1
|
Tjaden NEB, Liou MJ, Sax SE, Lassoued N, Lou M, Schneider S, Beigel K, Eisenberg JD, Loeffler E, Anderson SE, Yan G, Litichevskiy L, Dohnalová L, Zhu Y, Jin DMJC, Raab J, Furth EE, Thompson Z, Rubenstein RC, Pilon N, Thaiss CA, Heuckeroth RO. Dietary manipulation of intestinal microbes prolongs survival in a mouse model of Hirschsprung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637436. [PMID: 39990395 PMCID: PMC11844371 DOI: 10.1101/2025.02.10.637436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Enterocolitis is a common and potentially deadly manifestation of Hirschsprung disease (HSCR) but disease mechanisms remain poorly defined. Unexpectedly, we discovered that diet can dramatically affect the lifespan of a HSCR mouse model ( Piebald lethal , sl/sl ) where affected animals die from HAEC complications. In the sl/sl model, diet alters gut microbes and metabolites, leading to changes in colon epithelial gene expression and epithelial oxygen levels known to influence colitis severity. Our findings demonstrate unrecognized similarity between HAEC and other types of colitis and suggest dietary manipulation could be a valuable therapeutic strategy for people with HSCR. Abstract Hirschsprung disease (HSCR) is a birth defect where enteric nervous system (ENS) is absent from distal bowel. Bowel lacking ENS fails to relax, causing partial obstruction. Affected children often have "Hirschsprung disease associated enterocolitis" (HAEC), which predisposes to sepsis. We discovered survival of Piebald lethal ( sl/sl ) mice, a well-established HSCR model with HAEC, is markedly altered by two distinct standard chow diets. A "Protective" diet increased fecal butyrate/isobutyrate and enhanced production of gut epithelial antimicrobial peptides in proximal colon. In contrast, "Detrimental" diet-fed sl/sl had abnormal appearing distal colon epithelium mitochondria, reduced epithelial mRNA involved in oxidative phosphorylation, and elevated epithelial oxygen that fostered growth of inflammation-associated Enterobacteriaceae . Accordingly, selective depletion of Enterobacteriaceae with sodium tungstate prolonged sl/sl survival. Our results provide the first strong evidence that diet modifies survival in a HSCR mouse model, without altering length of distal colon lacking ENS. Highlights Two different standard mouse diets alter survival in the Piebald lethal ( sl/sl ) mouse model of Hirschsprung disease, without impacting extent of distal colon aganglionosis (the region lacking ENS). Piebald lethal mice fed the "Detrimental" diet had many changes in colon epithelial transcriptome including decreased mRNA for antimicrobial peptides and genes involved in oxidative phosphorylation. Detrimental diet fed sl/sl also had aberrant-appearing mitochondria in distal colon epithelium, with elevated epithelial oxygen that drives lethal Enterobacteriaceae overgrowth via aerobic respiration. Elimination of Enterobacteriaceae with antibiotics or sodium tungstate improves survival of Piebald lethal fed the "Detrimental diet". Graphical abstract
Collapse
|
2
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Li M, Xue Y, Lu H, Bai J, Cui L, Ning Y, Yuan Q, Jia X, Wang S. Relationship between infant gastrointestinal microorganisms and maternal microbiome within 6 months of delivery. Microbiol Spectr 2024; 12:e0360823. [PMID: 39172626 PMCID: PMC11448430 DOI: 10.1128/spectrum.03608-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/08/2024] [Indexed: 08/24/2024] Open
Abstract
To investigate the association between the microbiota in mothers and gut microbiota in infants from 0 to 6 months, the microbiotas in infant feces, maternal feces, and breast milk were determined by 16S rRNA gene sequencing. The contribution of each maternal microbiome to the infant was assessed using fast expectation-maximization for microbial source tracking calculations. The levels of short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA) in the feces of infants were also determined using gas chromatography and IDK-sIgA ELISA to gain a more comprehensive understanding of the infant gut microbiome. The results of this study showed that in addition to Firmicutes (E1) and Bifidobacterium (E2), the dominant microorganisms of the intestinal microbiota of infants aged 0-6 months include Proteobacteria, which is different from previous findings. Acetic acid, the most abundant SCFA in the infant gut, was positively correlated with Megasphaera (P < 0.01), whereas sIgA was positively correlated with Bacteroides (P < 0.05) and negatively correlated with Klebsiella and Clostridium_XVIII (P < 0.05). The maternal gut microbiota contributed more to the infant gut microbiota (43.58% ± 11.13%) than the breast milk microbiota, and significant differences were observed in the contribution of the maternal microbiota to the infant gut microbiota based on the delivery mode and feeding practices. In summary, we emphasize the key role of maternal gut health in the establishment and succession of infant gut microbiota.IMPORTANCEThis study aims to delineate the microbial connections between mothers and infants, leveraging