1
|
Silva DL, Peres NTA, Santos DA. Key fungal coinfections: epidemiology, mechanisms of pathogenesis, and beyond. mBio 2025; 16:e0056225. [PMID: 40172196 PMCID: PMC12077096 DOI: 10.1128/mbio.00562-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Coinfection is defined as the occurrence of at least two genetically distinct infectious agents within the same host. Historically, fungal infections have been neglected, leading to an underestimation of their impact on public health systems. However, fungal coinfections have become increasingly prevalent, emerging as a significant global health concern. This review explores fungal coinfections commonly associated with HIV, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, Mycobacterium tuberculosis, and Pseudomonas species. These include candidiasis, aspergillosis, paracoccidioidomycosis, cryptococcosis, histoplasmosis, pneumocystosis, sporotrichosis, and mucormycosis. We discuss the key local and systemic mechanisms that contribute to the occurrence of these coinfections. HIV infects CD4+ cells, causing systemic immunosuppression, particularly impairing the adaptive immune response. The inflammatory response to SARS-CoV-2 infection disrupts both pulmonary and systemic homeostasis, rendering individuals more vulnerable to local and disseminated fungal coinfections. Severe influenza promotes fungal coinfections by triggering the production of pro-inflammatory cytokines, which damage the epithelial-endothelial barrier and impair the recognition and phagocytosis of fungal cells. Tuberculosis can replace normal lung parenchyma with collagen tissue, leading to alterations in lung architecture, compromising its function. Interaction between Pseudomonas and Aspergillus during coinfection involves the competition for iron availability and an adaptive response to its deprivation. Therefore, the specific interactions between each underlying disease and fungal coinfections are detailed in this review. In addition, we highlight the risk factors associated with coinfections, pathophysiology, epidemiology, and the challenges of early diagnosis. Recognizing the substantial worldwide public health burden posed by fungal coinfections is crucial to improve survival rates.
Collapse
Affiliation(s)
- Danielle L. Silva
- Microbiology Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, State of Minas Gerais, Brazil
| | - Nalu T. A. Peres
- Microbiology Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, State of Minas Gerais, Brazil
- Brazilian National Institute of Science and Technology in Human Pathogenic Fungi (INCT-FUNVIR), São Paulo, Brazil
| | - Daniel A. Santos
- Microbiology Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, State of Minas Gerais, Brazil
- Brazilian National Institute of Science and Technology in Human Pathogenic Fungi (INCT-FUNVIR), São Paulo, Brazil
| |
Collapse
|
2
|
Bhunyakarnjanarat T, Udompornpitak K, Wannigama DL, Ruchusatsawat A, Aphiboon P, Sripong T, Thim-Uam A, Leelahavanichkul A. Intratracheal Candida administration induced lung dysbiosis, activated neutrophils, and worsened lung hemorrhage in pristane-induced lupus mice. Sci Rep 2025; 15:9768. [PMID: 40118938 PMCID: PMC11928548 DOI: 10.1038/s41598-025-94632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Because the innate immunity might and fungi in the lungs might enhance the severity of lupus-induced diffuse alveolar hemorrhage (DAH), intraperitoneal pristane injection was performed in C57BL6 mice with intratracheal administration by Candida albicans or phosphate buffer solution (PBS). Despite the similar pristane-induced lupus (proteinuria, serum creatinine, and serum anti-dsDNA) at 5 weeks of the model, Candida administration worsened several characteristics, including mortality, body weight, serum cytokines (TNF-α and IL-6), and lung hemorrhage score, and cytokines in the lung tissue (TNF-α, IL-6, and IL-10), but not gut permeability (FITC-dextran assay), serum IL-10, immune cells in the spleens (flow cytometry analysis), and activities of peritoneal macrophages (polymerase-chain reaction). Although Candida administration reduced proteobacterial abundance and altered alpha and beta diversity compared with PBS control, lung microbiota was not different between Candida administration in pristane- and non-pristane-administered mice. Because of the prominent Gram-negative bacteria in lung microbiota and the role of neutrophils in DAH, lipopolysaccharide (LPS) with and without heat-killed Candida preparation was tested. Indeed, Candida preparation with LPS induced more severe pro-inflammatory neutrophils than LPS stimulation alone as indicated by the expression of several genes (TNF-α, IL-6, IL-1β, IL-10, Dectin-1, and NF-κB). In conclusion, the intratracheal Candida worsened pristane-induced lung hemorrhage partly through the enhanced neutrophil responses against bacteria and fungi. More studies on Candida colonization in sputum from patients with lupus-induced DAH are interesting.
Collapse
Affiliation(s)
- Thansita Bhunyakarnjanarat
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
| | - Alisa Ruchusatsawat
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
- Engineering Science Classroom, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pranpan Aphiboon
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanadech Sripong
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand.
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand.
- Faculty of Medicine, Center of Excellence in Systems Biology, Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Koceva H, Amiratashani M, Akbarimoghaddam P, Hoffmann B, Zhurgenbayeva G, Gresnigt MS, Marcelino VR, Eggeling C, Figge MT, Amorim MJ, Mosig AS. Deciphering respiratory viral infections by harnessing organ-on-chip technology to explore the gut-lung axis. Open Biol 2025; 15:240231. [PMID: 40037530 PMCID: PMC11879621 DOI: 10.1098/rsob.240231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
The lung microbiome has recently gained attention for potentially affecting respiratory viral infections, including influenza A virus, respiratory syncytial virus (RSV) and SARS-CoV-2. We will discuss the complexities of the lung microenvironment in the context of viral infections and the use of organ-on-chip (OoC) models in replicating the respiratory tract milieu to aid in understanding the role of temporary microbial colonization. Leveraging the innovative capabilities of OoC, particularly through integrating gut and lung models, opens new avenues to understand the mechanisms linking inter-organ crosstalk and respiratory infections. We will discuss technical aspects of OoC lung models, ranging from the selection of cell substrates for extracellular matrix mimicry, mechanical strain, breathing mechanisms and air-liquid interface to the integration of immune cells and use of microscopy tools for algorithm-based image analysis and systems biology to study viral infection in vitro. OoC offers exciting new options to study viral infections across host species and to investigate human cellular physiology at a personalized level. This review bridges the gap between complex biological phenomena and the technical prowess of OoC models, providing a comprehensive roadmap for researchers in the field.
Collapse
Affiliation(s)
- Hristina Koceva
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mona Amiratashani
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Bianca Hoffmann
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gaukhar Zhurgenbayeva
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Mark S. Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Vanessa Rossetto Marcelino
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Australia
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Maria-João Amorim
- Católica Biomédical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Alexander S. Mosig
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Center of Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
Turkbey M, Karaguzel D, Uzunkaya AD, Aracagok YD, Karaaslan C. The immune response of upper and lower airway epithelial cells to Aspergillus fumigatus and Candida albicans-derived β-glucan in Th17 type cytokine environment. Arch Microbiol 2025; 207:70. [PMID: 39992431 DOI: 10.1007/s00203-025-04266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
The fungal cell wall component β-glucan activates inflammation via the Dectin-1 receptor and IL-17 coordinates the antifungal immunity. However, the molecular crosstalk between IL-17, Dectin-1, and β-glucan in epithelial cells and fungal immunity remains unclear. We investigated the impact of A.fumigatus-derived β-glucan (AFBG) and C.albicans-derived β-glucan (CABG) on Dectin-1 and cytokines in nasal epithelial cells (NECs) and bronchial epithelial cells (BECs) in the presence of IL-17. CABG reduced BEC viability more than AFBG despite similar Dectin-1 expression. IL-17 reduced β-glucan-dependent Dectin-1 expression in NECs but increased it in BECs after 12 h. AFBG synergized with IL-17, enhancing pro-inflammatory cytokines and chemokine expressions. IL-6 and IL-8 production increased in the presence of IL-17. Th17 cytokine influenced the Dectin-1 response to fungal β-glucan in NECs and BECs, impacting the initiation and nature of epithelial cell reactions to AFBG and CABG. Uncovering the molecular mechanisms of fungal β-glucans in the respiratory tract could lead to novel strategies for preventing fungal diseases.
Collapse
Affiliation(s)
- Murat Turkbey
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye
| | - Dilara Karaguzel
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye
| | - Ali Doruk Uzunkaya
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye
| | - Yusuf Doruk Aracagok
- Department of Biology, Biotechnology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye.
| |
Collapse
|
5
|
Bras G, Wronowska E, Gonzalez-Gonzalez M, Juszczak M, Surowiec M, Sidlo W, Satala D, Kulig K, Karkowska-Kuleta J, Budziaszek J, Koziel J, Rapala-Kozik M. The efficacy of antimicrobial therapies in the treatment of mixed biofilms formed between Candida albicans and Porphyromonas gingivalis during epithelial cell infection in the aspiration pneumonia model. Med Microbiol Immunol 2025; 214:8. [PMID: 39903321 PMCID: PMC11794384 DOI: 10.1007/s00430-025-00818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Aspiration pneumonia is a serious respiratory condition, which is particularly prevalent in patients with dysphagia, neurological disorders, or those undergoing surgical interventions. The formation of multispecies biofilms in the oral cavity, involving the bacterial periodontopathogen Porphyromonas gingivalis and the opportunistic pathogenic fungus Candida albicans, may also be related to the development of this serious disease, contributing also to the resistance to standard antimicrobial treatment. Therefore, this research aimed to evaluate the efficacy of selected antibiotics‒levofloxacin, metronidazole, meropenem, vancomycin‒and antifungal agents‒amphotericin B, caspofungin, and fluconazole‒on these mixed biofilms in the aspiration pneumonia model. While metronidazole and levofloxacin effectively inhibited bacterial viability in the mixed biofilms, lower doses increased release of bacterial proteases. In the conditions of mixed biofilms meropenem and vancomycin showed reduced efficacy, requiring significantly higher doses to achieve similar effect in mixed biofilms as in single bacterial cultures. Treatment with antifungals revealed that amphotericin B significantly impacted fungal cell viability within mixed biofilms, and this effect was enhanced when the antifungal drug was applied in the presence of P. gingivalis. Caspofungin and fluconazole showed variable efficacy, with caspofungin being more effective against C. albicans cells within biofilm.These findings indicated that due to the mutual microbial protection in the mixed-species biofilm, P. gingivalis retained its virulence despite increasing antibiotic doses. However, no excessive benefit of mixed biofilms was observed for C. albicans in the presence of antifungals, indicating the minor importance of yeasts in aspiration pneumonia development and their protective role for other pathogens in mixed-species infection.
Collapse
Affiliation(s)
- Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Wiktoria Sidlo
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Joanna Budziaszek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| |
Collapse
|
6
|
Arévalo-Jaimes BV, Admella J, Torrents E. Who arrived first? Priority effects on Candida albicans and Pseudomonas aeruginosa dual biofilms. Commun Biol 2025; 8:160. [PMID: 39901054 PMCID: PMC11790929 DOI: 10.1038/s42003-025-07609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025] Open
Abstract
Historical processes in community assembly, such as species arrival order, influence interactions, causing priority effects. Candida albicans and Pseudomonas aeruginosa often co-occur in biofilm-based infections of the skin, lungs, and medical devices. Their predominantly antagonistic relationship involves complex physical and chemical interactions. However, the presence and implications of priority effects among these microorganisms remain largely unexplored. Here, we investigate the presence and impact of priority effect in dual-species biofilms using clinical isolates. By varying inoculation order, we observe significant changes in biofilm composition, structure, virulence, and antimicrobial susceptibility. The first colonizer has an advantage for surface colonization. Consecutive colonization increases biofilm virulence and negates C. albicans' protective effect on P. aeruginosa PAET1 against meropenem treatment. Finally, we propose N-acetylcysteine as an adjuvant for treating C. albicans and P. aeruginosa interkingdom infections, working independently of priority effects.
Collapse
Affiliation(s)
- Betsy V Arévalo-Jaimes
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Khateb AM, Alofi FS, Alturkostani MA, Almutairi AZ. Shifting sands: Unveiling the changes in respiratory comorbidities and fungal pathogens in Saudi Arabia. Saudi Med J 2025; 46:182-189. [PMID: 39933763 PMCID: PMC11822936 DOI: 10.15537/smj.2025.46.2.20240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVES To investigate epidemiological changes in respiratory fungal infections (RFI), including fungal isolation and colonization, at one of the main centers in Medina. The incidence of RFI is rising due to an increase in the number of immunocompromised individuals, a higher prevalence of respiratory viral infections, and an aging population. METHODS A retrospective cross-sectional study was conducted by extracting data of patients with fungal-positive respiratory cultures from King Fahad Hospital (KFH), Al Madinah Al Munawwarah from 2013 to 2023. RESULTS A total of 352 episodes of fungal-positive cultures were identified in 79 patients, reflecting a 12-fold increase in RFI prevalence. The most frequent fungus was Candida albicans 43% (n=150), followed by C. tropicalis at 34% (n=119), C. glabrata at 7% (n=25), C. parapsilosis at 5% (n=18), C. dubliniensis at 3.4% (n=12), and Aspergillus fumigatus at 3.4% (n=12). Bronchoalveolar lavage was performed 52 times, with 19 cultures growing C. albicans and 8 cultures positive for A. fumigatus. None of the 58 lung biopsy samples grew mold. Only one patient had 2 C. glabrata isolates resistant to voriconazole and fluconazole. The most prevalent comorbidities were respiratory diseases (30%) and lower limb injuries and diabetes (16%). CONCLUSION Candida albicans was the leading cause of RFI. Continuous monitoring, improved diagnostics, and targeted interventions are crucial to address existing challenges and emerging threats. The growing recognition of fungal infections necessitates increased research and education for healthcare professionals.
