1
|
Meena D, Huang J, Zare M, Hasbani NR, Romuald BOUAP, Mustafa R, van der Laan SW, Xu H, Terry JG, Bis JC, Jain D, Palmer ND, Heard-Costa N, Min YI, Guo X, Yao J, Taylor KD, Tan J, Peralta J, Pereira AC, Khan A, Choudhury A, Newman AB, Xiang AH, Hingorani A, Freedman BI, O’Donnell CJ, Giambartolomei C, Herrington DM, Jacobs DR, Klarin D, Wang FF, Heiss G, Doddapaneni H, Hodis HN, Broome J, Wilson JG, Brandenburg JT, Blangero J, Krieger JE, Smith JD, Viaud-Martinez KA, Ryan KA, Lange LA, Montasser ME, Mahaney MC, Mokry M, Fornage M, Munroe P, Gibbs RA, Tracy RP, Kim RW, Damrauer SM, Rich SS, Hsueh WA, Chen YDI, Morrison AC, Mitchell BD, Carr JJ, Psaty BM, Bowden DW, Vasan RS, Correa A, Post WS, Goodarzi MO, Raffel LJ, Curran JE, Ramsay M, Rotter JI, Elliott P, Franceschini N, de Vries PS, Tzoulaki I, Dehghan A. Genome-wide association study and multi-ancestry meta-analysis identify common variants associated with carotid artery intima-media thickness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.11.25325582. [PMID: 40321265 PMCID: PMC12047956 DOI: 10.1101/2025.04.11.25325582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Carotid artery intima-media thickness (cIMT) is a measurement of subclinical atherosclerosis that predicts future cardiovascular events, including stroke and myocardial infarction. Genome-wide association studies (GWAS) have identified only a fraction of the genetic variants associated with cIMT. We performed the largest GWAS for cIMT involving up to 131,000 individuals. For the first time, we meta-analysed a diverse range of ancestries including populations with African, Asian (Chinese), Brazilian, European, and Hispanic ancestries. Our study identified 59 independent loci (53 loci from the multi-ancestry single variant analysis of which 19 are novel, P<5×10-8; 6 novel in gene-based analysis from single variant analysis, P=2.6×10-6, 2 novel in meta-regression) associated with cIMT. Gene-based, tissue-expression and gene-set enrichment analyses revealed novel genes of potential interest and highlighted significant relationships between vascular tissues (aorta, coronary and tibial arteries) and genetic associations. We found that circulatory levels of seven proteins, including ACAN, BCAM, DUT, ERI1, APOE, FN1, and GLRX were potentially causally associated with cIMT levels. We found a strong genome-wide correlation between cIMT and various cardiometabolic, smoking phenotypes, and lipid traits. Using Mendelian randomisation, our analyses provide robust evidence for causal associations between cIMT and several clinically relevant traits, including lipids, blood pressure, and waist circumference. Our study extends our genetic knowledge of atherosclerosis and highlights potential causal relations between risk factors, atherosclerosis and clinical diagnoses.
Collapse
Affiliation(s)
- Devendra Meena
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
| | - Marjan Zare
- Maternal-fetal medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Natalie R. Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - BOUA Palwendé Romuald
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, CNRST, Burkina Faso
| | - Rima Mustafa
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James G. Terry
- Department of Radiology, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Deepti Jain
- Genetic Analysis Center, Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nancy Heard-Costa
- Boston University School of Medicine, Boston, MA, USA
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
| | - Yuan-I Min
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Juan Peralta
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Alexandre C. Pereira
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of S√£o Paulo, S√£o Paulo, Brazil
| | - Alyna Khan
- Genetic Analysis Center, Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Ananyo Choudhury
- Division of Human Genetics at the National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne B. Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anny H. Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA USA
| | - Aroon Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
| | - Barry I. Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher J. O’Donnell
- VA Boston Healthcare System, West Roxbury VA Medical Center, Cardiology Section, Boston, MA, USA
| | - Claudia Giambartolomei
- Department of Pathology and Laboratory Medicine, University of California (UCLA), Los Angeles, Los Angeles, CA, USA
| | - David M. Herrington
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Derek Klarin
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Surgery, Stanford University Medical Center, Stanford, CA
| | - Fei Fei Wang
- Genetic Analysis Center, Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Howard N. Hodis
- Department of Preventive Medicine, Department of Medicine, Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Jai Broome
- Genetic Analysis Center, Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - James G. Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jean-Tristan Brandenburg
- Division of Human Genetics at the National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of S√£o Paulo, S√£o Paulo, Brazil
| | - Josh D. Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Northwest Genomics Center, University of Washington, Seattle, WA, USA
| | | | - Kathleen A. Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leslie A. Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - May E. Montasser
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael C. Mahaney
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patricia Munroe
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, UK
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Scott M. Damrauer
- Division of Vascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Willa A. Hsueh
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - John Jeffrey Carr
- Department of Radiology, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ramachandran S. Vasan
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wendy S. Post
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Leslie J. Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA USA
| | - Joanne E. Curran
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Michele Ramsay
- Division of Human Genetics at the National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul Elliott
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London UK
- National Institute for Health Research Imperial College Biomedical Research Centre, Imperial College London, London, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
- British Heart Foundation Centre of Excellence, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina, Ioannina, Greece
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
| |
Collapse
|
2
|
Perry RN, Lenert G, Benavente ED, Ma A, Barbera N, Mokry M, de Kleijn DPV, de Winther MPJ, Mayr M, Björkegren JLM, den Ruijter HM, Civelek M. Female-biased vascular smooth muscle cell gene regulatory networks predict MYH9 as a key regulator of fibrous plaque phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645955. [PMID: 40236025 PMCID: PMC11996327 DOI: 10.1101/2025.03.28.645955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Atherosclerosis, a chronic inflammatory condition driving coronary artery disease (CAD), manifests in two primary plaque types: unstable atheromatous plaques and stable fibrous plaques. While significant research has focused on atheromatous plaques, recent studies emphasize the growing importance of fibrous plaques, particularly in females under 50 years of age, where erosion on fibrous plaques significantly contributes to coronary thrombosis. The molecular mechanisms underlying sex differences in atherosclerotic plaque characteristics, including vascular smooth muscle cell (VSMC) contributions, remain understudied. Therefore, we utilized sex-specific gene regulatory networks (GRNs) derived from VSMC gene expression data from 119 male and 32 female heart transplant donors to identify molecular drivers of fibrous plaques. GRN analysis revealed two female-biased networks in VSMC, GRN floralwhite and GRN yellowgreen , enriched for inflammatory signaling and actin remodeling pathways, respectively. Single-cell RNA sequencing of carotid plaques from female and male patients confirmed the sex specificity of these networks in VSMCs. Further sub cellular phenotyping of the single-cell RNA sequencing revealed a sex-specific gene expression signature within GRN yellowgreen for VSMCs enriched for contractile and vasculature development pathways. Bayesian network modeling of the GRN yellowgreen identified MYH9 as a key driver gene. Indeed, elevated MYH9 protein expression in atherosclerotic plaques was associated with higher smooth muscle cell content and lower lipid content in female plaques, suggesting its involvement in fibrous plaque formation. Further proteomic analysis confirmed MYH9's upregulation in female fibrous plaques only and its correlation with stable plaque features. These findings provide novel insights into sex-specific molecular mechanisms regulating fibrous plaque formation.
Collapse
|
3
|
Cisternino F, Song Y, Peters TS, Westerman R, de Borst GJ, Diez Benavente E, van den Dungen NA, Homoed-van der Kraak P, de Kleijn DP, Mekke J, Mokry M, Pasterkamp G, den Ruijter HM, Velema E, Miller CL, Glastonbury CA, van der Laan S. Intraplaque haemorrhage quantification and molecular characterisation using attention based multiple instance learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.04.25323316. [PMID: 40093230 PMCID: PMC11908327 DOI: 10.1101/2025.03.04.25323316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Intraplaque haemorrhage (IPH) represents a critical feature of plaque vulnerability as it is robustly associated with adverse cardiovascular events, including stroke and myocardial infarction. How IPH drives plaque instability is unknown. However, its identification and quantification in atherosclerotic plaques is currently performed manually, with high interobserver variability, limiting its accurate assessment in large cohorts. Leveraging the Athero-Express biobank, an ongoing study comprising a comprehensive dataset of histological, transcriptional, and clinical information from 2,595 carotid endarterectomy patients, we developed an attention-based additive multiple instance learning (MIL) framework to automate the detection and quantification of IPH across whole-slide images of nine distinct histological stains. We demonstrate that routinely available Haematoxylin and Eosin (H&E) staining outperformed all other plaque relevant Immunohistochemistry (IHC) stains tested (AUROC = 0.86), underscoring its utility in quantifying IPH. When combining stains through ensemble models, we see that H&E + CD68 (a macrophage marker) as well as H&E + Verhoeff-Van Gieson elastic fibers staining (EVG) leads to a substantial improvement (AUROC = 0.92). Using our model, we could derive IPH area from the MIL-derived patch-level attention scores, enabling not only classification but precise localisation and quantification of IPH area in each plaque, facilitating downstream analyses of its association and cellular composition with clinical outcomes. By doing so, we demonstrate that IPH presence and area are the most significant predictors of both preoperative symptom presentation and major adverse cardiovascular events (MACE), outperforming manual scoring methods. Automating IPH detection also allowed us to characterise IPH on a molecular level at scale. Pairing IPH measurements with single-cell transcriptomic analyses revealed key molecular pathways involved in IPH, including TNF-α signalling, extracellular matrix remodelling and the presence of foam cells. This study represents the largest effort in the cardiovascular field to integrate digital pathology, machine learning, and molecular data to predict and characterize IPH which leads to better understanding how it drives symptoms and MACE. Our model provides a scalable, interpretable, and reproducible method for plaque phenotyping, enabling the derivation of plaque phenotypes for predictive modelling of MACE outcomes.
