardiology, Columbia University Irving Medical Center/NY Presbyterian Hospital, New York, New York
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, Pennsylvania
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A & M School of Medicine, Dallas Campus, Dallas, Texas
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Lars G Svensson
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Gebrine El Khoury
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine M Otto
- Division of Cardiology, University of Washington, Seattle, Washington
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
38
|
Abstract
Congenital heart disease is the most frequent birth defect and the leading cause of death for the fetus and in the first year of life. The wide phenotypic diversity of congenital heart defects requires expert diagnosis and sophisticated repair surgery. Although these defects have been described since the seventeenth century, it was only in 2005 that a consensus international nomenclature was adopted, followed by an international classification in 2017 to help provide better management of patients. Advances in genetic engineering, imaging, and omics analyses have uncovered mechanisms of heart formation and malformation in animal models, but approximately 80% of congenital heart defects have an unknown genetic origin. Here, we summarize current knowledge of congenital structural heart defects, intertwining clinical and fundamental research perspectives, with the aim to foster interdisciplinary collaborations at the cutting edge of each field. We also discuss remaining challenges in better understanding congenital heart defects and providing benefits to patients.
Collapse
Affiliation(s)
- Lucile Houyel
- Unité de Cardiologie Pédiatrique et Congénitale and Centre de Référence des Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Université de Paris, 75015 Paris, France
| | - Sigolène M Meilhac
- Université de Paris, 75015 Paris, France.,Imagine-Institut Pasteur Unit of Heart Morphogenesis, INSERM UMR 1163, 75015 Paris, France;
| |
Collapse
|
39
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
40
|
Schussler O, Gharibeh L, Mootoosamy P, Murith N, Tien V, Rougemont AL, Sologashvili T, Suuronen E, Lecarpentier Y, Ruel M. Cardiac Neural Crest Cells: Their Rhombomeric Specification, Migration, and Association with Heart and Great Vessel Anomalies. Cell Mol Neurobiol 2021; 41:403-429. [PMID: 32405705 PMCID: PMC11448677 DOI: 10.1007/s10571-020-00863-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Outflow tract abnormalities are the most frequent congenital heart defects. These are due to the absence or dysfunction of the two main cell types, i.e., neural crest cells and secondary heart field cells that migrate in opposite directions at the same stage of development. These cells directly govern aortic arch patterning and development, ascending aorta dilatation, semi-valvular and coronary artery development, aortopulmonary septation abnormalities, persistence of the ductus arteriosus, trunk and proximal pulmonary arteries, sub-valvular conal ventricular septal/rotational defects, and non-compaction of the left ventricle. In some cases, depending on the functional defects of these cells, additional malformations are found in the expected spatial migratory area of the cells, namely in the pharyngeal arch derivatives and cervico-facial structures. Associated non-cardiovascular anomalies are often underestimated, since the multipotency and functional alteration of these cells can result in the modification of multiple neural, epidermal, and cervical structures at different levels. In most cases, patients do not display the full phenotype of abnormalities, but congenital cardiac defects involving the ventricular outflow tract, ascending aorta, aortic arch and supra-aortic trunks should be considered as markers for possible impaired function of these cells. Neural crest cells should not be considered as a unique cell population but on the basis of their cervical rhombomere origins R3-R5 or R6-R7-R8 and specific migration patterns: R3-R4 towards arch II, R5-R6 arch III and R7-R8 arch IV and VI. A better understanding of their development may lead to the discovery of unknown associated abnormalities, thereby enabling potential improvements to be made to the therapeutic approach.
Collapse
Affiliation(s)
- Olivier Schussler
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland.
- Cardiovascular Research Laboratory, Faculty of Medicine of the University of Geneva, Rue Michel Servet 1, 1211, Geneva 4, Switzerland.
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Parmeseeven Mootoosamy
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Nicolas Murith
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Vannary Tien
- Department of Pathology and Immunology, Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | | | - Tornike Sologashvili
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Erik Suuronen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cardiovascular Surgery, University of Ottawa Heart Institute and School of Epidemiology, Ottawa, ON, Canada
| | | | - Marc Ruel
- Department of Cardiovascular Surgery, University of Ottawa Heart Institute and School of Epidemiology, Ottawa, ON, Canada
| |
Collapse
|
41
|
Abstract
Cardiac neural crest (CNC) cells are pluripotent cells derived from the dorsal neural tube that migrate and contribute to the remodeling of pharyngeal arch arteries and septation of the cardiac outflow tract (OFT). Numerous molecular cascades regulate the induction, specification, delamination, and migration of the CNC. Extensive analyses of the CNC ranging from chick ablation models to molecular biology studies have explored the mechanisms of heart development and disease, particularly involving the OFT and aortic arch (AA) system. Recent studies focus more on reciprocal signaling between the CNC and cells originated from the second heart field (SHF), which are essential for the development of the OFT myocardium, providing new insights into the molecular mechanisms underlying congenital heart diseases (CHDs) and some human syndromes.