Collapse
Affiliation(s)
- Aiah M. Khateb
- From the Department of Clinical Laboratory Sciences (Khateb), Collage of Applied Medical Science, Taibah University, from King Fahd Medical Research Center (Khateb), King Abdulaziz University, Jeddah, from the Department Infectious Diseases (Khateb), King Fahad Hospital, Medina, from Infectious Diseases Department (Alofi) and from the Microbiology laboratory (Alturkostani, Almutairi), King Fahad Hospital, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia.
| | - Fadwa S. Alofi
- From the Department of Clinical Laboratory Sciences (Khateb), Collage of Applied Medical Science, Taibah University, from King Fahd Medical Research Center (Khateb), King Abdulaziz University, Jeddah, from the Department Infectious Diseases (Khateb), King Fahad Hospital, Medina, from Infectious Diseases Department (Alofi) and from the Microbiology laboratory (Alturkostani, Almutairi), King Fahad Hospital, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia.
| | - Mohammad A. Alturkostani
- From the Department of Clinical Laboratory Sciences (Khateb), Collage of Applied Medical Science, Taibah University, from King Fahd Medical Research Center (Khateb), King Abdulaziz University, Jeddah, from the Department Infectious Diseases (Khateb), King Fahad Hospital, Medina, from Infectious Diseases Department (Alofi) and from the Microbiology laboratory (Alturkostani, Almutairi), King Fahad Hospital, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia.
| | - Abdullah Z. Almutairi
- From the Department of Clinical Laboratory Sciences (Khateb), Collage of Applied Medical Science, Taibah University, from King Fahd Medical Research Center (Khateb), King Abdulaziz University, Jeddah, from the Department Infectious Diseases (Khateb), King Fahad Hospital, Medina, from Infectious Diseases Department (Alofi) and from the Microbiology laboratory (Alturkostani, Almutairi), King Fahad Hospital, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Abu-Humaidan AH, Alshdaifat A, Awajan D, Abu-Hmidan M, Alshdifat A, Hasan H, Ahmad FM, Alaridah N, Irshaid A, Yamin D. The Antimicrobial Resistance of Candida: A 5-Year Retrospective Analysis at a Tertiary Hospital in Jordan. J Fungi (Basel) 2025; 11:87. [PMID: 39997381 PMCID: PMC11857050 DOI: 10.3390/jof11020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/26/2025] Open
Abstract
Candida infections are a global health concern, increasingly complicated by rising antimicrobial resistance (AMR). This study analyzed the prevalence and AMR patterns of circulating Candida species in Amman, Jordan, using electronic records from a tertiary teaching hospital's microbiology lab (from 2017 to 2022). Complete records of Candida isolates (n = 2673) were assessed by sample type, species, and AMR. Among positive blood samples, C. albicans accounted for the majority (38.7%), followed by C. tropicalis (19.0%), C. parapsilosis (18.3%), Nakaseomyces glabratus (14.6%), and Pichia kudriavzevii (9.5%). Non-albicans species demonstrated higher resistance to Caspofungin, notably P. kudriavzevii (23.1%), N. glabratus (30.0%), and C. parapsilosis (32.0%), compared to C. albicans (1.9%). In high vaginal swabs, C. albicans was most prevalent (63.7%), with N. glabratus also notable (28.6%); Fluconazole resistance in C. albicans remained low (2.0%). Across all pooled isolates, AMR was similar between inpatients and outpatients, except for Micafungin, where inpatient resistance was significantly higher. In conclusion, non-albicans species predominated in blood infections and demonstrated pronounced AMR. Micafungin resistance was notably higher among inpatients. Variations in Candida species and AMR by sample type suggest that aggregating samples in registry studies may obscure critical patterns.
Collapse
Affiliation(s)
- Anas H. Abu-Humaidan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.H.A.-H.); (A.A.); (M.A.-H.); (F.M.A.); (N.A.); (A.I.)
| | - Areen Alshdaifat
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.H.A.-H.); (A.A.); (M.A.-H.); (F.M.A.); (N.A.); (A.I.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Mohammad Abu-Hmidan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.H.A.-H.); (A.A.); (M.A.-H.); (F.M.A.); (N.A.); (A.I.)
| | - Abeer Alshdifat
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Hanan Hasan
- Department of Medical Laboratory Sciences, School of Science, The University of Jordan, Amman 11942, Jordan;
| | - Fatima M. Ahmad
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.H.A.-H.); (A.A.); (M.A.-H.); (F.M.A.); (N.A.); (A.I.)
- Department of Medical Laboratory Sciences, School of Science, The University of Jordan, Amman 11942, Jordan;
| | - Nader Alaridah
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.H.A.-H.); (A.A.); (M.A.-H.); (F.M.A.); (N.A.); (A.I.)
| | - Amal Irshaid
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.H.A.-H.); (A.A.); (M.A.-H.); (F.M.A.); (N.A.); (A.I.)
- Microbiology & Immunology Lab, University of Jordan Hospital, Amman 11942, Jordan
| | - Dina Yamin
- Department of Medical Laboratory Sciences, School of Science, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|
9
|
Najera AS, Fulton M, Nickel NP, Patek G, Tudela M. Massive Pulmonary Hemorrhage in a Patient With Multiple Pulmonary Cavitary Lesions: A Case Report and Literature Review. Cureus 2025; 17:e77787. [PMID: 39981482 PMCID: PMC11841816 DOI: 10.7759/cureus.77787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
In this article, we present a rare case of a patient who presented with multiple pulmonary cavitary lesions. The hospital course was complicated by massive pulmonary hemorrhage and subsequent cardiac arrest, during which return of spontaneous circulation was not achieved. Bronchoalveolar lavage (BAL) cultures taken during the hospital stay only resulted positive for Candida albicans posthumously. Blood cultures, sputum cultures, and remaining BAL cultures were negative. This is a rare case of multiple pulmonary cavitary lesions in the setting of a non-immunocompromised patient without evidence of precipitating disseminated disease. Pulmonary echinococcosis is proposed as a possible differential diagnosis in this patient based on clinical, laboratory, and imaging findings.
Collapse
Affiliation(s)
- Ariana S Najera
- Department of Emergency Medicine, Texas Tech University Health Sciences Center, El Paso, USA
| | - Matthew Fulton
- Department of Emergency Medicine, Texas Tech University Health Sciences Center, El Paso, USA
| | - Nils P Nickel
- Department of Internal Medicine and Pulmonary and Critical Care, Texas Tech University Health Sciences Center, El Paso, USA
| | - Gregory Patek
- Department of Emergency Medicine, Texas Tech University Health Sciences Center, El Paso, USA
| | - Max Tudela
- Department of Radiology, Rutgers Health New Jersey Medical School, New Brunswick, USA
| |
Collapse
|
10
|
Hurley J. Structural Equation Modelling as a Proof-of-Concept Tool for Mediation Mechanisms Between Topical Antibiotic Prophylaxis and Six Types of Blood Stream Infection Among ICU Patients. Antibiotics (Basel) 2024; 13:1096. [PMID: 39596789 PMCID: PMC11591272 DOI: 10.3390/antibiotics13111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Whether exposing the microbiome to antibiotics decreases or increases the risk of blood stream infection with Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter, and Candida among ICU patients, and how this altered risk might be mediated, are critical research questions. Addressing these questions through the direct study of specific constituents within the microbiome would be difficult. An alternative tool for addressing these research questions is structural equation modelling (SEM). SEM enables competing theoretical causation networks to be tested 'en bloc' by confrontation with data derived from the literature. These causation models have three conceptual steps: exposure to specific antimicrobials are the key drivers, clinically relevant infection end points are the measurable observables, and the activity of key microbiome constituents on microbial invasion serve as mediators. These mediators, whether serving to promote, to impede, or neither, are typically unobservable and appear as latent variables in each model. SEM methods enable comparisons through confronting the three competing models, each versus clinically derived data with the various exposures, such as topical or parenteral antibiotic prophylaxis, factorized in each model. Candida colonization, represented as a latent variable, and concurrency are consistent promoters of all types of blood stream infection, and emerge as harmful mediators.
Collapse
Affiliation(s)
- James Hurley
- Melbourne Medical School, University of Melbourne, Parkville, VIC 3052, Australia;
- Ballarat Health Services, Grampians Health, Ballarat, VIC 3350, Australia;
- Ballarat Clinical School, Deakin University, Ballarat, VIC 3350, Australia
| |
Collapse
|
11
|
Simm C, Lee TH, Weerasinghe H, Walsh D, Nakou IT, Shankar M, Tse WC, Zhang Y, Inman R, Mulder RJ, Harrison F, Aguilar MI, Challis GL, Traven A. Gladiolin produced by pathogenic Burkholderia synergizes with amphotericin B through membrane lipid rearrangements. mBio 2024; 15:e0261124. [PMID: 39422464 PMCID: PMC11559049 DOI: 10.1128/mbio.02611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Amphotericin B (AmpB) is an effective but toxic antifungal drug. Thus, improving its activity/toxicity relationship is of interest. AmpB disrupts fungal membranes by two proposed mechanisms: ergosterol sequestration from the membrane and pore formation. Whether these two mechanisms operate in conjunction and how they could be potentiated remains to be fully understood. Here, we report that gladiolin, a polyketide antibiotic produced by Burkholderia gladioli, is a strong potentiator of AmpB and acts synergistically against Cryptococcus and Candida species, including drug-resistant C. auris. Gladiolin also synergizes with AmpB against drug-resistant fungal biofilms, while exerting no mammalian cytotoxicity. To explain the mechanism of synergy, we show that gladiolin interacts with membranes via a previously unreported binding mode for polyketides. Moreover, gladiolin modulates lipid binding by AmpB and, in combination, causes faster and more pronounced lipid rearrangements relative to AmpB alone which include membrane thinning consistent with ergosterol extraction, areas of thickening, pore formation, and increased membrane destruction. These biophysical data provide evidence of a functional interaction between gladiolin and AmpB at the membrane interface. The data further indicate that the two proposed AmpB mechanisms (ergosterol sequestration and pore formation) act in conjunction to disrupt membranes, and that gladiolin synergizes by enhancing both mechanisms. Collectively, our findings shed light on AmpB's mechanism of action and characterize gladiolin as an AmpB potentiator, showing an antifungal mechanism distinct from its proposed antibiotic activity. We shed light on the synergistic mechanism at the membrane, and provide insights into potentiation strategies to improve AmpB's activity/toxicity relationship. IMPORTANCE Amphotericin B (AmpB) is one of the oldest antifungal drugs in clinical use. It is an effective therapeutic, but it comes with toxicity issues due to the similarities between its fungal target (the membrane lipid ergosterol) and its mammalian counterpart (cholesterol). One strategy to improve its activity/toxicity relationship is by combinatorial therapy with potentiators, which would enable a lower therapeutic dose of AmpB. Here, we report on the discovery of the antibiotic gladiolin as a potentiator of AmpB against several priority human fungal pathogens and fungal biofilms, with no increased toxicity against mammalian cells. We show that gladiolin potentiates AmpB by increasing and accelerating membrane damage. Our findings also provide insights into the on-going debate about the mechanism of action of AmpB by indicating that both proposed mechanisms, extraction of ergosterol from membranes and pore formation, are potentiated by gladiolin.