Collapse
Affiliation(s)
| | - Yipei Song
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
- Department of Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Tim S. Peters
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Roderick Westerman
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gert J. de Borst
- Vascular surgery, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Noortje A.M. van den Dungen
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Dominique P.V. de Kleijn
- Vascular surgery, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost Mekke
- Vascular surgery, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michal Mokry
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hester M. den Ruijter
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Experimental Cardiology, Department Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Evelyn Velema
- Experimental Cardiology, Department Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Clint L. Miller
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Craig A. Glastonbury
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - S.W. van der Laan
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Park C, Baek KI, Hung RC, Choi L, Jeong K, Kim P, Jahng AK, Kim JH, Meselhe M, Kannan A, Chou CL, Kang DW, Song EJ, Kim Y, Bowman-Kirigin JA, Clark MD, van der Laan SW, Pasterkamp G, Villa-Roel N, Panitch A, Jo H. Disturbed Flow Induces Reprogramming of Endothelial Cells to Immune-like and Foam Cells under Hypercholesterolemia during Atherogenesis. RESEARCH SQUARE 2025:rs.3.rs-4397799. [PMID: 40092444 PMCID: PMC11908347 DOI: 10.21203/rs.3.rs-4397799/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Atherosclerosis occurs preferentially in the arteries exposed to disturbed flow (d-flow), while the stable flow (s-flow) regions are protected even under hypercholesterolemic conditions. We recently showed that d-flow alone initiates flow-induced reprogramming of endothelial cells (FIRE), including the novel concept of partial endothelial-to-immune-cell-like transition (partial EndIT), but was not validated using a genetic lineage-tracing model. Here, we tested and validated the two-hit hypothesis that d-flow is an initial instigator of partial FIRE but requires hypercholesterolemia to induce a full-blown FIRE and atherosclerotic plaque development. Methods Mice were treated with adeno-associated virus expressing proprotein convertase subtilisin/kexin type 9 and a Western diet to induce hypercholesterolemia and/or partial carotid ligation (PCL) surgery to expose the left common carotid artery (LCA) to d-flow. Single-cell RNA sequencing (scRNA-seq) analysis was performed using cells obtained from the intima and leftover LCAs and the control right common carotid arteries at 2 and 4 weeks post-PCL. Comprehensive immunohistochemical staining was performed on EC-specific confetti mice treated with PCL and hypercholesterolemic conditions at 4 weeks post-PCL to validate endothelial reprogramming. Results Atherosclerotic plaques developed by d-flow under hypercholesterolemia at 2 and 4 weeks post-PCL, but not by d-flow or hypercholesterolemia alone, as expected. The scRNA-seq results of 98,553 single cells from 95 mice revealed 25 cell clusters; 5 EC, 3 vascular smooth muscle cell (SMC), 5 macrophage (MΦ), and additional fibroblast, T cell, natural killer cell, dendritic cell, neutrophil, and B cell clusters. Our scRNA-seq analyses showed that d-flow under hypercholesterolemia transitioned healthy ECs to full immune-like (EndIT) and, more surprisingly, foam cells (EndFT), in addition to inflammatory and mesenchymal cells (EndMT). Further, EC-derived foam cells shared remarkably similar transcriptomic profiles with foam cells derived from SMCs and MΦs. Comprehensive lineage-tracing studies using immunohistochemical staining of canonical protein and lipid markers in the EC-specific confetti mice clearly demonstrated direct evidence supporting the novel FIRE hypothesis, including EndIT and EndFT, when d-flow was combined with hypercholesterolemia. Further, reanalysis of the publicly available human carotid plaque scRNA-seq and Perturb-seq datasets supported the FIRE hypothesis and a potential mechanistic link between the genes and FIRE. Conclusion We provide evidence supporting the two-hit hypothesis: ECs in d-flow regions, such as the branching points, are partially reprogrammed, while hypercholesterolemia alone has minimal endothelial reprogramming effects. Under hypercholesterolemia, d-flow fully reprograms arterial ECs, including the novel EndIT and EndFT, in addition to inflammation and EndMT, during atherogenesis. This single-cell atlas provides a crucial roadmap for developing novel mechanistic understanding and therapeutics targeting flow-sensitive genes, proteins, and pathways of atherosclerosis.
Collapse
Affiliation(s)
- Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Ruei-Chun Hung
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Leandro Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kiyoung Jeong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Paul Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Andrew Keunho Jahng
- Department of Neuroscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jung Hyun Kim
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mostafa Meselhe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Ashwin Kannan
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Chien-Ling Chou
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Dong Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Eun Ju Song
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | | | - Michael David Clark
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
5
|
Park C, Baek KI, Hung RC, Choi L, Jeong K, Kim P, Jahng AK, Kim JH, Meselhe M, Kannan A, Chou CL, Kang DW, Song EJ, Kim Y, Bowman-Kirigin JA, Clark MD, van der Laan SW, Pasterkamp G, Villa-Roel N, Panitch A, Jo H. Disturbed Flow Induces Reprogramming of Endothelial Cells to Immune-like and Foam Cells under Hypercholesterolemia during Atherogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641843. [PMID: 40093090 PMCID: PMC11908265 DOI: 10.1101/2025.03.06.641843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Atherosclerosis occurs preferentially in the arteries exposed to disturbed flow (d-flow), while the stable flow (s-flow) regions are protected even under hypercholesterolemic conditions. We recently showed that d-flow alone initiates flow-induced reprogramming of endothelial cells (FIRE), including the novel concept of partial endothelial-to-immune-cell-like transition (partial EndIT), but was not validated using a genetic lineage-tracing model. Here, we tested and validated the two-hit hypothesis that d-flow is an initial instigator of partial FIRE but requires hypercholesterolemia to induce a full-blown FIRE and atherosclerotic plaque development. Methods Mice were treated with adeno-associated virus expressing proprotein convertase subtilisin/kexin type 9 and a Western diet to induce hypercholesterolemia and/or partial carotid ligation (PCL) surgery to expose the left common carotid artery (LCA) to d-flow. Single-cell RNA sequencing (scRNA-seq) analysis was performed using cells obtained from the intima and leftover LCAs and the control right common carotid arteries at 2 and 4 weeks post-PCL. Comprehensive immunohistochemical staining was performed on EC-specific confetti mice treated with PCL and hypercholesterolemic conditions at 4 weeks post-PCL to validate endothelial reprogramming. Results Atherosclerotic plaques developed by d-flow under hypercholesterolemia at 2 and 4 weeks post-PCL, but not by d-flow or hypercholesterolemia alone, as expected. The scRNA-seq results of 98,553 single cells from 95 mice revealed 25 cell clusters; 5 EC, 3 vascular smooth muscle cell (SMC), 5 macrophage (MΦ), and additional fibroblast, T cell, natural killer cell, dendritic cell, neutrophil, and B cell clusters. Our scRNA-seq analyses showed that d-flow under hypercholesterolemia transitioned healthy ECs to full immune-like (EndIT) and, more surprisingly, foam cells (EndFT), in addition to inflammatory and mesenchymal cells (EndMT). Further, EC-derived foam cells shared remarkably similar transcriptomic profiles with foam cells derived from SMCs and MΦs. Comprehensive lineage-tracing studies using immunohistochemical staining of canonical protein and lipid markers in the EC-specific confetti mice clearly demonstrated direct evidence supporting the novel FIRE hypothesis, including EndIT and EndFT, when d-flow was combined with hypercholesterolemia. Further, reanalysis of the publicly available human carotid plaque scRNA-seq and Perturb-seq datasets supported the FIRE hypothesis and a potential mechanistic link between the genes and FIRE. Conclusion We provide evidence supporting the two-hit hypothesis: ECs in d-flow regions, such as the branching points, are partially reprogrammed, while hypercholesterolemia alone has minimal endothelial reprogramming effects. Under hypercholesterolemia, d-flow fully reprograms arterial ECs, including the novel EndIT and EndFT, in addition to inflammation and EndMT, during atherogenesis. This single-cell atlas provides a crucial roadmap for developing novel mechanistic understanding and therapeutics targeting flow-sensitive genes, proteins, and pathways of atherosclerosis.
Collapse
|
6
|
Kardassis D, Vindis C, Stancu CS, Toma L, Gafencu AV, Georgescu A, Alexandru-Moise N, Molica F, Kwak BR, Burlacu A, Hall IF, Butoi E, Magni P, Wu J, Novella S, Gamon LF, Davies MJ, Caporali A, de la Cuesta F, Mitić T. Unravelling molecular mechanisms in atherosclerosis using cellular models and omics technologies. Vascul Pharmacol 2025; 158:107452. [PMID: 39667548 DOI: 10.1016/j.vph.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Despite the discovery and prevalent clinical use of potent lipid-lowering therapies, including statins and PCSK9 inhibitors, cardiovascular diseases (CVD) caused by atherosclerosis remain a large unmet clinical need, accounting for frequent deaths worldwide. The pathogenesis of atherosclerosis is a complex process underlying the presence of modifiable and non-modifiable risk factors affecting several cell types including endothelial cells (ECs), monocytes/macrophages, smooth muscle cells (SMCs) and T cells. Heterogeneous composition of the plaque and its morphology could lead to rupture or erosion causing thrombosis, even a sudden death. To decipher this complexity, various cell model systems have been developed. With recent advances in systems biology approaches and single or multi-omics methods researchers can elucidate specific cell types, molecules and signalling pathways contributing to certain stages of disease progression. Compared with animals, in vitro models are economical, easily adjusted for high-throughput work, offering mechanistic insights. Hereby, we review the latest work performed employing the cellular models of atherosclerosis to generate a variety of omics data. We summarize their outputs and the impact they had in the field. Challenges in the translatability of the omics data obtained from the cell models will be discussed along with future perspectives.
Collapse
Affiliation(s)
- Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Cécile Vindis
- CARDIOMET, Center for Clinical Investigation 1436 (CIC1436)/INSERM, Toulouse, France
| | - Camelia Sorina Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Anca Violeta Gafencu
- Gene Regulation and Molecular Therapies Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Nicoleta Alexandru-Moise
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Filippo Molica
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandrina Burlacu
- Department of Stem Cell Biology, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Butoi
- Department of Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milano, Italy; IRCCS MultiMedica, Milan, Italy
| | - Junxi Wu
- University of Strathclyde, Glasgow, United Kingdom
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Luke F Gamon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fernando de la Cuesta
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Tijana Mitić
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
7
|
Louwe MC, Gialeli C, Michelsen AE, Holm S, Edsfeldt A, Skagen K, Lekva T, Olsen MB, Bjerkeli V, Schjørlien T, Stø K, Kong XY, Dahl TB, Nilsson PH, Libby P, Aukrust P, Mollnes TE, Ueland T, Skjelland M, Gonçalves I, Halvorsen B. Alternative Complement Pathway in Carotid Atherosclerosis: Low Plasma Properdin Levels Associate With Long-Term Cardiovascular Mortality. J Am Heart Assoc 2025; 14:e038316. [PMID: 39868499 PMCID: PMC12074774 DOI: 10.1161/jaha.124.038316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/15/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Complement activation may promote atherosclerosis. Yet, data on the to which extent complement, and more specifically the alternative complement pathway, is activated in patients with carotid atherosclerosis and related to adverse outcome in these patients, are scarce. METHODS AND RESULTS We measured, by ELISA, plasma levels of factor D, properdin, C3bBbP (C3 convertase), and factor H in patients with advanced carotid atherosclerosis in a Discovery (n=324) and in a Validation (n=206) cohort in relation to adverse outcome (mean follow-up 7.8 and 6.6 years, respectively). Our major findings were as follows. Compared with healthy controls, patients with carotid atherosclerosis had increased plasma levels of factor D, properdin, and C3bBbP (P<0.001), but not factor H, an inhibitor of the alternative complement pathway, compared with controls. Although patients with carotid atherosclerosis had elevated levels of properdin compared with controls, within these patients, low plasma levels of properdin (ie, CONCLUSIONS We show a strong and independent association of low plasma properdin levels with cardiovascular mortality in 2 cohorts. Conversely, the plaque properdin levels linked to features of plaque vulnerability, potentially reflecting increased deposition at the site of inflammation or local production of properdin in the atherosclerotic lesion indicating local enhanced alternative complement pathway activation.