Collapse
Affiliation(s)
- Hiroyuki Yamagishi
- Division of Pediatric Cardiology, Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
42
|
Radermecker MA, Sprynger M, Hans G. TAVR for Stenotic Bicuspid Aortic Valve: Feasible, Continuously Improving Results With Another Red Flag. J Am Coll Cardiol 2020; 76:2591-2594. [PMID: 33243379 DOI: 10.1016/j.jacc.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Marc A Radermecker
- Department of Cardiovascular and Thoracic Surgery, Sart-Tilman University Hospital Center, Liège Belgium; Department of Human Anatomy, University of Liège, Liège, Belgium.
| | - Muriel Sprynger
- Department of Cardiology, Sart-Tilman University Hospital Center, Liège Belgium
| | - Gregory Hans
- Department of Anesthesiology, Sart-Tilman University Hospital Center, Liège Belgium
| |
Collapse
|
43
|
New Concepts in the Development and Malformation of the Arterial Valves. J Cardiovasc Dev Dis 2020; 7:jcdd7040038. [PMID: 32987700 PMCID: PMC7712390 DOI: 10.3390/jcdd7040038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.
Collapse
|
44
|
Abstract
The valves of the heart are crucial for ensuring that blood flows in one direction from the heart, through the lungs and back to the rest of the body. Heart valve development is regulated by complex interactions between different cardiac cell types and is subject to blood flow-driven forces. Recent work has begun to elucidate the important roles of developmental pathways, valve cell heterogeneity and hemodynamics in determining the structure and function of developing valves. Furthermore, this work has revealed that many key genetic pathways involved in cardiac valve development are also implicated in diseased valves. Here, we review recent discoveries that have furthered our understanding of the molecular, cellular and mechanosensitive mechanisms of valve development, and highlight new insights into congenital and acquired valve disease.
Collapse
Affiliation(s)
- Anna O'Donnell
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
45
|
Soto-Navarrete MT, López-Unzu MÁ, Durán AC, Fernández B. Embryonic development of bicuspid aortic valves. Prog Cardiovasc Dis 2020; 63:407-418. [PMID: 32592706 DOI: 10.1016/j.pcad.2020.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, frequently associated with aortopathies and valvulopathies. The congenital origin of BAV is suspected to impact the development of the disease in the adult life. During the last decade, a number of studies dealing with the embryonic development of congenital heart disease have significantly improved our knowledge on BAV etiology. They describe the developmental defects, at the molecular, cellular and morphological levels, leading to congenital cardiac malformations, including BAV, in animal models. These models consist of a spontaneous hamster and several mouse models with different genetic manipulations in genes belonging to a variety of pathways. In this review paper, we aim to gather information on the developmental defects leading to BAV formation in these animal models, in order to tentatively explain the morphogenetic origin of the spectrum of valve morphologies that characterizes human BAV. BAV may be the only defect resulting from gene manipulation in mice, but usually it appears as the less severe defect of a spectrum of malformations, most frequently affecting the cardiac outflow tract. The genes whose alterations cause BAV belong to different genetic pathways, but many of them are direct or indirectly associated with the NOTCH pathway. These molecular alterations affect three basic cellular mechanisms during heart development, i.e., endocardial-to-mesenchymal transformation, cardiac neural crest (CNC) cell behavior and valve cushion mesenchymal cell differentiation. The defective cellular functions affect three possible morphogenetic mechanisms, i.e., outflow tract endocardial cushion formation, outflow tract septation and valve cushion excavation. While endocardial cushion abnormalities usually lead to latero-lateral BAVs and septation defects to antero-posterior BAVs, alterations in cushion excavation may give rise to both BAV types. The severity of the original defect most probably determines the specific aortic valve phenotype, which includes commissural fusions and raphes. Based on current knowledge on the developmental mechanisms of the cardiac outflow tract, we propose a unified hypothesis of BAV formation, based on the inductive role of CNC cells in the three mechanisms of BAV development. Alterations of CNC cell behavior in three possible alternative key valvulogenic processes may lead to the whole spectrum of BAV.