Collapse
Affiliation(s)
- Claudia Simm
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Dean Walsh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ioanna T. Nakou
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Madhu Shankar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Wai Chung Tse
- School of Medicine, Monash University, Clayton, Victoria, Australia
| | - Yu Zhang
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Rebecca Inman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Roger J. Mulder
- CSIRO Manufacturing, Research Way, Clayton, Victoria, Australia
| | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory L. Challis
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Phuengmaung P, Chongrak C, Saisorn W, Makjaroen J, Singkham-in U, Leelahavanichkul A. The Coexistence of Klebsiella pneumoniae and Candida albicans Enhanced Biofilm Thickness but Induced Less Severe Neutrophil Responses and Less Inflammation in Pneumonia Mice Than K. pneumoniae Alone. Int J Mol Sci 2024; 25:12157. [PMID: 39596223 PMCID: PMC11594830 DOI: 10.3390/ijms252212157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Due to the possible coexistence of Klebsiella pneumoniae (KP) and Candida albicans (CA), strains of KP and CA with biofilm production properties clinically isolated from patients were tested. The production of biofilms from the combined organisms (KP+CA) was higher than the biofilms from each organism alone, as indicated by crystal violet and z-stack immunofluorescence. In parallel, the bacterial abundance in KP + CA was similar to KP, but the fungal abundance was higher than CA (culture method), implying that CA grows better in the presence of KP. Proteomic analysis was performed to compare KP + CA biofilm to KP biofilm alone. With isolated mouse neutrophils (thioglycolate induction), KP + CA biofilms induced less prominent responses than KP biofilms, as determined by (i) neutrophilic supernatant cytokines (ELISA) and (ii) neutrophil extracellular traps (NETs), using immunofluorescent images (neutrophil elastase, myeloperoxidase, and citrullinated histone 3), peptidyl arginine deiminase 4 (PAD4) expression, and cell-free DNA. Likewise, intratracheal KP + CA in C57BL/6 mice induces less severe pneumonia than KP alone, as indicated by organ injury (serum creatinine and alanine transaminase) (colorimetric assays), cytokines (ELISA), bronchoalveolar lavage fluid parameters (bacterial culture and neutrophil abundances using a hemocytometer), histology score (H&E stains), and NETs (immunofluorescence on the lung tissue). In conclusion, the biofilm biomass of KP + CA was mostly produced from CA with less potent neutrophil activation and less severe pneumonia than KP alone. Hence, fungi in the respiratory tract might benefit the host in some situations, despite the well-known adverse effects of fungi.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chiratchaya Chongrak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Uthaibhorn Singkham-in
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani 12000, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Mesquida A, Martín-Rabadán P, Alcalá L, Burillo A, Reigadas E, Muñoz P, Guinea J, Escribano P. Candida spp. colonization: a genotype source found in blood cultures that can become widespread. Front Cell Infect Microbiol 2024; 14:1468692. [PMID: 39575305 PMCID: PMC11578989 DOI: 10.3389/fcimb.2024.1468692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Objective Our previous genotyping studies suggest that some anatomical locations act as reservoirs of genotypes that may cause further candidemia, since we found identical genotypes in gastrointestinal tract or catheter tip isolates and blood cultures, in contrast, we did not find blood culture genotypes in vagina samples. We observed that some genotypes can be found in blood cultures more frequently than others, some of them being called widespread genotypes because have been found in unrelated patients admitted to different hospitals. The presence of widespread genotypes may be more frequently found because of their predisposition to cause candidemia. It is unclear whether genotypes colonizing other anatomical sites different from the gastrointestinal tract can also be detected in this way; we studied C. albicans, C. parapsilosis, and C. tropicalis colonizing genotypes to assess what proportion could be found in blood cultures and the proportion of widespread genotypes. Methods The isolates (n= 640 Candida isolates from 323 patients) studied herein were obtained from samples processed at the Clinical Microbiology and Infectious Diseases Department of the Gregorio Marañón Hospital (Madrid, Spain) from July 1, 2016, to June 30, 2019. C. albicans (n=486), C. parapsilosis (n=94), and C. tropicalis (n=60) isolates were genotyped using species-specific microsatellite markers and sourced from blood (n=120) and colonized anatomical sites (n=520; catheter [n=50], lower respiratory tract [n=227], skin/mucosa [n=132], and urinary tract [n=111]). Isolates with identical genotypes were those presenting the same alleles for all markers or with only differences at one locus of a given marker. Identical genotypes were further classified as a match (identical genotype found in different groups of samples from a given patient) or as a cluster (identical genotype found in ≥2 patients). Finally, singletons were genotypes detected once. The genotypes found were then compared with our in-house database containing 587 blood genotypes from patients admitted to the Gregorio Marañón Hospital (2007-2023) to assess the proportion of genotypes found in colonized samples that were also found in blood cultures. Moreover, since some of our in-house database genotypes had been tagged as widespread genotypes, we compared the proportions of widespread genotypes as well as the proportions of matches, clusters, and patients involved in clusters found among exclusively colonizing genotypes, exclusively blood culture genotypes, and both colonizing and blood culture genotypes using a standard binomial method. Results Intra-patient analysis was conducted exclusively on those patients (n=225; 69.7%) who had ≥2 isolates from a given species; the proportion of patients with matches was lower in exclusively colonized patients than in patients with candidemia and colonizing genotypes (87.3% vs. 94.1%; p = 0.126). Inter-patient analysis was conducted considering all patients (n=323) and isolates from groups 1, 2, and 3 (n=640). Overall, we detected 341 genotypes, of which 320 were singletons and 21 were clusters (6.16%). Clusters involving blood cultures and colonizing isolates sourced from catheter tips (14.6%), skin and mucosa (7.5%), urine (7.4%), and lower respiratory tract (4.6%). Cluster-involved patients had not been admitted to the same ward at the same time. Of the 290 colonizing genotypes, 91 (31.1%) were also found in blood cultures, the highest proportion being C. parapsilosis (p < 0.05); proportions of identical genotypes found in blood cultures and catheter tips were higher than those found in blood cultures and other colonized samples (79.2% vs. 26.7%; p < 0.001). Widespread genotype ratios were significantly higher among genotypes found in both blood and colonized samples than among genotypes found exclusively in either blood culture or other colonizing genotypes (31.9% vs. 7.1% vs. 3.7%, respectively; p < 0.001). Conclusion We observed that 94% of patients with candidemia were colonized by a genotype causing the infection; likewise, a total of 31% of colonizing genotypes were detectable in blood cultures. Finally, identical genotypes found in both colonized samples and blood cultures had a higher probability of being widespread.
Collapse
Affiliation(s)
- Aina Mesquida
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Martín-Rabadán
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis Alcalá
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Almudena Burillo
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Elena Reigadas
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain
| |
Collapse
|
14
|
Li L, Su S, Yang H, Xie HB. Clinical outcomes of antifungal therapy on Candida pulmonary colonisation in immunocompetent patients with invasive ventilation: a systematic review and meta-analysis. BMJ Open 2024; 14:e083918. [PMID: 39438107 PMCID: PMC11499771 DOI: 10.1136/bmjopen-2024-083918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE This study aimed to use systematic review and meta-analysis to establish the influence of antifungal therapy on pulmonary Candida colonisation of patients with mechanical ventilation (MV). DESIGN Systematic review and meta-analysis. DATA SOURCES An extensive search was undertaken on publications from inception to 25 July 2023, through PubMed, Web of Science, Medline, Embase, China National Knowledge Infrastructure, Wanfang Data and VIP Databases. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomised trials, cohort studies and case-control studies comparing the efficacy of antifungal treatment in immunocompetent patients with pulmonary Candida colonisation after invasive ventilation. DATA EXTRACTION AND SYNTHESIS Two reviewers independently extracted the data and assessed the quality of studies. Dichotomous outcomes were expressed as ORs with 95% CIs. Continuous outcomes were expressed as standardised mean differences (SMD) with 95% CIs. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcomes included intensive care unit (ICU), hospital, 28-day, and 90-day mortality. The secondary outcomes included ICU length of stay, MV duration and ventilator-associated pneumonia (VAP). RESULTS Nine high-quality studies were included. According to the data collected from these nine studies, there is no significant evidence showing a difference between the therapy group treated with antifungal drugs and the control group without antifungal drugs in clinical outcomes, including ICU mortality (OR: 1.37; 95% CI 0.84 to 2.22), hospital mortality (OR: 1.17; 95% CI 0.57 to 2.38), 28-day mortality (OR: 0.71; 95% CI 0.45 to 1.14), 90-day mortality (OR: 0.76; 95% CI 0.35 to 1.63), ICU length of stay (SMD: -0.15; 95% CI -0.88 to 0.59), MV duration (SMD: 0.11; 95% CI -0.88 to 1.10) and VAP (OR: 1.54; 95% CI 0.56 to 4.20). Subgroup analysis of different treatment types indicates that the combined effect size is stable and unaffected by different treatment types including inhalation (OR: 2.32; 95% CI 0.30 to 18.09) and intravenous (OR: 0.65; 95% CI 0.13 to 3.34). CONCLUSION The application of antifungal treatment did not improve clinical outcomes in patients with MV. We do not suggest initiating antifungal treatment in patients with Candida pulmonary colonisation after invasive ventilation. TRIAL REGISTRATION NUMBER International Prospective Register of Systematic Reviews, CRD42020161138.
Collapse
Affiliation(s)
- Linqi Li
- The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
- School of Public Health, University of South China, Hengyang, Hunan, China
| | - Shan Su
- Department of Respiratory and Critical Care Medicine, Zhaoqing First People's Hospital, Zhaoqing, Guangdong, China
| | - Hongzhong Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - He-Bin Xie
- The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
- School of Public Health, University of South China, Hengyang, Hunan, China
| |
Collapse
|
15
|
Oliveira A, Fernandes AR, Mendes TF, Gonçalves-Pereira J. Phenotypic Characterization of Intensive Care Patients With Infections: A Pilot Study of Host and Pathogen-Based Cluster Analysis. Cureus 2024; 16:e72255. [PMID: 39583522 PMCID: PMC11584756 DOI: 10.7759/cureus.72255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
INTRODUCTION Sepsis is a prevalent, albeit complex, disorder among critically ill patients and a "one-size-fits-all" approach does not seem applicable. Host intrinsic characteristics and microorganisms' particularities may influence response to therapy and outcomes. Attempting to group patients and microorganism characteristics may be an important step in developing and facilitating personalized infection treatment plans. This work intends to identify infected patients' clusters using clinical data that includes infection determinants: the isolated pathogen and the site of infection. METHODS In this retrospective analysis, we included patients with a microbiologically documented infection and non-infected controls. Patients admitted between January 2015 and December 2019 in the intensive care unit (ICU) were included (aged 17-95 years). Those with isolated microorganisms during their ICU stay were further analyzed using cluster analysis (hierarchical clustering and K-means; SPSS version 25.0). Four primary outcomes were addressed: ICU and hospital mortality rate and ICU and hospital length of stay (LOS). RESULTS This study included 1,923 patients, of whom 721 (37.5%) had at least one microbiological isolate during their ICU stay. Patients with at least one isolate identification were older (mean age 67.7 years vs. 65 years; p < 0.001) and had a higher ICU and hospital mortality (20.3% vs. 24.3%, p = 0.041; 26.9% vs. 38.4%, p < 0.001), as well as a longer LOS (median hospital LOS 8 vs. 18 days; p < 0.001) than patients without microorganisms identified. Patients with at least one isolated microorganism were divided into five different clusters. Notable differences were found in their ICU and hospital trajectories between clusters. CONCLUSION The cluster analysis approach provided valuable insights into the complex interplay between bacterial virulence, infection site, and patient outcomes in critical care medicine. Patients infected with bacteraemia by Gram-positive bacteria (cluster 2) or Enterobacteriaceae (Cluster 5) and fungal isolation in respiratory samples (Cluster 3) should prompt more aggressive clinical interventions, as these patients are more prone to die in the hospital.
