1
|
Lee JH, Jung IR, Tu-Sekine B, Jin S, Anokye-Danso F, Ahima RS, Kim SF. Loss of Skeletal Muscle Inositol Polyphosphate Multikinase Disrupts Glucose Regulation and Limits Exercise Capacity. Int J Mol Sci 2025; 26:2395. [PMID: 40141045 PMCID: PMC11942489 DOI: 10.3390/ijms26062395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways, and inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that skeletal-muscle-specific IPMK knockout mice exhibited a ~12% increase in body weight compared to WT controls (p < 0.05). These mice also showed a significantly impaired glucose tolerance, as indicated by their ~50% higher blood glucose levels during GTT. Additionally, exercise capacity was reduced by ~45% in IPMK-MKO mice, demonstrating a decline in endurance. Moreover, these metabolic alterations were accompanied by a 2.5-fold increase in skeletal muscle triglyceride accumulation, suggesting impaired lipid metabolism. Further analysis revealed that IPMK-deficient myocytes exhibited 30% lower β-oxidation rates. Thus, our results suggest that IPMK mediates whole-body metabolism by regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.
Collapse
Affiliation(s)
| | | | | | | | | | - Rexford S. Ahima
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA; (J.-H.L.); (I.-R.J.); (B.T.-S.); (F.A.-D.)
| | - Sangwon F. Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA; (J.-H.L.); (I.-R.J.); (B.T.-S.); (F.A.-D.)
| |
Collapse
|
2
|
Zhu J, Guo J, Liu Z, Liu J, Yuan A, Chen H, Qiu J, Dou X, Lu D, Le Y. Salvianolic acid A attenuates non-alcoholic fatty liver disease by regulating the AMPK-IGFBP1 pathway. Chem Biol Interact 2024; 400:111162. [PMID: 39047806 DOI: 10.1016/j.cbi.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population and, to date, there is no approved drug therapy for this condition. Individuals with type 2 diabetes mellitus (T2DM) are at a significantly elevated risk of developing NAFLD, underscoring the urgency of identifying effective NAFLD treatments for T2DM patients. Salvianolic acid A (SAA) is a naturally occurring phenolic acid that is an important component of the water-soluble constituents isolated from the roots of Salvia miltiorrhiza Bunge. SAA has been demonstrated to possess anti-inflammatory and antioxidant stress properties. Nevertheless, its potential in ameliorating diabetes-associated NAFLD has not yet been fully elucidated. In this study, diabetic ApoE-/- mice were employed to establish a NAFLD model via a Western diet. Following this, they were treated with different doses of SAA (10 mg/kg, 20 mg/kg) via gavage. The study demonstrated a marked improvement in liver injury, lipid accumulation, inflammation, and the pro-fibrotic phenotype after the administration of SAA. Additionally, RNA-seq analysis indicated that the primary pathway by which SAA alleviates diabetes-induced NAFLD involves the cascade pathways of lipid metabolism. Furthermore, SAA was found to be effective in the inhibition of lipid accumulation, mitochondrial dysfunction and ferroptosis. A functional enrichment analysis of RNA-seq data revealed that SAA treatment modulates the AMPK pathway and IGFBP-1. Further experimental results demonstrated that SAA is capable of inhibiting lipid accumulation through the activation of the AMPK pathway and IGFBP-1.
Collapse
Affiliation(s)
- Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, 330106, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Aini Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Lee JH, Jung IR, Tu-Sekine B, Jin S, Anokye-Danso F, Ahima RS, Kim SF. Genetic Deletion of Skeletal Muscle Inositol Polyphosphate Multikinase Disrupts Glucose Homeostasis and Impairs Exercise Tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605526. [PMID: 39131310 PMCID: PMC11312436 DOI: 10.1101/2024.07.28.605526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways in which inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that mice in which IPMK knockout is deleted, specifically in the skeletal muscle, displayed an increased body weight, disrupted glucose tolerance, and reduced exercise tolerance under the normal diet. Moreover, these changes were associated with an increased accumulation of triglyceride in skeletal muscle. Furthermore, we have confirmed that a loss of IPMK led to reduced beta-oxidation, increased triglyceride accumulation, and impaired insulin response in IPMK-deficient muscle cells. Thus, our results suggest that IPMK mediates the whole-body metabolism via regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Sunghee Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Frederick Anokye-Danso
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| |
Collapse
|
4
|
Wang H, Akbari-Alavijeh S, Parhar RS, Gaugler R, Hashmi S. Partners in diabetes epidemic: A global perspective. World J Diabetes 2023; 14:1463-1477. [PMID: 37970124 PMCID: PMC10642420 DOI: 10.4239/wjd.v14.i10.1463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023] Open
Abstract
There is a recent increase in the worldwide prevalence of both obesity and diabetes. In this review we assessed insulin signaling, genetics, environment, lipid metabolism dysfunction and mitochondria as the major determinants in diabetes and to identify the potential mechanism of gut microbiota in diabetes diseases. We searched relevant articles, which have key information from laboratory experiments, epidemiological evidence, clinical trials, experimental models, meta-analysis and review articles, in PubMed, MEDLINE, EMBASE, Google scholars and Cochrane Controlled Trial Database. We selected 144 full-length articles that met our inclusion and exclusion criteria for complete assessment. We have briefly discussed these associations, challenges, and the need for further research to manage and treat diabetes more efficiently. Diabetes involves the complex network of physiological dysfunction that can be attributed to insulin signaling, genetics, environment, obesity, mitochondria and stress. In recent years, there are intriguing findings regarding gut microbiome as the important regulator of diabetes. Valid approaches are necessary for speeding medical advances but we should find a solution sooner given the burden of the metabolic disorder - What we need is a collaborative venture that may involve laboratories both in academia and industries for the scientific progress and its application for the diabetes control.
