1
|
Benítez-García C, Martínez-García D, Kotev M, Pérez-Hernández M, Westermaier Y, Díaz L, Korrodi-Gregório L, Fontova P, Torres AA, Pérez-Tomás R, García-Valverde M, Quesada R, Soliva R, Soto-Cerrato V. Identification of the atypical antipsychotic Asenapine as a direct survivin inhibitor with anticancer properties and sensitizing effects to conventional therapies. Biomed Pharmacother 2025; 182:117756. [PMID: 39693907 DOI: 10.1016/j.biopha.2024.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Therapy resistance in human cancers is a major limitation in Clinical Oncology. In this regard, overexpression of anti-apoptotic proteins, such as survivin, has been described in several tumors, contributing to this clinical issue. Survivin has a dual role in key cellular functions, inducing cell cycle progression and inhibiting apoptosis; thus, survivin is an attractive target for cancer therapy. Therefore, we focused on identifying and validating a novel specific, directly binding survivin inhibitor for cancer treatment and tumor sensitization to conventional proapoptotic therapies. In this work, we conducted a structure-based high-throughput virtual screening at the survivin homodimerization domain. Asenapine Maleate (AM), an approved drug for central nervous system diseases, was identified as a direct binder of the survivin homodimerization domain and it significantly affected cell viability of lung, colon, and brain cancer cell lines. Direct interaction of AM to survivin protein was corroborated by surface plasmon resonance and a specific survivin protein decrease was observed in cancer cells, compared to other inhibitors of apoptosis proteins. Therapeutic in vivo studies showed an impairment of tumor growth in AM-treated mice. Finally, a synergistic anticancer effect was detected in vitro when combined with different conventional chemotherapies, and in vivo studies showed higher antitumor effects when combined with cisplatin. Altogether, our results identify AM as a specific direct binding inhibitor of survivin, showing anticancer properties in vitro and in vivo and sensitizing effects when combined with cisplatin, opening the possibility of repositioning this approved drug for cancer treatment.
Collapse
Affiliation(s)
- Cristina Benítez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Martin Kotev
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Yvonne Westermaier
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Luis Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Ana Aurora Torres
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | | | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
2
|
Hedtfeld M, Musacchio A. Protocol for validating liquid-liquid phase separation as a driver of membraneless organelle assembly in vitro and in human cells. STAR Protoc 2024; 5:103410. [PMID: 39446580 PMCID: PMC11541453 DOI: 10.1016/j.xpro.2024.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of scaffold proteins has often been proposed to drive the biogenesis of membraneless cellular compartments. Here, we present a protocol to link in vitro LLPS propensity to localization in vivo. We describe steps for examining LLPS in vitro in the presence of crowding agents or cytomimetic media. We complement our in vitro studies with recombinant proteins with experiments of protein electroporation into mitotic HeLa cells. In addition, we discuss steps to assess protein localization and delivery levels. For complete details on the use and execution of this protocol, please refer to Hedtfeld et al.1.
Collapse
Affiliation(s)
- Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Cortés-Ballinas L, López-Pérez TV, Rocha-zavaleta L. STAT3 and the STAT3‑regulated inhibitor of apoptosis protein survivin as potential therapeutic targets in colorectal cancer (Review). Biomed Rep 2024; 21:175. [PMID: 39355529 PMCID: PMC11443488 DOI: 10.3892/br.2024.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 10/03/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading types of cancer worldwide. CRC development has been associated with the constitutive activation of signal transducer and activator of transcription 3 (STAT3). STAT3 is a master regulator of inflammation during cancer-associated colitis, and becomes upregulated in CRC. In CRC, STAT3 is activated by IL-6, among other pro-inflammatory cytokines, inducing the expression of target genes that stimulate proliferation, angiogenesis and the inhibition of apoptosis. One of the main STAT3-regulated inhibitors of apoptosis is survivin, which is a bifunctional protein that regulates apoptosis and participates in cell mitosis. Survivin expression is normally limited to foetal tissue; however, survivin is also upregulated in tumours. In silico and experimental analyses have shown that the STAT3 interactome is relevant during CRC progression, and the constitutive STAT3-survivin axis participates in development of the tumour microenvironment and response to therapy. The presence of a STAT3-survivin axis has been documented in CRC cohorts, and the expression of these molecules is associated with poor prognosis and a higher mortality rate in patients with CRC. Thus, STAT3, survivin, and the upstream activators IL-6 and IL-6 receptor, are considered therapeutic targets for CRC. Efforts to develop drugs targeting the STAT3-survivin axis include the evaluation of phytochemical compounds, small molecules and monoclonal antibodies. In the present review, the expression, function and participation of the STAT3-survivin axis in the progression of CRC were investigated. In addition, an update on the pre-clinical and clinical trials evaluating potential treatments targeting the STAT3-survivin axis is presented.
Collapse
Affiliation(s)
- Liliana Cortés-Ballinas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Tania V. López-Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico
| | - Leticia Rocha-zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Hedtfeld M, Dammers A, Koerner C, Musacchio A. A validation strategy to assess the role of phase separation as a determinant of macromolecular localization. Mol Cell 2024; 84:1783-1801.e7. [PMID: 38614097 DOI: 10.1016/j.molcel.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Liquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays. When applied to the chromosomal passenger complex (CPC), which undergoes LLPS in vitro and localizes to centromeres to promote chromosome biorientation, LLPS propensity in vitro emerged as an unreliable predictor of subcellular localization. In vitro CPC LLPS in aqueous buffers was enhanced by commonly used crowding agents. Conversely, diluted cytomimetic media dissolved condensates of the CPC and of several other proteins. We also show that centromeres do not seem to nucleate LLPS, nor do they promote local, spatially restrained LLPS of the CPC. Our strategy can be adapted to purported LLPS scaffolds of other membraneless compartments.
Collapse
Affiliation(s)
- Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Alicia Dammers
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Carolin Koerner
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Wang Q, Greene MI. Survivin as a Therapeutic Target for the Treatment of Human Cancer. Cancers (Basel) 2024; 16:1705. [PMID: 38730657 PMCID: PMC11083197 DOI: 10.3390/cancers16091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Survivin was initially identified as a member of the inhibitor apoptosis (IAP) protein family and has been shown to play a critical role in the regulation of apoptosis. More recent studies showed that survivin is a component of the chromosome passenger complex and acts as an essential mediator of mitotic progression. Other potential functions of survivin, such as mitochondrial function and autophagy, have also been proposed. Survivin has emerged as an attractive target for cancer therapy because its overexpression has been found in most human cancers and is frequently associated with chemotherapy resistance, recurrence, and poor survival rates in cancer patients. In this review, we discuss our current understanding of how survivin mediates various aspects of malignant transformation and drug resistance, as well as the efforts that have been made to develop therapeutics targeting survivin for the treatment of cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Sharma S, Ghufran SM, Aftab M, Bihari C, Ghose S, Biswas S. Survivin inhibition ameliorates liver fibrosis by inducing hepatic stellate cell senescence and depleting hepatic macrophage population. J Cell Commun Signal 2024; 18:e12015. [PMID: 38545255 PMCID: PMC10964939 DOI: 10.1002/ccs3.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 01/29/2025] Open
Abstract
Persistent activation of hepatic stellate cells (HSCs) in the injured liver leads to the progression of liver injury from fibrosis to detrimental cirrhosis. In a previous study, we have shown that survivin protein is upregulated during the early activation of HSCs, which triggers the onset of liver fibrosis. However, the therapeutic potential of targeting survivin in a fully established fibrotic liver needs to be investigated. In this study, we chemically induced hepatic fibrosis in mice using carbon tetrachloride (CCl4) for 6 weeks, which was followed by treatment with a survivin suppressant (YM155). We also evaluated survivin expression in fibrotic human liver tissues, primary HSCs, and HSC cell line by histological analysis. αSMA+ HSCs in human and mice fibrotic liver tissues showed enhanced survivin expression, whereas the hepatocytes and quiescent (qHSCs) displayed minimal expression. Alternatively, activated M2 macrophage subtype induced survivin expression in HSCs through the TGF-β-TGF-β receptor-I/II signaling. Inhibition of survivin in HSCs promoted cell cycle arrest and senescence, which eventually suppressed their activation. In vivo, YM155 treatment increased the expression of cell senescence makers in HSCs around fibrotic septa such as p53, p21, and β-galactosidase. YM155 treatment in vivo also reduced the hepatic macrophage population and inflammatory cytokine expression in the liver. In conclusion, downregulation of survivin in the fibrotic liver decreases HSC activation by inducing cellular senescence and modulating macrophage cytokine expression that collectively ameliorates liver fibrosis.
Collapse
Affiliation(s)
- Sachin Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR)Amity UniversityNoidaUttar PradeshIndia
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Shaikh Maryam Ghufran
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR)Amity UniversityNoidaUttar PradeshIndia
- Heersink School of MedicineUniversity of AlabamaBirminghamUSA
| | - Mehreen Aftab
- Division of Cellular and Molecular OncologyNational Institute of Cancer Prevention and Research (NICPR)NoidaUttar PradeshIndia
| | - Chhagan Bihari
- Department of PathologyInstitute of Liver and Biliary Sciences (ILBS)New DelhiIndia
| | - Sampa Ghose
- Department of Medical OncologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR)Amity UniversityNoidaUttar PradeshIndia
| |
Collapse
|
7
|
Li L, Sun Y, Davis AE, Shah SH, Hamed LK, Wu MR, Lin CH, Ding JB, Wang S. Mettl14-mediated m 6A modification ensures the cell-cycle progression of late-born retinal progenitor cells. Cell Rep 2023; 42:112596. [PMID: 37269288 PMCID: PMC10543643 DOI: 10.1016/j.celrep.2023.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/31/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
Neural progenitor cells lengthen their cell cycle to prime themselves for differentiation as development proceeds. It is currently not clear how they counter this lengthening and avoid being halted in the cell cycle. We show that N6-methyladenosine (m6A) methylation of cell-cycle-related mRNAs ensures the proper cell-cycle progression of late-born retinal progenitor cells (RPCs), which are born toward the end of retinogenesis and have long cell-cycle length. Conditional deletion of Mettl14, which is required for depositing m6A, led to delayed cell-cycle exit of late-born RPCs but has no effect on retinal development prior to birth. m6A sequencing and single-cell transcriptomics revealed that mRNAs involved in elongating the cell cycle were highly enriched for m6A, which could target them for degradation and guarantee proper cell-cycle progression. In addition, we identified Zfp292 as a target of m6A and potent inhibitor of RPC cell-cycle progression.