Collapse
Affiliation(s)
- Mieke C. Louwe
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
| | | | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloNorway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
| | - Andreas Edsfeldt
- Department of Clinical Sciences MalmöLund UniversityLundSweden
- Department of CardiologyMalmö, Skåne University HospitalMalmöSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| | - Karolina Skagen
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloNorway
- Department of NeurologyOslo University Hospital RikshospitaletOsloNorway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
| | | | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
| | - Therese Schjørlien
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloNorway
- Department of NeurologyOslo University Hospital RikshospitaletOsloNorway
| | - Kristine Stø
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloNorway
- Department of NeurologyOslo University Hospital RikshospitaletOsloNorway
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
| | - Tuva B. Dahl
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
| | - Per H. Nilsson
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloNorway
- Linnaeus Centre for Biomaterials ChemistryLinnaeus UniversityKalmarSweden
| | - Peter Libby
- Division of Cardiovascular MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloNorway
- Section of Clinical Immunology and Infectious DiseasesOslo University Hospital RikshospitaletOsloNorway
| | - Tom Eirik Mollnes
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloNorway
- Research LaboratoryNordland HospitalBodøNorway
- Centre of Molecular Inflammation ResearchNorwegian University of Science and TechnologyTrondheimNorway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloNorway
- K. G. Jebsen Thrombosis Research and Expertise CenterUniversity of TromsøNorway
| | - Mona Skjelland
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloNorway
- Department of NeurologyOslo University Hospital RikshospitaletOsloNorway
| | - Isabel Gonçalves
- Department of Clinical Sciences MalmöLund UniversityLundSweden
- Department of CardiologyMalmö, Skåne University HospitalMalmöSweden
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloNorway
| |
Collapse
|
8
|
Duregotti E, Mayr M. Dissecting the effect of genetic variants on atherosclerosis: integrating bulk and single-cell transcriptomics. Eur Heart J 2025; 46:323-325. [PMID: 39607792 PMCID: PMC11735081 DOI: 10.1093/eurheartj/ehae489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Affiliation(s)
- Elisa Duregotti
- National Heart and Lung Institute, Imperial College London, Sir Michael Uren Building, 86 Wood Lane, White City Campus, London W12 0BZ, UK
| | - Manuel Mayr
- National Heart and Lung Institute, Imperial College London, Sir Michael Uren Building, 86 Wood Lane, White City Campus, London W12 0BZ, UK
| |
Collapse
|
9
|
Narayanan S, Vuckovic S, Bergman O, Wirka R, Verdezoto Mosquera J, Chen QS, Baldassarre D, Tremoli E, Veglia F, Lengquist M, Aherrahrou R, Razuvaev A, Gigante B, Björck HM, Miller CL, Quertermous T, Hedin U, Matic L. Atheroma transcriptomics identifies ARNTL as a smooth muscle cell regulator and with clinical and genetic data improves risk stratification. Eur Heart J 2025; 46:308-322. [PMID: 39552248 PMCID: PMC11735083 DOI: 10.1093/eurheartj/ehae768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/10/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND AND AIMS The role of vascular smooth muscle cells (SMCs) in atherosclerosis has evolved to indicate causal genetic links with the disease. Single cell RNA sequencing (scRNAseq) studies have identified multiple cell populations of mesenchymal origin within atherosclerotic lesions, including various SMC sub-phenotypes, but it is unknown how they relate to patient clinical parameters and genetics. Here, mesenchymal cell populations in atherosclerotic plaques were correlated with major coronary artery disease (CAD) genetic variants and functional analyses performed to identify SMC markers involved in the disease. METHODS Bioinformatic deconvolution was done on bulk microarrays from carotid plaques in the Biobank of Karolinska Endarterectomies (BiKE, n = 125) using public plaque scRNAseq data and associated with patient clinical data and follow-up information. BiKE patients were clustered based on the deconvoluted cell fractions. Quantitative trait loci (QTLs) analyses were performed to predict the effect of CAD associated genetic variants on mesenchymal cell fractions (cfQTLs) and gene expression (eQTLs) in plaques. RESULTS Lesions from symptomatic patients had higher fractions of Type 1 macrophages and pericytes, but lower fractions of classical and modulated SMCs compared with asymptomatic ones, particularly females. Presence of diabetes or statin treatment did not affect the cell fraction distribution. Clustering based on plaque cell fractions, revealed three patient groups, with relative differences in their stability profiles and associations to stroke, even during long-term follow-up. Several single nucleotide polymorphisms associated with plaque mesenchymal cell fractions, upstream of the circadian rhythm gene ARNTL were identified. In vitro silencing of ARNTL in human carotid SMCs increased the expression of contractile markers and attenuated cell proliferation. CONCLUSIONS This study shows the potential of combining scRNAseq data with vertically integrated clinical, genetic, and transcriptomic data from a large biobank of human plaques, for refinement of patient vulnerability and risk prediction stratification. The study revealed novel CAD-associated variants that may be functionally linked to SMCs in atherosclerotic plaques. Specifically, variants in the ARNTL gene may influence SMC ratios and function, and its role as a regulator of SMC proliferation should be further investigated.
Collapse
Affiliation(s)
- Sampath Narayanan
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Sofija Vuckovic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Otto Bergman
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Robert Wirka
- Department of Medicine and Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Qiao Sen Chen
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Damiano Baldassarre
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, Milan, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Fabrizio Veglia
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Mariette Lengquist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Redouane Aherrahrou
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Anton Razuvaev
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Hanna M Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Ulf Hedin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Ljubica Matic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| |
Collapse
|
10
|
Meryn A, Edsfeldt A, Sun J, Persson A, Gonçalves I, Shami A. Human sclerostin gene expression is associated with asymptomatic carotid atherosclerosis and plaque stability features. J Mol Cell Cardiol 2024; 197:59-60. [PMID: 39461713 DOI: 10.1016/j.yjmcc.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Affiliation(s)
- Anna Meryn
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Sweden; Department of Cardiology, Malmö, Skåne University Hospital, Sweden; Wallenberg Centre for Molecular Medicine, Sweden
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Ana Persson
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Sweden; Department of Cardiology, Malmö, Skåne University Hospital, Sweden
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Sweden.
| |
Collapse
|
11
|
Aherrahrou R, Reinberger T, Hashmi S, Erdmann J. GWAS breakthroughs: mapping the journey from one locus to 393 significant coronary artery disease associations. Cardiovasc Res 2024; 120:1508-1530. [PMID: 39073758 DOI: 10.1093/cvr/cvae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Coronary artery disease (CAD) poses a substantial threat to global health, leading to significant morbidity and mortality worldwide. It has a significant genetic component that has been studied through genome-wide association studies (GWAS) over the past 17 years. These studies have made progress with larger sample sizes, diverse ancestral backgrounds, and the discovery of multiple genomic regions related to CAD risk. In this review, we provide a comprehensive overview of CAD GWAS, including information about the genetic makeup of the disease and the importance of ethnic diversity in these studies. We also discuss challenges of identifying causal genes and variants within GWAS loci with a focus on non-coding regions. Additionally, we highlight tissues and cell types relevant to CAD, and discuss clinical implications of GWAS findings including polygenic risk scores, sex-specific differences in CAD genetics, ethnical aspects of personalized interventions, and GWAS guided drug development.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, 74800 Karachi, Pakistan
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
12
|
Mury P, Cagnone G, Dagher O, Wünnemann F, Voghel G, Beaudoin M, Lambert M, Miquel G, Noly PE, Perrault LP, Carrier M, Thorin-Trescases N, Joyal JS, Lettre G, Thorin E. Senescence and Inflamm-Aging Are Associated With Endothelial Dysfunction in Men But Not Women With Atherosclerosis. JACC Basic Transl Sci 2024; 9:1163-1177. [PMID: 39534645 PMCID: PMC11551873 DOI: 10.1016/j.jacbts.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 11/16/2024]
Abstract
Coronary artery disease (CAD) is more prevalent in men than in women, with endothelial dysfunction, prodromal to CAD, developing a decade earlier in middle-aged men. We investigated the molecular basis of this dimorphism ex vivo in arterial segments discarded during surgery of CAD patients. The results reveal a lower endothelial relaxant sensitivity in men, and a senescence-associated inflammaging transcriptomic signature in endothelial cells. In women, cellular metabolism and endothelial maintenance pathways are conserved. This suggests that senolytic therapies to reduce risk of cardiovascular events in women with CAD may not be as effective as in men.