Collapse
Affiliation(s)
- Huan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Safoura Akbari-Alavijeh
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ranjit S Parhar
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Randy Gaugler
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Sarwar Hashmi
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
- Research and Diagnostics, Ghazala and Sanya Hashmi Foundation, Holmdel, NJ 07733, United States
| |
Collapse
|
5
|
Liao W, Xu N, Zhang H, Liao W, Wang Y, Wang S, Zhang S, Jiang Y, Xie W, Zhang Y. Persistent high glucose induced EPB41L4A-AS1 inhibits glucose uptake via GCN5 mediating crotonylation and acetylation of histones and non-histones. Clin Transl Med 2022; 12:e699. [PMID: 35184403 PMCID: PMC8858623 DOI: 10.1002/ctm2.699] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Persistent hyperglycemia decreases the sensitivity of insulin-sensitive organs to insulin, owing to which cells fail to take up and utilize glucose, which exacerbates the progression of type 2 diabetes mellitus (T2DM). lncRNAs' abnormal expression is reported to be associated with the progression of diabetes and plays a significant role in glucose metabolism. Herein, we study the detailed mechanism underlying the functions of lncRNA EPB41L4A-AS1in T2DM. METHODS Data from GEO datasets were used to analyze the expression of EPB41L4A-AS1 between insulin resistance or type 2 diabetes patients and the healthy people. Gene expression was evaluated by qRT-PCR and western blotting. Glucose uptake was measured by Glucose Uptake Fluorometric Assay Kit. Glucose tolerance of mice was detected by Intraperitoneal glucose tolerance tests. Cell viability was assessed by CCK-8 assay. The interaction between EPB41L4A-AS1 and GCN5 was explored by RNA immunoprecipitation, RNA pull-down and RNA-FISH combined immunofluorescence. Oxygen consumption rate was tested by Seahorse XF Mito Stress Test. RESULTS EPB41L4A-AS1 was abnormally increased in the liver of patients with T2DM and upregulated in the muscle cells of patients with insulin resistance and in T2DM cell models. The upregulation was associated with increased TP53 expression and reduced glucose uptake. Mechanistically, through interaction with GCN5, EPB41L4A-AS1 regulated histone H3K27 crotonylation in the GLUT4 promoter region and nonhistone PGC1β acetylation, which inhibited GLUT4 transcription and suppressed glucose uptake by muscle cells. In contrast, EPB41L4A-AS1 binding to GCN5 enhanced H3K27 and H3K14 acetylation in the TXNIP promoter region, which activated transcription by promoting the recruitment of the transcriptional activator MLXIP. This enhanced GLUT4/2 endocytosis and further suppressed glucose uptake. CONCLUSION Our study first showed that the EPB41L4A-AS1/GCN5 complex repressed glucose uptake via targeting GLUT4/2 and TXNIP by regulating histone and nonhistone acetylation or crotonylation. Since a weaker glucose uptake ability is one of the major clinical features of T2DM, the inhibition of EPB41L4A-AS1 expression seems to be a potentially effective strategy for drug development in T2DM treatment.
Collapse
Affiliation(s)
- Weijie Liao
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Naihan Xu
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Open FIESTA CenterTsinghua UniversityShenzhenP. R. China
| | - Haowei Zhang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Weifang Liao
- College of life science and technologyWuhan Polytechnic UniversityWuhanP. R. China
| | - Yanzhi Wang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Songmao Wang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Shikuan Zhang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Yuyang Jiang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
| | - Weidong Xie
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Open FIESTA CenterTsinghua UniversityShenzhenP. R. China
| | - Yaou Zhang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Open FIESTA CenterTsinghua UniversityShenzhenP. R. China
| |
Collapse
|
6
|
Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights. Int J Mol Sci 2020; 21:ijms21134725. [PMID: 32630698 PMCID: PMC7369709 DOI: 10.3390/ijms21134725] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Statins are the gold-standard treatment for the prevention of primary and secondary cardiovascular disease, which is the leading cause of mortality worldwide. Despite the safety and relative tolerability of statins, observational studies, clinical trials and meta-analyses indicate an increased risk of developing new-onset type 2 diabetes mellitus (T2DM) after long-term statin treatment. It has been shown that statins can impair insulin sensitivity and secretion by pancreatic β-cells and increase insulin resistance in peripheral tissues. The mechanisms involved in these processes include, among others, impaired Ca2+ signaling in pancreatic β-cells, down-regulation of GLUT-4 in adipocytes and compromised insulin signaling. In addition, it has also been described that statins’ impact on epigenetics may also contribute to statin-induced T2DM via differential expression of microRNAs. This review focuses on the evidence and mechanisms by which statin therapy is associated with the development of T2DM. This review describes the multifactorial combination of effects that most likely contributes to the diabetogenic effects of statins. Clinically, these findings should encourage clinicians to consider diabetes monitoring in patients receiving statin therapy in order to ensure early diagnosis and appropriate management.