the fast expectation-maximization for microbial source tracking methodology to quantify the contribution of maternal microbiota to the constitution of the infant's gut microbiome. Concurrently, it examines the correlations between the infant gut microbiota and two distinctive biomolecules, namely short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA). The findings indicate that the maternal gut microbiota exerts a greater influence on the infant's gut microbial composition than does the microbiota present in breast milk. Infants born via vaginal delivery and receiving mixed feeding display gut microbiota profiles more similar to their mothers'. Notably, the SCFA acetate displays positive associations with beneficial bacteria and inverse relationships with potentially harmful ones within the infant's gut. Meanwhile, sIgA positively correlates with Bacteroides species and negatively with potentially pathogenic bacteria. By delving into the transmission dynamics of maternal-infant microbiota, exploring the impacts of metabolic byproducts within the infant's gut, and scrutinizing how contextual factors such as birthing method and feeding practices affect the correlation between maternal and infant microbiota, this research endeavors to establish practical strategies for optimizing early-life gut health management in infants. Such insights promise to inform targeted interventions that foster healthier microbial development during the critical first 6 months of life.
Collapse
Affiliation(s)
- Menglu Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yuling Xue
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Han Lu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Jinping Bai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Liru Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yibing Ning
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Qingbin Yuan
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Nilson R, Penumutchu S, Pagano FS, Belenky P. Metabolic changes associated with polysaccharide utilization reduce susceptibility to some β-lactams in Bacteroides thetaiotaomicron. mSphere 2024; 9:e0010324. [PMID: 39109911 PMCID: PMC11351048 DOI: 10.1128/msphere.00103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/07/2024] [Indexed: 08/29/2024] Open
Abstract
Antibiotic therapy alters bacterial abundance and metabolism in the gut microbiome, leading to dysbiosis and opportunistic infections. Bacteroides thetaiotaomicron (Bth) is both a commensal in the gut and an opportunistic pathogen in other body sites. Past work has shown that Bth responds to β-lactam treatment differently depending on the metabolic environment both in vitro and in vivo. Studies of other bacteria show that an increase in respiratory metabolism independent of growth rate promotes susceptibility to bactericidal antibiotics. We propose that Bth enters a protected state linked to an increase in polysaccharide utilization and a decrease in the use of simple sugars. Here, we apply antibiotic susceptibility testing, transcriptomic analysis, and genetic manipulation to characterize this polysaccharide-mediated tolerance (PM tolerance) phenotype. We found that a variety of mono- and disaccharides increased the susceptibility of Bth to several different β-lactams compared to polysaccharides. Transcriptomics indicated a metabolic shift from reductive to oxidative branches of the tricarboxylic acid cycle on polysaccharides. Accordingly, supplementation with intermediates of central carbon metabolism had varying effects on PM tolerance. Transcriptional analysis also showed a decrease in the expression of the electron transport chain (ETC) protein NQR and an increase in the ETC protein NUO, when given fiber versus glucose. Deletion of NQR increased Bth susceptibility while deletion of NUO and a third ETC protein NDH2 had no effect. This work confirms that carbon source utilization modulates antibiotic susceptibility in Bth and that anaerobic respiratory metabolism and the ETC play an essential role.IMPORTANCEAntibiotics are indispensable medications that revolutionized modern medicine. However, their effectiveness is challenged by a large array of resistance and tolerance mechanisms. Treatment with antibiotics also disrupts the gut microbiome which can adversely affect health. Bacteroides are prevalent in the gut microbiome and yet are frequently involved in anaerobic infections. Thus, understanding how antibiotics affect these bacteria is necessary to implement proper treatment. Recent work has investigated the role of metabolism in antibiotic susceptibility in distantly related bacteria such as Escherichia coli. Using antibiotic susceptibility testing, transcriptomics, and genetic manipulation, we demonstrate that polysaccharides reduce β-lactam susceptibility when compared to monosaccharides. This finding underscores the profound impact of metabolic adaptation on the therapeutic efficacy of antibiotics. In the long term, this work indicates that modulation of metabolism could make Bacteroides more susceptible during infections or protect them in the context of the microbiome.