Collapse
Affiliation(s)
- André Oliveira
- Intensive Care Department, Hospital Vila Franca de XIra, Lisbon, PRT
| | - Ana Rita Fernandes
- Critical Care Medicine, Universidade de Lisboa, Faculty of Medicine, Lisbon, PRT
| | - Tânia F Mendes
- Internal Medicine Department, Hospital Vila Franca de Xira, Lisbon, PRT
| | - João Gonçalves-Pereira
- Intensive Care Department, Hospital Vila Franca de Xira, Lisbon, PRT
- Critical Care Medicine, Universidade de Lisboa, Faculty of Medicine, Lisbon, PRT
| |
Collapse
|
16
|
Zheng L, Xu Y, Wang C, Dong Y, Guo L. Parallel evolution of fluconazole resistance and tolerance in Candida glabrata. Front Cell Infect Microbiol 2024; 14:1456907. [PMID: 39397866 PMCID: PMC11466938 DOI: 10.3389/fcimb.2024.1456907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction With the growing population of immunocompromised individuals, opportunistic fungal pathogens pose a global health threat. Candida species, particularly C. albicans and non-albicans Candida species such as C. glabrata, are the most prevalent pathogenic fungi. Azoles, especially fluconazole, are widely used therapeutic options. Objective This study investigates how C. glabrata adapts to fluconazole, with a focus on understanding the factors regulating fluconazole tolerance and its relationship to resistance. Methods This study compared the factors regulating fluconazole tolerance between C. albicans and C. glabrata. We analyzed the impact of temperature on fluconazole tolerance, and requirement of calcineurin and Hsp90 for maintenance of fluconazole tolerance. We isolated colonies from edge, inside and outside of inhibition zone in disk diffusion assays. And we exposed C. glabrata strain to high concentrations of fluconazole and investigated the mutants for development of fluconazole resistance and tolerance. Results We found temperature modulated tolerance in the opposite way in C. albicans strain YJB-T1891 and C. glabrata strain CG4. Calcineurin and Hsp90 were required for maintenance of fluconazole tolerance in both species. Colonies from inside and outside of inhibition zones did not exhibited mutated phenotype, but colonies isolated from edge of inhibition zone exhibited diverse phenotype changes. Moreover, we discovered that high concentrations (16-128 μg/mL) of fluconazole induce the simultaneous but parallel development of tolerance and resistance in C. glabrata, unlike the sole development of tolerance in C. albicans. Conclusion This study highlights that while tolerance to fluconazole is a common response in Candida species, the specific molecular mechanisms and evolutionary pathways that lead to this response vary between species. Our findings emphasize the importance of understanding the regulation of fluconazole tolerance in different Candida species to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Xu
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Chen Wang
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Yubo Dong
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Sanches Santos Rizzo Zuttion M, Parimon T, Bora SA, Yao C, Lagree K, Gao CA, Wunderink RG, Kitsios GD, Morris A, Zhang Y, McVerry BJ, Modes ME, Marchevsky AM, Stripp BR, Soto CM, Wang Y, Merene K, Cho S, Victor BL, Vujkovic-Cvijin I, Gupta S, Cassel SL, Sutterwala FS, Devkota S, Underhill DM, Chen P. Antibiotic use during influenza infection augments lung eosinophils that impair immunity against secondary bacterial pneumonia. J Clin Invest 2024; 134:e180986. [PMID: 39255040 PMCID: PMC11527449 DOI: 10.1172/jci180986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
A leading cause of mortality after influenza infection is the development of a secondary bacterial pneumonia. In the absence of a bacterial superinfection, prescribing antibacterial therapies is not indicated but has become a common clinical practice for those presenting with a respiratory viral illness. In a murine model, we found that antibiotic use during influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics augment lung eosinophils, which have inhibitory effects on macrophage function through the release of major basic protein. Moreover, we demonstrated that antibiotic treatment during influenza infection caused a fungal dysbiosis that drove lung eosinophilia and impaired MRSA clearance. Finally, we evaluated 3 cohorts of hospitalized patients and found that eosinophils positively correlated with antibiotic use, systemic inflammation, and worsened outcomes. Altogether, our work demonstrates a detrimental effect of antibiotic treatment during influenza infection that has harmful immunologic consequences via recruitment of eosinophils to the lungs, thereby increasing the risk of developing a secondary bacterial infection.
Collapse
Affiliation(s)
| | | | | | - Changfu Yao
- Department of Medicine
- Women’s Guild Lung Institute
| | - Katherine Lagree
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Catherine A. Gao
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Barry R. Stripp
- Department of Medicine
- Women’s Guild Lung Institute
- Department of Biomedical Sciences
| | | | - Ying Wang
- Department of Medicine
- Women’s Guild Lung Institute
| | | | - Silvia Cho
- Department of Medicine
- Women’s Guild Lung Institute
| | | | - Ivan Vujkovic-Cvijin
- Department of Medicine
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suman Gupta
- Department of Medicine
- Women’s Guild Lung Institute
| | | | | | - Suzanne Devkota
- Department of Medicine
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David M. Underhill
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Department of Medicine
- Women’s Guild Lung Institute
- Department of Biomedical Sciences
| |
Collapse
|
18
|
Sutnu N, Chancharoenthana W, Kamolratanakul S, Phuengmaung P, Singkham-In U, Chongrak C, Montathip S, Wannigama DL, Chatsuwan T, Ounjai P, Schultz MJ, Leelahavanichkul A. Bacteriophages isolated from mouse feces attenuates pneumonia mice caused by Pseudomonas aeruginosa. PLoS One 2024; 19:e0307079. [PMID: 39012882 PMCID: PMC11251617 DOI: 10.1371/journal.pone.0307079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Most of the current bacteriophages (phages) are mostly isolated from environments. However, phages isolated from feces might be more specific to the bacteria that are harmful to the host. Meanwhile, some phages from the environment might affect non-pathogenic bacteria for the host. METHODS Here, bacteriophages isolated from mouse feces were intratracheally (IT) or intravenously (IV) administered in pneumonia mice caused by Pseudomonas aeruginosa at 2 hours post-intratracheal bacterial administration. As such, the mice with phage treatment, using either IT or IV administration, demonstrated less severe pneumonia as indicated by mortality, serum cytokines, bacteremia, bacterial abundance in bronchoalveolar lavage fluid (BALF), and neutrophil extracellular traps (NETs) in lung tissue (immunofluorescence of neutrophil elastase and myeloperoxidase). RESULTS Interestingly, the abundance of phages in BALF from the IT and IV injections was similar, supporting a flexible route of phage administration. With the incubation of bacteria with neutrophils, the presence of bacteriophages significantly improved bactericidal activity, but not NETs formation, with the elevated supernatant IL-6 and TNF-α, but not IL-1β. In conclusion, our findings suggest that bacteriophages against Pseudomonas aeruginosa can be discovered from feces of the host. CONCLUSIONS The phages attenuate pneumonia partly through an enhanced neutrophil bactericidal activity, but not via inducing NETs formation. The isolation of phages from the infected hosts themselves might be practically useful for future treatment. More studies are warranted.
Collapse
Affiliation(s)
- Nuttawut Sutnu
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Tropical Immunology and Translational Research Unit (TITRU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Tropical Immunology and Translational Research Unit (TITRU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani, Thailand
| | - Chiratchaya Chongrak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirikan Montathip
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamakata Prefectural Central Hospital, Yamakata, Japan
- Department of Infectious Diseases and Infection Control, Pathogen Hunter’s Research Collaborative Team, Yamakata Prefectural Central Hospital, Yamakata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Marcus J. Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Parambath S, Dao A, Kim HY, Zawahir S, Alastruey Izquierdo A, Tacconelli E, Govender N, Oladele R, Colombo A, Sorrell T, Ramon-Pardo P, Fusire T, Gigante V, Sati H, Morrissey CO, Alffenaar JW, Beardsley J. Candida albicans-A systematic review to inform the World Health Organization Fungal Priority Pathogens List. Med Mycol 2024; 62:myae045. [PMID: 38935906 PMCID: PMC11210619 DOI: 10.1093/mmy/myae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 04/27/2024] [Indexed: 06/29/2024] Open
Abstract
Candida albicans is a common fungal pathogen and amongst the leading causes of invasive candidiasis globally. This systematic review examines the characteristics and global impact of invasive infections caused by C. albicans. We searched on PubMed and Web of Science for studies reporting on criteria such as mortality, morbidity, drug resistance, preventability, yearly incidence, and distribution/emergence during the period from 2016 to 2021. Our findings indicate that C. albicans is the most common Candida species causing invasive disease and that standard infection control measures are the primary means of prevention. However, we found high rates of mortality associated with infections caused by C. albicans. Furthermore, there is a lack of data on complications and sequelae. Resistance to commonly used antifungals remains rare. Although, whilst generally susceptible to azoles, we found some evidence of increasing resistance, particularly in middle-income settings-notably, data from low-income settings were limited. Candida albicans remains susceptible to echinocandins, amphotericin B, and flucytosine. We observed evidence of a decreasing proportion of infections caused by C. albicans relative to other Candida species, although detailed epidemiological studies are needed to confirm this trend. More robust data on attributable mortality, complications, and sequelae are needed to understand the full extent of the impact of invasive C. albicans infections.
Collapse
Affiliation(s)
- Sarika Parambath
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| | - Hannah Yejin Kim
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Department of Pharmacy, Westmead, NSW, Australia
| | - Shukry Zawahir
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, The University of Sydney Faculty of Medicine and Health, Sydney NSW, Australia
| | - Ana Alastruey Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Evelina Tacconelli
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Nelesh Govender
- National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infection and Immunity, St George's University of London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rita Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | - Tania Sorrell
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| | - Pilar Ramon-Pardo
- Antimicrobial Research Division, World Health Organization, Geneva, Switzerland
| | - Terence Fusire
- Antimicrobial Research Division, World Health Organization, Geneva, Switzerland
| | - Valeria Gigante
- Antimicrobial Research Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- Antimicrobial Research Division, World Health Organization, Geneva, Switzerland
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, VIC, Australia
- Monash University, Department of Infectious Diseases, Melbourne, VIC, Australia
| | - Jan-Willem Alffenaar
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
20
|
Neto Junior JM, Dias VC, de Andrad Bastos VQ, de Andrade Bastos LQ, Bastos AN, Bastos RV, Silva VL, Ferreira Machado AB, Diniz CG. Clinical and epidemiological aspects of Candida yeast infections and rational use of antifungals. Future Microbiol 2024; 19:577-584. [PMID: 38884219 PMCID: PMC11229581 DOI: 10.1080/17460913.2024.2342679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: The objective of this study was to evaluate the clinical and epidemiological aspects of Candida infections. Methods: The study relied on the analysis of electronic medical records. Results: Among 183 patients with positive fungal infections, 57 were from the community and 126 from hospitals. Females predominated in both groups (82.4% in the community, 54.7% in hospitals). Non-albicans Candida spp. accounted for 62.8% of cases. Antifungal therapy was prescribed for 67 patients, with a 55.6% mortality rate. Conclusion: The increasing prevalence of non-albicans Candida species highlights the need for better candidiasis monitoring and control, especially concerning antifungal use amidst rising antimicrobial resistance, particularly in empirical therapy scenarios.
Collapse
Affiliation(s)
- Jose Moreira Neto Junior
- Laboratory of Microbial Physiology & Molecular Genetics, Center for Studies in Microbiology, Department of Parasitology, Microbiology & Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
- Cortes Villela Clinical Laboratory, Juiz de Fora, MG, 36016-904, Brazil
| | - Vanessa Cordeiro Dias
- Laboratory of Microbial Physiology & Molecular Genetics, Center for Studies in Microbiology, Department of Parasitology, Microbiology & Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| | | | | | - Andre Netto Bastos
- Laboratory of Microbial Physiology & Molecular Genetics, Center for Studies in Microbiology, Department of Parasitology, Microbiology & Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| | | | - Vania Lucia Silva
- Laboratory of Microbial Physiology & Molecular Genetics, Center for Studies in Microbiology, Department of Parasitology, Microbiology & Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| | - Alessandra Barbosa Ferreira Machado
- Laboratory of Microbial Physiology & Molecular Genetics, Center for Studies in Microbiology, Department of Parasitology, Microbiology & Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| | - Claudio Galuppo Diniz
- Laboratory of Microbial Physiology & Molecular Genetics, Center for Studies in Microbiology, Department of Parasitology, Microbiology & Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| |
Collapse
|
21
|
Kitsios GD, Sayed K, Fitch A, Yang H, Britton N, Shah F, Bain W, Evankovich JW, Qin S, Wang X, Li K, Patel A, Zhang Y, Radder J, Dela Cruz C, Okin DA, Huang CY, Van Tyne D, Benos PV, Methé B, Lai P, Morris A, McVerry BJ. Longitudinal multicompartment characterization of host-microbiota interactions in patients with acute respiratory failure. Nat Commun 2024; 15:4708. [PMID: 38830853 PMCID: PMC11148165 DOI: 10.1038/s41467-024-48819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Critical illness can significantly alter the composition and function of the human microbiome, but few studies have examined these changes over time. Here, we conduct a comprehensive analysis of the oral, lung, and gut microbiota in 479 mechanically ventilated patients (223 females, 256 males) with acute respiratory failure. We use advanced DNA sequencing technologies, including Illumina amplicon sequencing (utilizing 16S and ITS rRNA genes for bacteria and fungi, respectively, in all sample types) and Nanopore metagenomics for lung microbiota. Our results reveal a progressive dysbiosis in all three body compartments, characterized by a reduction in microbial diversity, a decrease in beneficial anaerobes, and an increase in pathogens. We find that clinical factors, such as chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, are associated with specific patterns of dysbiosis. Interestingly, unsupervised clustering of lung microbiota diversity and composition by 16S independently predicted survival and performed better than traditional clinical and host-response predictors. These observations are validated in two separate cohorts of COVID-19 patients, highlighting the potential of lung microbiota as valuable prognostic biomarkers in critical care. Understanding these microbiome changes during critical illness points to new opportunities for microbiota-targeted precision medicine interventions.
Collapse
Affiliation(s)
- Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT, USA
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - John W Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Xiong J, Balakrishnan T, Fong W. Anasarca as the first presentation of anti-synthetase syndrome. BMJ Case Rep 2024; 17:e258359. [PMID: 38749521 DOI: 10.1136/bcr-2023-258359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
A woman in her 70s presented with anasarca and exertional dyspnoea. Investigation showed severe hypoalbuminaemia with no urinary or gastrointestinal protein losses. CT thorax reported lung consolidations, and transbronchial lung biopsy demonstrated organising pneumonia. Autoimmune myositis serology was positive for anti-Jo-1, anti-Ro-52, and anti-PM/Scl-100 antibodies. She was diagnosed with anti-synthetase syndrome with organising pneumonia. She was treated with oral prednisolone and oral mycophenolate mofetil with a good clinical response.