Collapse
Affiliation(s)
- María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Miguel Ángel López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; CIBERCV Enfermedades Cardiovasculares, Málaga, Spain.
| |
Collapse
|
46
|
Lin JHI, Feinstein TN, Jha A, McCleary JT, Xu J, Arrigo AB, Rong G, Maclay LM, Ridge T, Xu X, Lo CW. Mutation of LRP1 in cardiac neural crest cells causes congenital heart defects by perturbing outflow lengthening. Commun Biol 2020; 3:312. [PMID: 32546759 PMCID: PMC7297812 DOI: 10.1038/s42003-020-1035-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
The recent recovery of mutations in vesicular trafficking genes causing congenital heart disease (CHD) revealed an unexpected role for the endocytic pathway. We now show that mice with a C4232R missense mutation in Low density lipoprotein receptor related protein 1 (LRP1) exhibit atrioventricular septal defects with double outlet right ventricle. Lrp1m/m mice exhibit shortened outflow tracts (OFT) and dysmorphic hypocellular cushions with reduced proliferation and increased apoptosis. Lrp1m/m embryonic fibroblasts show decreased cell motility and focal adhesion turnover associated with retention of mutant LRP1 in endoplasmic reticulum and reduced LRP1 expression. Conditional deletion of Lrp1 in cardiac neural crest cells (CNC) replicates the full CHD phenotype. Cushion explants showed defective cell migration, with gene expression analysis indicating perturbation of Wnt and other signaling pathways. Thus, LRP1 function in CNCs is required for normal OFT development with other cell lineages along the CNC migratory path playing a supporting role. Lin et al. find that mutation in endocytic trafficking protein Lrp1 causes congenital heart defects in mice due to a requirement for Lrp1 in the neural crest lineage, where it regulates outflow tract lengthening. This study provides insights into how Lrp1 and the neural crest contribute to heart development.
Collapse
Affiliation(s)
- Jiuann-Huey I Lin
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Timothy N Feinstein
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anupma Jha
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob T McCleary
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Xu
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Angelo B Arrigo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Grace Rong
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsey M Maclay
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor Ridge
- Department of Neurosciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - XinXiu Xu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Biomechanical Cues Direct Valvulogenesis. J Cardiovasc Dev Dis 2020; 7:jcdd7020018. [PMID: 32438610 PMCID: PMC7345189 DOI: 10.3390/jcdd7020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
The vertebrate embryonic heart initially forms with two chambers, a ventricle and an atrium, separated by the atrioventricular junction. Localized genetic and biomechanical information guides the development of valves, which function to ensure unidirectional blood flow. If the valve development process goes awry, pathology associated with congenital valve defects can ensue. Congenital valve defects (CVD) are estimated to affect 1–2% of the population and can often require a lifetime of treatment. Despite significant clinical interest, molecular genetic mechanisms that direct valve development remain incompletely elucidated. Cells in the developing valve must contend with a dynamic hemodynamic environment. A growing body of research supports the idea that cells in the valve are highly sensitive to biomechanical forces, which cue changes in gene expression required for normal development or for maintenance of the adult valve. This review will focus on mechanotransductive pathways involved in valve development across model species. We highlight current knowledge regarding how cells sense physical forces associated with blood flow and pressure in the forming heart, and summarize how these changes are transduced into genetic and developmental responses. Lastly, we provide perspectives on how altered biomechanical cues may lead to CVD pathogenesis.