Collapse
Affiliation(s)
- Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Francesco S. Pagano
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Burgos FA, Cai W, Arias CR. Gut dysbiosis induced by florfenicol increases susceptibility to Aeromonas hydrophila infection in Zebrafish Danio rerio after the recommended withdrawal period. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:113-127. [PMID: 38060422 DOI: 10.1002/aah.10211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Florfenicol (FFC) is a broad-spectrum antibiotic approved by the U.S. Food and Drug Administration to treat both systemic and external bacterial infections in food fish. The objective of this study was to evaluate the effect of FFC-medicated feed on the gut microbiota of Zebrafish Danio danio to determine (1) if the therapeutic dose of FFC-medicated feed induces dysbiosis and (2) if fish with altered gut microbiota were more susceptible to subsequent infection by the common opportunistic fish pathogen Aeromonas hydrophila. METHODS Zebrafish that were treated with regular and FFC-medicated feeds were artificially challenged with A. hydrophila at the end of the recommended 15-day antibiotic withdrawal period. The gut microbiota of the Zebrafish at different stages was analyzed using 16S ribosomal RNA gene sequencing. RESULT Our results found that FFC-medicated feed induced disruption of the gut microbiota. Dysbiosis was observed in all treated groups, with a significant increase in bacterial diversity, and was characterized by a remarkable bloom of Proteobacteria and a drastic decline of Mycoplasma and Cetobacterium in treated animals but without noticeable clinical signs or mortalities. In addition, the increase of Proteobacteria was not significantly reduced after the recommended 15-day withdrawal period, and the Zebrafish treated with FFC-medicated feed exhibited a significantly higher mortality rate when they were subsequently challenged with A. hydrophila compared to the control (regular feed) groups. Interestingly, the most dramatic changes in the gut microbiome composition occurred at the transition time between the late stage of the medicated treatment and the beginning of the withdrawal period instead of the time during the Aeromonas infection. CONCLUSION The administration of FFC-medicated feed at the recommended dose induced gut dysbiosis in Zebrafish, and fish did not recover to the baseline after the recommended withdrawal period. Our findings suggest that the use of antibiotics in fish elicits a response similar to those previously described in mammals and possibly makes the host more susceptible to subsequent infections of opportunistic pathogens. This study using a controlled model system suggests that antibiotics in aquaculture may have long-term effects on the general well-being of the fish.
Collapse
Affiliation(s)
- Francisca A Burgos
- Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Covadonga R Arias
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Cantarutti A, Rescigno P, Da Borso C, Gutierrez de Rubalcava Doblas J, Bressan S, Barbieri E, Giaquinto C, Canova C. Association Between Early-Life Exposure to Antibiotics and Development of Child Obesity: Population-Based Study in Italy. JMIR Public Health Surveill 2024; 10:e51734. [PMID: 38820573 PMCID: PMC11179038 DOI: 10.2196/51734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Childhood obesity is a significant public health problem representing the most severe challenge in the world. Antibiotic exposure in early life has been identified as a potential factor that can disrupt the development of the gut microbiome, which may have implications for obesity. OBJECTIVE This study aims to evaluate the risk of developing obesity among children exposed to antibiotics early in life. METHODS An Italian retrospective pediatric population-based cohort study of children born between 2004 and 2018 was adopted using the Pedianet database. Children were required to be born at term, with normal weight, and without genetic diseases or congenital anomalies. We assessed the timing of the first antibiotic prescription from birth to 6, 12, and 24 months of life and the dose-response relationship via the number of antibiotic prescriptions recorded in the first year of life (none, 1, 2, and ≥3 prescriptions). Obesity was defined as a BMI z score >3 for children aged ≤5 years and >2 for children aged >5 years, using the World Health Organization growth references. The obese incidence rate (IR) × 100 person-years and the relative 95% CI were computed using infant sex, area of residence, preschool and school age, and area deprivation index, which are the covariates of interest. A mixed-effect Cox proportional hazards model was used to estimate the hazard ratio and 95% CI for the association between antibiotic exposure in early life and child obesity between 24 months and 14 years of age, considering the family pediatricians as a random factor. Several subgroup and sensitivity analyses were performed to assess the robustness of our results. RESULTS Among 121,540 children identified, 54,698 were prescribed at least an antibiotic within the first year of life and 26,990 were classified as obese during follow-up with an incidence rate of 4.05 cases (95% CI 4.01-4.10) × 100 person-year. The risk of obesity remained consistent across different timings of antibiotic prescriptions at 6 months, 1 year, and 2 years (fully adjusted hazard ratio [aHR] 1.07, 95% CI 1.04-1.10; aHR 1.06, 95% CI 1.03-1.09; and aHR 1.07, 95% CI 1.04-1.10, respectively). Increasing the number of antibiotic exposures increases the risk of obesity significantly (P trend<.001). The individual-specific age analysis showed that starting antibiotic therapy very early (between 0 and 5 months) had the greatest impact (aHR 1.12, 95% CI 1.08-1.17) on childhood obesity with respect to what was observed among those who were first prescribed antibiotics after the fifth month of life. These results were consistent across subgroup and sensitivity analyses. CONCLUSIONS The results from this large population-based study support the association between early exposure to antibiotics and an increased risk of childhood obesity. This association becomes progressively stronger with both increasing numbers of antibiotic prescriptions and younger age at the time of the first prescription.