Collapse
Affiliation(s)
- Jiaqing Xiong
- Department of Internal Medicine, Singapore General Hospital, Singapore
| | | | - Warren Fong
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore
- Office of Education, Duke-NUS Graduate Medical School, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
23
|
Clark JA, Gouliouris T, Conway Morris A, Curran MD, White D, Daubney E, Navapurkar V, Baker S, Pathan N. Enhanced diagnosis of severe bacterial and fungal respiratory infection in children using a rapid syndromic array-case report. Transl Pediatr 2024; 13:697-703. [PMID: 38715674 PMCID: PMC11071030 DOI: 10.21037/tp-23-525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 07/18/2024] Open
Abstract
Background A microbiological cause of infection is infrequently identified in critically unwell children with a respiratory infection. Molecular diagnostic arrays provide an alternative. These tests are becoming more broadly available, but little is known about how clinicians interpret the results to impact clinical decision making. Case Description Here we describe three cases of bacterial and fungal lower respiratory tract infection (LRTI) diagnosed in the paediatric intensive care unit (PICU) using a custom 52 respiratory pathogen TaqMan array card (TAC). Firstly, an early diagnosis of Candida albicans pneumonia was made with the support of the TAC in a trauma patient who received prolonged mechanical ventilation. The pathogen was only identified on microbiological cultures after further clinical deterioration had occurred. Secondly, a rare case of psittacosis was identified in an adolescent with acute respiratory distress, initially suspected to have multisystem inflammatory syndrome in children (MIS-C). Finally, Haemophilus influenzae pneumonia was identified in an infant with recurrent apnoeas, initially treated for meningitis. Two diagnoses would not have been established using commercially available arrays, and pathogen-specific diagnoses were established faster than that of routine microbiological culture. Conclusions The pathogens included on molecular arrays and interpretation by a multidisciplinary team are crucial in providing value to PICU diagnostic services. Molecular arrays have the potential to enhance early pathogen-specific diagnosis of LRTI in the PICU.
Collapse
Affiliation(s)
- John Alexander Clark
- Department of Paediatrics, Addenbrooke’s Hospital, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Theodore Gouliouris
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- United Kingdom Health Security Agency, Clinical Microbiology and Public Health Laboratory, Cambridge, UK
| | - Andrew Conway Morris
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Martin D. Curran
- United Kingdom Health Security Agency, Clinical Microbiology and Public Health Laboratory, Cambridge, UK
| | - Deborah White
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Esther Daubney
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vilas Navapurkar
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge, UK
| | - Nazima Pathan
- Department of Paediatrics, Addenbrooke’s Hospital, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
24
|
Rouhi F, Soltani S, Sadeghi S, Nasri E, Hosseini M, Ghafel S, Aboutalebian S, Fakhim H, Mirhendi H. Yeast species in the respiratory samples of COVID-19 patients; molecular tracking of Candida auris. Front Cell Infect Microbiol 2024; 14:1295841. [PMID: 38707510 PMCID: PMC11066282 DOI: 10.3389/fcimb.2024.1295841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Although the existence of Candida species in the respiratory tract is often considered commensal, it is crucial to recognize the significance of Candida colonization in immunocompromised or COVID-19 patients. The emergence of Candida auris as an emerging pathogen further emphasizes the importance of monitoring yeast infection/colonization, particularly in COVID-19 patients. Methods In this study, respiratory samples mainly from COVID-19 patients, primarily those suspected of having a fungal infection, were cultured on Sabouraud dextrose agar plates and the yeast colonies were identified using a two-step multiplex PCR method. The samples suspected of C. auris underwent specific nested PCR followed by sequence analysis. Results A total of 199 respiratory samples were collected from 73 women and 126 men, ranging in age from 1.6 to 88 years. Among the patients, 141 had COVID-19, 32 had cancer, 5 were hospitalized in ICU, 2 had chronic obstructive pulmonary disease)COPD(, and others were patients with combination diseases. From these samples, a total of 334 yeast strains were identified. C. albicans (n=132, 39.52%) was the most common species, followed by C. tropicalis (n=67, 20%), C. glabrata (n=56, 16.76%), C. krusei (n=18, 5.4%), C. parapsilosis (n=17, 5.08%), Saccharomyces cerevisiae (n=10, 3%), C. kefyr (n=9, 2.6%), C. dubliniensis (n=7, 2.1%), C. lusitaniae (n=5, 1.5%), C. auris (n=3, 0.9%), C. guilliermondii (n=2, 0.6%), C. rugosa (n=1, 0.3%), C. intermedia (n=1, 0.3%), and Trichosporon spp. (n=1, 0.3%). C. auris was detected in a patient in ICU and two COVID-19 patients. While its presence was confirmed through sequence analysis, our extensive efforts to isolate C. auris were unsuccessful. Conclusion While C. albicans colonization remains prevalent, our study found no evidence of Candida lung infection. Since the role of Candida colonization in airway secretions remains ambiguous due to limited research, further studies are imperative to shed light on this matter.
Collapse
Affiliation(s)
- Faezeh Rouhi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajedeh Soltani
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Sadeghi
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Nasri
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Hosseini
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safiyeh Ghafel
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Aboutalebian
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Cosio T, Pica F, Fontana C, Pistoia ES, Favaro M, Valsecchi I, Zarabian N, Campione E, Botterel F, Gaziano R. Stephanoascus ciferrii Complex: The Current State of Infections and Drug Resistance in Humans. J Fungi (Basel) 2024; 10:294. [PMID: 38667965 PMCID: PMC11050938 DOI: 10.3390/jof10040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the incidence of fungal infections in humans has increased dramatically, accompanied by an expansion in the number of species implicated as etiological agents, especially environmental fungi never involved before in human infection. Among fungal pathogens, Candida species are the most common opportunistic fungi that can cause local and systemic infections, especially in immunocompromised individuals. Candida albicans (C. albicans) is the most common causative agent of mucosal and healthcare-associated systemic infections. However, during recent decades, there has been a worrying increase in the number of emerging multi-drug-resistant non-albicans Candida (NAC) species, i.e., C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. auris, and C. ciferrii. In particular, Candida ciferrii, also known as Stephanoascus ciferrii or Trichomonascus ciferrii, is a heterothallic ascomycete yeast-like fungus that has received attention in recent decades as a cause of local and systemic fungal diseases. Today, the new definition of the S. ciferrii complex, which consists of S. ciferrii, Candida allociferrii, and Candida mucifera, was proposed after sequencing the 18S rRNA gene. Currently, the S. ciferrii complex is mostly associated with non-severe ear and eye infections, although a few cases of severe candidemia have been reported in immunocompromised individuals. Low susceptibility to currently available antifungal drugs is a rising concern, especially in NAC species. In this regard, a high rate of resistance to azoles and more recently also to echinocandins has emerged in the S. ciferrii complex. This review focuses on epidemiological, biological, and clinical aspects of the S. ciferrii complex, including its pathogenicity and drug resistance.
Collapse
Affiliation(s)
- Terenzio Cosio
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Francesca Pica
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| | - Carla Fontana
- Laboratory of Microbiology and BioBank, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., 00149 Rome, Italy;
| | - Enrico Salvatore Pistoia
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| | - Marco Favaro
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| | - Isabel Valsecchi
- DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; (I.V.); (F.B.)
| | - Nikkia Zarabian
- School of Medicine and Health Sciences, George Washington University, 2300 I St NW, Washington, DC 20052, USA
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Françoise Botterel
- DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; (I.V.); (F.B.)
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| |
Collapse
|
26
|
Lv T, Zhao Q, Liu J, Wang S, Wu W, Miao L, Zhan P, Chen X, Huang M, Ye M, Ou Q, Zhang Y. Utilizing metagenomic next-generation sequencing for pathogen detection and diagnosis in lower respiratory tract infections in real-world clinical practice. Infection 2024; 52:625-636. [PMID: 38368306 DOI: 10.1007/s15010-024-02185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Infectious etiologies of lower respiratory tract infections (LRTIs) by the conventional microbiology tests (CMTs) can be challenging. Metagenomic next-generation sequencing (mNGS) has great potential in clinical use for its comprehensiveness in identifying pathogens, particularly those difficult-to-culture organisms. METHODS We analyzed a total of 205 clinical samples from 201 patients with suspected LRTIs using mNGS in parallel with CMTs. mNGS results were used to guide treatment adjustments for patients who had negative CMT results. The efficacy of treatment was subsequently evaluated in these patients. RESULTS mNGS-detected microorganisms in 91.7% (188/205) of the clinical samples, whereas CMTs demonstrated a lower detection rate, identifying microorganisms in only 37.6% (77/205) of samples. Compared to CMT results, mNGS exhibited a detection sensitivity of 93.5% and 95.4% in all 205 clinical samples and 180 bronchoalveolar lavage fluid (BALF) samples, respectively. A total of 114 patients (114/201; 56.7%) showed negative CMT results, among which 92 received treatment adjustments guided by their positive mNGS results. Notably, 67.4% (62/92) of patients demonstrated effective treatment, while 25% (23/92) experienced a stabilized condition. Subgroup analysis of cancer patients revealed that 41.9% (13/31) exhibited an effective response to treatment, and 35.5% (11/31) maintained a stable condition following medication adjustments guided by mNGS. CONCLUSION mNGS demonstrated great potential in identifying microorganisms of clinical significance in LRTIs. The rapid turnaround time and reduced susceptibility to the impact of antimicrobial administration make mNGS a valuable supplementary tool for diagnosis and treatment decision-making for suspected LRTIs in clinical practice.
Collapse
Affiliation(s)
- Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Qi Zhao
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing, 210008, Jiangsu, China
| | - Jia Liu
- Dinfectome Inc., Nanjing, 210000, Jiangsu, China
| | - Song Wang
- Dinfectome Inc., Nanjing, 210000, Jiangsu, China
| | - Weiwei Wu
- Dinfectome Inc., Nanjing, 210000, Jiangsu, China
| | - Liyun Miao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, 224002, Jiangsu, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Xiaoli Chen
- Department of Respiratory and Critical Care Medicine, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, 100 Cross Street, Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Manman Huang
- Dinfectome Inc., Nanjing, 210000, Jiangsu, China
| | - Mingxiang Ye
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Qiuxiang Ou
- Dinfectome Inc., Nanjing, 210000, Jiangsu, China
| | - Yeqing Zhang
- Department of Respiratory and Critical Care Medicine, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, 100 Cross Street, Hongshan Road, Nanjing, 210028, Jiangsu, China.
| |
Collapse
|
27
|
Rezaei R, Aliannejad R, Falahati M, Ghasemi Z, Ashrafi-Khozani M, Fattahi M, Razavi T, Farahyar S. Identification and assessment of antifungal susceptibility of Candida species based on bronchoalveolar lavage in immunocompromised and critically ill patients. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:273-279. [PMID: 38854989 PMCID: PMC11162175 DOI: 10.18502/ijm.v16i2.15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Objectives The presence of fungi in the respiratory tract as mycobiome, particularly Candida species (spp.), remains a serious problem due to increasing numbers of immunocompromised patients. The confirmed reliable existence of these pathogens due to frequent colonization is essential. This investigation aimed to recognize Candida spp. among isolates from bronchoalveolar lavage of immunocompromised and critically ill patients and to evaluate their susceptibility to antimycotic drugs. Materials and Methods Bronchoalveolar lavage fluid was collected from 161 hospitalized patients presenting with suspected respiratory fungal infection /colonization. The specimens were examined by standard molecular and mycological assays. Candida spp. were recognized with sequence assessment of the D1-D2 section of the large subunit ribosomal DNA. The susceptibility of Candida isolates to common antimycotic drugs was distinguished by standard broth microdilution. Results Seventy-one clinical isolates of Candida spp. were recognized. Candida albicans was the most frequent, followed by C. glabrata, C. krusei (Pichia kudriavzevii), C. dubliniensis, C. parapsilosis, and C. tropicalis. We found 5.1% of C. albicans isolates and 8% of C. glabrata isolates to show resistance to fluconazole. The whole of the Candida spp. were sensitive to amphotericin B and caspofungin. Conclusion This study demonstrated that C. albicans and C. glabrata are the most common isolates of bronchoalveolar lavage fluid in patients, and the drug susceptibility screening confirmed that amphotericin B and caspofungin are effective against Candida spp. but some C. glabrata and C. albicans isolates showed resistance to fluconazole.