Collapse
|
7
|
Wigger L, Cruciani-Guglielmacci C, Nicolas A, Denom J, Fernandez N, Fumeron F, Marques-Vidal P, Ktorza A, Kramer W, Schulte A, Le Stunff H, Liechti R, Xenarios I, Vollenweider P, Waeber G, Uphues I, Roussel R, Magnan C, Ibberson M, Thorens B. Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans. Cell Rep 2017; 18:2269-2279. [PMID: 28249170 DOI: 10.1016/j.celrep.2017.02.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/07/2016] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
Abstract
Plasma metabolite concentrations reflect the activity of tissue metabolic pathways and their quantitative determination may be informative about pathogenic conditions. We searched for plasma lipid species whose concentrations correlate with various parameters of glucose homeostasis and susceptibility to type 2 diabetes (T2D). Shotgun lipidomic analysis of the plasma of mice from different genetic backgrounds, which develop a pre-diabetic state at different rates when metabolically stressed, led to the identification of a group of sphingolipids correlated with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in the plasma of individuals from two population-based prospective cohorts revealed that specific long-chain fatty-acid-containing dihydroceramides were significantly elevated in the plasma of individuals who will progress to diabetes up to 9 years before disease onset. These lipids may serve as early biomarkers of, and help identify, metabolic deregulation in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Leonore Wigger
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Céline Cruciani-Guglielmacci
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Anthony Nicolas
- INSERM, Sorbonne Paris Cité, Centre de Recherce des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France; UPMC, Sorbonne Universités, Centre de Recherce des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Centre de Recherche des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Centre de Recherches des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France
| | - Jessica Denom
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Neïké Fernandez
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Frédéric Fumeron
- INSERM, Sorbonne Paris Cité, Centre de Recherce des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France; UPMC, Sorbonne Universités, Centre de Recherce des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Centre de Recherche des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Centre de Recherches des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Alain Ktorza
- Recherche de Découverte, PIT Métabolisme, Institut de Recherche Servier (IdRS), 92150 Suresnes, France
| | - Werner Kramer
- Biomedical and Scientific Consulting, 55130 Mainz, Germany
| | - Anke Schulte
- Diabetes Research, Islet Biology Cluster, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Hervé Le Stunff
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France; Institut de biologie intégrative de la cellule (I2BC), CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Robin Liechti
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Gérard Waeber
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Ingo Uphues
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach (Riss), Germany
| | - Ronan Roussel
- INSERM, Sorbonne Paris Cité, Centre de Recherce des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France; UPMC, Sorbonne Universités, Centre de Recherce des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Centre de Recherche des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Centre de Recherches des Cordeliers (CRC), UMR_S 1138, 75006 Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Hu W, Yeo JH, Jiang Y, Heo SI, Wang MH. The antidiabetic effects of an herbal formula composed of Alnus hirsuta, Rosa davurica, Acanthopanax senticosus and Panax schinseng in the streptozotocin-induced diabetic rats. Nutr Res Pract 2013; 7:103-8. [PMID: 23610602 PMCID: PMC3627926 DOI: 10.4162/nrp.2013.7.2.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/16/2012] [Accepted: 01/04/2013] [Indexed: 11/05/2022] Open
Abstract
A folk prescription consisting of Alnus hirsuta, Rosa davurica, Acanthopanax senticosus and Panax schinseng has been used in the treatment of diabetes mellitus. The aim of the present investigation was to evaluate the antidiabetic effects of the herb formula extract (HFE) composed of Alnus hirsuta, Rosa davurica, Acanthopanax senticosus and Panax schinseng in the streptozotocin (STZ)-induced diabetic rats. The HFE was mixed in the food supply of the healthy and STZ-induced diabetic male Sprague-Dawley rats, and its effects on the body weight, water and food intake, hyperglycemia, hypolipidemic and islet structure were studied. The treatment of the rats with STZ for 6 weeks resulted in marasmus, polydipsia, polyphagia, hyperglycemia and hypoinsulinemia. In addition, the diabetic rats showed an apparent decrease in the insulin immunoreactivity and the number of β-cells in the pancreas. The addition of the HFE to the rats' food supply significantly lowered the serum glucose and the serum triglycerides level and preserved the normal histological appearance of the pancreatic islets. These results indicate that the HEF have a strong antidiabetic potential along with the significant hypoglycemic and hypolipidemic effects, which may be applicable in the pharmaceutical industry.
Collapse
Affiliation(s)
- Weicheng Hu
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, 192-1 Hyoja-dong, Chuncheon, Gangwon 200-701, Korea
| | | | | | | | | |
Collapse
|
9
|
Selvaraj J, Sathish S, Mayilvanan C, Balasubramanian K. Excess aldosterone-induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat. Mol Cell Biochem 2012; 372:113-26. [PMID: 23007523 DOI: 10.1007/s11010-012-1452-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/05/2012] [Indexed: 01/01/2023]
Abstract
Emerging evidences demonstrate that excess aldosterone and insulin interact at target tissues. It has been shown that increased levels of aldosterone contribute to the development of insulin resistance and thus act as a risk factor for the development of type-2 diabetes mellitus. However, the molecular mechanisms involved in this scenario are yet to be identified. This study was designed to assess the dose-dependent effects of aldosterone on insulin signal transduction and glucose oxidation in the skeletal muscle (gastrocnemius) of adult male rat. Healthy adult male albino rats of Wistar strain (Rattus norvegicus) weighing 180-200 g were used in this study. Rats were divided into four groups. Group I: control (treated with 1 % ethanol only), group II: aldosterone treated (10 μg /kg body weight, twice daily for 15 days), group III: aldosterone treated (20 μg /kg body weight, twice daily for 15 days), and group IV: aldosterone treated (40 μg/kg body weight, twice daily for 15 days). Excess aldosterone caused glucose intolerance in a dose-dependent manner. Serum insulin and aldosterone were significantly increased, whereas serum testosterone was decreased. Aldosterone treatment impaired the rate of glucose uptake, oxidation, and insulin signal transduction in the gastrocnemius muscle through defective expression of IR, IRS-1, Akt, AS160, and GLUT4 genes. Phosphorylation of IRS-1, β-arrestin-2, and Akt was also reduced in a dose-dependent manner. Excess aldosterone results in glucose intolerance as a result of impaired insulin signal transduction leading to decreased glucose uptake and oxidation in skeletal muscle. In addition to this, it is inferred that excess aldosterone may act as one of the causative factors for the onset of insulin resistance and thus increased incidence of type-2 diabetes.