Collapse
Affiliation(s)
- Anna Cantarutti
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milano, Italy
| | - Paola Rescigno
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Claudia Da Borso
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milano, Italy
| | | | - Silvia Bressan
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Elisa Barbieri
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Carlo Giaquinto
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Cristina Canova
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Bogaert D, van Schaik W. Selective decontamination of the digestive tract in critically ill children: fighting fire with fire or burning down the house? Gut 2024; 73:883-884. [PMID: 38519126 DOI: 10.1136/gutjnl-2024-331955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Affiliation(s)
- Debby Bogaert
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Petakh P, Behzadi P, Oksenych V, Kamyshnyi O. Current treatment options for leptospirosis: a mini-review. Front Microbiol 2024; 15:1403765. [PMID: 38725681 PMCID: PMC11081000 DOI: 10.3389/fmicb.2024.1403765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Leptospirosis, one of the most common global zoonotic infections, significantly impacts global human health, infecting more than a million people and causing approximately 60,000 deaths annually. This mini-review explores effective treatment strategies for leptospirosis, considering its epidemiology, clinical manifestations, and current therapeutic approaches. Emphasis is placed on antibiotic therapy, including recommendations for mild and severe cases, as well as the role of probiotics in modulating the gut microbiota. Furthermore, novel treatment options, such as bacteriophages and newly synthesized/natural compounds, are discussed, and the findings are expected to provide insights into promising approaches for combating leptospirosis.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
9
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
10
|
Powell J, Powell S, Mather MW, Beck L, Nelson A, Palmowski P, Porter A, Coxhead J, Hedley A, Scott J, Rostron AJ, Hellyer TP, Zaidi F, Davey T, Garnett JP, Agbeko R, Ward C, Stewart CJ, Taggart CC, Brodlie M, Simpson AJ. Tracheostomy in children is associated with neutrophilic airway inflammation. Thorax 2023; 78:1019-1027. [PMID: 36808087 PMCID: PMC10511973 DOI: 10.1136/thorax-2022-219557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/29/2022] [Indexed: 02/22/2023]
Abstract
BACKGROUND Tracheostomies in children are associated with significant morbidity, poor quality of life, excess healthcare costs and excess mortality. The underlying mechanisms facilitating adverse respiratory outcomes in tracheostomised children are poorly understood. We aimed to characterise airway host defence in tracheostomised children using serial molecular analyses. METHODS Tracheal aspirates, tracheal cytology brushings and nasal swabs were prospectively collected from children with a tracheostomy and controls. Transcriptomic, proteomic and metabolomic methods were applied to characterise the impact of tracheostomy on host immune response and the airway microbiome. RESULTS Children followed up serially from the time of tracheostomy up to 3 months postprocedure (n=9) were studied. A further cohort of children with a long-term tracheostomy were also enrolled (n=24). Controls (n=13) comprised children without a tracheostomy undergoing bronchoscopy. Long-term tracheostomy was associated with airway neutrophilic inflammation, superoxide production and evidence of proteolysis when compared with controls. Reduced airway microbial diversity was established pre-tracheostomy and sustained thereafter. CONCLUSIONS Long-term childhood tracheostomy is associated with a inflammatory tracheal phenotype characterised by neutrophilic inflammation and the ongoing presence of potential respiratory pathogens. These findings suggest neutrophil recruitment and activation as potential exploratory targets in seeking to prevent recurrent airway complications in this vulnerable group of patients.