Collapse
Affiliation(s)
- Liang Li
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Yue Sun
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA; Department of Neurosurgery, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Alexander E Davis
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Sahil H Shah
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Lobna K Hamed
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Man-Ru Wu
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Cheng-Hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Jun B Ding
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
8
|
Yesupatham ST, Dayanand CD, Azeem Mohiyuddin SM, Harendra Kumar ML. An Insight into Survivin in Relevance to Hematological, Biochemical and Genetic Characteristics in Tobacco Chewers with Oral Squamous Cell Carcinoma. Cells 2023; 12:1444. [PMID: 37408277 PMCID: PMC10217417 DOI: 10.3390/cells12101444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Survivin is an inhibitor of apoptosis protein (IAP), encoded by the Baculoviral IAP Repeat Containing 5 (BIRC5) gene located on q arm (25.3) on chromosome 17. It is expressed in various human cancers and involved in tumor resistance to radiation and chemotherapy. The genetic analysis of the BIRC5 gene and its protein survivin levels in buccal tissue related to oral squamous cell carcinoma (OSCC) in South Indian tobacco chewers has not been studied. Hence, the study was designed to quantify survivin in buccal tissue and its association with pretreatment hematological parameters and to analyze the BIRC5 gene sequence. METHOD In a single centric case control study, buccal tissue survivin levels were measured by ELISA. A total of 189 study subjects were categorized into Group 1 (n = 63) habitual tobacco chewers with OSCC, Group 2 (n = 63) habitual tobacco chewers without OSCC, and Group 3 (n = 63) healthy subjects as control. Retrospective hematological data were collected from Group 1 subjects and statistically analyzed. The BIRC5 gene was sequenced and data were analyzed using a bioinformatics tool. RESULTS Survivin protein mean ± SD in Group 1 was (1670.9 ± 796.21 pg/mL), in Group 2 it was (1096.02 ± 346.17 pg/mL), and in Group 3 it was (397.5 ± 96.1 pg/mL) with significance (p < 0.001). Survivin levels showed significance with cut-off levels of absolute monocyte count (AMC), neutrophil/lymphocyte ratio (NLR), and lymphocyte/monocyte ratio (LMR) at (p = 0.001). The unique variants found only in OSCC patients were T → G in the promoter region, G → C in exon 3, C → A, A → G, G → T, T → G, A → C, G → A in exon 4, C → A, G → T, G → C in the exon 5 region. CONCLUSIONS The tissue survivin level increased in OSCC patients compared to controls; pretreatment AMC, LMR, and NLR may serve as add-on markers along with survivin to measure the progression of OSCC. Unique mutations in the promoter and exons 3-5 were observed in sequence analysis and were associated with survivin concentrations.
Collapse
Affiliation(s)
- Susanna Theophilus Yesupatham
- Department of Biochemistry, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563103, Karnataka, India;
| | - C. D. Dayanand
- Allied Health and Basic Sciences, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563103, Karnataka, India
| | - S. M. Azeem Mohiyuddin
- Department of Otorhinolaryngology and Head and Neck Surgery, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563103, Karnataka, India
| | - M. L. Harendra Kumar
- Department of Pathology, Shridevi Institute of Medical Sciences and Research Hospital, Sira Road, Tumakuru 572106, Karnataka, India
| |
Collapse
|
9
|
Remsburg CM, Konrad KD, Song JL. RNA localization to the mitotic spindle is essential for early development and is regulated by kinesin-1 and dynein. J Cell Sci 2023; 136:jcs260528. [PMID: 36751992 PMCID: PMC10038151 DOI: 10.1242/jcs.260528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Mitosis is a fundamental and highly regulated process that acts to faithfully segregate chromosomes into two identical daughter cells. Localization of gene transcripts involved in mitosis to the mitotic spindle might be an evolutionarily conserved mechanism to ensure that mitosis occurs in a timely manner. We identified many RNA transcripts that encode proteins involved in mitosis localized at the mitotic spindles in dividing sea urchin embryos and mammalian cells. Disruption of microtubule polymerization, kinesin-1 or dynein results in lack of spindle localization of these transcripts in the sea urchin embryo. Furthermore, results indicate that the cytoplasmic polyadenylation element (CPE) within the 3'UTR of the Aurora B transcript, a recognition sequence for CPEB, is essential for RNA localization to the mitotic spindle in the sea urchin embryo. Blocking this sequence results in arrested development during early cleavage stages, suggesting that RNA localization to the mitotic spindle might be a regulatory mechanism of cell division that is important for early development.
Collapse
Affiliation(s)
- Carolyn M. Remsburg
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Kalin D. Konrad
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Jia L. Song
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| |
Collapse
|
10
|
Survivin Small Molecules Inhibitors: Recent Advances and Challenges. Molecules 2023; 28:molecules28031376. [PMID: 36771042 PMCID: PMC9919791 DOI: 10.3390/molecules28031376] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Survivin, as a member of the inhibitor of apoptosis proteins (IAPs) family, acts as a suppressor of apoptosis and plays a central role in cell division. Survivin has been considered as an important cancer drug target because it is highly expressed in many types of human cancers, while it is effectively absent from terminally differentiated normal tissues. Moreover, survivin is involved in tumor cell resistance to chemotherapy and radiation. Preclinically, downregulation of survivin expression or function reduced tumor growth induced apoptosis and sensitized tumor cells to radiation and chemotherapy in different human tumor models. This review highlights the role of survivin in promoting cellular proliferation and inhibiting apoptosis and summarizes the recent advances in and challenges of developing small-molecule survivin inhibitors.
Collapse
|
11
|
Clark KL, Davis JS. Perfluorooctanoic acid (PFOA) promotes follicular growth and alters expression of genes that regulate the cell cycle and the Hippo pathway in cultured neonatal mouse ovaries. Toxicol Appl Pharmacol 2022; 454:116253. [PMID: 36152675 PMCID: PMC10416762 DOI: 10.1016/j.taap.2022.116253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic chemical resistant to biodegradation and is environmentally persistent. PFOA is found in many consumer products and is a major source of water contamination. While PFOA has been identified as a contaminant of concern for reproductive health, little is known about the effects of PFOA on ovarian follicular development and growth. Recent evidence indicates that the Hippo pathway is an important regulator of ovarian physiology. Here, we investigated the effects of PFOA on ovarian folliculogenesis during the neonatal period of development and potential impacts on the Hippo signaling pathway. Post-natal day 4 (PND4) neonatal ovaries from CD-1 mice were cultured with control medium (DMSO <0.01% final concentration) or PFOA (50 μM or 100 μM). After 96 h, ovaries were collected for histological analysis of folliculogenesis, gene and protein expression, and immunostaining. Results revealed that PFOA (50 μM) increased the number of secondary follicles, which was accompanied by increases in mRNA transcripts and protein of marker of proliferation marker Ki67 with no impacts on apoptosis markers Bax, Bcl2, or cleaved caspase-3. PFOA treatment (50 μM and 100 μM) stimulated an upregulation of transcripts for cell cycle regulators Ccna2, Ccnb2, Ccne1, Ccnd1, Ccnd2, and Ccnd3. PFOA also increased abundance of transcripts of Hippo pathway components Mst1/2, Lats1, Mob1b, Yap1, and Taz, as well as downstream Hippo pathway targets Areg, Amotl2, and Cyr61, although it decreased transcripts for anti-apoptotic Birc5. Inhibition of the Hippo pathway effector YAP1 with Verteporfin resulted in the attenuation of PFOA-induced follicular growth and proliferation. Together, these findings suggest that occupationally relevant levels of PFOA (50 μM) can stimulate follicular activation in neonatal ovaries potentially through activation of the Hippo pathway.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
| |
Collapse
|
12
|
Zeng Y, Yin L, Zhou J, Zeng R, Xiao Y, Black AR, Hu T, Singh PK, Yin F, Batra SK, Yu F, Chen Y, Dong J. MARK2 regulates chemotherapeutic responses through class IIa HDAC-YAP axis in pancreatic cancer. Oncogene 2022; 41:3859-3875. [PMID: 35780183 PMCID: PMC9339507 DOI: 10.1038/s41388-022-02399-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023]
Abstract
Despite paclitaxel's wide use in cancer treatment, patient response rate is still low and drug resistance is a major clinical obstacle. Through a Phos-tag-based kinome-wide screen, we identified MARK2 as a critical regulator for paclitaxel chemosensitivity in PDAC. We show that MARK2 is phosphorylated by CDK1 in response to antitubulin chemotherapeutics and in unperturbed mitosis. Phosphorylation is essential for MARK2 in regulating mitotic progression and paclitaxel cytotoxicity in PDAC cells. Mechanistically, our findings also suggest that MARK2 controls paclitaxel chemosensitivity by regulating class IIa HDACs. MARK2 directly phosphorylates HDAC4 specifically during antitubulin treatment. Phosphorylated HDAC4 promotes YAP activation and controls expression of YAP target genes induced by paclitaxel. Importantly, combination of HDAC inhibition and paclitaxel overcomes chemoresistance in organoid culture and preclinical PDAC animal models. The expression levels of MARK2, HDACs, and YAP are upregulated and positively correlated in PDAC patients. Inhibition of MARK2 or class IIa HDACs potentiates paclitaxel cytotoxicity by inducing mitotic abnormalities in PDAC cells. Together, our findings identify the MARK2-HDAC axis as a druggable target for overcoming chemoresistance in PDAC.