Collapse
Affiliation(s)
- Robabeh Rezaei
- Microbial Biotechnology Research Center (MBiRC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Aliannejad
- Division of Pulmonary and Critical Care, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehraban Falahati
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghasemi
- Laboratory of Medical Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Ashrafi-Khozani
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Fattahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Tandis Razavi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Farahyar
- Microbial Biotechnology Research Center (MBiRC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Yao Q, He Y, Deng L, Chen D, Zhang Y, Luo H, Lei W. Rapid detection of pathogenic fungi from coastal population with respiratory infections using microfluidic chip technology. BMC Infect Dis 2024; 24:326. [PMID: 38500041 PMCID: PMC10949588 DOI: 10.1186/s12879-024-09212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Currently, culture methods are commonly used in clinical tests to detect pathogenic fungi including Candida spp. Nonetheless, these methods are cumbersome and time-consuming, thereby leading to considerable difficulties in diagnosis of pathogenic fungal infections, especially in situations that respiratory samples such as alveolar lavage fluid and pleural fluid contain extremely small amounts of microorganisms. The aim of this study was to elucidate the utility and practicality of microfluidic chip technology in quick detection of respiratory pathogenic fungi. METHODS DNAs of clinical samples (mainly derived from sputa, alveolar lavage fluid, and pleural fluid) from 64 coastal patients were quickly detected using microfluidic chip technology with 20 species of fungal spectrum and then validated by Real-time qPCR, and their clinical baseline data were analyzed. RESULTS Microfluidic chip results showed that 36 cases infected with Candida spp. and 27 cases tested negative for fungi, which was consistent with Real-time qPCR validation. In contrast, only 16 cases of fungal infections were detected by the culture method; however, one of the culture-positive samples tested negative by microfluidic chip and qPCR validation. Moreover, we found that the patients with Candida infections had significantly higher rates of platelet count reduction than fungi-negative controls. When compared with the patients infected with C. albicans alone, the proportion of males in the patients co-infected with multiple Candidas significantly increased, while their platelet counts significantly decreased. CONCLUSIONS These findings suggest that constant temperature amplification-based microfluidic chip technology combined with routine blood tests can increase the detection speed and accuracy (including sensitivity and specificity) of identifying respiratory pathogenic fungi.
Collapse
Affiliation(s)
- Qingmei Yao
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Marine Biomedical Research Institution, Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Marine Biomedical Research Institution, Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Guangdong Medical University, Zhanjiang, 524023, China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dafeng Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yuanli Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hui Luo
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- Marine Biomedical Research Institution, Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- Marine Biomedical Research Institution, Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
29
|
Arévalo-Jaimes BV, Torrents E. Died or Not Dyed: Assessment of Viability and Vitality Dyes on Planktonic Cells and Biofilms from Candida parapsilosis. J Fungi (Basel) 2024; 10:209. [PMID: 38535217 PMCID: PMC10970966 DOI: 10.3390/jof10030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Viability and vitality assays play a crucial role in assessing the effectiveness of novel therapeutic approaches, with stain-based methods providing speed and objectivity. However, their application in yeast research lacks consensus. This study aimed to assess the performance of four common dyes on C. parapsilosis planktonic cells as well as sessile cells that form well-structured biofilms (treated and not treated with amphotericin B). Viability assessment employed Syto-9 (S9), thiazole orange (TO), and propidium iodide (PI). Metabolic activity was determined using fluorescein diacetate (FDA) and FUN-1. Calcofluor white (CW) served as the cell visualization control. Viability/vitality percentage of treated samples were calculated for each dye from confocal images and compared to crystal violet and PrestoBlue results. Heterogeneity in fluorescence intensity and permeability issues were observed with S9, TO, and FDA in planktonic cells and biofilms. This variability, influenced by cell morphology, resulted in dye-dependent viability/vitality percentages. Notably, PI and FUN-1 exhibited robust C. parapsilosis staining, with FUN-1 vitality results comparable to PrestoBlue. Our finding emphasizes the importance of evaluating dye permeability in yeast species beforehand, incorporating cell visualization controls. An improper dye selection may lead to misinterpreting treatment efficacy.
Collapse
Affiliation(s)
- Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain;
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain;
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
30
|
Alio I, Moll R, Hoffmann T, Mamat U, Schaible UE, Pappenfort K, Alawi M, Schie M, Thünauer R, Stamm J, Rohde H, Streit WR. Stenotrophomonas maltophilia affects the gene expression profiles of the major pathogens Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro multispecies biofilm model. Microbiol Spectr 2023; 11:e0085923. [PMID: 37819084 PMCID: PMC10714729 DOI: 10.1128/spectrum.00859-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the past, studies have focused on bacterial pathogenicity in mono-species infections, in part ignoring the clinical relevance of diseases caused by more than one pathogen (i.e., polymicrobial infections). However, it is now common knowledge that multiple bacteria species are often involved in the course of an infection. For treatment of such infections, it is absolutely important to understand the dynamics of species interactions at possible infection sites and the molecular mechanisms behind these interactions. Here, we studied the impact of Stenotrophomonas maltophilia on its commensals Pseudomonas aeruginosa and Staphylococcus aureus in multispecies biofilms. We analyzed the 3D structural architectures of dual- and triple-species biofilms, niche formation within the biofilms, and the interspecies interactions on a molecular level. RNAseq data identified key genes involved in multispecies biofilm formation and interaction as potential drug targets for the clinical combat of multispecies infection with these major pathogens.
Collapse
Affiliation(s)
- Ifey Alio
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Raphael Moll
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Tim Hoffmann
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Kai Pappenfort
- Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Malik Alawi
- Bioinformatics Core, UKE Hamburg, Hamburg, Germany
| | - Marcel Schie
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Roland Thünauer
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Johanna Stamm
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| |
Collapse
|
31
|
Ramage G, Borghi E, Rodrigues CF, Kean R, Williams C, Lopez-Ribot J. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS 2023; 131:636-653. [PMID: 36932821 DOI: 10.1111/apm.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious biofilm structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss existing and emerging antifungal therapies and strategies.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
| | - Elisa Borghi
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Milan, Italy
| | - Célia Fortuna Rodrigues
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
| | - Ryan Kean
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Biological Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Craig Williams
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Microbiology Department, Morecambe Bay NHS Trust, Lancaster, UK
| | - Jose Lopez-Ribot
- Department of Biology and the South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
32
|
Wynne KJ, Zolotarskaya O, Jarrell R, Wang C, Amin Y, Brunson K. Facile Modification of Medical-Grade Silicone for Antimicrobial Effectiveness and Biocompatibility: A Potential Therapeutic Strategy against Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46626-46638. [PMID: 37782835 PMCID: PMC10969938 DOI: 10.1021/acsami.3c08734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A one-step modification of biomedical silicone tubing with N,N-dimethyltetradecylamine, C14, results in a composition designated WinGard-1 (WG-1, 1.1 wt % C14). A surface-active silicon-amine phase (SAP) is proposed to account for increased wettability and increased surface charge. To understand the mechanism of antimicrobial effectiveness, several procedures were employed to detect whether C14 leaching occurred. An immersion-growth (IG) test was developed that required knowing the bacterial Minimum Inhibitory Concentrations (MICs) and Minimum Biocidal Concentrations (MBCs). The C14 MIC and MBC for Gm- uropathogenic E. coli (UPEC), commonly associated with catheter-associated urinary tract infections (CAUTI), were 10 and 20 μg/mL, respectively. After prior immersion of WG-1 silicone segments in a growth medium from 1 to 28 d, the IG test for the medium showed normal growth for UPEC over 24 h, indicating that the concentration of C14 must be less than the MIC, 10 μg/mL. GC-MS and studies of the medium inside and outside a dialysis bag containing WG-1 silicone segments supported de minimis leaching. Consequently, a 5 log UPEC reduction (99.999% kill) in 24 h using the shake flask test (ASTM E2149) cannot be due to leaching and is ascribed to contact kill. Interestingly, although the MBC was greater than 100 μg/mL for Pseudomonas aeruginosa, WG-1 silicone affected an 80% reduction via a 24 h shake flask test. For other bacteria and Candida albicans, greater than 99.9% shake flask kill may be understood by proposing increased wettability and concentration of charge illustrated in the TOC. De minimis leaching places WG-1 silicone at an advantage over conventional anti-infectives that rely on leaching of an antibiotic or heavy metals such as silver. The facile process for preparation of WG-1 silicone combined with biocidal effectiveness comprises progress toward the goals of device designation from the FDA for WG-1 and clearance.
Collapse
Affiliation(s)
- Kenneth J. Wynne
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Olga Zolotarskaya
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Rebecca Jarrell
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Chenyu Wang
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Youssef Amin
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Kennard Brunson
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| |
Collapse
|
33
|
Lanigan A, Mailman JF, Kassir S, Schmidt K, Lee SB, Sy E. Treatments and Outcomes of Critically Ill Patients with Candida spp. Colonization of the Lower Respiratory Tract in Regina, Saskatchewan. Can J Hosp Pharm 2023; 76:309-313. [PMID: 37767389 PMCID: PMC10522344 DOI: 10.4212/cjhp.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Background Among critically ill patients receiving mechanical ventilation, Candida spp. are commonly detected in the lower respiratory tract (LRT). This is generally considered to represent colonization. Objective To evaluate the use of antifungal treatments and the clinical outcomes of patients with Candida colonization of the LRT. Methods This retrospective analysis involved consecutive patients admitted to the intensive care unit between April 2016 and May 2021with positive results on Candida spp. testing of LRT samples. Data related to antifungal treatment and clinical outcomes were analyzed descriptively, and multivariable logistic regression was performed. Results Of 200 patients initially identified, 160 (80%) died in hospital. Antifungal therapy was given to 103 (51.5%) of the patients, with treatment being more likely among those with shock and those who received parenteral nutrition. Mortality was high among patients with positive Candida results on LRT culture, regardless of treatment. Multivariable logistic regression, with adjustment for age, sex, comorbidities, and sequential organ failure assessment (SOFA) score, showed that antifungal treatment was associated with lower odds of death (odds ratio 0.39, 95% confidence interval 0.17-0.87) compared with no treatment (p = 0.021). Conclusions This study showed higher mortality rates than have been reported previously. Further investigation into the role of antifungal therapy among critically ill patients with Candida spp. colonization is required.
Collapse
Affiliation(s)
- Adam Lanigan
- MSc, is with the College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan
| | - Jonathan F Mailman
- BSc(Pharm), ACRP, PharmD, CD, is with the College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan; the Department of Pharmacy Services, Island Health, Victoria, British Columbia; and the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia
| | - Sandy Kassir
- MSc, MPH, is with the Research Department, Saskatchewan Health Authority - Regina, Regina, Saskatchewan
| | - Kristin Schmidt
- BSP, is with the Department of Stewardship and Clinical Appropriateness, Saskatchewan Health Authority - Regina, Regina, Saskatchewan
| | - Stephen B Lee
- MD, MS, FRCPC, is with the College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, and the Department of Infectious Diseases, Saskatchewan Health Authority - Regina, Regina, Saskatchewan
| | - Eric Sy
- MD, MPH, FRCPC, is with the College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, and the Department of Critical Care, Saskatchewan Health Authority - Regina, Regina, Saskatchewan
| |
Collapse
|
34
|
Shen H, Liu T, Shen M, Zhang Y, Chen W, Chen H, Wang Y, Liu J, Tao J, He L, Lu G, Yan G. Utilizing metagenomic next-generation sequencing for diagnosis and lung microbiome probing of pediatric pneumonia through bronchoalveolar lavage fluid in pediatric intensive care unit: results from a large real-world cohort. Front Cell Infect Microbiol 2023; 13:1200806. [PMID: 37655299 PMCID: PMC10466250 DOI: 10.3389/fcimb.2023.1200806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Background Metagenomic next-generation sequencing (mNGS) is a powerful method for pathogen detection in various infections. In this study, we assessed the value of mNGS in the pathogen diagnosis and microbiome analysis of pneumonia in pediatric intensive care units (PICU) using bronchoalveolar lavage fluid (BALF) samples. Methods A total of 104 pediatric patients with pneumonia who were admitted into PICU between June 2018 and February 2020 were retrospectively enrolled. Among them, 101 subjects who had intact clinical information were subject to parallel comparison of mNGS and conventional microbiological tests (CMTs) for pathogen detection. The performance was also evaluated and compared between BALF-mNGS and BALF-culture methods. Moreover, the diversity and structure of all 104 patients' lung BALF microbiomes were explored using the mNGS data. Results Combining the findings of mNGS and CMTs, 94.06% (95/101) pneumonia cases showed evidence of causative pathogenic infections, including 79.21% (80/101) mixed and 14.85% (15/101) single infections. Regarding the pathogenesis of pneumonia in the PICU, the fungal detection rates were significantly higher in patients with immunodeficiency (55.56% vs. 25.30%, P =0.025) and comorbidities (40.30% vs. 11.76%, P=0.007). There were no significant differences in the α-diversity either between patients with CAP and HAP or between patients with and without immunodeficiency. Regarding the diagnostic performance, the detection rate of DNA-based BALF-mNGS was slightly higher than that of the BALF-culture although statistically insignificant (81.82% vs.77.92%, P=0.677) and was comparable to CMTs (81.82% vs. 89.61%, P=0.211). The overall sensitivity of DNA-based mNGS was 85.14% (95% confidence interval [CI]: 74.96%-92.34%). The detection rate of RNA-based BALF-mNGS was the same with CMTs (80.00% vs 80.00%, P>0.999) and higher than BALF-culture (80.00% vs 52.00%, P=0.045), with a sensitivity of 90.91% (95%CI: 70.84%-98.88%). Conclusions mNGS is valuable in the etiological diagnosis of pneumonia, especially in fungal infections, and can reveal pulmonary microecological characteristics. For pneumonia patients in PICU, the mNGS should be implemented early and complementary to CMTs.