Collapse
Affiliation(s)
- Jason Powell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Paediatric Otolaryngology, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Steven Powell
- Department of Paediatric Otolaryngology, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Michael W Mather
- Department of Paediatric Otolaryngology, Great North Children's Hospital, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lauren Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Nelson
- Department of Applied Science, Northumbria University, Newcastle upon Tyne, UK
| | - Pawel Palmowski
- Protein and Proteome Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Porter
- Protein and Proteome Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ann Hedley
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony J Rostron
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas P Hellyer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fatima Zaidi
- Discovery and Translational Science, Metabolon, Morrisville, North Carolina, USA
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, UK
| | - James P Garnett
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Agbeko
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Paediatric Intensive Care, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Chris Ward
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Malcolm Brodlie
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Olsen NJ, Larsen SC, Køster-Rasmussen R, Rohde JF, Østergaard JN, Heitmann BL, Specht IO. Does attendance in outdoor kindergartens reduce the use of antibiotics in children? Acta Paediatr 2023; 112:1944-1953. [PMID: 37307024 DOI: 10.1111/apa.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
AIM The aim of this study was to determine whether children enrolled in rural outdoor kindergartens had a lower risk of redeeming at least one prescription for antibiotics compared with children enrolled in urban conventional kindergartens, and if type of antibiotics prescribed differed according to kindergarten type. METHODS Two Danish municipalities provided data including civil registration numbers from children enrolled in a rural outdoor kindergarten in 2011-2019, and a subsample of all children enrolled in urban conventional kindergartens in the same period. Civil registration numbers were linked to individual-level information on redeemed prescriptions for antibiotics from the Danish National Prescription Registry. Regression models were performed on 2132 children enrolled in outdoor kindergartens, and 2208 children enrolled in conventional kindergartens. RESULTS There was no difference between groups in risk of redeeming at least one prescription for all types of antibiotics (adjusted risk ratio: 0.97 [95% confidence intervals 0.93, 1.02, p = 0.26]). Similarly, there were no differences between kindergarten type and risk of redeeming at least one prescription for systemic, narrow-spectrum systemic antibacterial, broad-spectrum systemic antibacterial or topical antibiotics. CONCLUSION Compared with children who were enrolled in conventional kindergartens, children who were enrolled in outdoor kindergartens did not have a lower risk of redeeming prescriptions for any type of antibiotics.
Collapse
Affiliation(s)
- Nanna Julie Olsen
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Sofus Christian Larsen
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Køster-Rasmussen
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jeanett Friis Rohde
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | | | - Berit Lilienthal Heitmann
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- The Boden Group, The Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ina Olmer Specht
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Ballash GA, Diaz-Campos D, van Balen JC, Mollenkopf DF, Wittum TE. Previous Antibiotic Exposure Reshapes the Population Structure of Infecting Uropathogenic Escherichia coli Strains by Selecting for Antibiotic Resistance over Urovirulence. Microbiol Spectr 2023; 11:e0524222. [PMID: 37338386 PMCID: PMC10433818 DOI: 10.1128/spectrum.05242-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Antibiotic therapy is the standard of care for urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC). However, previous antibiotic therapy may impart a selective pressure that influences the population structure and pathogenic potential of infecting UPEC strains. Here, we conducted a 3-year study using whole-genome-sequencing analysis and retrospective medical record review to characterize how antibiotic exposure influenced the phenotypic antibiotic resistance, acquired resistome, virulome, and population structure of 88 UTI-causing E. coli strains from dogs. A majority of UTI-associated E. coli strains were from phylogroup B2 and clustered within sequence type 372. Previous antibiotic exposure was associated with a population shift toward UPEC from phylogroups other than the typical urovirulent phylogroup B2. The specific virulence profiles within the accessory virulome that were associated with antibiotic use were elicited by the effect of antibiotics on UPEC phylogenetic structure. Among phylogroup B2, antibiotic exposure increased the quantity of genes within the resistome and the odds of developing reduced susceptibility to at least one antibiotic. Non-B2 UPEC strains harbored a more diverse and greater resistome that conferred reduced susceptibility to multiple antibiotic classes following antibiotic exposure. Collectively, these data suggest that previous antibiotic exposure establishes an environment that provides a selective edge to non-B2 UPEC strains through their diverse and abundant antibiotic resistance genes, despite their lack of urovirulence genes. Our findings highlight the necessity for judicious use of antibiotics as we uncover another mechanism by which antibiotic exposure and resistance can influence the dynamics of bacterial infectious disease. IMPORTANCE Urinary tract infections (UTIs) are one of the most common infections of dogs and humans. While antibiotic therapy is the standard of care for UTIs and other infections, antibiotic exposure may influence the pathogenic profile of subsequent infections. We used whole-genome sequencing and retrospective medical record review to characterize the effect of systemic antibiotic therapy on the resistance, virulence, and population structure of 88 UTI-causing UPEC strains isolated from dogs. Our results indicate that antibiotic exposure alters the population structure of infecting UPEC strains, providing a selective edge for non-B2 phylogroups that harbor diverse and abundant resistance gene catalogues but fewer urovirulence genes. These findings highlight how antibiotic resistance can influence pathogen infection dynamics and have clinical implications for the judicious use of antibiotics for bacterial infections.