Collapse
Affiliation(s)
- Yongji Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ling Yin
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jiuli Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renya Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yi Xiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tuo Hu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Feng Yin
- Department of Pathology and Anatomic Sciences, University of Missouri, Columbia, MO, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Meidan R, Basavaraja R. Interferon-Tau regulates a plethora of functions in the corpus luteum. Domest Anim Endocrinol 2022; 78:106671. [PMID: 34509740 DOI: 10.1016/j.domaniend.2021.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The corpus luteum (CL) plays a vital role in regulating the reproductive cycle, fertility, and in maintaining pregnancy. Interferon-tau (IFNT) is the maternal recognition of a pregnancy signal in domestic ruminants; its uterine, paracrine actions, which extend the CL lifespan, are widely established. However, considerable evidence also suggests a direct, endocrine role for IFNT. The purpose of this review is to highlight the importance of IFNT in CL maintenance, acting directly and in a cell-specific manner. A transcriptomic study revealed a distinct molecular profile of IFNT-exposed day 18, pregnant bovine CL, compared to the non-pregnant gland. A substantial fraction of the differentially expressed genes was downregulated, many of which are known to be elevated by prostaglandin F2A (PGF2A). In vitro, IFNT was found to mimic changes observed in the luteal transcriptome of early pregnancy. Key luteolytic genes such as endothelin-1 (EDN1), transforming growth factor-B1 (TGFB1), thrombospondins (THBSs) 1&2 and serpine-1 (SERPINE1) were downregulated in luteal endothelial cells. Luteal steroidogenic large cells (LGCs) were also found to be a target for the antilutelotytic actions of IFNT. IFNT-treated LGCs showed a significant reduction in the expression of the proapoptotic, antiangiogenic THBS1&2, as well as TGFBR1 and 2. Furthermore, IFNT was shown to be a potent survival factor for luteal cells in vivo and in vitro, activating diverse pathways to promote cell survival while suppressing cell death signals. Pentraxin 3 (PTX3), robustly upregulated by IFNT in various luteal cell types, mediated many of the prosurvival effects of IFNT in LGCs. A novel reciprocal inhibitory crosstalk between PTX3 and THBS1 lends further support to their respective survival and apoptotic actions in the CL. Even though IFNT did not directly regulate progesterone synthesis, it could maintain its concentrations, by increasing luteal cell survival and by supporting vascular stabilization. The direct effects of IFNT in the CL, enhancing cell survival and vasculature stabilization while curbing luteolytic activities, may constitute an important complementary branch leading to the extension of the luteal lifespan during early pregnancy.
Collapse
Affiliation(s)
- Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel.
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel
| |
Collapse
|
14
|
Bais AS, Cerqueira DM, Clugston A, Bodnar AJ, Ho J, Kostka D. Single-cell RNA sequencing reveals differential cell cycle activity in key cell populations during nephrogenesis. Sci Rep 2021; 11:22434. [PMID: 34789782 PMCID: PMC8599654 DOI: 10.1038/s41598-021-01790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
The kidney is a complex organ composed of more than 30 terminally differentiated cell types that all are required to perform its numerous homeostatic functions. Defects in kidney development are a significant cause of chronic kidney disease in children, which can lead to kidney failure that can only be treated by transplant or dialysis. A better understanding of molecular mechanisms that drive kidney development is important for designing strategies to enhance renal repair and regeneration. In this study, we profiled gene expression in the developing mouse kidney at embryonic day 14.5 at single-cell resolution. Consistent with previous studies, clusters with distinct transcriptional signatures clearly identify major compartments and cell types of the developing kidney. Cell cycle activity distinguishes between the "primed" and "self-renewing" sub-populations of nephron progenitors, with increased expression of the cell cycle-related genes Birc5, Cdca3, Smc2 and Smc4 in "primed" nephron progenitors. In addition, augmented expression of cell cycle related genes Birc5, Cks2, Ccnb1, Ccnd1 and Tuba1a/b was detected in immature distal tubules, suggesting cell cycle regulation may be required for early events of nephron patterning and tubular fusion between the distal nephron and collecting duct epithelia.
Collapse
Affiliation(s)
- Abha S Bais
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Débora M Cerqueira
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Andrew Clugston
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Andrew J Bodnar
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Jacqueline Ho
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA.
| | - Dennis Kostka
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA.
- Department of Computational and Systems Biology and Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Huang C, Luo H, Huang Y, Fang C, Zhao L, Li P, Zhong C, Liu F. AURKB, CHEK1 and NEK2 as the Potential Target Proteins of Scutellaria barbata on Hepatocellular Carcinoma: An Integrated Bioinformatics Analysis. Int J Gen Med 2021; 14:3295-3312. [PMID: 34285555 PMCID: PMC8285231 DOI: 10.2147/ijgm.s318077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Objective We aim to explore the potential anti-HCC mechanism of Scutellaria barbata through integrated bioinformatics analysis. Methods We searched active ingredients and related targets of Scutellaria barbata via TCMSP database, PubChem and SwissTargetPrediction database. Then, we identified HCC disease targets from GEO dataset by WGCNA. Next, the intersected targets of disease targets and drug targets were input into STRING database to construct PPI networking in order to obtain potential therapeutic targets of Scutellaria barbata. Cytoscape software was used to carry out network topology analysis of potential targets. We used the R package for GO analysis and KEGG analysis. Finally, we used AutoDock vina and PyMOL software for molecular docking. Results Sixteen active components from Scutellaria barbata were lastly selected for further investigation. A total of 442 component targets were identified from 16 active ingredients of Scutellaria barbata after the removal of duplicate targets. GSE45436 was selected for construction of WGCNA and screening of differentially expressed genes. A total of 354 genes were up-regulated in HCC samples and 100 were down-regulated in HCC patients. Twenty-one common genes were obtained by intersection and 10 critical targets were filtered for further investigation. The enrichment analysis showed that cell cycle, DNA replication, p53 signaling pathway were mainly involved. The molecular docking results showed that 4 potential combinations were with the best binding energy and molecular interactions. Conclusion AURKB, CHEK1 and NEK2 could be the potential target proteins of Scutellaria barbata in treating HCC. Cell cycle, DNA replication, p53 signaling pathway consist of the fundamental regulation cores in this mechanism.
Collapse
Affiliation(s)
- Chaoyuan Huang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hu Luo
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yuancheng Huang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Chongkai Fang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Lina Zhao
- Department of gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Peiwu Li
- Department of gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Fengbin Liu
- Department of gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of gastroenterology, Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Pan MH, Ju JQ, Li XH, Xu Y, Wang JD, Ren YP, Lu X, Sun SC. Inhibition of survivin induces spindle disorganization, chromosome misalignment, and DNA damage during mouse embryo development. Cell Cycle 2020; 19:2148-2157. [PMID: 32687433 DOI: 10.1080/15384101.2020.1794545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The early embryonic development is important for the subsequent embryo implantation, and any defects in this process can lead to embryonic aneuploidy, which causes miscarriage and birth defects. Survivin is the member of inhibitor of apoptosis protein (IAP) family, and it is also an essential subunit of chromosomal passenger complex (CPC), which regulates both apoptosis and cell cycle control in many models. However, the roles of survivin in mouse early embryos remain unclear. In the present study, we showed that survivin activity was essential for mouse early embryo development. Our results showed that survivin mainly accumulated at chromosomes at metaphase stage and located at the spindle midzone at anaphase and telophase stages during the first cleavage. Loss of survivin activity led to the failure of cleavage in early mouse embryos. Further analysis indicated that survivin involved into spindle organization and chromosome alignment. Moreover, inhibition of survivin induced oxidative stress and DNA damage, showing with the increase of ROS level, the positive γH2A signal, and the increase of Rad51 level. We also observed the occurrence of autophagy and apoptosis in the survivin-inhibited embryos. In summary, our study suggested that survivin was a critical regulator for early embryo development through its regulation on spindle organization, chromosome alignment, and DNA damage.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Jie-Dong Wang
- College of Basic Medical Sciences, Zunyi Medical University , Zunyi, China
| | - Yan-Ping Ren
- College of Basic Medical Sciences, Zunyi Medical University , Zunyi, China
| | - Xiang Lu
- College of Basic Medical Sciences, Zunyi Medical University , Zunyi, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| |
Collapse
|
17
|
Shimizu T, Nishio K, Sakai K, Okamoto I, Okamoto K, Takeda M, Morishita M, Nakagawa K. Phase I safety and pharmacokinetic study of YM155, a potent selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer. Cancer Chemother Pharmacol 2020; 86:211-219. [PMID: 32638093 DOI: 10.1007/s00280-020-04112-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This phase I study was conducted to evaluate the safety and pharmacokinetics of YM155, a potent, selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer (NSCLC). METHODS The pimary objectives were to evaluate the safety and tolerability of YM155 at escalating doses (3.6, 4.8, 6.0, and 8.0 mg/m2/days) administered every 3 weeks as continuous intravenous infusion over 168 h in combination with erlotinib at a fixed dose (150 mg, once a day). Secondary objectives were to assess the pharmacokinetics of YM155, antitumor activity, and the relationship between biomarkers and efficacy. The changes in survivin expression in biopsied tumor pre- and post-YM155 administration and serum cytokine levels were also analyzed. RESULTS Fifteen patients were treated. The most common YM155-related adverse event was the presence of urine microalbumin, whereas grades 3/4 toxicities were rare. One patient who received 4.8 mg/m2/days YM155 developed a dose-limiting grade 2 serum creatinine elevation. YM155 exposure in plasma showed dose proportionality across all dose ranges tested. No pharmacokinetic interaction occurred between YM155 and erlotinib. The serum cytokines IL-8, G-CSF, and MIP-1b showed decreasing trends in patients who achieved progression-free survival of ≥ 12 weeks. Durable stable disease for ≥ 24 weeks was observed in two patients. CONCLUSION Up to 8.0 mg/m2/days YM155 administered every 3 weeks in combination with erlotinib exhibited a favorable safety profile and moderate clinical efficacy. These results suggest that inhibiting survivin is a potential therapeutic strategy for select patients with EGFR TKI refractory NSCLC. TRIAL REGISTRATION UMIN000031912 at UMIN Clinical Trials Registry (UMIN-CTR).