Collapse
Affiliation(s)
- Pauline Mury
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Gael Cagnone
- University Hospital Sainte Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Olina Dagher
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Florian Wünnemann
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Voghel
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Melissa Beaudoin
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Géraldine Miquel
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Pierre-Emmanuel Noly
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Louis P. Perrault
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Michel Carrier
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Jean-Sébastien Joyal
- University Hospital Sainte Justine Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Lettre
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Eric Thorin
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Lan T, Palm KCA, Hoeben L, Diez Benavente E, Perry RN, Civelek M, de Kleijn DPV, den Ruijter HM, Pasterkamp G, Mokry M. Tobacco smoking is associated with sex- and plaque-type specific upregulation of CRLF1 in atherosclerotic lesions. Atherosclerosis 2024; 397:118554. [PMID: 39137621 DOI: 10.1016/j.atherosclerosis.2024.118554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND AND AIMS Tobacco smoking is a known risk factor for atherosclerotic disease, with more elevated risks in women compared to men. We hypothesized that atherosclerotic plaques from smokers show different gene expression patterns compared to non-smokers, in a sex-specific manner. METHODS Gene expression data of 625 carotid plaques (151 females and 474 males) were analyzed for differential gene expression between current smokers (n = 226) and non-smokers (n = 399). All analyses were stratified by sex and by molecular plaque characteristics. Finally, we projected the activity of gene regulatory networks and utilized single-cell transcriptomics from 38 plaques (26 males and 12 females) to interpret the sex- and plaque-type specific signals. RESULTS We observed higher expression levels of CRLF1 gene in atherosclerotic plaques from smokers compared to non-smokers (log2FC = 0.48, FDR = 0.012). CRLF1 upregulation was interacting with sex (p = 0.01) and was more pronounced in females (log2FC = 0.93, p = 1.53E-05) compared to males (log2FC = 0.35, p = 0.0018). Through single-cell RNA-seq analysis, we identified the highest CRLF1 expression within the transitioning and synthetic smooth muscle cell populations. CRLF1 expression was increased in fibro-inflammatory and fibro-cellular plaque types. Gene annotations pointed to increased expression of CRLF1 in networks with extracellular matrix related genes. CONCLUSIONS Atherosclerotic plaques from current smokers show sex-dependent upregulation of smooth muscle cell gene CRLF1. This may explain the different contributions of smoking to cardiovascular risk in females.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Kaylin C A Palm
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Luka Hoeben
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - R Noah Perry
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | | | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Zhang L, Feng Q, Kong W. ECM Microenvironment in Vascular Homeostasis: New Targets for Atherosclerosis. Physiology (Bethesda) 2024; 39:0. [PMID: 38984789 DOI: 10.1152/physiol.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024] Open
Abstract
Alterations in vascular extracellular matrix (ECM) components, interactions, and mechanical properties influence both the formation and stability of atherosclerotic plaques. This review discusses the contribution of the ECM microenvironment in vascular homeostasis and remodeling in atherosclerosis, highlighting Cartilage oligomeric matrix protein (COMP) and its degrading enzyme ADAMTS7 as examples, and proposes potential avenues for future research aimed at identifying novel therapeutic targets for atherosclerosis based on the ECM microenvironment.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qianqian Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
15
|
Ravindran A, Holappa L, Niskanen H, Skovorodkin I, Kaisto S, Beter M, Kiema M, Selvarajan I, Nurminen V, Aavik E, Aherrahrou R, Pasonen-Seppänen S, Fortino V, Laakkonen JP, Ylä-Herttuala S, Vainio S, Örd T, Kaikkonen MU. Translatome profiling reveals Itih4 as a novel smooth muscle cell-specific gene in atherosclerosis. Cardiovasc Res 2024; 120:869-882. [PMID: 38289873 PMCID: PMC11218691 DOI: 10.1093/cvr/cvae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
AIMS Vascular smooth muscle cells (SMCs) and their derivatives are key contributors to the development of atherosclerosis. However, studying changes in SMC gene expression in heterogeneous vascular tissues is challenging due to the technical limitations and high cost associated with current approaches. In this paper, we apply translating ribosome affinity purification sequencing to profile SMC-specific gene expression directly from tissue. METHODS AND RESULTS To facilitate SMC-specific translatome analysis, we generated SMCTRAP mice, a transgenic mouse line expressing enhanced green fluorescent protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a) under the control of the SMC-specific αSMA promoter. These mice were further crossed with the atherosclerosis model Ldlr-/-, ApoB100/100 to generate SMCTRAP-AS mice and used to profile atherosclerosis-associated SMCs in thoracic aorta samples of 15-month-old SMCTRAP and SMCTRAP-AS mice. Our analysis of SMCTRAP-AS mice showed that EGFP-L10a expression was localized to SMCs in various tissues, including the aortic wall and plaque. The TRAP fraction demonstrated high enrichment of known SMC-specific genes, confirming the specificity of our approach. We identified several genes, including Cemip, Lum, Mfge8, Spp1, and Serpina3, which are known to be involved in atherosclerosis-induced gene expression. Moreover, we identified several novel genes not previously linked to SMCs in atherosclerosis, such as Anxa4, Cd276, inter-alpha-trypsin inhibitor-4 (Itih4), Myof, Pcdh11x, Rab31, Serpinb6b, Slc35e4, Slc8a3, and Spink5. Among them, we confirmed the SMC-specific expression of Itih4 in atherosclerotic lesions using immunofluorescence staining of mouse aortic roots and spatial transcriptomics of human carotid arteries. Furthermore, our more detailed analysis of Itih4 showed its link to coronary artery disease through the colocalization of genome-wide association studies, splice quantitative trait loci (QTL), and protein QTL signals. CONCLUSION We generated a SMC-specific TRAP mouse line to study atherosclerosis and identified Itih4 as a novel SMC-expressed gene in atherosclerotic plaques, warranting further investigation of its putative function in extracellular matrix stability and genetic evidence of causality.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Apolipoprotein B-100/genetics
- Apolipoprotein B-100/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Aarthi Ravindran
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lari Holappa
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Henri Niskanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilya Skovorodkin
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Susanna Kaisto
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Mustafa Beter
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Miika Kiema
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilakya Selvarajan
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Valtteri Nurminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Einari Aavik
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Rédouane Aherrahrou
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Vainio
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Tiit Örd
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| |
Collapse
|
16
|
Jiang J, Hiron TK, Agbaedeng TA, Malhotra Y, Drydale E, Bancroft J, Ng E, Reschen ME, Davison LJ, O’Callaghan CA. A Novel Macrophage Subpopulation Conveys Increased Genetic Risk of Coronary Artery Disease. Circ Res 2024; 135:6-25. [PMID: 38747151 PMCID: PMC11191562 DOI: 10.1161/circresaha.123.324172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Coronary artery disease (CAD), the leading cause of death worldwide, is influenced by both environmental and genetic factors. Although over 250 genetic risk loci have been identified through genome-wide association studies, the specific causal variants and their regulatory mechanisms are still largely unknown, particularly in disease-relevant cell types such as macrophages. METHODS We utilized single-cell RNA-seq and single-cell multiomics approaches in primary human monocyte-derived macrophages to explore the transcriptional regulatory network involved in a critical pathogenic event of coronary atherosclerosis-the formation of lipid-laden foam cells. The relative genetic contribution to CAD was assessed by partitioning disease heritability across different macrophage subpopulations. Meta-analysis of single-cell RNA-seq data sets from 38 human atherosclerotic samples was conducted to provide high-resolution cross-referencing to macrophage subpopulations in vivo. RESULTS We identified 18 782 cis-regulatory elements by jointly profiling the gene expression and chromatin accessibility of >5000 macrophages. Integration with CAD genome-wide association study data prioritized 121 CAD-related genetic variants and 56 candidate causal genes. We showed that CAD heritability was not uniformly distributed and was particularly enriched in the gene programs of a novel CD52-hi lipid-handling macrophage subpopulation. These CD52-hi macrophages displayed significantly less lipoprotein accumulation and were also found in human atherosclerotic plaques. We investigated the cis-regulatory effect of a risk variant rs10488763 on FDX1, implicating the recruitment of AP-1 and C/EBP-β in the causal mechanisms at this locus. CONCLUSIONS Our results provide genetic evidence of the divergent roles of macrophage subsets in atherogenesis and highlight lipid-handling macrophages as a key subpopulation through which genetic variants operate to influence disease. These findings provide an unbiased framework for functional fine-mapping of genome-wide association study results using single-cell multiomics and offer new insights into the genotype-environment interactions underlying atherosclerotic disease.
Collapse
Affiliation(s)
- Jiahao Jiang
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Thomas K. Hiron
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Thomas A. Agbaedeng
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Yashaswat Malhotra
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Edward Drydale
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - James Bancroft
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| | - Esther Ng
- Nuffield Department of Orthopaedics, Kennedy Institute of Rheumatology, Rheumatology and Musculoskeletal Sciences (E.N.), University of Oxford, United Kingdom
| | - Michael E. Reschen
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (M.E.R.)
| | - Lucy J. Davison
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom (L.J.D.)
| | - Chris A. O’Callaghan
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics (J.J., T.K.H., T.A.A., Y.M., E.D., J.B., L.J.D., C.A.O.), University of Oxford, United Kingdom
| |
Collapse
|
17
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Sachs N, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:930-945. [PMID: 38385291 PMCID: PMC10978277 DOI: 10.1161/atvbaha.123.320524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Nadja Sachs
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (L.M.)
- Department of Medicine, Karolinksa Institute, Stockholm, Sweden (L.M.)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
- Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
18
|
Thazhathveettil J, Kumawat AK, Demirel I, Sirsjö A, Paramel GV. Vascular smooth muscle cells in response to cholesterol crystals modulates inflammatory cytokines release and promotes neutrophil extracellular trap formation. Mol Med 2024; 30:42. [PMID: 38519881 PMCID: PMC10960408 DOI: 10.1186/s10020-024-00809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The formation and accumulation of cholesterol crystals (CC) at the lesion site is a hallmark of atherosclerosis. Although studies have shown the importance of vascular smooth muscle cells (VSMCs) in the disease atherosclerosis, little is known about the molecular mechanism behind the uptake of CC in VSMCs and their role in modulating immune response. METHODS Human aortic smooth muscle cells were cultured and treated with CC. CC uptake and CC mediated signaling pathway and protein induction were studied using flow cytometry, confocal microscopy, western blot and Olink proteomics. Conditioned medium from CC treated VSMCs was used to study neutrophil adhesion, ROS production and phagocytosis. Neutrophil extracellular traps (NETs) formations were visualized using confocal microscopy. RESULTS VSMCs and macrophages were found around CC clefts in human carotid plaques. CC uptake in VSMCs are largely through micropinocytosis and phagocytosis via PI3K-AkT dependent pathway. The uptake of CC in VSMCs induce the release inflammatory proteins, including IL-33, an alarming cytokine. Conditioned medium from CC treated VSMCs can induce neutrophil adhesion, neutrophil reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) formation. IL-33 neutralization in conditioned medium from CC treated VSMCs inhibited neutrophil ROS production and NETs formation. CONCLUSION We demonstrate that VSMCs due to its vicinity to CC clefts in human atherosclerotic lesion can modulate local immune response and we further reveal that the interaction between CC and VSMCs impart an inflammatory milieu in the atherosclerotic microenvironment by promoting IL-33 dependent neutrophil influx and NETs formation.
Collapse
Affiliation(s)
- Jishamol Thazhathveettil
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Ashok Kumar Kumawat
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Allan Sirsjö
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Geena Varghese Paramel
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden.
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden.
| |
Collapse
|
19
|
Lin H, Zhang M, Hu M, Zhang Y, Jiang W, Tang W, Ouyang Y, Jiang L, Mi Y, Chen Z, He P, Zhao G, Ouyang X. Emerging applications of single-cell profiling in precision medicine of atherosclerosis. J Transl Med 2024; 22:97. [PMID: 38263066 PMCID: PMC10804726 DOI: 10.1186/s12967-023-04629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/14/2023] [Indexed: 01/25/2024] Open
Abstract
Atherosclerosis is a chronic, progressive, inflammatory disease that occurs in the arterial wall. Despite recent advancements in treatment aimed at improving efficacy and prolonging survival, atherosclerosis remains largely incurable. In this review, we discuss emerging single-cell sequencing techniques and their novel insights into atherosclerosis. We provide examples of single-cell profiling studies that reveal phenotypic characteristics of atherosclerosis plaques, blood, liver, and the intestinal tract. Additionally, we highlight the potential clinical applications of single-cell analysis and propose that combining this approach with other techniques can facilitate early diagnosis and treatment, leading to more accurate medical interventions.
Collapse
Affiliation(s)
- Huiling Lin
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Mi Hu
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yangkai Zhang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - WeiWei Jiang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanying Tang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yuxin Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yali Mi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Zhi Chen
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Pingping He
- Department of Nursing, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China.
| | - Xinping Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China.
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
- The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
| |
Collapse
|
20
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. CELL GENOMICS 2024; 4:100465. [PMID: 38190101 PMCID: PMC10794848 DOI: 10.1016/j.xgen.2023.100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/07/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study populations and multifaceted approaches to characterize gene regulation in disease processes.