Collapse
Affiliation(s)
- Huili Shen
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Tingyan Liu
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Meili Shen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, Jiangsu, China
| | - Yi Zhang
- Department of Clinical Epidemiology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Weiming Chen
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Hanlin Chen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, Jiangsu, China
| | - Yixue Wang
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jing Liu
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jinhao Tao
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Liming He
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Gangfeng Yan
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
35
|
Naik S, Mohammed A. Consensus Gene Network Analysis Identifies the Key Similarities and Differences in Endothelial and Epithelial Cell Dynamics after Candida albicans Infection. Int J Mol Sci 2023; 24:11748. [PMID: 37511508 PMCID: PMC10380918 DOI: 10.3390/ijms241411748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial and epithelial cells are morphologically different and play a critical role in host defense during Candida albicans infection. Both cells respond to C. albicans infection by activating various signaling pathways and gene expression patterns. Their interactions with these pathogens can have beneficial and detrimental effects, and a better understanding of these interactions can help guide the development of new therapies for C. albicans infection. To identify the differences and similarities between human endothelial and oral epithelial cell transcriptomics during C. albicans infection, we performed consensus WGCNA on 32 RNA-seq samples by relating the consensus modules to endothelial-specific modules and analyzing the genes connected. This analysis resulted in the identification of 14 distinct modules. We demonstrated that the magenta module correlates significantly with C. albicans infection in each dataset. In addition, we found that the blue and cyan modules in the two datasets had opposite correlation coefficients with a C. albicans infection. However, the correlation coefficients and p-values between the two datasets were slightly different. Functional analyses of the hub of genes from endothelial cells elucidated the enrichment in TNF, AGE-RAGE, MAPK, and NF-κB signaling. On the other hand, glycolysis, pyruvate metabolism, amino acid, fructose, mannose, and vitamin B6 metabolism were enriched in epithelial cells. However, mitophagy, necroptosis, apoptotic processes, and hypoxia were enriched in both endothelial and epithelial cells. Protein-protein interaction analysis using STRING and CytoHubba revealed STAT3, SNRPE, BIRC2, and NFKB2 as endothelial hub genes, while RRS1, SURF6, HK2, and LDHA genes were identified in epithelial cells. Understanding these similarities and differences may provide new insights into the pathogenesis of C. albicans infections and the development of new therapeutic targets and interventional strategies.
Collapse
Affiliation(s)
- Surabhi Naik
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Akram Mohammed
- Center for Biomedical Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
36
|
Xie L, Zhang X, Gao X, Wang L, Cheng Y, Zhang S, Yue J, Tang Y, Deng Y, Zhang B, He X, Tang M, Yang H, Zheng T, You J, Song X, Xiong J, Zuo H, Pei X. Microbiota and mycobiota in bronchoalveolar lavage fluid of silicosis patients. J Occup Med Toxicol 2023; 18:10. [PMID: 37430310 DOI: 10.1186/s12995-023-00377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The contribution of bronchoalveolar lavage fluid (BALF) microbiota and mycobiota to silicosis has recently been noticed. However, many confounding factors can influence the accuracy of BALF microbiota and mycobiota studies, resulting in inconsistencies in the published results. In this cross-sectional study, we systematically investigated the effects of "sampling in different rounds of BALF" on its microbiota and mycobiota. We further explored the relationship between silicosis fatigue and the microbiota and mycobiota. METHODS After obtaining approval from the ethics board, we collected 100 BALF samples from 10 patients with silicosis. Demographic data, clinical information, and blood test results were also collected from each patient. The characteristics of the microbiota and mycobiota were defined using next-generation sequencing. However, no non-silicosis referent group was examined, which was a major limitation of this study. RESULTS Our analysis indicated that subsampling from different rounds of BALF did not affect the alpha- and beta-diversities of microbial and fungal communities when the centrifuged BALF sediment was sufficient for DNA extraction. In contrast, fatigue status significantly influenced the beta-diversity of microbes and fungi (Principal Coordinates Analysis, P = 0.001; P = 0.002). The abundance of Vibrio alone could distinguish silicosis patients with fatigue from those without fatigue (area under the curve = 0.938, 95% confidence interval [CI] 0.870-1.000). Significant correlations were found between Vibrio and haemoglobin levels (P < 0.001, ρ = -0.64). CONCLUSIONS Sampling in different rounds of BALF showed minimal effect on BALF microbial and fungal diversities; the first round of BALF collection was recommended for microbial and fungal analyses for convenience. In addition, Vibrio may be a potential biomarker for silicosis fatigue screening.
Collapse
Affiliation(s)
- Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaosi Gao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Linyao Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiyang Cheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shirong Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ji Yue
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingru Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yufeng Deng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Baochao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyuan Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianli Zheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia You
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| |
Collapse
|
37
|
Escamilla JE, January SE, Vazquez Guillamet R. Diagnosis and Treatment of Fungal Infections in Lung Transplant Recipients. Pathogens 2023; 12:pathogens12050694. [PMID: 37242364 DOI: 10.3390/pathogens12050694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Fungal infections are a significant source of morbidity in the lung transplant population via direct allograft damage and predisposing patients to the development of chronic lung allograft dysfunction. Prompt diagnosis and treatment are imperative to limit allograft damage. This review article discusses incidence, risk factors, and symptoms with a specific focus on diagnostic and treatment strategies in the lung transplant population for fungal infections caused by Aspergillus, Candida, Coccidioides, Histoplasma, Blastomyces, Scedosporium/Lomentospora, Fusarium, and Pneumocystis jirovecii. Evidence for the use of newer triazole and inhaled antifungals to treat isolated pulmonary fungal infections in lung transplant recipients is also discussed.
Collapse
Affiliation(s)
- Jesus E Escamilla
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Spenser E January
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Rodrigo Vazquez Guillamet
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Rodrigo Vazquez Guillamet, 4921 Parkview Place, Saint Louis, MO 63110, USA
| |
Collapse
|
38
|
COVID-19 Is a Confounder of Increased Candida Airway Colonisation. Pathogens 2023; 12:pathogens12030463. [PMID: 36986385 PMCID: PMC10052038 DOI: 10.3390/pathogens12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
An increased incidence of invasive fungal infection was reported in SARS-CoV-2-infected patients hospitalised in the intensive care unit. However, the impact of COVID-19 on Candida airway colonisation has not yet been assessed. This study aimed to test the impact of several factors on Candida airway colonisation, including SARS-CoV-2 infection. We conducted a two-pronged monocentric retrospective study. First, we analysed the prevalence of positive yeast culture in respiratory samples obtained from 23 departments of the University Hospital of Marseille between 1 January 2018 and 31 March 2022. We then conducted a case-control study, comparing patients with documented Candida airway colonisation to two control groups. We observed an increase in the prevalence of yeast isolation over the study period. The case-control study included 300 patients. In the multivariate logistic regression, diabetes, mechanical ventilation, length of stay in the hospital, invasive fungal disease, and the use of antibacterials were independently associated with Candida airway colonisation. The association of SARS-CoV-2 infection with an increased risk of Candida airway colonisation is likely to be a consequence of confounding factors. Nevertheless, we found the length of stay in the hospital, mechanical ventilation, diabetes, and the use of antibacterials to be statistically significant independent risk factors of Candida airway colonisation.
Collapse
|
39
|
Hurley JC. Structural equation modelling the impact of antimicrobials on the human microbiome. Colonization resistance versus colonization susceptibility as case studies. J Antimicrob Chemother 2023; 78:328-337. [PMID: 36512373 DOI: 10.1093/jac/dkac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The impact of antimicrobials on the human microbiome and its relationship to human health are of great interest. How antimicrobial exposure might drive change within specific constituents of the microbiome to effect clinically relevant endpoints is difficult to study. Clinical investigation of each step within a network of causation would be challenging if done 'step-by-step'. An analytic tool of great potential to clinical microbiome research is structural equation modelling (SEM), which has a long history of applications to research questions arising within subject areas as diverse as psychology and econometrics. SEM enables postulated models based on a network of causation to be tested en bloc by confrontation with data derived from the literature. Case studies for the potential application of SEM techniques are colonization resistance (CR) and its counterpart, colonization susceptibility (CS), wherein specific microbes within the microbiome are postulated to either impede (CR) or facilitate (CS) invasive infection with pathogenic bacteria. These postulated networks have three causation steps: exposure to specific antimicrobials are key drivers, clinically relevant infection endpoints are the measurable observables and the activity of key microbiome constituents mediating CR or CS, which may be unobservable, appear as latent variables in the model. SEM methods have potential application towards evaluating the activity of specific antimicrobial agents within postulated networks of causation using clinically derived data.
Collapse
Affiliation(s)
- James C Hurley
- Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.,Division of Internal Medicine, Ballarat Health Services, Ballarat, Victoria, Australia
| |
Collapse
|
40
|
There Is More to Wounds than Bacteria: Fungal Biofilms in Chronic Wounds. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023. [DOI: 10.1007/s40588-022-00187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Purpose of Review
The management of chronic wounds, a debilitating condition, presents a considerable challenge to healthcare professionals and a significant burden on services. When these wounds are exposed to the external environment, they are susceptible to microbial infection, which further complicates their management and worsens clinical outcomes.
Recent Findings
Bacteria typically exist in wounds as part of a biofilm, which is often polymicrobial in nature, alongside bacteria and fungi that are described as being more virulent and tolerant towards antimicrobials and antiseptics. Despite advancing knowledge in polymicrobial biofilm wound infections with respect to bacteria, the role of fungi is largely ignored, and their influence in chronicity and clinical management is not fully appreciated or understood.
Summary
The purpose of this review is to explore the significance of fungi within chronic wound environments and, in doing so, understand the importance of interkingdom interactions in wound management.
Collapse
|
41
|
Shajiei A, Liu L, Seinen J, Dieperink W, Hammerschmidt S, Maarten van Dijl J, Harmsen HJ. Specific associations between fungi and bacteria in broncho-alveolar aspirates from mechanically ventilated intensive care unit patients. Virulence 2022; 13:2022-2031. [PMID: 36384379 PMCID: PMC9673952 DOI: 10.1080/21505594.2022.2146568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detection of fungi in the human respiratory tract may represent contamination, colonization or a respiratory infection. To develop effective management strategies, a more accurate and comprehensive understanding of the lung fungal microbiome is required. Therefore, the objective of the present study was to define the "mycobiome" of mechanically ventilated patients admitted to an intensive care unit (ICU) using broncho-alveolar aspirate ("sputum") samples and correlate this with clinical parameters and the bacterial microbiota. To this end, the mycobiome of 33 sputum samples was analyzed by Internal Transcribed Spacer2 (ITS2) amplicon sequencing of the ribosomal operons. The results show that in the investigated sputa of mechanically ventilated patients Candida spp. were most frequently detected, independent of pneumonia or antimicrobial therapy. The presence of Candida excluded in most cases the presence of Malassezia, which was the second most-frequently encountered fungus. Moreover, a hierarchical clustering of the sequence data indicated a patient-specific mycobiome. Fungi detected by culturing (Candida and Aspergillus) were also detected through ITS2 sequencing, but other yeasts and fungi were only detectable by sequencing. While Candida showed no correlations with identified bacterial groups, the presence of Malassezia and Rhodotorula correlated with oral bacteria associated with periodontal disease. Likewise, Cladosporium correlated with other oral bacteria, whereas Saccharomyces correlated more specifically with dental plaque bacteria and Alternaria with the nasal-throat-resident bacteria Neisseria, Haemophilus and Moraxella. In conclusion, ITS2 sequencing of sputum samples uncovered patient-specific lung mycobiomes, which were only partially detectable by culturing, and which could be correlated to specific nasal-oral-pharyngeal niches.