Collapse
Affiliation(s)
- Toshio Shimizu
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan. .,Department of Experimental Therapeutics (Early Phase 1 Drug Development Service), National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 1040045, Japan.
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, 5898511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, 5898511, Japan
| | - Isamu Okamoto
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan.,Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 8128582, Japan
| | - Kunio Okamoto
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan.,Department of Medical Oncology, Kagawa Prefectural Central Hospital, Kagawa, 7608557, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan
| | - Maiko Morishita
- Division of Clinical Development, Astellas Pharma Inc., 2-5-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, 1038411, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 5898511, Japan
| |
Collapse
|
18
|
Boudhraa Z, Carmona E, Provencher D, Mes-Masson AM. Ran GTPase: A Key Player in Tumor Progression and Metastasis. Front Cell Dev Biol 2020; 8:345. [PMID: 32528950 PMCID: PMC7264121 DOI: 10.3389/fcell.2020.00345] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Ran (Ras-related nuclear protein) GTPase is a member of the Ras superfamily. Like all the GTPases, Ran cycles between an active (GTP-bound) and inactive (GDP-bound) state. However, Ran lacks the CAAX motif at its C-terminus, a feature of other small GTPases that ensures a plasma membrane localization, and largely traffics between the nucleus and the cytoplasm. Ran regulates nucleo-cytoplasmic transport of molecules through the nuclear pore complex and controls cell cycle progression through the regulation of microtubule polymerization and mitotic spindle formation. The disruption of Ran expression has been linked to cancer at different levels - from cancer initiation to metastasis. In the present review, we discuss the contribution of Ran in the acquisition of three hallmarks of cancer, namely, proliferative signaling, resistance to apoptosis, and invasion/metastasis, and highlight its prognostic value in cancer patients. In addition, we discuss the use of this GTPase as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Zied Boudhraa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
19
|
Papini D, Fant X, Ogawa H, Desban N, Samejima K, Feizbakhsh O, Askin B, Ly T, Earnshaw WC, Ruchaud S. Cell cycle-independent furrowing triggered by phosphomimetic mutations of the INCENP STD motif requires Plk1. J Cell Sci 2019; 132:jcs234401. [PMID: 31601613 PMCID: PMC7115952 DOI: 10.1242/jcs.234401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Timely and precise control of Aurora B kinase, the chromosomal passenger complex (CPC) catalytic subunit, is essential for accurate chromosome segregation and cytokinesis. Post-translational modifications of CPC subunits are directly involved in controlling Aurora B activity. Here, we identified a highly conserved acidic STD-rich motif of INCENP that is phosphorylated during mitosis in vivo and by Plk1 in vitro and is involved in controlling Aurora B activity. By using an INCENP conditional-knockout cell line, we show that impairing the phosphorylation status of this region disrupts chromosome congression and induces cytokinesis failure. In contrast, mimicking constitutive phosphorylation not only rescues cytokinesis but also induces ectopic furrows and contractile ring formation in a Plk1- and ROCK1-dependent manner independent of cell cycle and microtubule status. Our experiments identify the phospho-regulation of the INCENP STD motif as a novel mechanism that is key for chromosome alignment and cytokinesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Diana Papini
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Xavier Fant
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Hiromi Ogawa
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Nathalie Desban
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Omid Feizbakhsh
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Bilge Askin
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Sandrine Ruchaud
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| |
Collapse
|
20
|
Rafatmanesh A, Behjati M, Mobasseri N, Sarvizadeh M, Mazoochi T, Karimian M. The survivin molecule as a double-edged sword in cellular physiologic and pathologic conditions and its role as a potential biomarker and therapeutic target in cancer. J Cell Physiol 2019; 235:725-744. [PMID: 31250439 DOI: 10.1002/jcp.29027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
Survivin is a member of the family of apoptosis inhibitory proteins with increased expression level in most cancerous tissues. Evidence shows that survivin plays regulatory roles in proliferation or survival of normal adult cells, principally vascular endothelial cells, T lymphocytes, primitive hematopoietic cells, and polymorphonuclear neutrophils. Survivin antiapoptotic role is, directly and indirectly, related to caspase proteins and shows its role in cell division through the chromosomal passenger complex. Survivin contains many genetic polymorphisms that the role of some variations has been proven in several cancers. The -31G/C polymorphism is one of the most important survivin mutations which is located in the promoter region on a CDE/CHR motif. This polymorphism can upregulate the survivin messenger RNA. In addition, its allele C can increase the risk of cancers in 1.27-fold than allele G. Considering the fundamental role of survivin in different cancers, this protein could be considered as a new therapeutic target in cancer treatment. For this purpose, various strategies have been designed including the prevention of survivin expression through inhibition of mRNA translation using antagonistic molecules, inhibition of survivin gene function through small inhibitory molecules, gene therapy, and immunotherapy. In this study, we describe the structure, played roles in physiological and pathological states and genetic polymorphisms of survivin. Finally, the role of survivin as a potential target in cancer therapy given challenges ahead has been discussed.
Collapse
Affiliation(s)
- Atieh Rafatmanesh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mohaddeseh Behjati
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Mobasseri
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Tahereh Mazoochi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Abstract
Survivin (also known as BIRC5) is an evolutionarily conserved eukaryotic protein that is essential for cell division and can inhibit cell death. Normally it is only expressed in actively proliferating cells, but is upregulated in most, if not all cancers; consequently, it has received significant attention as a potential oncotherapeutic target. In this Cell Science at a Glance article and accompanying poster, we summarise our knowledge of survivin 21 years on from its initial discovery. We describe the structure, expression and function of survivin, highlight its interactome and conclude by describing anti-survivin strategies being trialled.
Collapse
Affiliation(s)
- Sally P Wheatley
- Department of Biochemistry, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Dario C Altieri
- The Wistar Institute Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Chen L, Yin T, Nie ZW, Wang T, Gao YY, Yin SY, Huo LJ, Zhang X, Yang J, Miao YL. Survivin regulates chromosome segregation by modulating the phosphorylation of Aurora B during porcine oocyte meiosis. Cell Cycle 2018; 17:2436-2446. [PMID: 30382773 DOI: 10.1080/15384101.2018.1542894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
SURVIVIN is an essential chromosomal passenger complex (CPC) subunit and participates in cell division. In this study, we used porcine oocyte as a model to investigate the roles of Survivin during porcine oocyte maturation. Survivin was highly expressed in germinal vesicle (GV) and germinal vesicle breakdown (GVBD) stages oocytes, mainly localized in the GV at GV stage and on the chromosomes after GVBD. We have used RNA interference to specifically deplete Survivin in oocytes during in vitro maturation (IVM). Immunofluorescence assay showed that Survivin-depleted oocytes failed to produce polar body in meiosisⅠ (failed to complete cytokinesis), and they were arrested in metaphaseⅠwith misaligned chromosomes. The homologous chromosomes in Survivin-depleted oocytes could not be separated normally. Moreover, both the phosphorylation levels of Aurora B and the mRNA level of Mad2L1 related to spindle assembly checkpoint (SAC) was decreased in Survivin-depleted oocytes, which thus inhibited the degradation of Cyclin B1 (CCNB1) to complete meiosis. Taken together, we conclude that Survivin is an important mediator of centromere and midbody docking of Aurora-B as well as its activity and regulates SAC and MPF activity during meiosis in porcine oocytes.
Collapse
Affiliation(s)
- Li Chen
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Tailang Yin
- c Reproductive Medicine Center , Renmin Hospital of Wuhan University , Wuhan , China
| | - Zheng-Wen Nie
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Tao Wang
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Ying-Ying Gao
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Shu-Yuan Yin
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Li-Jun Huo
- b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Xia Zhang
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,d The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Jing Yang
- c Reproductive Medicine Center , Renmin Hospital of Wuhan University , Wuhan , China
| | - Yi-Liang Miao
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China.,d The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| |
Collapse
|
23
|
Fu X, Liang C, Li F, Wang L, Wu X, Lu A, Xiao G, Zhang G. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins. Int J Mol Sci 2018; 19:ijms19051445. [PMID: 29757215 PMCID: PMC5983729 DOI: 10.3390/ijms19051445] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.
Collapse
Affiliation(s)
- Xuekun Fu
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Guozhi Xiao
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| |
Collapse
|
24
|
DeLuca JG. Aurora A Kinase Function at Kinetochores. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:91-99. [PMID: 29700233 DOI: 10.1101/sqb.2017.82.034991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most important regulatory aspects of chromosome segregation is the ability of kinetochores to precisely control their attachment strength to spindle microtubules. Central to this regulation is Aurora B, a mitotic kinase that phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the kinetochore protein Ndc80/Hec1, which is a component of the NDC80 complex, the primary force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, it is becoming clear that this kinase is not solely responsible for phosphorylating Hec1 and other kinetochore substrates to facilitate microtubule turnover. In particular, there is growing evidence that Aurora A kinase, whose activities at spindle poles have been extensively described, has additional roles at kinetochores in regulating the kinetochore-microtubule interface.
Collapse
Affiliation(s)
- Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| |
Collapse
|
25
|
SUMO targets the APC/C to regulate transition from metaphase to anaphase. Nat Commun 2018; 9:1119. [PMID: 29549242 PMCID: PMC5856775 DOI: 10.1038/s41467-018-03486-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/15/2018] [Indexed: 01/25/2023] Open
Abstract
Signal transduction by small ubiquitin-like modifier (SUMO) regulates a myriad of nuclear processes. Here we report on the role of SUMO in mitosis in human cell lines. Knocking down the SUMO conjugation machinery results in a delay in mitosis and defects in mitotic chromosome separation. Searching for relevant SUMOylated proteins in mitosis, we identify the anaphase-promoting complex/cyclosome (APC/C), a master regulator of metaphase to anaphase transition. The APC4 subunit is the major SUMO target in the complex, containing SUMO acceptor lysines at positions 772 and 798. SUMOylation is crucial for accurate progression of cells through mitosis and increases APC/C ubiquitylation activity toward a subset of its targets, including the newly identified target KIF18B. Combined, our findings demonstrate the importance of SUMO signal transduction for genome integrity during mitotic progression and reveal how SUMO and ubiquitin cooperate to drive mitosis.