Collapse
Affiliation(s)
- Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nelson B Barrientos
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ruben Methorst
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicolas G Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Feng Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48019, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
21
|
Kawai K, Sakamoto A, Mokry M, Ghosh SKB, Kawakami R, Xu W, Guo L, Fuller DT, Tanaka T, Shah P, Cornelissen A, Sato Y, Mori M, Konishi T, Vozenilek AE, Dhingra R, Virmani R, Pasterkamp G, Finn AV. Clonal Proliferation Within Smooth Muscle Cells in Unstable Human Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2023; 43:2333-2347. [PMID: 37881937 DOI: 10.1161/atvbaha.123.319479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Studies in humans and mice using the expression of an X-linked gene or lineage tracing, respectively, have suggested that clones of smooth muscle cells (SMCs) exist in human atherosclerotic lesions but are limited by either spatial resolution or translatability of the model. METHODS Phenotypic clonality can be detected by X-chromosome inactivation patterns. We investigated whether clones of SMCs exist in unstable human atheroma using RNA in situ hybridization (BaseScope) to identify a naturally occurring 24-nucleotide deletion in the 3'UTR of the X-linked BGN (biglycan) gene, a proteoglycan highly expressed by SMCs. BGN-specific BaseScope probes were designed to target the wild-type or deletion mRNA. Three different coronary artery plaque types (erosion, rupture, and adaptive intimal thickening) were selected from heterozygous females for the deletion BGN. Hybridization of target RNA-specific probes was used to visualize the spatial distribution of mutants. A clonality index was calculated from the percentage of each probe in each region of interest. Spatial transcriptomics were used to identify differentially expressed transcripts within clonal and nonclonal regions. RESULTS Less than one-half of regions of interest in the intimal plaque were considered clonal with the mean percent regions of interest with clonality higher in the intimal plaque than in the media. This was consistent for all plaque types. The relationship of the dominant clone in the intimal plaque and media showed significant concordance. In comparison with the nonclonal lesions, the regions with SMC clonality had lower expression of genes encoding cell growth suppressors such as CD74, SERF-2 (small EDRK-rich factor 2), CTSB (cathepsin B), and HLA-DPA1 (major histocompatibility complex, class II, DP alpha 1), among others. CONCLUSIONS Our novel approach to examine clonality suggests atherosclerosis is primarily a disease of polyclonally and to a lesser extent clonally expanded SMCs and may have implications for the development of antiatherosclerotic therapies.
Collapse
Affiliation(s)
- Kenji Kawai
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Atsushi Sakamoto
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Michal Mokry
- Central Diagnostic Laboratory, University Medical Center Utrecht, The Netherlands (M. Mokry, G.P.)
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (M. Mokry)
| | - Saikat Kumar B Ghosh
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Rika Kawakami
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Weili Xu
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Liang Guo
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Daniela T Fuller
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Takamasa Tanaka
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Palak Shah
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Anne Cornelissen
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Yu Sato
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Masayuki Mori
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Takao Konishi
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Aimee E Vozenilek
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Roma Dhingra
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, The Netherlands (M. Mokry, G.P.)
| | - Aloke V Finn
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.)
- University of Maryland School of Medicine, Baltimore (A.V.F.)
| |
Collapse
|
22
|
Mosquera JV, Auguste G, Wong D, Turner AW, Hodonsky CJ, Alvarez-Yela AC, Song Y, Cheng Q, Lino Cardenas CL, Theofilatos K, Bos M, Kavousi M, Peyser PA, Mayr M, Kovacic JC, Björkegren JLM, Malhotra R, Stukenberg PT, Finn AV, van der Laan SW, Zang C, Sheffield NC, Miller CL. Integrative single-cell meta-analysis reveals disease-relevant vascular cell states and markers in human atherosclerosis. Cell Rep 2023; 42:113380. [PMID: 37950869 DOI: 10.1016/j.celrep.2023.113380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD progression involves complex interactions and phenotypic plasticity among vascular and immune cell lineages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures, but human cell phenotypes remain controversial. Here, we perform an integrated meta-analysis of 22 scRNA-seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides characterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into smooth muscle cell (SMC) modulation. We integrate genome-wide association study data and uncover a critical role for modulated SMC phenotypes in CAD, myocardial infarction, and coronary calcification. Finally, we identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardiovascular diseases.
Collapse
Affiliation(s)
- Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Computer Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Qi Cheng
- CVPath Institute, Gaithersburg, MD 20878, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | - Maxime Bos
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48019, USA
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London WC2R 2LS, UK; National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Nathan C Sheffield
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
23
|
Francis GA. The Greatly Under-Represented Role of Smooth Muscle Cells in Atherosclerosis. Curr Atheroscler Rep 2023; 25:741-749. [PMID: 37665492 PMCID: PMC10564813 DOI: 10.1007/s11883-023-01145-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW This article summarizes previous and recent research on the fundamental role of arterial smooth muscle cells (SMCs) as drivers of initial and, along with macrophages, later stages of human atherosclerosis. RECENT FINDINGS Studies using human tissues and SMC lineage-tracing mice have reinforced earlier observations that SMCs drive initial atherogenesis in humans and contribute a multitude of phenotypes including foam cell formation hitherto attributed primarily to macrophages in atherosclerosis. Arterial smooth muscle cells (SMCs) are the primary cell type in human pre-atherosclerotic intima and are responsible for the retention of lipoproteins that drive the development of atherosclerosis. Despite this, images of atherogenesis still depict the process as initially devoid of SMCs, primarily macrophage driven, and indicate only relatively minor roles such as fibrous cap formation to intimal SMCs. This review summarizes historical and recent observations regarding the importance of SMCs in the formation of a pre-atherosclerotic intima, initial and later foam cell formation, and the phenotypic changes that give rise to multiple different roles for SMCs in human and mouse lesions. Potential SMC-specific therapies in atherosclerosis are presented.
Collapse
Affiliation(s)
- Gordon A Francis
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
24
|
Diez Benavente E, Karnewar S, Buono M, Mili E, Hartman RJ, Kapteijn D, Slenders L, Daniels M, Aherrahrou R, Reinberger T, Mol BM, de Borst GJ, de Kleijn DP, Prange KH, Depuydt MA, de Winther MP, Kuiper J, Björkegren JL, Erdmann J, Civelek M, Mokry M, Owens GK, Pasterkamp G, den Ruijter HM. Female Gene Networks Are Expressed in Myofibroblast-Like Smooth Muscle Cells in Vulnerable Atherosclerotic Plaques. Arterioscler Thromb Vasc Biol 2023; 43:1836-1850. [PMID: 37589136 PMCID: PMC10521798 DOI: 10.1161/atvbaha.123.319325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Women presenting with coronary artery disease more often present with fibrous atherosclerotic plaques, which are currently understudied. Phenotypically modulated smooth muscle cells (SMCs) contribute to atherosclerosis in women. How these phenotypically modulated SMCs shape female versus male plaques is unknown. METHODS Gene regulatory networks were created using RNAseq gene expression data from human carotid atherosclerotic plaques. The networks were prioritized based on sex bias, relevance for smooth muscle biology, and coronary artery disease genetic enrichment. Network expression was linked to histologically determined plaque phenotypes. In addition, their expression in plaque cell types was studied at single-cell resolution using single-cell RNAseq. Finally, their relevance for disease progression was studied in female and male Apoe-/- mice fed a Western diet for 18 and 30 weeks. RESULTS Here, we identify multiple sex-stratified gene regulatory networks from human carotid atherosclerotic plaques. Prioritization of the female networks identified 2 main SMC gene regulatory networks in late-stage atherosclerosis. Single-cell RNA sequencing mapped these female networks to 2 SMC phenotypes: a phenotypically modulated myofibroblast-like SMC network and a contractile SMC network. The myofibroblast-like network was mostly expressed in plaques that were vulnerable in women. Finally, the mice ortholog of key driver gene MFGE8 (milk fat globule EGF and factor V/VIII domain containing) showed retained expression in advanced plaques from female mice but was downregulated in male mice during atherosclerosis progression. CONCLUSIONS Female atherosclerosis is characterized by gene regulatory networks that are active in fibrous vulnerable plaques rich in myofibroblast-like SMCs.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Laboratory of Experimental Cardiology (E.D.B., M.B., E.M., R.J.G.H., D.K., M.D., H.M.d.R.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center (S.K., G.K.O.), University of Virginia, Charlottesville
| | - Michele Buono
- Laboratory of Experimental Cardiology (E.D.B., M.B., E.M., R.J.G.H., D.K., M.D., H.M.d.R.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Eloi Mili
- Laboratory of Experimental Cardiology (E.D.B., M.B., E.M., R.J.G.H., D.K., M.D., H.M.d.R.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Robin J.G. Hartman
- Laboratory of Experimental Cardiology (E.D.B., M.B., E.M., R.J.G.H., D.K., M.D., H.M.d.R.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Daniek Kapteijn
- Laboratory of Experimental Cardiology (E.D.B., M.B., E.M., R.J.G.H., D.K., M.D., H.M.d.R.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Lotte Slenders
- Central Diagnostic Laboratory (L.S., M.M., G.P.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Mark Daniels
- Laboratory of Experimental Cardiology (E.D.B., M.B., E.M., R.J.G.H., D.K., M.D., H.M.d.R.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
- Institute for Cardiogenetics, University of Lübeck, Germany (R.A., T.R., J.E.)
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland (R.A.)
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Germany (R.A., T.R., J.E.)
| | - Barend M. Mol
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Gert J. de Borst
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Dominique P.V. de Kleijn
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Koen H.M. Prange
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers — location AMC, University of Amsterdam, Netherlands (K.H.M.P., M.P.J.d.W.)
| | - Marie A.C. Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.A.C.D., J.K.)
| | - Menno P.J. de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers — location AMC, University of Amsterdam, Netherlands (K.H.M.P., M.P.J.d.W.)
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.A.C.D., J.K.)
| | - Johan L.M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (J.L.M.B.)
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (J.L.M.B.)
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Germany (R.A., T.R., J.E.)
| | - Mete Civelek
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.)
- University of Virginia, Charlottesville (M.C.)
| | - Michal Mokry
- Central Diagnostic Laboratory (L.S., M.M., G.P.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center (S.K., G.K.O.), University of Virginia, Charlottesville
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory (L.S., M.M., G.P.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Hester M. den Ruijter
- Laboratory of Experimental Cardiology (E.D.B., M.B., E.M., R.J.G.H., D.K., M.D., H.M.d.R.), University Medical Centre Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
25
|
Kavousi M, Bos MM, Barnes HJ, Lino Cardenas CL, Wong D, Lu H, Hodonsky CJ, Landsmeer LPL, Turner AW, Kho M, Hasbani NR, de Vries PS, Bowden DW, Chopade S, Deelen J, Benavente ED, Guo X, Hofer E, Hwang SJ, Lutz SM, Lyytikäinen LP, Slenders L, Smith AV, Stanislawski MA, van Setten J, Wong Q, Yanek LR, Becker DM, Beekman M, Budoff MJ, Feitosa MF, Finan C, Hilliard AT, Kardia SLR, Kovacic JC, Kral BG, Langefeld CD, Launer LJ, Malik S, Hoesein FAAM, Mokry M, Schmidt R, Smith JA, Taylor KD, Terry JG, van der Grond J, van Meurs J, Vliegenthart R, Xu J, Young KA, Zilhão NR, Zweiker R, Assimes TL, Becker LC, Bos D, Carr JJ, Cupples LA, de Kleijn DPV, de Winther M, den Ruijter HM, Fornage M, Freedman BI, Gudnason V, Hingorani AD, Hokanson JE, Ikram MA, Išgum I, Jacobs DR, Kähönen M, Lange LA, Lehtimäki T, Pasterkamp G, Raitakari OT, Schmidt H, Slagboom PE, Uitterlinden AG, Vernooij MW, Bis JC, Franceschini N, Psaty BM, Post WS, Rotter JI, Björkegren JLM, O'Donnell CJ, Bielak LF, Peyser PA, Malhotra R, van der Laan SW, Miller CL. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification. Nat Genet 2023; 55:1651-1664. [PMID: 37770635 PMCID: PMC10601987 DOI: 10.1038/s41588-023-01518-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.