Collapse
Affiliation(s)
- Arezoo Shajiei
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lei Liu
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Seinen
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Willem Dieperink
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J.M. Harmsen
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,CONTACT Hermie J.M. Harmsen
| |
Collapse
|
42
|
Naik S, Mohammed A. Coexpression network analysis of human candida infection reveals key modules and hub genes responsible for host-pathogen interactions. Front Genet 2022; 13:917636. [PMID: 36482897 PMCID: PMC9722774 DOI: 10.3389/fgene.2022.917636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Invasive fungal infections are a significant reason for morbidity and mortality among organ transplant recipients. Therefore, it is critical to investigate the host and candida niches to understand the epidemiology of fungal infections in transplantation. Candida albicans is an opportunistic fungal pathogen that causes fatal invasive mucosal infections, particularly in solid organ transplant patients. Therefore, identifying and characterizing these genes would play a vital role in understanding the complex regulation of host-pathogen interactions. Using 32 RNA-sequencing samples of human cells infected with C. albicans, we developed WGCNA coexpression networks and performed DESeq2 differential gene expression analysis to identify the genes that positively correlate with human candida infection. Using hierarchical clustering, we identified 5 distinct modules. We studied the inter- and intramodular gene network properties in the context of sample status traits and identified the highly enriched genes in the correlated modules. We identified 52 genes that were common in the most significant WGCNA turquoise module and differentially expressed genes in human endothelial cells (HUVEC) infection vs. control samples. As a validation step, we identified the differentially expressed genes from the independent Candida-infected human oral keratinocytes (OKF6) samples and validated 30 of the 52 common genes. We then performed the functional enrichment analysis using KEGG and GO. Finally, we performed protein-protein interaction (PPI) analysis using STRING and CytoHubba from 30 validated genes. We identified 8 hub genes (JUN, ATF3, VEGFA, SLC2A1, HK2, PTGS2, PFKFB3, and KLF6) that were enriched in response to hypoxia, angiogenesis, vasculogenesis, hypoxia-induced signaling, cancer, diabetes, and transplant-related disease pathways. The discovery of genes and functional pathways related to the immune system and gene coexpression and differential gene expression analyses may serve as novel diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Surabhi Naik
- Department of Surgery, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Akram Mohammed
- Center for Biomedical Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
43
|
Candida and the Gram-positive trio: testing the vibe in the ICU patient microbiome using structural equation modelling of literature derived data. Emerg Themes Epidemiol 2022; 19:7. [PMID: 35982466 PMCID: PMC9387012 DOI: 10.1186/s12982-022-00116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Whether Candida interacts with Gram-positive bacteria, such as Staphylococcus aureus, coagulase negative Staphylococci (CNS) and Enterococci, to enhance their invasive potential from the microbiome of ICU patients remains unclear. Several effective anti-septic, antibiotic, anti-fungal, and non-decontamination based interventions studied for prevention of ventilator associated pneumonia (VAP) and other ICU acquired infections among patients receiving prolonged mechanical ventilation (MV) are known to variably impact Candida colonization. The collective observations within control and intervention groups from numerous ICU infection prevention studies enables tests of these postulated microbial interactions in the clinical context. Methods Four candidate generalized structural equation models (GSEM), each with Staphylococcus aureus, CNS and Enterococci colonization, defined as latent variables, were confronted with blood culture and respiratory tract isolate data derived from 460 groups of ICU patients receiving prolonged MV from 283 infection prevention studies. Results Introducing interaction terms between Candida colonization and each of S aureus (coefficient + 0.40; 95% confidence interval + 0.24 to + 0.55), CNS (+ 0.68; + 0.34 to + 1.0) and Enterococcal (+ 0.56; + 0.33 to + 0.79) colonization (all as latent variables) improved the fit for each model. The magnitude and significance level of the interaction terms were similar to the positive associations between exposure to topical antibiotic prophylaxis (TAP) on Enterococcal (+ 0.51; + 0.12 to + 0.89) and Candida colonization (+ 0.98; + 0.35 to + 1.61) versus the negative association of TAP with S aureus (− 0.45; − 0.70 to − 0.20) colonization and the negative association of anti-fungal exposure and Candida colonization (− 1.41; − 1.6 to − 0.72). Conclusions GSEM modelling of published ICU infection prevention data enables the postulated interactions between Candida and Gram-positive bacteria to be tested using clinically derived data. The optimal model implies interactions occurring in the human microbiome facilitating bacterial invasion and infection. This interaction might also account for the paradoxically high bacteremia incidences among studies of TAP in ICU patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12982-022-00116-9. GSEM modelling of published ICU infection prevention data from > 250 studies enables a test of and provides support to the interaction between Candida and Gram-positive bacteria. The various ICU infection prevention interventions may each broadly impact the patient microbiome.
Collapse
|
44
|
Phuengmaung P, Mekjaroen J, Saisorn W, Chatsuwan T, Somparn P, Leelahavanichkul A. Rapid Synergistic Biofilm Production of Pseudomonas and Candida on the Pulmonary Cell Surface and in Mice, a Possible Cause of Chronic Mixed Organismal Lung Lesions. Int J Mol Sci 2022; 23:ijms23169202. [PMID: 36012475 PMCID: PMC9409386 DOI: 10.3390/ijms23169202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the possible co-presence of Pseudomonas aeruginosa and Candida albicans (the most common nosocomial pathogens) in lungs, rapid interkingdom biofilm production is possible. As such, PA+CA produced more dominant biofilms on the pulmonary epithelial surface (NCI-H292) (confocal fluorescent extracellular matrix staining) with dominant psl upregulation, as demonstrated by polymerase chain reaction (PCR), after 8 h of experiments than PA alone. With a proteomic analysis, rhamnosyltransferase RhlB protein (Psl-associated quorum-sensing protein) was found to be among the high-abundance proteins in PA+CA than in PA biofilms, supporting psl-mediated biofilms in PA+CA on the cell surface. Additionally, PA+CA increased supernatant cytokines (IL-8 and IL-13, but not TNF-α, IL-6, and IL-10) with a similar upregulation of TLR-4, TLR-5, and TLR-9 (by PCR) compared with PA-stimulated cells. The intratracheal administration of PA+CA induced a greater severity of sepsis (serum creatinine, alanine transaminase, serum cytokines, and histology score) and prominent biofilms (fluorescent staining) with psl upregulation (PCR). In comparison with PA+CA biofilms on glass slides, PA+CA biofilms on biotic surfaces were more prominent (fluorescent staining). In conclusion, PA+CA induced Psl-predominant biofilms on the pulmonary cell surface and in mice with acute pneumonia, and these biofilms were more prominent than those induced by PA alone, highlighting the impact of Candida on rapid interkingdom biofilm production.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Mekjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.S.); (A.L.); Tel.: +66-2-256-4251 (P.S. & A.L.); Fax: +66-2-252-6920 (P.S. & A.L.)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.S.); (A.L.); Tel.: +66-2-256-4251 (P.S. & A.L.); Fax: +66-2-252-6920 (P.S. & A.L.)
| |
Collapse
|
45
|
Fröhlich E. Non-Cellular Layers of the Respiratory Tract: Protection against Pathogens and Target for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050992. [PMID: 35631578 PMCID: PMC9143813 DOI: 10.3390/pharmaceutics14050992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Epithelial barriers separate the human body from the environment to maintain homeostasis. Compared to the skin and gastrointestinal tract, the respiratory barrier is the thinnest and least protective. The properties of the epithelial cells (height, number of layers, intercellular junctions) and non-cellular layers, mucus in the conducting airways and surfactant in the respiratory parts determine the permeability of the barrier. The review focuses on the non-cellular layers and describes the architecture of the mucus and surfactant followed by interaction with gases and pathogens. While the penetration of gases into the respiratory tract is mainly determined by their hydrophobicity, pathogens use different mechanisms to invade the respiratory tract. Often, the combination of mucus adhesion and subsequent permeation of the mucus mesh is used. Similar mechanisms are also employed to improve drug delivery across the respiratory barrier. Depending on the payload and target region, various mucus-targeting delivery systems have been developed. It appears that the mucus-targeting strategy has to be selected according to the planned application.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria; ; Tel.: +43-316-38573011
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
46
|
The Relevance of the Bacterial Microbiome, Archaeome and Mycobiome in Pediatric Asthma and Respiratory Disorders. Cells 2022; 11:cells11081287. [PMID: 35455967 PMCID: PMC9024940 DOI: 10.3390/cells11081287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria, as well as eukaryotes, principally fungi, of the upper respiratory tract play key roles in the etiopathogenesis of respiratory diseases, whereas the potential role of archaea remains poorly understood. In this review, we discuss the contribution of all three domains of cellular life to human naso- and oropharyngeal microbiomes, i.e., bacterial microbiota, eukaryotes (mostly fungi), as well as the archaeome and their relation to respiratory and atopic disorders in infancy and adolescence. With this review, we aim to summarize state-of-the-art contributions to the field published in the last decade. In particular, we intend to build bridges between basic and clinical science.
Collapse
|
47
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
48
|
|
49
|
Sallard E, Schult F, Baehren C, Buedding E, Mboma O, Ahmad-Nejad P, Ghebremedhin B, Ehrhardt A, Wirth S, Aydin M. Viral Infection and Respiratory Exacerbation in Children: Results from a Local German Pediatric Exacerbation Cohort. Viruses 2022; 14:491. [PMID: 35336898 PMCID: PMC8955305 DOI: 10.3390/v14030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Respiratory viruses play an important role in asthma exacerbation, and early exposure can be involved in recurrent bronchitis and the development of asthma. The exact mechanism is not fully clarified, and pathogen-to-host interaction studies are warranted to identify biomarkers of exacerbation in the early phase. Only a limited number of international exacerbation cohorts were studied. Here, we have established a local pediatric exacerbation study in Germany consisting of children with asthma or chronic, recurrent bronchitis and analyzed the viriome within the nasopharyngeal swab specimens derived from the entire cohort (n = 141). Interestingly, 41% of exacerbated children had a positive test result for human rhinovirus (HRV)/human enterovirus (HEV), and 14% were positive for respiratory syncytial virus (RSV). HRV was particularly prevalent in asthmatics (56%), wheezers (50%), and atopic (66%) patients. Lymphocytes were decreased in asthmatics and in HRV-infected subjects, and patients allergic to house dust mites were more susceptible to HRV infection. Our study thus confirms HRV infection as a strong 'biomarker' of exacerbated asthma. Further longitudinal studies will show the clinical progress of those children with a history of an RSV or HRV infection. Vaccination strategies and novel treatment guidelines against HRV are urgently needed to protect those high-risk children from a serious course of disease.
Collapse
Affiliation(s)
- Erwan Sallard
- Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Witten/Herdecke University, 58453 Witten, Germany; (E.S.); (A.E.)
| | - Frank Schult
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
| | - Carolin Baehren
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, Faculty of Health, School of Life Sciences (ZBAF), Witten/Herdecke University, 58455 Witten, Germany; (C.B.); (E.B.)
| | - Eleni Buedding
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, Faculty of Health, School of Life Sciences (ZBAF), Witten/Herdecke University, 58455 Witten, Germany; (C.B.); (E.B.)
| | - Olivier Mboma
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
| | - Parviz Ahmad-Nejad
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Beniam Ghebremedhin
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Witten/Herdecke University, 58453 Witten, Germany; (E.S.); (A.E.)
| | - Stefan Wirth
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
| | - Malik Aydin
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, Faculty of Health, School of Life Sciences (ZBAF), Witten/Herdecke University, 58455 Witten, Germany; (C.B.); (E.B.)
| |
Collapse
|
50
|
Subroto E, van Neer J, Valdes I, de Cock H. Growth of Aspergillus fumigatus in Biofilms in Comparison to Candida albicans. J Fungi (Basel) 2022; 8:48. [PMID: 35049988 PMCID: PMC8779434 DOI: 10.3390/jof8010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Biofilm formation during infections with the opportunistic pathogen Aspergillus fumigatus can be very problematic in clinical settings, since it provides the fungal cells with a protective environment. Resistance against drug treatments, immune recognition as well as adaptation to the host environment allows fungal survival in the host. The exact molecular mechanisms behind most processes in the formation of biofilms are unclear. In general, the formation of biofilms can be categorized roughly in a few stages; adhesion, conidial germination and development of hyphae, biofilm maturation and cell dispersion. Fungi in biofilms can adapt to the in-host environment. These adaptations can occur on a level of phenotypic plasticity via gene regulation. However, also more substantial genetic changes of the genome can result in increased resistance and adaptation in the host, enhancing the survival chances of fungi in biofilms. Most research has focused on the development of biofilms. However, to tackle developing microbial resistance and adaptation in biofilms, more insight in mechanisms behind genetic adaptations is required to predict which defense mechanisms can be expected. This can be helpful in the development of novel and more targeted antifungal treatments to combat fungal infections.
Collapse
Affiliation(s)
| | | | | | - Hans de Cock
- Molecular Microbiology Laboratory, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.); (J.v.N.); (I.V.)
| |
Collapse
|