Collapse
|
26
|
Li D, Hu C, Li H. Survivin as a novel target protein for reducing the proliferation of cancer cells. Biomed Rep 2018; 8:399-406. [PMID: 29725522 DOI: 10.3892/br.2018.1077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Survivin, also known as baculoviral inhibitor of apoptosis repeat-containing 5, is a novel member of the inhibitor of apoptosis protein family. Survivin is highly expressed in tumors and embryonic tissues and is associated with tumor cell differentiation, proliferation, invasion and metastasis; however, survivin is expressed at low levels in normal terminally differentiated adult tissues. Meanwhile, the expression level of survivin is also a negative prognostic factor for patients with cancer. These unique characteristics of survivin make it an exciting potential therapeutic target for cancer treatment. This review will discuss the biological characteristics of survivin and its potential use as a treatment target to reduce cancer cell proliferation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of Genetics, College of Agricultural and Life Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chenghao Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huibin Li
- Department of Burns and Plastic Surgery, People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
27
|
Scroggins BT, Burkeen J, White AO, Chung EJ, Wei D, Chung SI, Valle LF, Patil SS, McKay-Corkum G, Hudak KE, Linehan WM, Citrin DE. Mithramycin A Enhances Tumor Sensitivity to Mitotic Catastrophe Resulting From DNA Damage. Int J Radiat Oncol Biol Phys 2017; 100:344-352. [PMID: 29157749 DOI: 10.1016/j.ijrobp.2017.09.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Specificity protein 1 (SP1) is involved in the transcription of several genes implicated in tumor maintenance. We investigated the effects of mithramycin A (MTA), an inhibitor of SP1 DNA binding, on radiation response. METHODS AND MATERIALS Clonogenic survival after irradiation was assessed in 2 tumor cell lines (A549, UM-UC-3) and 1 human fibroblast line (BJ) after SP1 knockdown or MTA treatment. DNA damage repair was evaluated using γH2AX foci formation, and mitotic catastrophe was assessed using nuclear morphology. Gene expression was evaluated using polymerase chain reaction arrays. In vivo tumor growth delay was used to evaluate the effects of MTA on radiosensitivity. RESULTS Targeting of SP1 with small interfering RNA or MTA sensitized A549 and UM-UC-3 to irradiation, with no effect on the BJ radiation response. MTA did not alter γH2AX foci formation after irradiation in tumor cells but did enhance mitotic catastrophe. Treatment with MTA suppressed transcription of genes involved in cell death. MTA administration to mice bearing A549 and UM-UC-3 xenografts enhanced radiation-induced tumor growth delay. CONCLUSIONS These results support SP1 as a target for radiation sensitization and confirm MTA as a radiation sensitizer in human tumor models.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Burkeen
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Eun Joo Chung
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Darmood Wei
- Urologic Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Su I Chung
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Luca F Valle
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Shilpa S Patil
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Grace McKay-Corkum
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Kathryn E Hudak
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - W Marston Linehan
- Urologic Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
28
|
Taglieri L, Rubinacci G, Giuffrida A, Carradori S, Scarpa S. The kinesin Eg5 inhibitor K858 induces apoptosis and reverses the malignant invasive phenotype in human glioblastoma cells. Invest New Drugs 2017; 36:28-35. [DOI: 10.1007/s10637-017-0517-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023]
|
29
|
Hindriksen S, Bramer AJ, Truong MA, Vromans MJM, Post JB, Verlaan-Klink I, Snippert HJ, Lens SMA, Hadders MA. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells. PLoS One 2017. [PMID: 28640891 PMCID: PMC5480884 DOI: 10.1371/journal.pone.0179514] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Arne J. Bramer
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - My Anh Truong
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Martijn J. M. Vromans
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Jasmin B. Post
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Ingrid Verlaan-Klink
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Hugo J. Snippert
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Susanne M. A. Lens
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
- * E-mail: (SMAL); (MAH)
| | - Michael A. Hadders
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
- * E-mail: (SMAL); (MAH)
| |
Collapse
|
30
|
Nguyen AL, Schindler K. Specialize and Divide (Twice): Functions of Three Aurora Kinase Homologs in Mammalian Oocyte Meiotic Maturation. Trends Genet 2017; 33:349-363. [PMID: 28359584 DOI: 10.1016/j.tig.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/18/2022]
Abstract
The aurora kinases (AURKs) comprise an evolutionarily conserved family of serine/threonine kinases involved in mitosis and meiosis. While most mitotic cells express two AURK isoforms (AURKA and AURKB), mammalian germ cells also express a third, AURKC. Although much is known about the functions of the kinases in mitosis, less is known about how the three isoforms function to coordinate meiosis. This review is aimed at describing what is known about the three isoforms in female meiosis, the similarities and differences between kinase functions, and speculates as to why mammalian germ cells require expression of three AURKs instead of two.
Collapse
Affiliation(s)
- Alexandra L Nguyen
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
31
|
Labarrade F, Botto JM, Domloge N. CRM1 and chromosomal passenger complex component survivin are essential to normal mitosis progress and to preserve keratinocytes from mitotic abnormalities. Int J Cosmet Sci 2016; 38:452-61. [PMID: 26859314 DOI: 10.1111/ics.12311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Human epidermis provides the body a barrier against environmental assaults. To assume this function, the epidermis needs the renewal of keratinocytes allowed by constant mitosis, which replace the exfoliating corneocytes. Keratinocyte stem cells (KSCs) located in the basal epidermis are mitotically active, self-renewing and govern the epithelial stratification by producing renewed source of keratinocytes. Protein complex such as the chromosomal passenger complex (CPC) allows the correct development of this process. The CPC is composed of four members: INCENP, survivin, borealin and aurora kinase B, and the disruption of the CPC during cell division induces mitotic spindle defects and improper repartition of chromosomes. The aim of our study was to investigate the implication of CRM1 and survivin in the progress of mitosis in skin keratinocytes. METHODS Cultured human keratinocytes and skin biopsies were used in this study. KSCs-enriched population of keratinocytes was isolated from total keratinocytes by differential attachment to a type IV collagen matrix. Survivin and CRM1 expression levels were assessed by immunofluorescence and immunoblotting. Specific siRNAs for each CPC member and for CRM1 were used to determine the relationship between these proteins. Survivin-specific siRNA was used to induce the apparition of mitotic abnormalities in cultured keratinocytes. RESULTS We demonstrated the ability of our compound 'IV08.009' to modulate the expression level of survivin and CRM1 in keratinocytes and in skin biopsies. We observed that members of the CPC are interdependent: siRNA-induced inhibition of one component caused a decrease in the expression of all other CPC members. Downregulation of survivin or CRM1 induced mitotic abnormalities in keratinocytes. However, decreased number of mitotic abnormalities was observed in keratinocytes after 'IV08.009' application. CONCLUSION Basal keratinocytes may divide frequently during skin lifespan, and signs of deterioration could appear such as loss of protein factors required for correct mitosis. Our findings suggest that mitotic abnormalities can be prevented by the modulation of CRM1 and survivin. We demonstrated the ability of compound 'IV08.009' to efficiently protect cultured keratinocytes from mitotic abnormalities.
Collapse
Affiliation(s)
- F Labarrade
- Ashland Specialty Ingredients, Vincience Global Skin Research Center, 655, route du Pin Montard, 06904 Sophia Antipolis, France
| | - J-M Botto
- Ashland Specialty Ingredients, Vincience Global Skin Research Center, 655, route du Pin Montard, 06904 Sophia Antipolis, France.
| | - N Domloge
- Ashland Specialty Ingredients, Vincience Global Skin Research Center, 655, route du Pin Montard, 06904 Sophia Antipolis, France
| |
Collapse
|
32
|
Dai X, Zhang M, Lu Y, Miao Y, Zhou C, Xiong B. Cullin9 protects mouse eggs from aneuploidy by controlling microtubule dynamics via Survivin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2934-2941. [PMID: 27678504 DOI: 10.1016/j.bbamcr.2016.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 11/15/2022]
Abstract
The Cullin9 gene encodes a putative E3 ligase that serves a wide variety of biological functions in mitosis, whereas its roles in meiosis have not yet clearly defined. Here, we report that Cullin9 accumulates on the spindle apparatus and colocalizes with the microtubule fibers during mouse oocyte meiotic maturation. Depletion of Cullin9 by morpholino microinjection results in a remarkably higher rate of disorganized spindles and misaligned chromosomes in oocytes, which is coupled with the impaired kinetochore-microtubule attachments. Resultantly, the incidence of aneuploid eggs significantly increases in Cullin9-depleted oocytes. Moreover, we show that Cullin9 controls Survivin's protein level during meiotic maturation, and thus regulates microtubule stability in oocytes. Thus, our study assigns a new meiotic function to Cullin9 and reveals that it prevents mouse eggs from aneuploidy by regulating microtubule dynamics via Survivin.
Collapse
Affiliation(s)
- Xiaoxin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Beghein E, Van Audenhove I, Zwaenepoel O, Verhelle A, De Ganck A, Gettemans J. A new survivin tracer tracks, delocalizes and captures endogenous survivin at different subcellular locations and in distinct organelles. Sci Rep 2016; 6:31177. [PMID: 27514728 PMCID: PMC4981888 DOI: 10.1038/srep31177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 01/18/2023] Open
Abstract
Survivin, the smallest member of the inhibitor of apoptosis protein family, plays a central role during mitosis and exerts a cytoprotective function. Survivin is highly expressed in most cancer types and contributes to multiple facets of carcinogenesis. The molecular mechanisms underlying its highly diverse functions need to be extensively explored, which is crucial for rational design of future personalized therapeutics. In this study, we have generated an alpaca survivin nanobody (SVVNb8) that binds with low nanomolar affinity to its target. When expressed as an intrabody in HeLa cells, SVVNb8 faithfully tracks survivin during different phases of mitosis without interfering with survivin function. Furthermore, coupling SVVNb8 with a subcellular delocalization tag efficiently redirects endogenous survivin towards the nucleus, the cytoplasm, peroxisomes and even to the intermembrane space of mitochondria where it presumably interacts with resident mitochondrial survivin. Based on our findings, we believe that SVVNb8 is an excellent instrument to further elucidate survivin biology and topography, and can serve as a model system to investigate mitochondrial and peroxisomal (survivin) protein import.