Collapse
|
48
|
Santos-Ledo A, Washer S, Dhanaseelan T, Eley L, Alqatani A, Chrystal PW, Papoutsi T, Henderson DJ, Chaudhry B. Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genet 2020; 16:e1008782. [PMID: 32421721 PMCID: PMC7259801 DOI: 10.1371/journal.pgen.1008782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/29/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023] Open
Abstract
The planar cell polarity pathway is required for heart development and whilst the functions of most pathway members are known, the roles of the jnk genes in cardiac morphogenesis remain unknown as mouse mutants exhibit functional redundancy, with early embryonic lethality of compound mutants. In this study zebrafish were used to overcome early embryonic lethality in mouse models and establish the requirement for Jnk in heart development. Whole mount in-situ hybridisation and RT-PCR demonstrated that evolutionarily conserved alternative spliced jnk1a and jnk1b transcripts were expressed in the early developing heart. Maternal zygotic null mutant zebrafish lines for jnk1a and jnk1b, generated using CRISPR-Cas9, revealed a requirement for jnk1a in formation of the proximal, first heart field (FHF)-derived portion of the cardiac ventricular chamber. Rescue of the jnk1a mutant cardiac phenotype was only possible by injection of the jnk1a EX7 Lg alternatively spliced transcript. Analysis of mutants indicated that there was a reduction in the size of the hand2 expression field in jnk1a mutants which led to a specific reduction in FHF ventricular cardiomyocytes within the anterior lateral plate mesoderm. Moreover, the jnk1a mutant ventricular defect could be rescued by injection of hand2 mRNA. This study reveals a novel and critical requirement for Jnk1 in heart development and highlights the importance of alternative splicing in vertebrate cardiac morphogenesis. Genetic pathways functioning through jnk1 may be important in human heart malformations with left ventricular hypoplasia.
Collapse
Affiliation(s)
- Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Sam Washer
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Tamil Dhanaseelan
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Ahlam Alqatani
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Paul W. Chrystal
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Tania Papoutsi
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Deborah J. Henderson
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| |
Collapse
|
49
|
Darrigrand JF, Valente M, Comai G, Martinez P, Petit M, Nishinakamura R, Osorio DS, Renault G, Marchiol C, Ribes V, Cadot B. Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation. eLife 2020; 9:e50325. [PMID: 32105214 PMCID: PMC7069721 DOI: 10.7554/elife.50325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
The establishment of separated pulmonary and systemic circulation in vertebrates, via cardiac outflow tract (OFT) septation, is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of a heart carrying the congenital abnormalities defining the tetralogy of Fallot.
Collapse
Affiliation(s)
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure team, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737ParisFrance
| | - Glenda Comai
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut PasteurParisFrance
| | - Pauline Martinez
- INSERM - Sorbonne Université UMR974 - Center for Research in MyologyParisFrance
| | - Maxime Petit
- Unité Lymphopoïèse – INSERM U1223, Institut PasteurParisFrance
| | | | - Daniel S Osorio
- Cytoskeletal Dynamics Lab, Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
| | - Gilles Renault
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Carmen Marchiol
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Vanessa Ribes
- Universite de Paris, Institut Jacques MonodCNRSParisFrance
| | - Bruno Cadot
- INSERM - Sorbonne Université UMR974 - Center for Research in MyologyParisFrance
| |
Collapse
|
50
|
Fernández B, Soto-Navarrete MT, López-García A, López-Unzu MÁ, Durán AC, Fernández MC. Bicuspid Aortic Valve in 2 Model Species and Review of the Literature. Vet Pathol 2020; 57:321-331. [DOI: 10.1177/0300985819900018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common human congenital cardiac malformation. Although the etiology is unknown for most patients, formation of the 2 main BAV anatomic types (A and B) has been shown to rely on distinct morphogenetic mechanisms. Animal models of BAV include 2 spontaneous hamster strains and 27 genetically modified mouse strains. To assess the value of these models for extrapolation to humans, we examined the aortic valve anatomy of 4340 hamsters and 1823 mice from 8 and 7 unmodified strains, respectively. In addition, we reviewed the literature describing BAV in nonhuman mammals. The incidences of BAV types A and B were 2.3% and 0.03% in control hamsters and 0% and 0.3% in control mice, respectively. Hamsters from the spontaneous model had BAV type A only, whereas mice from 2 of 27 genetically modified strains had BAV type A, 23 of 27 had BAV type B, and 2 of 27 had both BAV types. In both species, BAV incidence was dependent on genetic background. Unlike mice, hamsters had a wide spectrum of aortic valve morphologies. We showed interspecific differences in the occurrence of BAV between humans, hamsters, and mice that should be considered when studying aortic valve disease using animal models. Our results suggest that genetic modifiers play a significant role in both the morphology and incidence of BAV. We propose that mutations causing anomalies in specific cardiac morphogenetic processes or cell lineages may lead to BAV types A, B, or both, depending on additional genetic, environmental, and epigenetic factors.
Collapse
Affiliation(s)
- Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| | - María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Alejandro López-García
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - M. Carmen Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|