Collapse
Affiliation(s)
- Jayaraman Selvaraj
- Department of Endocrinology, Dr.ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Sekkizhar Campus, Taramani, Chennai 600113, India
| | | | | | | |
Collapse
|
10
|
Srinivasan C, Khan AI, Balaji V, Selvaraj J, Balasubramanian K. Diethyl hexyl phthalate-induced changes in insulin signaling molecules and the protective role of antioxidant vitamins in gastrocnemius muscle of adult male rat. Toxicol Appl Pharmacol 2011; 257:155-64. [DOI: 10.1016/j.taap.2011.08.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/12/2011] [Accepted: 08/24/2011] [Indexed: 12/30/2022]
|
11
|
Lipina C, Stretton C, Hastings S, Hundal JS, Mackie K, Irving AJ, Hundal HS. Regulation of MAP kinase-directed mitogenic and protein kinase B-mediated signaling by cannabinoid receptor type 1 in skeletal muscle cells. Diabetes 2010; 59:375-85. [PMID: 19933999 PMCID: PMC2809953 DOI: 10.2337/db09-0979] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/06/2009] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The endogenous cannabinoid (or endocannabinoid) system (ECS) is part of a central neuromodulatory system thought to play a key role in the regulation of feeding behavior and energy balance. However, increasing evidence suggests that modulation of the ECS may also act to regulate peripheral mechanisms involved in these processes, including lipogenesis in adipose tissue and liver, insulin release from pancreatic beta-cells, and glucose uptake into skeletal muscle. It was recently shown that cannabinoid receptor type 1 (CB1) and type 2 (CB2), both key components of the ECS, are expressed in human and rodent skeletal muscle. However, their role in modulating insulin sensitivity in this metabolically active tissue has yet to be determined. Our aim was to establish the role, if any, of these receptors in modulating insulin sensitivity in skeletal muscle cells. RESEARCH DESIGN AND METHODS Cultured skeletal muscle cells were exposed to CB1 and/or CB2 pharmacological agonists/antagonists/inverse agonists, and the resulting effects on insulin-regulated phosphatidylinositol 3 kinase (PI 3-kinase)-protein kinase B (PKB) and extracellular signal-related kinases 1/2 (ERK1/2)-directed signaling were determined. RESULTS Here, we report that modulating the activity of the ECS in skeletal muscle regulates both insulin-dependent mitogen-activated protein (MAP) kinase (ERK1/2) and the canonical PI 3-kinase/PKB signaling pathways. We show that pharmacological activation or inhibition of CB1 receptor activity exerts a differential effect with regard to MAP kinase- and PKB-directed signaling. CONCLUSIONS Our study provides evidence that signaling via cannabinoid receptors can significantly modulate mitogenic and metabolic signaling in skeletal muscle with important implications for muscle growth and differentiation as well as the regulation of glucose and lipid metabolism.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Molecular Physiology, James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Clare Stretton
- Division of Molecular Physiology, James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Simon Hastings
- Division of Molecular Physiology, James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Jonathan S. Hundal
- Division of Molecular Physiology, James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana
| | - Andrew J. Irving
- Division of Medical Sciences, College of Medicine, Dentistry and Nursing, University of Dundee, Dundee, Scotland
| | - Harinder S. Hundal
- Division of Molecular Physiology, James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland
| |
Collapse
|
12
|
Abstract
Type 2 diabetes mellitus (T2DM) affects a large population worldwide. T2DM is a complex heterogeneous group of metabolic disorders including hyperglycemia and impaired insulin action and/or insulin secretion. T2DM causes dysfunctions in multiple organs or tissues. Current theories of T2DM include a defect in insulin-mediated glucose uptake in muscle, a dysfunction of the pancreatic beta-cells, a disruption of secretory function of adipocytes, and an impaired insulin action in liver. The etiology of human T2DM is multifactorial, with genetic background and physical inactivity as two critical components. The pathogenesis of T2DM is not fully understood. Animal models of T2DM have been proved to be useful to study the pathogenesis of, and to find a new therapy for, the disease. Although different animal models share similar characteristics, each mimics a specific aspect of genetic, endocrine, metabolic, and morphologic changes that occur in human T2DM. The purpose of this review is to provide the recent progress and current theories in T2DM and to summarize animal models for studying the pathogenesis of the disease.