Collapse
Affiliation(s)
- Els Beghein
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Isabel Van Audenhove
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Olivier Zwaenepoel
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Adriaan Verhelle
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Ariane De Ganck
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Parmar MB, Arteaga Ballesteros BE, Fu T, K C RB, Montazeri Aliabadi H, Hugh JC, Löbenberg R, Uludağ H. Multiple siRNA delivery against cell cycle and anti-apoptosis proteins using lipid-substituted polyethylenimine in triple-negative breast cancer and nonmalignant cells. J Biomed Mater Res A 2016; 104:3031-3044. [PMID: 27465922 DOI: 10.1002/jbm.a.35846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/28/2016] [Accepted: 07/26/2016] [Indexed: 11/07/2022]
Abstract
Conventional breast cancer therapies have significant limitations that warrant a search for alternative therapies. Short-interfering RNA (siRNA), delivered by polymeric biomaterials and capable of silencing specific genes critical for growth of cancer cells, holds great promise as an effective, and more specific therapy. Here, we employed amphiphilic polymers and silenced the expression of two cell cycle proteins, TTK and CDC20, and the anti-apoptosis protein survivin to determine the efficacy of polymer-mediated siRNA treatment in breast cancer cells as well as side effects in nonmalignant cells in vitro. We first identified effective siRNA carriers by screening a library of lipid-substituted polyethylenimines (PEI), and PEI substituted with linoleic acid (LA) emerged as the most effective carrier for selected siRNAs. Combinations of TTK/CDC20 and CDC20/Survivin siRNAs decreased the growth of MDA-MB-231 cells significantly, while only TTK/CDC20 combination inhibited MCF7 cell growth. The effects of combinational siRNA therapy was higher when complexes were formulated at lower siRNA:polymer ratio (1:2) compared to higher ratio (1:8) in nonmalignant cells. The lead polymer (1.2PEI-LA6) showed differential transfection efficiency based on the cell-type transfected. We conclude that the lipid-substituted polymers could serve as a viable platform for delivery of multiple siRNAs against critical targets in breast cancer therapy. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3031-3044, 2016.
Collapse
Affiliation(s)
- Manoj B Parmar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bárbara E Arteaga Ballesteros
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Timothy Fu
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Remant Bahadur K C
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Judith C Hugh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada. .,Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada. .,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
35
|
De Iuliis F, Taglieri L, Salerno G, Giuffrida A, Milana B, Giantulli S, Carradori S, Silvestri I, Scarpa S. The kinesin Eg5 inhibitor K858 induces apoptosis but also survivin-related chemoresistance in breast cancer cells. Invest New Drugs 2016; 34:399-406. [PMID: 26994617 DOI: 10.1007/s10637-016-0345-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 01/29/2023]
Abstract
Inhibitors of kinesin spindle protein Eg5 are characterized by pronounced antitumor activity. Our group has recently synthesized and screened a library of 1,3,4-thiadiazoline analogues with the pharmacophoric structure of K858, an Eg5 inhibitor. We herein report the effects of K858 on four different breast cancer cell lines: MCF7 (luminal A), BT474 (luminal B), SKBR3 (HER2 like) and MDA-MB231 (basal like). We demonstrated that K858 displayed anti-proliferative activity on every analyzed breast cancer cell line by inducing apoptosis. However, at the same time, we showed that K858 up-regulated survivin, an anti-apoptotic molecule. We then performed a negative regulation of survivin expression, with the utilization of wortmannin, an AKT inhibitor, and obtained a significant increase of K858-dependent apoptosis. These data demonstrate that K858 is a potent inhibitor of replication and induces apoptosis in breast tumor cells, independently from the tumor phenotype. This anti-proliferative response of tumor cells to K858 can be limited by the contemporaneous over-expression of survivin; consequently, the reduction of survivin levels, obtained with AKT inhibitors, can sensitize tumor cells to K858-induced apoptosis.
Collapse
Affiliation(s)
- Francesca De Iuliis
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Ludovica Taglieri
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Gerardo Salerno
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Anna Giuffrida
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Bernardina Milana
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Sabrina Giantulli
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Ida Silvestri
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
36
|
Hoel AW, Wang GJ, Simosa HF, Conte MS. Regulation of Vascular Smooth Muscle Cell Growth by Survivin. Vascular 2016; 15:344-9. [DOI: 10.2310/6670.2007.00049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The inhibitor of apoptosis protein survivin has long been of interest in the cancer literature for its role in both the regulation of cell proliferation and the inhibition of apoptosis. A growing body of literature has implicated survivin in the maladaptive pathways following vascular injury and, in particular, in the growth of vascular smooth muscle cells that comprise the hyperplastic neointimal lesions that characterize midterm vein bypass graft failure and restenosis following angioplasty and stenting. This review focuses on the emerging role of survivin in the regulation of smooth muscle cell growth and its implications for the prevention of restenosis following revascularization procedures. The expression, regulation, and function of survivin are addressed, as well as the current state of understanding regarding the effects of survivin inhibition in vitro and in vivo.
Collapse
Affiliation(s)
- Andrew W. Hoel
- *Division of Vascular Surgery, Brigham and Women's Hospital, Boston, MA; †Division of Vascular Surgery, University of Pennsylvania Medical Center, Philadelphia, PA; ‡Division of Vascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA
| | - Grace J. Wang
- *Division of Vascular Surgery, Brigham and Women's Hospital, Boston, MA; †Division of Vascular Surgery, University of Pennsylvania Medical Center, Philadelphia, PA; ‡Division of Vascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA
| | - Hector F. Simosa
- *Division of Vascular Surgery, Brigham and Women's Hospital, Boston, MA; †Division of Vascular Surgery, University of Pennsylvania Medical Center, Philadelphia, PA; ‡Division of Vascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA
| | - Michael S. Conte
- *Division of Vascular Surgery, Brigham and Women's Hospital, Boston, MA; †Division of Vascular Surgery, University of Pennsylvania Medical Center, Philadelphia, PA; ‡Division of Vascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
37
|
Sasai K, Katayama H, Hawke DH, Sen S. Aurora-C Interactions with Survivin and INCENP Reveal Shared and Distinct Features Compared with Aurora-B Chromosome Passenger Protein Complex. PLoS One 2016; 11:e0157305. [PMID: 27332895 PMCID: PMC4917241 DOI: 10.1371/journal.pone.0157305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 05/30/2016] [Indexed: 12/15/2022] Open
Abstract
Aurora-C, a member of the Aurora kinase family that can complement Aurora-B function in mitosis is either moderately expressed or repressed in most adult somatic tissues but is active in early embryonic development and expressed at elevated levels in multiple human cancers. Aurora-C overexpression reportedly plays a role in tumorigenic transformation. We performed detailed characterization of Aurora-C interactions with members of the Chromosome Passenger Complex (CPC), Survivin and Inner Centromere Protein (INCENP) in reference to known Aurora-B interactions to understand the functional significance of Aurora-C overexpression in human cancer cells. The results revealed that silencing of Aurora-C or -B individually does not affect localization of the other kinase and the two kinases exist predominantly in independent complexes in vivo. Presence of Aurora-C and -B in molecular complexes of varying as well as overlapping sizes and co-existence in INCENP overexpressing cells indicated oligomerization of ternary complexes under different physiological conditions in vivo. Furthermore, Aurora-C and -B stabilized INCENP through interaction with and phosphorylation of the IN box domain while Aurora-C was activated following Survivin phosphorylation on Serine 20. Phosphorylation of Survivin residue Serine 20 by Aurora-C and -B appears important for proper chromosome segregation. Taken together, our study suggests that Aurora-C, expressed at low levels in somatic cells, functions as a catalytic component of the CPC together with Aurora-B through mitosis. Elevated expression of Aurora-C in cancer cells alters the structural and functional characteristics of the Aurora-B-CPC leading to chromosomal instability.