Collapse
Affiliation(s)
- Gregory A. Ballash
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Dubraska Diaz-Campos
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Joany C. van Balen
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Dixie F. Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thomas E. Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Kaur R, Kaur R, Varghese A, Garg N, Arora S. Antibiotics in Paediatrics: A Boon or a Bane? ANTI-INFECTIVE AGENTS 2023; 21. [DOI: 10.2174/2211352520666220822145139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2025]
Abstract
Antibiotics play an essential role in antimicrobial therapy. Among all the medications
in children, the most commonly prescribed therapy is antibiotics and is currently the indispensable
means to cure transmissible diseases. Several categories of antibiotics have been introduced into
clinical practice to treat microbial infections. Reducing the unnecessary use of antibiotics is a
global need and priority. This article aims to provide better knowledge and understanding of the
impact of the early use of antibiotics. This article highlights the proper use of antibiotics in children,
detailing how early and inappropriate use of antibiotics affect the gut microbiome during
normal body development and consequently affect the metabolism due to diabetes mellitus, obesity,
and recurrence of infections, such as UTI. Several new antibiotics in their development stage,
newly marketed antibiotics, and some recalled and withdrawn from the market are also briefly
discussed in this article. This study will help future researchers in exploring the latest information
about antibiotics used in paediatrics.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ashlin Varghese
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nidhi Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
14
|
Räisänen LK, Kääriäinen SE, Sund R, Engberg E, Viljakainen HT, Kolho KL. Antibiotic exposures and the development of pediatric autoimmune diseases: a register-based case-control study. Pediatr Res 2023; 93:1096-1104. [PMID: 35854091 PMCID: PMC10033398 DOI: 10.1038/s41390-022-02188-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Antibiotics have been associated with several individual autoimmune diseases (ADs). This study aims to discover whether pre-diagnostic antibiotics are associated with the onset of ADs in general. METHODS From a cohort of 11,407 children, 242 developed ADs (type 1 diabetes, autoimmune thyroiditis, juvenile idiopathic arthritis (JIA), or inflammatory bowel diseases) by a median age of 16 years. Antibiotic purchases from birth until the date of diagnosis (or respective date in the matched controls n = 708) were traced from national registers. RESULTS Total number of antibiotic purchases was not related to the onset of ADs when studied as a group. Of specific diagnoses, JIA was associated with the total number of antibiotics throughout the childhood and with broad-spectrum antibiotics before the age of 3 years. Intriguingly, recent and frequent antibiotic use (within 2 years before diagnosis and ≥3 purchases) was associated with the onset of ADs (OR 1.72, 95% CI 1.08-2.74). Regardless of frequent use in childhood (40% of all antibiotics), penicillin group antibiotics were not related to any ADs. CONCLUSIONS Use of antibiotics was relatively safe regarding the overall development of ADs. However, broad-spectrum antibiotics should be used considerately as they may associate with an increased likelihood of JIA. IMPACT Increasing numbers of antibiotic purchases before the age of 3 years or throughout childhood were not associated with the development of pediatric autoimmune diseases. Broad-spectrum antibiotics were related to the development of autoimmune diseases, especially juvenile idiopathic arthritis in children, while penicillin group antibiotics were not. The use of broad-spectrum antibiotics in children should be cautious as they may carry along a risk for autoimmune disease development.