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
13
|
Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications. PLoS One 2009; 4:e8100. [PMID: 19997558 PMCID: PMC2785475 DOI: 10.1371/journal.pone.0008100] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 10/06/2009] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a multifactorial and genetically heterogeneous disease which leads to impaired glucose homeostasis and insulin resistance. The advanced form of disease causes acute cardiovascular, renal, neurological and microvascular complications. Thus there is a constant need to discover new and efficient treatment against the disease by seeking to uncover various novel alternate signalling mechanisms that can lead to diabetes and its associated complications. The present study allows detection of molecular targets by unravelling their role in altered biological pathways during diabetes and its associated risk factors and complications. We have used an integrated functional networks concept by merging co-expression network and interaction network to detect the transcriptionally altered pathways and regulations involved in the disease. Our analysis reports four novel significant networks which could lead to the development of diabetes and other associated dysfunctions. (a) The first network illustrates the up regulation of TGFBRII facilitating oxidative stress and causing the expression of early transcription genes via MAPK pathway leading to cardiovascular and kidney related complications. (b) The second network demonstrates novel interactions between GAPDH and inflammatory and proliferation candidate genes i.e., SUMO4 and EGFR indicating a new link between obesity and diabetes. (c) The third network portrays unique interactions PTPN1 with EGFR and CAV1 which could lead to an impaired vascular function in diabetic nephropathy condition. (d) Lastly, from our fourth network we have inferred that the interaction of β-catenin with CDH5 and TGFBR1 through Smad molecules could contribute to endothelial dysfunction. A probability of emergence of kidney complication might be suggested in T2D condition. An experimental investigation on this aspect may further provide more decisive observation in drug target identification and better understanding of the pathophysiology of T2D and its complications.
Collapse
|
14
|
Tong Z, Fan Y, Zhang W, Xu J, Cheng J, Ding M, Deng H. Pancreas-specific Pten deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling. Cell Res 2009; 19:710-9. [DOI: 10.1038/cr.2009.42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Miyawaki K, Inoue H, Keshavarz P, Mizuta K, Sato A, Sakamoto Y, Moritani M, Kunika K, Tanahashi T, Itakura M. Transgenic expression of a mutated cyclin-dependent kinase 4 (CDK4/R24C) in pancreatic beta-cells prevents progression of diabetes in db/db mice. Diabetes Res Clin Pract 2008; 82:33-41. [PMID: 18678431 DOI: 10.1016/j.diabres.2008.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/22/2008] [Accepted: 06/05/2008] [Indexed: 01/08/2023]
Abstract
In an attempt to rectify the hyperglycemic state in obese insulin resistant db/db mice, a transgenic line was generated (db/db-CDK4(R24C)) that expresses a constitutively active form of cyclin-dependent kinase 4 (CDK4/R24C) under the control of the insulin promoter. Compared with non-transgenic db/db littermates, adult db/db-CDK4(R24C) mice show near-complete glycemic normalization and improved plasma lipid concentrations, but are also more susceptible to weight gain and have significantly lower plasma adiponection levels. They have striking islet hypertrophy and beta-cell hyperplasia, and retain an insulin secretory response during the glucose tolerance test. We examined the expression of several key regulatory transcription factor genes involved in lipid and glucose metabolism in insulin target tissues of db/db-CDK4(R24C) as well as db/db mice, and found that the expression levels of members of the peroxisome proliferator-activated receptor (PPAR) family are highly associated with metabolic alterations in a gene- and tissue-specific manner. We show for the first time that the Ppar-delta in skeletal muscle and white adipose tissues is transcriptionally down-regulated in db/db mice. The db/db-CDK4(R24C) mice present a novel model of leptin-resistant obesity with compensatory hyperinsulinemia and normalized blood glucose levels, and thus may be useful for future studies that aim to dissect relationships between insulin and leptin signaling.
Collapse
Affiliation(s)
- Katsuyuki Miyawaki
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, 3-18-15 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lu Y, He X, Zhong S. Cross-species microarray analysis with the OSCAR system suggests an INSR->Pax6->NQO1 neuro-protective pathway in aging and Alzheimer's disease. Nucleic Acids Res 2007; 35:W105-14. [PMID: 17545194 PMCID: PMC1933158 DOI: 10.1093/nar/gkm408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OSCAR is a web platform for cluster and cross-species analysis of microarray data. It provides a comprehensive but friendly environment to both users and algorithm developers. For users, OSCAR provides cluster tools for both single and multiple species data, together with interactive analysis features. For single species data, OSCAR currently provides Hierarchical Clustering, K-means, partition around medoids (PAM), Self-Organizing Map (SOM), Tight Clustering and a novel algorithm called ‘Consensus Tight-clustering’. The new Consensus Tight-clustering algorithm delivers robust gene clusters and its result is more resistant to false positives than other state-of-the-art algorithms. For cross-species data analysis, OSCAR provides two novel computational tools: ‘coherentCluster’, ‘coherentSubset’ and a novel visualization tool: ‘comparative heatmap’. Applying the coherentCluster algorithm to human and fly aging data, we identified several coherent clusters of genes, which share co-regulation patterns that are highly correlated with the aging process in both of the two species. One coherent cluster suggests insulin receptor (INSR) may regulate Pax6 in both species and across different tissues. Further analysis with human brain expression and pathological data suggests an INSR->Pax6->quinone oxidoreductase (NQO1)->detoxification neuro-protective pathway might be present in aging or diseased brain. For algorithm developers, OSCAR is a plug-and-play platform. With little effort, developers can plug their own algorithms into the OSCAR server without revealing the source codes, which will equip their command line executables with user-friendly interface and interactive analysis capability. In summary, OSCAR initiates an open platform for development and application of clustering and cross-species analysis programs. OSCAR stands for an open system for cluster analysis of microarray data. It is available at: http://biocomp.bioen.uiuc.edu/oscar
Collapse
Affiliation(s)
- Yue Lu
- Department of Computer Science, Department of Bioengineering and Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA
| | - Xin He
- Department of Computer Science, Department of Bioengineering and Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA
| | - Sheng Zhong
- Department of Computer Science, Department of Bioengineering and Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA
- *To whom correspondence should be addressed.