Collapse
Affiliation(s)
- Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Maxime M Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanna J Barnes
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Haojie Lu
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lennart P L Landsmeer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Natalie R Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - Joris Deelen
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Sharon M Lutz
- Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lotte Slenders
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kopavogur, Iceland
| | - Maggie A Stanislawski
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica van Setten
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marian Beekman
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthew J Budoff
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences and Data Science, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, Department of Medicine, University of California Irvine, Irvine, CA, USA
| | | | - Michal Mokry
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jianzhao Xu
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Denver, CO, USA
| | | | - Robert Zweiker
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Themistocles L Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Jeffrey Carr
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischemic syndromes, Amsterdam Infection and Immunity: Inflammatory diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, School of Public Health, University of Iceland, Reykjavik, Iceland
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - John E Hokanson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - P Eline Slagboom
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Christopher J O'Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Section, Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
26
|
Ebert S, Zang L, Ismail N, Otabil M, Fröhlich A, Egea V, Ács S, Hoeberg M, Berres ML, Weber C, Moreira JMA, Ries C, Bernhagen J, El Bounkari O. Tissue Inhibitor of Metalloproteinases-1 Interacts with CD74 to Promote AKT Signaling, Monocyte Recruitment Responses, and Vascular Smooth Muscle Cell Proliferation. Cells 2023; 12:1899. [PMID: 37508563 PMCID: PMC10378328 DOI: 10.3390/cells12141899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1), an important regulator of matrix metalloproteinases (MMPs), has recently been shown to interact with CD74, a receptor for macrophage migration inhibitory factor (MIF). However, the biological effects mediated by TIMP-1 through CD74 remain largely unexplored. Using sequence alignment and in silico protein-protein docking analysis, we demonstrated that TIMP-1 shares residues with both MIF and MIF-2, crucial for CD74 binding, but not for CXCR4. Subcellular colocalization, immunoprecipitation, and internalization experiments supported these findings, demonstrating that TIMP-1 interacts with surface-expressed CD74, resulting in its internalization in a dose-dependent manner, as well as with a soluble CD74 ectodomain fragment (sCD74). This prompted us to study the effects of the TIMP-1-CD74 axis on monocytes and vascular smooth muscle cells (VSCMs) to assess its impact on vascular inflammation. A phospho-kinase array revealed the activation of serine/threonine kinases by TIMP-1 in THP-1 pre-monocytes, in particular AKT. Similarly, TIMP-1 dose-dependently triggered the phosphorylation of AKT and ERK1/2 in primary human monocytes. Importantly, Transwell migration, 3D-based Chemotaxis, and flow adhesion assays demonstrated that TIMP-1 engagement of CD74 strongly promotes the recruitment response of primary human monocytes, while live cell imaging studies revealed a profound activating effect on VSMC proliferation. Finally, re-analysis of scRNA-seq data highlighted the expression patterns of TIMP-1 and CD74 in human atherosclerotic lesions, thus, together with our experimental data, indicating a role for the TIMP-1-CD74 axis in vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Simon Ebert
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Lan Zang
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Noor Ismail
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Michael Otabil
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Adrian Fröhlich
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Virginia Egea
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Susann Ács
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Mikkel Hoeberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie-Luise Berres
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Munich Heart Alliance, 80802 Munich, Germany
| | - José M A Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian Ries
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Munich Heart Alliance, 80802 Munich, Germany
| | - Omar El Bounkari
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| |
Collapse
|
27
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.13.23292633. [PMID: 37502836 PMCID: PMC10370238 DOI: 10.1101/2023.07.13.23292633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, we have limited understanding of the comprehensive transcriptional and phenotypical landscape of the cells within these lesions. Methods To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. Results We identified 25 distinct cell populations each having a unique multi-omic signature, including macrophages, T cells, NK cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Within the macrophage populations, we identified 2 proinflammatory subsets that were enriched in IL1B or C1Q expression, 2 distinct TREM2 positive foam cell subsets, one of which also expressed inflammatory genes, as well as subpopulations displaying a proliferative gene expression signature and one expressing SMC-specific genes and upregulation of fibrotic pathways. An in-depth characterization uncovered several subsets of SMCs and fibroblasts, including a SMC-derived foam cell. We localized this foamy SMC to the deep intima of coronary atherosclerotic lesions. Using CITE-seq data, we also developed the first flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Last, we found that the proportion of efferocytotic macrophages, classically activated endothelial cells, contractile and modulated SMC-derived cell types were reduced, and inflammatory SMCs were enriched in plaques of clinically symptomatic vs. asymptomatic patients. Conclusions Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. This facilitates both the mapping of cardiovascular disease susceptibility loci to specific cell types as well as the identification of novel molecular and cellular therapeutic targets for treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance
- Karolinksa Institute, Department of Medicine
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
28
|
Forteza MJ, Berg M, Edsfeldt A, Sun J, Baumgartner R, Kareinen I, Casagrande FB, Hedin U, Zhang S, Vuckovic I, Dzeja PP, Polyzos KA, Gisterå A, Trauelsen M, Schwartz TW, Dib L, Herrmann J, Monaco C, Matic L, Gonçalves I, Ketelhuth DFJ. Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk. Cardiovasc Res 2023; 119:1524-1536. [PMID: 36866436 PMCID: PMC10318388 DOI: 10.1093/cvr/cvad038] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
AIMS Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. METHODS AND RESULTS Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe-/- mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1β secretion by macrophages in the plaque. CONCLUSIONS We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe-/- mice. These results point toward a promising treatment to combat atherosclerosis.
Collapse
Affiliation(s)
- Maria J Forteza
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Martin Berg
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Andreas Edsfeldt
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
| | - Jangming Sun
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Roland Baumgartner
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ilona Kareinen
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Felipe Beccaria Casagrande
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Song Zhang
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Ivan Vuckovic
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Petras P Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Konstantinos A Polyzos
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Mette Trauelsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Lea Dib
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Isabel Gonçalves
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Daniel F J Ketelhuth
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws vej 21, 5000 Odense, Denmark
| |
Collapse
|
29
|
Sachse M, Tual-Chalot S, Ciliberti G, Amponsah-Offeh M, Stamatelopoulos K, Gatsiou A, Stellos K. RNA-binding proteins in vascular inflammation and atherosclerosis. Atherosclerosis 2023; 374:55-73. [PMID: 36759270 DOI: 10.1016/j.atherosclerosis.2023.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the major cause of premature death and disability worldwide, even when patients with an established manifestation of atherosclerotic heart disease are optimally treated according to the clinical guidelines. Apart from the epigenetic control of transcription of the genetic information to messenger RNAs (mRNAs), gene expression is tightly controlled at the post-transcriptional level before the initiation of translation. Although mRNAs are traditionally perceived as the messenger molecules that bring genetic information from the nuclear DNA to the cytoplasmic ribosomes for protein synthesis, emerging evidence suggests that processes controlling RNA metabolism, driven by RNA-binding proteins (RBPs), affect cellular function in health and disease. Over the recent years, vascular endothelial cell, smooth muscle cell and immune cell RBPs have emerged as key co- or post-transcriptional regulators of several genes related to vascular inflammation and atherosclerosis. In this review, we provide an overview of cell-specific function of RNA-binding proteins involved in all stages of ASCVD and how this knowledge may be used for the development of novel precision medicine therapeutics.
Collapse
Affiliation(s)
- Marco Sachse
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Cardiovascular Surgery, University Heart Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Giorgia Ciliberti
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Mannheim, Germany
| | - Michael Amponsah-Offeh
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Mannheim, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Mannheim, Germany; Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany.
| |
Collapse
|
30
|
López Rodríguez M, Arasu UT, Kaikkonen MU. Exploring the genetic basis of coronary artery disease using functional genomics. Atherosclerosis 2023; 374:87-98. [PMID: 36801133 DOI: 10.1016/j.atherosclerosis.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Genome-wide Association Studies (GWAS) have identified more than 300 loci associated with coronary artery disease (CAD), defining the genetic risk map of the disease. However, the translation of the association signals into biological-pathophysiological mechanisms constitute a major challenge. Through a group of examples of studies focused on CAD, we discuss the rationale, basic principles and outcomes of the main methodologies implemented to prioritize and characterize causal variants and their target genes. Additionally, we highlight the strategies as well as the current methods that integrate association and functional genomics data to dissect the cellular specificity underlying the complexity of disease mechanisms. Despite the limitations of existing approaches, the increasing knowledge generated through functional studies helps interpret GWAS maps and opens novel avenues for the clinical usability of association data.
Collapse
Affiliation(s)
- Maykel López Rodríguez
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland; Department of Pathology and Laboratory Medicine, University of California, UCLA, Los Angeles, USA.
| | - Uma Thanigai Arasu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| |
Collapse
|
31
|
Örd T, Lönnberg T, Nurminen V, Ravindran A, Niskanen H, Kiema M, Õunap K, Maria M, Moreau PR, Mishra PP, Palani S, Virta J, Liljenbäck H, Aavik E, Roivainen A, Ylä-Herttuala S, Laakkonen JP, Lehtimäki T, Kaikkonen MU. Dissecting the polygenic basis of atherosclerosis via disease-associated cell state signatures. Am J Hum Genet 2023; 110:722-740. [PMID: 37060905 PMCID: PMC10183377 DOI: 10.1016/j.ajhg.2023.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/17/2023] Open
Abstract
Coronary artery disease (CAD) is a pandemic disease where up to half of the risk is explained by genetic factors. Advanced insights into the genetic basis of CAD require deeper understanding of the contributions of different cell types, molecular pathways, and genes to disease heritability. Here, we investigate the biological diversity of atherosclerosis-associated cell states and interrogate their contribution to the genetic risk of CAD by using single-cell and bulk RNA sequencing (RNA-seq) of mouse and human lesions. We identified 12 disease-associated cell states that we characterized further by gene set functional profiling, ligand-receptor prediction, and transcription factor inference. Importantly, Vcam1+ smooth muscle cell state genes contributed most to SNP-based heritability of CAD. In line with this, genetic variants near smooth muscle cell state genes and regulatory elements explained the largest fraction of CAD-risk variance between individuals. Using this information for variant prioritization, we derived a hybrid polygenic risk score (PRS) that demonstrated improved performance over a classical PRS. Our results provide insights into the biological mechanisms associated with CAD risk, which could make a promising contribution to precision medicine and tailored therapeutic interventions in the future.