Collapse
Affiliation(s)
- Kaori Sasai
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Hiroshi Katayama
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (HK); (SS)
| | - David H. Hawke
- Department of Systems Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Subrata Sen
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (HK); (SS)
| |
Collapse
|
38
|
Chang LC, Yu YL, Hsieh MT, Wang SH, Chou RH, Huang WC, Lin HY, Hung HY, Huang LJ, Kuo SC. A novel microtubule inhibitor, MT3-037, causes cancer cell apoptosis by inducing mitotic arrest and interfering with microtubule dynamics. Am J Cancer Res 2016; 6:747-763. [PMID: 27186428 PMCID: PMC4859881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/15/2015] [Indexed: 06/05/2023] Open
Abstract
We investigated the anticancer potential of a new synthetic compound, 7-(3-fluorophenyl)-4-methylpyrido-[2,3-d]pyrimidin-5(8H)-one (MT3-037). We found that MT3-037 effectively decreased the cancer cell viability by inducing apoptosis. MT3-037 treatments led to cell cycle arrest at M phase, with a marked increase in both expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1) as well as in CDK1 kinase activity. Key proteins that regulate mitotic spindle dynamics, including survivin, Aurora A/B kinases, and polo-like kinase 1 (PLK1), were activated in MT3-037-treated cells. MT3-037-induced apoptosis was accompanied by activation of a pro-apoptotic factor, FADD, and the inactivation of apoptosis inhibitors, Bcl-2 and Bcl-xL, resulting in the cleavage/activation of caspases. The activation of c-Jun N-terminal kinase (JNK) was associated with MT3-037-induced CDK1 and Aurora A/B activation and apoptosis. Immunofluorescence staining of tubulin indicated that MT3-037 altered tubulin networks in cancer cells. Moreover, an in vitro tubulin polymerization assay revealed that MT3-037 inhibited the tubulin polymerization by direct binding to tubulin. Molecular docking studies and binding site completion assays revealed that MT3-037 binds to the colchicine-binding site. Furthermore, MT3-037 significantly inhibited the tumor growth in both MDAMB-468 and Erlotinib-resistant MDA-MB-468 xenograft mouse models. In addition, MT3-037 inhibited the angiogenesis and disrupted the tube formation by human endothelial cells. Our study demonstrates that MT3-037 is a potential tubulin-disrupting agent for antitumor therapy.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University HospitalTaichung, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
| | - Min-Tsang Hsieh
- Chinese Medicinal Research and Development Center, China Medical University HospitalTaichung, Taiwan
- School of Pharmacy, China Medical UniversityTaichung, Taiwan
| | - Sheng-Hung Wang
- Stem Cell and Translational Cancer Research Center, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
| | - Hui-Yi Lin
- Graduate Institute of Pharmaceutical Chemistry, China Medical UniversityTaichung, Taiwan
| | - Hsin-Yi Hung
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung UniversityTainan, Taiwan
| | - Li-Jiau Huang
- Graduate Institute of Pharmaceutical Chemistry, China Medical UniversityTaichung, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
39
|
Abstract
Survivin is a cancer-associated protein regulated by multiple factors, including acetylation at K129 within its C-terminal α-helical tail. Acetylation of survivin is being pursued as a potential prognostic marker in breast cancer. This modification at K129 may cause nuclear accumulation of survivin in interphase cells; however, whether this affects its essential role during mitosis has not been addressed. We posited whether mimicking acetylation of survivin at K129 alters its activity during mitosis. Fluorescence microscopy and time-lapse imaging showed that, mutating this site to an alanine to act as a constitutive acetyl mimetic, K129A, causes defects in chromosome segregation and cytokinesis. As a non-acetylatable version, K129R, also has difficulty during mitotic exit, we conclude that cyclical acetylation and deacetylation is required for fully functional survivin during mitosis.
Collapse
Key Words
- CHX, cycloheximide
- CPC, chromosomal passenger complex
- CPP, chromosomal passenger protein
- DMA, dimethylenastron
- IAP, inhibitor of apoptosis
- NES, nuclear exportation signal
- PTM, post-translational modification
- SAC, spindle assembly checkpoint
- SVN, survivin
- TRAIL, Tumor-necrosis factor Responsive Apoptosis Inducing Ligand
- TSA, Trichostatin A
- WT, wild type
- acetylation
- apoptosis
- cancer
- mitosis
- survivin
Collapse
Affiliation(s)
- Aysha M Aljaberi
- a School of Life Sciences; University of Nottingham; Queen's Medical Centre ; Nottingham , UK
| | | | | |
Collapse
|
40
|
Westhoff MA, Marschall N, Debatin KM. Novel Approaches to Apoptosis-Inducing Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:173-204. [PMID: 27558822 DOI: 10.1007/978-3-319-39406-0_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Induction of apoptotic programmed cell death is one of the underlying principles of most current cancer therapies. In this review, we discuss the limitations and drawbacks of this approach and identify three distinct, but overlapping strategies to avoid these difficulties and further enhance the efficacy of apoptosis-inducing therapies. We postulate that the application of multi-targeted small molecule inhibitor cocktails will reduce the risk of the cancer cell populations developing resistance towards therapy. Following from these considerations regarding population genetics and ecology, we advocate the reconsideration of therapeutic end points to maximise the benefits, in terms of quantity and quality of life, for the patients. Finally, combining both previous points, we also suggest an altered focus on the cellular and molecular targets of therapy, i.e. targeting the (cancer cells') interaction with the tumour microenvironment.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Nicolas Marschall
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany.
| |
Collapse
|
41
|
Survivin contributes to DNA repair by homologous recombination in breast cancer cells. Breast Cancer Res Treat 2015; 155:53-63. [PMID: 26679694 PMCID: PMC4705120 DOI: 10.1007/s10549-015-3657-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/08/2015] [Indexed: 01/02/2023]
Abstract
Survivin overexpression, frequently found in breast cancers and others, is associated with poor prognosis. Its dual regulation of cell division and apoptosis makes it an attractive therapeutic target but its exact functions that are required for tumor maintenance are still elusive. Survivin protects cancer cells from genotoxic agents and this ability is generally assigned to a universal anti-apoptotic function. However, a specific role in cancer cell protection from DNA damage has been overlooked so far. We assessed DNA damage occurrence in Survivin-depleted breast cancer cells using γH2AX staining and comete assay. QPCR data and a gene conversion assay indicated that homologous recombination (HR) was impaired upon Survivin depletion. We conducted the analysis of Survivin and HR genes’ expression in breast tumors. We revealed BRCAness phenotype of Survivin-depleted cells using cell death assays combined to PARP targeting. Survivin silencing leads to DNA double-strand breaks in breast cancer cells and functionally reduces HR. Survivin depletion decreases the transcription of a set of genes involved in HR, decreases RAD51 protein expression and impairs the endonuclease complex MUS81/EME1 involved in the resolution of Holliday junctions. Clinically, EME1, RAD51, EXO1, BLM expressions correlate with that of BIRC5 (coding for Survivin) and are of prognostic value. Functionally, Survivin depletion triggers p53 activation and sensitizes cancer cells to of PARP inhibition. We defined Survivin as a constitutive actor of HR in breast cancers, and implies that its inhibition would enhance cell vulnerability upon PARP inhibition.
Collapse
|
42
|
Premkumar DR, Jane EP, Pollack IF. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells. Cancer Biol Ther 2015; 16:233-43. [PMID: 25482928 DOI: 10.4161/15384047.2014.987548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas.
Collapse
Key Words
- Aurora kinases
- BSA, bovine serum albumin
- DMSO, dimethyl sulfoxide
- EGFR, epidermal growth factor receptor
- FITC, fluorescein isothiocyanate
- Glioma
- MTS, 3-[4, 5-dimethylthiazol- 2yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H, tetrazolium
- NF-кB, nuclear factor кB
- PAGE, polyacrylamide gel electrophoresis
- PBS, phosphate-buffered saline
- PDGFR, platelet derived growth factor receptor
- PI, propidium iodide
- PI3K, Phosphatidylinositol 3-Kinase
- TBS, Tris-buffered saline
- TRAIL, tumor necrosis factor–related apoptosis inducing ligand
- caspase-independent cell death
- cell cycle arrest
Collapse
Affiliation(s)
- Daniel R Premkumar
- a Department of Neurosurgery ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA
| | | | | |
Collapse
|
43
|
Abstract
The evolutionary conserved chromosomal passenger complex (CPC) is essential for faithful transmission of the genome during cell division. Perturbation of this complex in cultured cells gives rise to chromosome segregation errors and cytokinesis failure and as a consequence the ploidy status of the next generation of cells is changed. Aneuploidy and chromosomal instability (CIN) is observed in many human cancers, but whether this may be caused by deregulation of the CPC is unknown. In the present review, we discuss if and how a dysfunctional CPC could contribute to CIN in cancer.
Collapse
|
44
|
Corkery DP, Holly AC, Lahsaee S, Dellaire G. Connecting the speckles: Splicing kinases and their role in tumorigenesis and treatment response. Nucleus 2015; 6:279-88. [PMID: 26098145 PMCID: PMC4615201 DOI: 10.1080/19491034.2015.1062194] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative pre-mRNA splicing in higher eukaryotes enhances transcriptome complexity and proteome diversity. Its regulation is mediated by a complex RNA-protein network that is essential for the maintenance of cellular and tissue homeostasis. Disruptions to this regulatory network underlie a host of human diseases and contribute to cancer development and progression. The splicing kinases are an important family of pre-mRNA splicing regulators, , which includes the CDC-like kinases (CLKs), the SRSF protein kinases (SRPKs) and pre-mRNA splicing 4 kinase (PRP4K/PRPF4B). These splicing kinases regulate pre-mRNA splicing via phosphorylation of spliceosomal components and serine-arginine (SR) proteins, affecting both their nuclear localization within nuclear speckle domains as well as their nucleo-cytoplasmic shuttling. Here we summarize the emerging evidence that splicing kinases are dysregulated in cancer and play important roles in both tumorigenesis as well as therapeutic response to radiation and chemotherapy.