| |
Collapse
|
17
|
Nojima K, Ikegami H, Fujisawa T, Ueda H, Babaya N, Itoi-Babaya M, Yamaji K, Shibata M, Ogihara T. Food hardness as environmental factor in development of type 2 diabetes. Diabetes Res Clin Pract 2006; 74:1-7. [PMID: 16730844 DOI: 10.1016/j.diabres.2006.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/13/2006] [Accepted: 03/14/2006] [Indexed: 11/22/2022]
Abstract
The effect of hardness of the diet as an environmental factor on the development of diabetes was investigated in a mouse model of type 2 diabetes. NSY and control C3H/He mice were fed several types of dietary chow from 4 weeks of age. Autoclaved CRF-1, whose major components are almost the same as those of the MF diet except for increased pellet hardness, resulted in a significant reduction in body weight in both NSY (p<0.05) and C3H (p<0.001) mice at 16 weeks of age. The prevalence of diabetes in NSY mice fed autoclaved CRF-1 was significantly lower than that in those fed MF at 36 weeks of age (p<0.05), which was associated with a significant decrease in body weight (p<0.0001). At 16 weeks of age, NSY mice fed with a hard diet (autoclaved CRF-1) showed a significantly lower body weight (32.1+/-0.3g) and blood glucose levels during ipGTT than those with fed a normal (gamma-irradiated CRF-1) (35.6+/-1.3g, p<0.05 and <0.01, respectively) or soft (powdered CRF-1) (p<0.05 and <0.05, respectively) diet. Switching from normal (gamma-irradiated) to hard (autoclaved) chow, even after the development diabetes at 36 weeks of age, markedly improved glucose intolerance after 4 weeks in NSY mice despite the small change in body weight. These results indicate the importance of food hardness as an environmental factor in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Koji Nojima
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Type 2 Diabetes results from a complex physiologic process that includes the pancreatic beta cells, peripheral glucose uptake in muscle, the secretion of multiple cytokines and hormone-like molecules from adipocytes, hepatic glucose production, and likely the central nervous system. Consistent with the complex web of physiologic defects, the emerging picture of the genetics will involve a large number of risk susceptibility genes, each individually with relatively small effect (odds ratios below 1.2 in most cases). The challenge for the future will include cataloging and confirming the genetic risk factors, and understanding how these risk factors interact with each other and with the known environmental and lifestyle risk factors that increase the propensity to type 2 diabetes.
Collapse
Affiliation(s)
- Swapan Kumar Das
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | | |
Collapse
|
19
|
Abstract
The increasing worldwide incidence of diabetes in adults constitutes a global public health burden. It is predicted that by 2025, India, China and the United States will have the largest number of people with diabetes. According to the 2003 estimates of the International Diabetes Federation, the diabetes mellitus prevalence in the USA is 8.0% and approximately 90-95% of diabetic Americans have type 2 diabetes - about 16 million people. Type 2 diabetes is a complex, heterogeneous, polygenic disease characterized mainly by insulin resistance and pancreatic beta-cell dysfunction. Appropriate experimental models are essential tools for understanding the molecular basis, pathogenesis of the vascular and neural lesions, actions of therapeutic agents and genetic or environmental influences that increase the risks of type 2 diabetes. Among the animal models available, those developed in rodents have been studied most thoroughly for reasons such as short generation time, inherited hyperglycaemia and/or obesity in certain strains and economic considerations. In this article, we review the current status of most commonly used rodent diabetic models developed spontaneously, through means of genetic engineering or artificial manipulation. In addition to these models, the Psammomys obesus, rhesus monkeys and many other species are studied intensively and reviewed by Shafrir, Bailey and Flatt and Hansen.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Hypoglycemic Agents/therapeutic use
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Rats
- Rats, Inbred OLETF
- Rats, Inbred SHR
- Rats, Inbred Strains
- Rats, Sprague-Dawley
- Rats, Zucker
- Streptozocin
Collapse
Affiliation(s)
- Desu Chen
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | | |
Collapse
|
20
|
Abstract
Subclinical, low-grade systemic inflammation has been observed in patients with type 2 diabetes and in those at increased risk of the disease. This may be more than an epiphenomenon. Alleles of genes encoding immune/inflammatory mediators are associated with the disease, and the two major environmental factors the contribute to the risk of type 2 diabetes-diet and physical activity-have a direct impact on levels of systemic immune mediators. In animal models, targeting of immune genes enhanced or suppressed the development of obesity or diabetes. Obesity is associated with the infiltration and proinflammatory activity of macrophages in adipose tissue, and immune mediators may be important regulators of insulin resistance, mitochondrial function, ectopic lipid storage and beta cell dysfunction or death. Intervention studies targeting these pathways would help to determine the contribution of an activated innate immune system to the development of type 2 diabetes.