Collapse
Affiliation(s)
- Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Valtteri Nurminen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Aarthi Ravindran
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kadri Õunap
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maleeha Maria
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pierre R Moreau
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Senthil Palani
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Jenni Virta
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland
| | - Einari Aavik
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland; Turku PET Centre, Turku University Hospital, 20520 Turku, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
| |
Collapse
|
32
|
Pirruccello JP, Rämö JT, Choi SH, Chaffin MD, Kany S, Nekoui M, Chou EL, Jurgens SJ, Friedman SF, Juric D, Stone JR, Batra P, Ng K, Philippakis AA, Lindsay ME, Ellinor PT. The Genetic Determinants of Aortic Distention. J Am Coll Cardiol 2023; 81:1320-1335. [PMID: 37019578 PMCID: PMC11246604 DOI: 10.1016/j.jacc.2023.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND As the largest conduit vessel, the aorta is responsible for the conversion of phasic systolic inflow from ventricular ejection into more continuous peripheral blood delivery. Systolic distention and diastolic recoil conserve energy and are enabled by the specialized composition of the aortic extracellular matrix. Aortic distensibility decreases with age and vascular disease. OBJECTIVES In this study, we sought to discover epidemiologic correlates and genetic determinants of aortic distensibility and strain. METHODS We trained a deep learning model to quantify thoracic aortic area throughout the cardiac cycle from cardiac magnetic resonance images and calculated aortic distensibility and strain in 42,342 UK Biobank participants. RESULTS Descending aortic distensibility was inversely associated with future incidence of cardiovascular diseases, such as stroke (HR: 0.59 per SD; P = 0.00031). The heritabilities of aortic distensibility and strain were 22% to 25% and 30% to 33%, respectively. Common variant analyses identified 12 and 26 loci for ascending and 11 and 21 loci for descending aortic distensibility and strain, respectively. Of the newly identified loci, 22 were not significantly associated with thoracic aortic diameter. Nearby genes were involved in elastogenesis and atherosclerosis. Aortic strain and distensibility polygenic scores had modest effect sizes for predicting cardiovascular outcomes (delaying or accelerating disease onset by 2%-18% per SD change in scores) and remained statistically significant predictors after accounting for aortic diameter polygenic scores. CONCLUSIONS Genetic determinants of aortic function influence risk for stroke and coronary artery disease and may lead to novel targets for medical intervention.
Collapse
Affiliation(s)
- James P Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mahan Nekoui
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth L Chou
- Smidt Heart Institute, Division of Vascular Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Samuel F Friedman
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dejan Juric
- Harvard Medical School, Boston, Massachusetts, USA; Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James R Stone
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kenney Ng
- IBM Research, Cambridge, Massachusetts, USA
| | - Anthony A Philippakis
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mark E Lindsay
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Thoracic Aortic Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
33
|
de Winther MPJ, Bäck M, Evans P, Gomez D, Goncalves I, Jørgensen HF, Koenen RR, Lutgens E, Norata GD, Osto E, Dib L, Simons M, Stellos K, Ylä-Herttuala S, Winkels H, Bochaton-Piallat ML, Monaco C. Translational opportunities of single-cell biology in atherosclerosis. Eur Heart J 2023; 44:1216-1230. [PMID: 36478058 PMCID: PMC10120164 DOI: 10.1093/eurheartj/ehac686] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.
Collapse
Affiliation(s)
- Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Magnus Bäck
- Translational Cardiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- University of Lorraine, INSERM U1116, Nancy University Hospital, Nancy, France
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Delphine Gomez
- Department of Medicine, Division of Cardiology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isabel Goncalves
- Cardiovascular Research Translational Studies, Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Helle F Jørgensen
- Cardiorespiratory Medicine Section, Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Esther Lutgens
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilian’s Universität, Munich, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Cardiovascular Medicine, Experimental CardioVascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Center for the Study of Atherosclerosis, SISA, Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, Heart Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Lea Dib
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, OX37FY Oxford, UK
| | - Michael Simons
- Departments of Internal Medicine and Cell Biology, Yale University and Yale Cardiovascular Research Center, 300 George St, New Haven, CT 06511, USA
| | - Konstantinos Stellos
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland and Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Holger Winkels
- Department of Internal Medicine III, Division of Cardiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | | | - Claudia Monaco
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, OX37FY Oxford, UK
| |
Collapse
|
34
|
An automatic entropy method to efficiently mask histology whole-slide images. Sci Rep 2023; 13:4321. [PMID: 36922520 PMCID: PMC10017682 DOI: 10.1038/s41598-023-29638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes. This is especially challenging when the tissue structure of biospecimens is relatively porous and heterogeneous, such as for atherosclerotic plaques. In this study, we developed a unique approach called 'EntropyMasker' based on image entropy to tackle the fore- and background segmentation (masking) task in histology WSI. We evaluated our method on 97 high-resolution WSI of human carotid atherosclerotic plaques in the Athero-Express Biobank Study, constituting hematoxylin and eosin and 8 other staining types. Using multiple benchmarking metrics, we compared our method with four widely used segmentation methods: Otsu's method, Adaptive mean, Adaptive Gaussian and slideMask and observed that our method had the highest sensitivity and Jaccard similarity index. We envision EntropyMasker to fill an important gap in WSI preprocessing, machine learning image analysis pipelines, and enable disease phenotyping beyond the field of atherosclerosis.
Collapse
|
35
|
Rao X, Razavi M, Mihai G, Wei Y, Braunstein Z, Frieman MB, Sun XJ, Gong Q, Chen J, Zhao G, Liu Z, Quon MJ, Dong L, Rajagopalan S, Zhong J. Dipeptidyl Peptidase 4/Midline-1 Axis Promotes T Lymphocyte Motility in Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204194. [PMID: 36683148 PMCID: PMC10037965 DOI: 10.1002/advs.202204194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
T cells play a crucial role in atherosclerosis, with its infiltration preceding the formation of atheroma. However, how T-cell infiltration is regulated in atherosclerosis remains largely unknown. Here, this work demonstrates that dipeptidyl peptidase-4 (DPP4) is a novel regulator of T-cell motility in atherosclerosis. Single-cell ribonucleic acid (RNA) sequencing and flow cytometry show that CD4+ T cells in atherosclerotic patients display a marked increase of DPP4. Lack of DPP4 in hematopoietic cells or T cells reduces T-cell infiltration and atherosclerotic plaque volume in atherosclerosis mouse models. Mechanistically, DPP4 deficiency reduces T-cell motility by suppressing the expression of microtubule associated protein midline-1 (Mid1) in T cells. Deletion of either DPP4 or Mid1 inhibits chemokine-induced shape change and motility, while restitution of Mid1 in Dpp4-/- T cell largely restores its migratory ability. Thus, DPP4/Mid1, as a novel regulator of T-cell motility, may be a potential inflammatory target in atherosclerosis.
Collapse
Affiliation(s)
- Xiaoquan Rao
- Division of CardiologyDepartment of Internal MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
| | - Michael Razavi
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
| | - Georgeta Mihai
- Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts02115USA
| | - Yingying Wei
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
| | | | - Matthew B. Frieman
- Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMaryland21201USA
| | - Xiao Jian Sun
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland21201USA
| | - Quan Gong
- Department of ImmunologySchool of MedicineYangtze UniversityJingzhouHubei434023P. R. China
| | - Jun Chen
- Sinopharm Dongfeng General HospitalHubei University of MedicineShiyanHubei442008P. R. China
| | - Gang Zhao
- Department of CardiologyShandong Provincial Hospital affiliated to Shandong UniversityJinanShandong250021P. R. China
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
- Institute of Allergy and Clinical ImmunologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
| | - Michael J. Quon
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland21201USA
| | - Lingli Dong
- Division of Rheumatology and ImmunologyDepartment of Internal MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
| | - Sanjay Rajagopalan
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
| | - Jixin Zhong
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
- Wexner Medical CenterThe Ohio State UniversityColumbusOhio43210USA
- Institute of Allergy and Clinical ImmunologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
- Division of Rheumatology and ImmunologyDepartment of Internal MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
| |
Collapse
|
36
|
Wen J, Ling R, Chen R, Zhang S, Dai Y, Zhang T, Guo F, Wang Q, Wang G, Jiang Y. Diversity of arterial cell and phenotypic heterogeneity induced by high-fat and high-cholesterol diet. Front Cell Dev Biol 2023; 11:971091. [PMID: 36910156 PMCID: PMC9997679 DOI: 10.3389/fcell.2023.971091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lipid metabolism disorder is the basis of atherosclerotic lesions, in which cholesterol and low-density lipoprotein (LDL) is the main factor involved with the atherosclerotic development. A high-fat and high-cholesterol diet can lead to this disorder in the human body, thus accelerating the process of disease. The development of single-cell RNA sequencing in recent years has opened the possibility to unbiasedly map cellular heterogeneity with high throughput and high resolution; alterations mediated by a high-fat and high-cholesterol diet at the single-cell transcriptomic level can be explored with this mean afterward. We assessed the aortic arch of 16-week old Apoe-/- mice of two control groups (12 weeks of chow diet) and two HFD groups (12 weeks of high fat, high cholesterol diet) to process single-cell suspension and use single-cell RNA sequencing to anatomize the transcripts of 5,416 cells from the control group and 2,739 from the HFD group. Through unsupervised clustering, 14 cell types were divided and defined. Among these cells, the cellular heterogeneity exhibited in endothelial cells and immune cells is the most prominent. Subsequent screening delineated ten endothelial cell subsets with various function based on gene expression profiling. The distribution of endothelial cells and immune cells differs significantly between the control group versus the HFD one. The existence of pathways that inhibit atherosclerosis was found in both dysfunctional endothelial cells and foam cells. Our data provide a comprehensive transcriptional landscape of aortic arch cells and unravel the cellular heterogeneity brought by a high-fat and high-cholesterol diet. All these findings open new perspectives at the transcriptomic level to studying the pathology of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
37
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Integrative multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285622. [PMID: 36824883 PMCID: PMC9949190 DOI: 10.1101/2023.02.09.23285622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWAS and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotype information to identify quantitative trait loci (QTL) for gene expression and splicing in coronary arteries obtained from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary arteries and 19% exhibited cell-type-specific expression. Colocalization analysis with GWAS identified subgroups of eGenes unique to CAD and blood pressure. Fine-mapping highlighted additional eGenes of interest, including TBX20 and IL5 . Splicing (s)QTLs for 1,690 genes were also identified, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing events to accurately identify disease-relevant gene expression. Our work provides the first human coronary artery eQTL resource from a patient sample and exemplifies the necessity of diverse study populations and multi-omic approaches to characterize gene regulation in critical disease processes. Study Design Overview
Collapse
|
38
|