Collapse
Affiliation(s)
- Dale P Corkery
- a Department of Biochemistry & Molecular Biology ; Dalhousie University ; Halifax , Nova Scotia , Canada
| | | | | | | |
Collapse
|
45
|
Habib R, Akhtar J, Taqi M, Yu C, Zhang C. Lentiviral vector-mediated survivin shRNA delivery in gastric cancer cell lines significantly inhibits cell proliferation and tumor growth. Oncol Rep 2015; 34:859-67. [PMID: 26043753 DOI: 10.3892/or.2015.4033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/09/2015] [Indexed: 11/05/2022] Open
Abstract
It has been well documented that survivin has multiple functions including cytoprotection, inhibition of cell death, and cell cycle regulation, particularly at the mitotic stage of the cell cycle, all of which favor cancer survival. Its expression in normal tissue is developmentally regulated, and any type of deregulation in survivin expression favors cancer survival. Gastric cancer is one of the most common malignancies and the second most common cause of cancer-related mortality worldwide. The molecular mechanisms involved in the transformation and progression of gastric cancer remain unclear. In the present study, we investigated the effect of lentiviral vector-mediated survivin shRNA delivery in gastric cancer cell lines. Lentiviral-mediated survivin shRNA was used to knock down survivin expression in gastric cancer cell lines SGC-7901, MGC-803 and MKN-28. The Τranswell chemotaxis and the CCK-8 assays were used to assess the migration and proliferation of the tumor cells, respectively. TUNEL assay was used to detect apoptosis. Quantitative real-time PCR and western blot analysis were used to quantify mRNA and protein levels, respectively. Our results demonstrated that lentiviral-mediated RNAi markedly suppressed the survivin expression in all three gastric cancer cell lines. Significant decrease in survivin mRNA and protein expression were detected in the gastric cancer cell lines stably transfected with the lentiviral survivin shRNA vector, and knockdown of survivin also significantly inhibited the proliferation and migration in the gastric cancer cells and tumorigenicity in a xenograft animal model. Our results indicated that aberrant high cytoplasmic survivin expression in gastric cancer cells is associated with increased proliferation index and tumor growth. In conclusion, our results suggest that lentiviral-mediated gene therapy has the potential to be developed into a novel therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Raees Habib
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Javed Akhtar
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mohammad Taqi
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Che Yu
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chunqing Zhang
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
46
|
Mitotic slippage and expression of survivin are linked to differential sensitivity of human cancer cell-lines to the Kinesin-5 inhibitor monastrol. PLoS One 2015; 10:e0129255. [PMID: 26035434 PMCID: PMC4452773 DOI: 10.1371/journal.pone.0129255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
The mitotic Kinesin-5 motor proteins crosslink and slide apart antiparallel spindle microtubules, thus performing essential functions in mitotic spindle dynamics. Specific inhibition of their function by monastrol-like small molecules has been examined in clinical trials as anticancer treatment, with only partial success. Thus, strategies that improve the efficiency of monastrol-like anticancer drugs are required. In the current study, we examined the link between sensitivity to monastrol and occurrence of mitotic slippage in several human cell-lines. We found that the rank of sensitivity to monastrol, from most sensitive to least sensitive, is: AGS > HepG2 > Lovo > Du145 ≥ HT29. We show correlation between the sensitivity of a particular cell-line to monastrol and the tendency of the same cell-line to undergo mitotic slippage. We also found that in the monastrol resistant HT29 cells, prolonged monastrol treatments increase mRNA and protein levels of the chromosomal passenger protein survivin. In contrast, survivin levels are not increased by this treatment in the monastrol-sensitive AGS cells. We further show that over-expression of survivin in the monastrol-sensitive AGS cells reduces mitotic slippage and increases resistance to monastrol. Finally, we show that during short exposure to monastrol, Si RNA silencing of survivin expression reduces cell viability in both AGS and HT29 cells. Our data suggest that the efficiency of anti-cancer treatment with specific kinesin-5 inhibitors may be improved by modulation of expression levels of survivin.
Collapse
|
47
|
Chang LC, Yu YL, Liu CY, Cheng YY, Chou RH, Hsieh MT, Lin HY, Hung HY, Huang LJ, Wu YC, Kuo SC. The newly synthesized 2-arylnaphthyridin-4-one, CSC-3436, induces apoptosis of non-small cell lung cancer cells by inhibiting tubulin dynamics and activating CDK1. Cancer Chemother Pharmacol 2015; 75:1303-15. [PMID: 25947085 DOI: 10.1007/s00280-015-2765-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/29/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate the anticancer therapeutic potential of a new synthetic compound, 2-(3-hydroxyphenyl)-5-methylnaphthyridin-4-one (CSC-3436), on non-small cell lung cancer (NSCLC) cells. METHODS Cell viability was determined by MTT assay. Cell cycle distribution was assessed by propidium iodide staining and subjected to flow cytometry analysis. Protein expression was detected by western blot analysis. Pharmacological inhibitors and shRNAs were applied to examine the possible pathways involved CSC-3436-inhibited viability of NSCLC cells. RESULTS CSC-3436 decreased NSCLC cell viability by inducing apoptosis. In vivo and in vitro tubulin polymerization assays revealed that CSC-3463 caused tubulin depolymerization by directly binding to the colchicine-binding site. Furthermore, CSC-3436 caused the mitotic arrest with a marked activation of cyclin-dependent kinase 1 (CDK1) and increased the expression of phospho-Ser/Thr-Pro mitotic protein monoclonal 2. The CDK1 inhibitor, roscovitine, reversed the CSC-3436-induced upregulation of CDK1 activity as well as the mitotic arrest. DNA damage response kinases, including ataxia telangiectasia mutated (ATM), ATM and Rad3-related, DNA-dependent protein kinase, checkpoint kinase 1, and checkpoint kinase 2, were phosphorylated and activated by CSC-3436. c-Jun N-terminal kinase was activated by CSC-3436 and involved in the regulation of mitotic arrest and apoptosis. CSC-3436-induced apoptosis was accompanied by the activation of pro-apoptotic factors FADD, TRADD, and RIP and the inactivation of anti-apoptotic proteins Bcl-2 and Bcl-xL, resulting in the cleavage and subsequent activation of caspases. CONCLUSIONS Our results reveal the cellular events in which CSC-3436 induces tumor cell death and demonstrate that CSC-3436 is a potential tubulin-disrupting agent for antitumor therapy against NSCLC.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 404, Taiwan, ROC,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu X, Song Z, Huo Y, Zhang J, Zhu T, Wang J, Zhao X, Aikhionbare F, Zhang J, Duan H, Wu J, Dou Z, Shi Y, Yao X. Chromatin protein HP1 interacts with the mitotic regulator borealin protein and specifies the centromere localization of the chromosomal passenger complex. J Biol Chem 2015; 289:20638-49. [PMID: 24917673 DOI: 10.1074/jbc.m114.572842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Accurate mitosis requires the chromosomal passenger protein complex (CPC) containing Aurora B kinase, borealin, INCENP, and survivin, which orchestrates chromosome dynamics. However, the chromatin factors that specify the CPC to the centromere remain elusive. Here we show that borealin interacts directly with heterochromatin protein 1 (HP1) and that this interaction is mediated by an evolutionarily conserved PXVXL motif in the C-terminal borealin with the chromo shadow domain of HP1. This borealin-HP1 interaction recruits the CPC to the centromere and governs an activation of Aurora B kinase judged by phosphorylation of Ser-7 in CENP-A, a substrate of Aurora B. Consistently, modulation of the motif PXVXL leads to defects in CPC centromere targeting and aberrant Aurora B activity. On the other hand, the localization of the CPC in the midzone is independent of the borealin-HP1 interaction, demonstrating the spatial requirement of HP1 in CPC localization to the centromere. These findings reveal a previously unrecognized but direct link between HP1 and CPC localization in the centromere and illustrate the critical role of borealin-HP1 interaction in orchestrating an accurate cell division.
Collapse
|
49
|
Molecular interaction of Survivin and Piperine by computational docking analyses for neuroblastoma targeting. Ann Neurosci 2014; 18:145-7. [PMID: 25205944 PMCID: PMC4116959 DOI: 10.5214/ans.0972.7531.1118404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 08/16/2011] [Accepted: 08/25/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a childhood cancer causing significant mortality in at least 1% children worldwide. NB is an embryonically derived tumor. The causative agents include genetic predisposition and dysregulated signaling cascades. Survivin is an important anti-apoptotic protein that is significantly up-regulated in NB. In this study, a naturally occurring ligand - Piperine was assessed for its interaction with Survivin protein. PURPOSE The study was undertaken in order to identify the experimental feasibility of Survivin inhibitor ligand Piperine as targeting treatment of NB. METHODS Protein sequences were retrieved and saved in PDB format. Similarly, the ligand data was processed using MGL (Molecular Graphics Laboratory) and chimera tools and saved in PDB format. Both protein and the ligand data were then uploaded to the docking server and docking parameters were set. RESULTS In-silico docking study of a protein ligand interaction resulted in -3.36 Kcal/mol free energy value for the ligand, with an involvement of 1 hydrogen bond, 7 hydrophobic interactions and 13 ionic interactions. The results were correlated with the existing free energy value of > -3 Kcal/mol which is established for a good inhibitor. CONCLUSION The molecular docking study for mice Survivin and Piperine shows good inhibitory interaction effect and can, therefore, be considered as a molecule against Survivin enhanced tumor condition including NB.
Collapse
|
50
|
Roylance R, Endesfelder D, Jamal-Hanjani M, Burrell RA, Gorman P, Sander J, Murphy N, Birkbak NJ, Hanby AM, Speirs V, Johnston SRD, Kschischo M, Swanton C. Expression of regulators of mitotic fidelity are associated with intercellular heterogeneity and chromosomal instability in primary breast cancer. Breast Cancer Res Treat 2014; 148:221-9. [PMID: 25288231 DOI: 10.1007/s10549-014-3153-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023]
Abstract
Regulators of transition through mitosis such as SURVIVIN and Aurora kinase A (AURKA) have been previously implicated in the initiation of chromosomal instability (CIN), a driver of intratumour heterogeneity. We investigate the relationship between protein expression of these genes and directly quantified CIN, and their prognostic utility in breast cancer. The expression of SURVIVIN and AURKA was determined by immunohistochemistry in a cohort of 426 patients with primary breast cancer. The association between protein expression and histopathological characteristics, clinical outcome and CIN status, as determined by centromeric FISH and defined by modal centromere deviation, was analysed. Significantly poorer clinical outcome was observed in patients with high AURKA expression levels. Expression of SURVIVIN was elevated in ER-negative relative to ER-positive breast cancer. Both AURKA and SURVIVIN increased expression were significantly associated with breast cancer grade. There was a significant association between increased CIN and both increased AURKA and SURVIVIN expression. AURKA gene amplification was also associated with increased CIN. To our knowledge this is the largest study assessing CIN status in parallel with the expression of the mitotic regulators AURKA and SURVIVIN. These data suggest that elevated expression of AURKA and SURVIVIN, together with AURKA gene amplification, are associated with increased CIN in breast cancer, and may be used as a proxy for CIN in breast cancer samples in the absence of more advanced molecular measurements.
Collapse
Affiliation(s)
- Rebecca Roylance
- Cancer Research UK, London Research Institute, London, WC2A 3LY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|