Collapse
Affiliation(s)
- H Kolb
- German Diabetes Center, Leibniz-Institute at the University of Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
21
|
Kurlawalla-Martinez C, Stiles B, Wang Y, Devaskar SU, Kahn BB, Wu H. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol Cell Biol 2005; 25:2498-510. [PMID: 15743841 PMCID: PMC1061603 DOI: 10.1128/mcb.25.6.2498-2510.2005] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In adipose tissue, insulin controls glucose and lipid metabolism through the intracellular mediators phosphatidylinositol 3-kinase and serine-threonine kinase AKT. Phosphatase and a tensin homolog deleted from chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/AKT pathway, is hypothesized to inhibit the metabolic effects of insulin. Here we report the generation of mice lacking PTEN in adipose tissue. Loss of Pten results in improved systemic glucose tolerance and insulin sensitivity, associated with decreased fasting insulin levels, increased recruitment of the glucose transporter isoform 4 to the cell surface in adipose tissue, and decreased serum resistin levels. Mutant animals also exhibit increased insulin signaling and AMP kinase activity in the liver. Pten mutant mice are resistant to developing streptozotocin-induced diabetes. Adipose-specific Pten deletion, however, does not alter adiposity or plasma fatty acids. Our results demonstrate that in vivo PTEN is a potent negative regulator of insulin signaling and insulin sensitivity in adipose tissue. Furthermore, PTEN may be a promising target for nutritional and/or pharmacological interventions aimed at reversing insulin resistance.
Collapse
Affiliation(s)
- Christine Kurlawalla-Martinez
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zhu M, de Cabo R, Anson RM, Ingram DK, Lane MA. Caloric restriction modulates insulin receptor signaling in liver and skeletal muscle of rat. Nutrition 2005; 21:378-88. [PMID: 15797682 DOI: 10.1016/j.nut.2004.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 06/23/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigated how the insulin/insulin-like growth factor-1 signaling pathway is involved in the robust antiaging effects produced by caloric restriction. METHODS We subjected male rats to feeding ad libitum or calorie restriction, i.e., 60% of the ad libitum amount, for 2 and 25 mo and then assessed the effects of calorie restriction on insulin receptor (IR) signaling in liver and skeletal muscle. RESULTS The results indicated that aging was accompanied by a significant decrease in IR tyrosine phosphorylation after insulin stimulation in live and skeletal muscle, which was associated with a significant increase in the activity of protein tyrosine phosphatase-1B. However, these age-related alterations were attenuated by long-term calorie restriction. Expression profile of mRNA showed an increased expression of mRNAs for IR and insulin-like growth factor-1 receptor in both tissues of calorie-restricted rats, but increased expression of IR mRNA was dissociated with the IR gene product in rats maintained on long-term calorie-restricted diet. CONCLUSION IR signaling may play an important role in aging and its retardation by calorie restriction, and normal function of IR in liver and skeletal muscle is required for healthy aging and extending lifespan in mammals.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Experimental Gerontology, Gerontology Research Center, Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
23
|
Goren HJ, Kulkarni RN, Kahn CR. Glucose homeostasis and tissue transcript content of insulin signaling intermediates in four inbred strains of mice: C57BL/6, C57BLKS/6, DBA/2, and 129X1. Endocrinology 2004; 145:3307-23. [PMID: 15044376 DOI: 10.1210/en.2003-1400] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transgenic mice phenotypes generally depend on the background strains used in their creation. To examine the effects of genetic background on insulin signaling, we analyzed glucose homeostasis in four inbred strains of mice [C57BL/6 (B6), C57BLKS/6 (KLS), DBA/2 (DBA), and 129X1] and quantitated mRNA content of insulin receptor (IR) and its substrates in insulin-responsive tissues. At 2 months, the male B6 mouse is the least glucose-tolerant despite exhibiting similar insulin sensitivity and first-phase insulin secretion as the other strains. The 129X1 male mouse islet contains less insulin and exhibits a higher threshold for glucose-stimulated first-phase insulin secretion than the other strains. Female mice generally manifest better glucose tolerance than males, which is likely due to greater insulin sensitivity in liver and adipose tissue, a robust first-phase insulin secretion in B6 and KLS females, and improved insulin sensitivity in muscle in DBA and 129X1 females. At 6 months, although males exhibit improved first-phase insulin secretion, their physiology was relatively unchanged, whereas female B6 and KLS mice became less insulin sensitive. Gene expression of insulin signaling intermediates in insulin-responsive tissues was generally not strain dependent with the cell content of IR mRNA being highest. IR substrate (IRS)-1 and IRS-2 mRNA are ubiquitously expressed and IRS-3 and IRS-4 mRNA were detected in significant amounts in fat and brain tissues, respectively. These data indicate strain-, gender-, and age-dependent tissue sensitivity to insulin that is generally not associated with transcript content of IR or its substrates and should be taken into consideration during phenotypic characterization of transgenic mice.
Collapse
Affiliation(s)
- H Joseph Goren
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
24
|
Delbaere LTJ, Sudom AM, Prasad L, Leduc Y, Goldie H. Structure/function studies of phosphoryl transfer by phosphoenolpyruvate carboxykinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:271-8. [PMID: 15023367 DOI: 10.1016/j.bbapap.2003.11.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 11/12/2003] [Indexed: 11/24/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PCK) catalyzes the conversion of oxaloacetate (OAA) to PEP and carbon dioxide with the subsequent conversion of nucleoside triphosphate to nucleoside diphosphate (NDP). The 1.9 A resolution structure of Escherichia coli PCK consisted of a 275-residue N-terminal domain and a 265-residue C-terminal domain with the active site located in a cleft between these domains. Each domain has an alpha/beta topology and the overall structure represents a new protein fold. Furthermore, PCK has a unique mononucleotide-binding fold. The 1.8 A resolution structure of the complex of ATP/Mg(2+)/oxalate with PCK revealed a 20 degrees hinge-like rotation of the N- and C-terminal domains, which closed the active site cleft. The ATP was found in the unusual syn conformation as a result of binding to the enzyme. Along with the side chain of Lys254, Mg(2+) neutralizes charges on the P beta and P gamma oxygen atoms of ATP and stabilizes an extended, eclipsed conformation of the P beta and P gamma phosphoryl groups. The sterically strained high-energy conformation likely lowers the free energy of activation for phosphoryl transfer. Additionally, the gamma-phosphoryl group becomes oriented in-line with the appropriate enolate oxygen atom, which strongly supports a direct S(N)2-type displacement of this gamma-phosphoryl group by the enolate anion. In the 2.0 A resolution structure of the complex of PCK/ADP/Mg(2+)/AlF(3), the AlF(3) moiety represents the phosphoryl group being transferred during catalysis. There are three positively charged groups that interact with the fluorine atoms, which are complementary to the three negative charges that would occur for an associative transition state.