Benavente ED, Karnewar S, Buono M, Mili E, Hartman RJG, Kapteijn D, Slenders L, Daniels M, Aherrahrou R, Reinberger T, Mol BM, de Borst GJ, de Kleijn DPV, Prange KHM, Depuydt MAC, de Winther MPJ, Kuiper J, Björkegren JLM, Erdmann J, Civelek M, Mokry M, Owens GK, Pasterkamp G, den Ruijter HM. Female gene networks are expressed in myofibroblast-like smooth muscle cells in vulnerable atherosclerotic plaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527690. [PMID: 36798294 PMCID: PMC9934638 DOI: 10.1101/2023.02.08.527690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Women presenting with coronary artery disease (CAD) more often present with fibrous atherosclerotic plaques, which are currently understudied. Phenotypically modulated smooth muscle cells (SMCs) contribute to atherosclerosis in women. How these phenotypically modulated SMCs shape female versus male plaques is unknown. Here, we show sex-stratified gene regulatory networks (GRNs) from human carotid atherosclerotic tissue. Prioritization of these networks identified two main SMC GRNs in late-stage atherosclerosis. Single-cell RNA-sequencing mapped these GRNs to two SMC phenotypes: a phenotypically modulated myofibroblast-like SMC network and a contractile SMC network. The myofibroblast-like GRN was mostly expressed in plaques that were vulnerable in females. Finally, mice orthologs of the female myofibroblast-like genes showed retained expression in advanced plaques from female mice but were downregulated in male mice during atherosclerosis progression. Female atherosclerosis is driven by GRNs that promote a fibrous vulnerable plaque rich in myofibroblast-like SMCs.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Michele Buono
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Eloi Mili
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Robin J. G. Hartman
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Daniek Kapteijn
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lotte Slenders
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark Daniels
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Redouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | | | - Barend M. Mol
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, Utrecht University, The Netherlands
| | - Gert J. de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, Utrecht University, The Netherlands
| | - Dominique P. V. de Kleijn
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, Utrecht University, The Netherlands
| | - Koen H. M. Prange
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University’ Leiden, The Netherlands
| | - Marie A. C. Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University’ Leiden, The Netherlands
| | - Menno P. J. de Winther
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University’ Leiden, The Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University’ Leiden, The Netherlands
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Michal Mokry
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hester M. den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
39
|
Woo SH, Kyung D, Lee SH, Park KS, Kim M, Kim K, Kwon HJ, Won YS, Choi I, Park YJ, Go DM, Oh JS, Yoon WK, Paik SS, Kim JH, Kim YH, Choi JH, Kim DY. TXNIP Suppresses the Osteochondrogenic Switch of Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res 2023; 132:52-71. [PMID: 36448450 PMCID: PMC9829043 DOI: 10.1161/circresaha.122.321538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND The osteochondrogenic switch of vascular smooth muscle cells (VSMCs) is a pivotal cellular process in atherosclerotic calcification. However, the exact molecular mechanism of the osteochondrogenic transition of VSMCs remains to be elucidated. Here, we explore the regulatory role of TXNIP (thioredoxin-interacting protein) in the phenotypical transitioning of VSMCs toward osteochondrogenic cells responsible for atherosclerotic calcification. METHODS The atherosclerotic phenotypes of Txnip-/- mice were analyzed in combination with single-cell RNA-sequencing. The atherosclerotic phenotypes of Tagln-Cre; Txnipflox/flox mice (smooth muscle cell-specific Txnip ablation model), and the mice transplanted with the bone marrow of Txnip-/- mice were analyzed. Public single-cell RNA-sequencing dataset (GSE159677) was reanalyzed to define the gene expression of TXNIP in human calcified atherosclerotic plaques. The effect of TXNIP suppression on the osteochondrogenic phenotypic changes in primary aortic VSMCs was analyzed. RESULTS Atherosclerotic lesions of Txnip-/- mice presented significantly increased calcification and deposition of collagen content. Subsequent single-cell RNA-sequencing analysis identified the modulated VSMC and osteochondrogenic clusters, which were VSMC-derived populations. The osteochondrogenic cluster was markedly expanded in Txnip-/- mice. The pathway analysis of the VSMC-derived cells revealed enrichment of bone- and cartilage-formation-related pathways and bone morphogenetic protein signaling in Txnip-/- mice. Reanalyzing public single-cell RNA-sequencing dataset revealed that TXNIP was downregulated in the modulated VSMC and osteochondrogenic clusters of human calcified atherosclerotic lesions. Tagln-Cre; Txnipflox/flox mice recapitulated the calcification and collagen-rich atherosclerotic phenotypes of Txnip-/- mice, whereas the hematopoietic deficiency of TXNIP did not affect the lesion phenotype. Suppression of TXNIP in cultured VSMCs accelerates osteodifferentiation and upregulates bone morphogenetic protein signaling. Treatment with the bone morphogenetic protein signaling inhibitor K02288 abrogated the effect of TXNIP suppression on osteodifferentiation. CONCLUSIONS Our results suggest that TXNIP is a novel regulator of atherosclerotic calcification by suppressing bone morphogenetic protein signaling to inhibit the transition of VSMCs toward an osteochondrogenic phenotype.
Collapse
Affiliation(s)
- Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Korea (S.-H.W., D.-M.G., J.-S.O., D.-Y.K.)
| | - Dongsoo Kyung
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Korea (D.K.)
| | - Seung Hyun Lee
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Kyu Seong Park
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Minkyu Kim
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Kibyeong Kim
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea (H.-J.K.)
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea (Y.-S.W., W.K.Y.)
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea (I.C.)
| | - Young-Jun Park
- Enviornmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea (Y.-J.P.)
| | - Du-Min Go
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Korea (S.-H.W., D.-M.G., J.-S.O., D.-Y.K.)
| | - Jeong-Seop Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Korea (S.-H.W., D.-M.G., J.-S.O., D.-Y.K.)
| | - Won Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea (Y.-S.W., W.K.Y.)
| | - Seung Sam Paik
- Department of Pathology, Hanyang University Medical College, Seoul, Korea (S.S.P., J.H.K.)
| | - Ji Hyeon Kim
- Department of Pathology, Hanyang University Medical College, Seoul, Korea (S.S.P., J.H.K.)
| | - Yong-Hwan Kim
- Department of Biological Sciences, Research Institute of Women’s Health, College of Natural Sciences, Sookmyung Women’s University, Seoul, Korea (Y.-H.K.)
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Korea (S.-H.W., D.-M.G., J.-S.O., D.-Y.K.)
| |
Collapse
|
40
|
Bäck M, Banach M, Braunschweig F, De Rosa S, Gimelli A, Kahan T, Ketelhuth DFJ, Lancellotti P, Larsson SC, Mellbin L, Nagy E, Savarese G, Szummer K, Wahl D. Highlights from 2022 in EHJ Open. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac084. [PMID: 36600883 PMCID: PMC9801405 DOI: 10.1093/ehjopen/oeac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
- Nancy University Hospital, University of Lorraine and INSERM U1116, 54511 Nancy, France
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz and Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Frieder Braunschweig
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessia Gimelli
- Cardiovascular and Imaging Departments, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Thomas Kahan
- Department of Cardiology, Danderyd University Hospital, Stockohlm, Sweden
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences, University of Liège Hospital, Centre Hospitalier Universitaire Sart Tilman, Liège, Belgium
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Linda Mellbin
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Edit Nagy
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gianluigi Savarese
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karolina Szummer
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Denis Wahl
- Nancy University Hospital, University of Lorraine and INSERM U1116, 54511 Nancy, France
| | | |
Collapse
|
41
|
Meneri M, Bonato S, Gagliardi D, Comi GP, Corti S. New Insights into Cerebral Vessel Disease Landscapes at Single-Cell Resolution: Pathogenetic and Therapeutic Perspectives. Biomedicines 2022; 10:1693. [PMID: 35884997 PMCID: PMC9313091 DOI: 10.3390/biomedicines10071693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebrovascular diseases are a leading cause of death and disability globally. The development of new therapeutic targets for cerebrovascular diseases (e.g., ischemic, and hemorrhagic stroke, vascular dementia) is limited by a lack of knowledge of the cellular and molecular biology of health and disease conditions and the factors that cause injury to cerebrovascular structures. Here, we describe the role of advances in omics technology, particularly RNA sequencing, in studying high-dimensional, multifaceted profiles of thousands of individual blood and vessel cells at single-cell resolution. This analysis enables the dissection of the heterogeneity of diseased cerebral vessels and their atherosclerotic plaques, including the microenvironment, cell evolutionary trajectory, and immune response pathway. In animal models, RNA sequencing permits the tracking of individual cells (including immunological, endothelial, and vascular smooth muscle cells) that compose atherosclerotic plaques and their alteration under experimental settings such as phenotypic transition. We describe how single-cell RNA transcriptomics in humans allows mapping to the molecular and cellular levels of atherosclerotic plaques in cerebral arteries, tracking individual lymphocytes and macrophages, and how these data can aid in identifying novel immune mechanisms that could be exploited as therapeutic targets for cerebrovascular diseases. Single-cell multi-omics approaches will likely provide the unprecedented resolution and depth of data needed to generate clinically relevant cellular and molecular signatures for the precise treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (M.M.); (D.G.); (G.P.C.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sara Bonato
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (M.M.); (D.G.); (G.P.C.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (M.M.); (D.G.); (G.P.C.)
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (M.M.); (D.G.); (G.P.C.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
42
|
Elishaev M, Hodonsky CJ, Ghosh SKB, Finn AV, von Scheidt M, Wang Y. Opportunities and Challenges in Understanding Atherosclerosis by Human Biospecimen Studies. Front Cardiovasc Med 2022; 9:948492. [PMID: 35872917 PMCID: PMC9300954 DOI: 10.3389/fcvm.2022.948492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last few years, new high-throughput biotechnologies and bioinformatic methods are revolutionizing our way of deep profiling tissue specimens at the molecular levels. These recent innovations provide opportunities to advance our understanding of atherosclerosis using human lesions aborted during autopsies and cardiac surgeries. Studies on human lesions have been focusing on understanding the relationship between molecules in the lesions with tissue morphology, genetic risk of atherosclerosis, and future adverse cardiovascular events. This review will highlight ways to utilize human atherosclerotic lesions in translational research by work from large cardiovascular biobanks to tissue registries. We will also discuss the opportunities and challenges of working with human atherosclerotic lesions in the era of next-generation sequencing.
Collapse
Affiliation(s)
- Maria Elishaev
- Department of Pathology and Laboratory Medicine, Center for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Chani J. Hodonsky
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | | | - Aloke V. Finn
- Cardiovascular Pathology Institute, Gaithersburg, MD, United States
| | - Moritz von Scheidt
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, Center for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Slenders L, Tessels DE, van der Laan SW, Pasterkamp G, Mokry M. The Applications of Single-Cell RNA Sequencing in Atherosclerotic Disease. Front Cardiovasc Med 2022; 9:826103. [PMID: 35211529 PMCID: PMC8860895 DOI: 10.3389/fcvm.2022.826103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis still is the primary cause of death worldwide. Our characterization of the atherosclerotic lesion is mainly rooted in definitions based on pathological descriptions. We often speak in absolutes regarding plaque phenotypes: vulnerable vs. stable plaques or plaque rupture vs. plaque erosion. By focusing on these concepts, we may have oversimplified the atherosclerotic disease and its mechanisms. The widely used definitions of pathology-based plaque phenotypes can be fine-tuned with observations made with various -omics techniques. Recent advancements in single-cell transcriptomics provide the opportunity to characterize the cellular composition of the atherosclerotic plaque. This additional layer of information facilitates the in-depth characterization of the atherosclerotic plaque. In this review, we discuss the impact that single-cell transcriptomics may exert on our current understanding of atherosclerosis.
Collapse
Affiliation(s)
- Lotte Slenders
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Daniëlle E. Tessels
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Michal Mokry
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| |
Collapse
|