Collapse
Affiliation(s)
- Louis T J Delbaere
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5.
| | | | | | | | | |
Collapse
|
25
|
Kobayashi H, Mitsui T, Nomura S, Ohno Y, Kadomatsu K, Muramatsu T, Nagasaka T, Mizutani S. Expression of glucose transporter 4 in the human pancreatic islet of Langerhans. Biochem Biophys Res Commun 2004; 314:1121-5. [PMID: 14751249 DOI: 10.1016/j.bbrc.2004.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Glucose transporter 4 (GLUT4) is the main insulin-responsive glucose transporter in skeletal muscle and adipose tissue of human and rodent, and is translocated to the plasma membrane in response to insulin. GLUT2 is well known as the main glucose transporter in pancreatic islets and could highly regulate glucose-stimulated insulin secretion by B-cells as a glucose sensor. We confirmed the presence of GLUT4 mRNA and GLUT4 protein in pancreas in the human. Indirect immunohistochemistry showed that the pancreatic islets of human and rat were conspicuously labeled by anti-GLUT4 antibody. The presence of placental leucine aminopeptidase (P-LAP), a homologue of insulin-regulated aminopeptidase (IRAP), was also shown in the human pancreatic islet. IRAP/P-LAP is thought to be involved in glucose metabolism. This study provides the first evidence that GLUT4 is present in human and rat pancreatic islets and may suggest its specific role in glucose homeostasis in conjunction with IRAP/P-LAP.
Collapse
Affiliation(s)
- Honami Kobayashi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 2004. [PMID: 14769918 DOI: 10.1073/pnas.0308617100;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the liver, insulin controls both lipid and glucose metabolism through its cell surface receptor and intracellular mediators such as phosphatidylinositol 3-kinase and serine-threonine kinase AKT. The insulin signaling pathway is further modulated by protein tyrosine phosphatase or lipid phosphatase. Here, we investigated the function of phosphatase and tension homologue deleted on chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/AKT pathway, by targeted deletion of Pten in murine liver. Deletion of Pten in the liver resulted in increased fatty acid synthesis, accompanied by hepatomegaly and fatty liver phenotype. Interestingly, Pten liver-specific deletion causes enhanced liver insulin action with improved systemic glucose tolerance. Thus, deletion of Pten in the liver may provide a valuable model that permits the study of the metabolic actions of insulin signaling in the liver, and PTEN may be a promising target for therapeutic intervention for type 2 diabetes.
Collapse
|
27
|
Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP, Kim YJ, Sherwin R, Devaskar S, Lesche R, Magnuson MA, Wu H. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 2004; 101:2082-7. [PMID: 14769918 PMCID: PMC357055 DOI: 10.1073/pnas.0308617100] [Citation(s) in RCA: 348] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the liver, insulin controls both lipid and glucose metabolism through its cell surface receptor and intracellular mediators such as phosphatidylinositol 3-kinase and serine-threonine kinase AKT. The insulin signaling pathway is further modulated by protein tyrosine phosphatase or lipid phosphatase. Here, we investigated the function of phosphatase and tension homologue deleted on chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/AKT pathway, by targeted deletion of Pten in murine liver. Deletion of Pten in the liver resulted in increased fatty acid synthesis, accompanied by hepatomegaly and fatty liver phenotype. Interestingly, Pten liver-specific deletion causes enhanced liver insulin action with improved systemic glucose tolerance. Thus, deletion of Pten in the liver may provide a valuable model that permits the study of the metabolic actions of insulin signaling in the liver, and PTEN may be a promising target for therapeutic intervention for type 2 diabetes.
Collapse
Affiliation(s)
- Bangyan Stiles
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cooney GJ, Lyons RJ, Crew AJ, Jensen TE, Molero JC, Mitchell CJ, Biden TJ, Ormandy CJ, James DE, Daly RJ. Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. EMBO J 2004; 23:582-93. [PMID: 14749734 PMCID: PMC1271812 DOI: 10.1038/sj.emboj.7600082] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 12/23/2003] [Indexed: 01/10/2023] Open
Abstract
Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14(-/-) mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Gregory J Cooney
- Diabetes and Obesity, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ruth J Lyons
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - A Jayne Crew
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Thomas E Jensen
- Diabetes and Obesity, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Juan Carlos Molero
- Diabetes and Obesity, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Trevor J Biden
- Diabetes and Obesity, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Christopher J Ormandy
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David E James
- Diabetes and Obesity, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Roger J Daly
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia. Tel: 61 2 92 95 8333; Fax: 61 2 92 95 8321; E-mail:
| |
Collapse
|