Collapse
Affiliation(s)
- Laura K Räisänen
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | | | - Reijo Sund
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heli T Viljakainen
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaija-Leena Kolho
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland.
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
15
|
Shekhar S, Brar NK, Petersen FC. Suppressive effect of therapeutic antibiotic regimen on antipneumococcal Th1/Th17 responses in neonatal mice. Pediatr Res 2023; 93:818-826. [PMID: 35778498 DOI: 10.1038/s41390-022-02115-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Antibiotics are commonly used in human neonates, but their impact on neonatal T cell immunity remains poorly understood. The aim of this study was to investigate the impact of the antibiotic piperacillin with the beta-lactamase inhibitor tazobactam on neonatal CD4+ and CD8+ T cell responses to Streptococcus pneumoniae. METHODS Splenic and lung cells were isolated from the neonatal mice receiving piperacillin and tazobactam or saline (sham) and cultured with S. pneumoniae to analyze T cell cytokine production by ELISA and flow cytometry. RESULTS Antibiotic exposure to neonatal mice resulted in reduced numbers of CD4+/CD8+ T cells in the spleen and lungs compared to control mice. Upon in vitro stimulation with S. pneumoniae, splenocytes and lung cells from antibiotic-exposed mice produced lower levels of IFN-γ (Th1)/IL-17A (Th17) and IL-17A cytokines, respectively. Flow cytometric analysis revealed that S. pneumoniae-stimulated splenic CD4+ T cells from antibiotic-exposed mice expressed decreased levels of IFN-γ and IL-17A compared to control mice, whereas lung CD4+ T cells produced lower levels of IL-17A. However, no significant difference was observed for IL-4 (Th2) production. CONCLUSIONS Neonatal mice exposure to piperacillin and tazobactam reduces the number of CD4+ and CD8+ T cells, and suppresses Th1 and Th17, but not Th2, responses to S. pneumoniae. IMPACT Exposure of neonatal mice with a combination of piperacillin and tazobactam reduces CD4+/CD8+ T cells in the spleen and lungs. Antibiotic exposure suppresses neonatal Th1 and Th17, but not Th2, responses to Streptococcus pneumoniae. Our findings may have important implications for developing better therapeutic strategies in the neonatal intensive care unit.
Collapse
Affiliation(s)
| | - Navdeep K Brar
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
16
|
Capacity of a Microbial Synbiotic To Rescue the In Vitro Metabolic Activity of the Gut Microbiome following Perturbation with Alcohol or Antibiotics. Appl Environ Microbiol 2023; 89:e0188022. [PMID: 36840551 PMCID: PMC10056957 DOI: 10.1128/aem.01880-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The human gut microbiome contributes crucial bioactive metabolites that support human health and is sensitive to perturbations from the ingestion of alcohol and antibiotics. We interrogated the response and recovery of human gut microbes after acute alcohol or broad-spectrum antibiotic administration in a gut model simulating the luminal and mucosal colonic environment with an inoculated human microbiome. Both alcohol and antibiotic treatments reduced the production of major short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), which are established modulators of human health. Treatment with a microbial synbiotic restored and enhanced gut function. Butyrate and acetate production increased by up to 29.7% and 18.6%, respectively, relative to untreated, dysbiotic samples. In parallel, treatment led to increases in the relative abundances of beneficial commensal organisms not found in the synbiotic (e.g., Faecalibacterium prausnitzii and the urolithin-producing organism Gordonibacter pamelaeae) as well as species present in the synbiotic (e.g., Bifidobacterium infantis), suggesting synergistic interactions between supplemented and native microorganisms. These results lead us to conclude that functional shifts in the microbiome, evaluated by both metabolite production and specific taxonomic compositional changes, are an appropriate metric to assess microbiome "recovery" following a dysbiosis-inducing disruption. Overall, these findings support the execution of randomized clinical studies to determine whether a microbial synbiotic can help restore microbiome function after a disruption. IMPORTANCE The human gut microbiome is sensitive to disruptions by common stressors such as alcohol consumption and antibiotic treatment. In this study, we used an in vitro system modeling the gut microbiome to investigate whether treatment with a microbial synbiotic can help restore microbiome function after stress. We find that a complex gut community treated with alcohol or antibiotics showed reduced levels of production of short-chain fatty acids, which are critical beneficial molecules produced by a healthy gut microbiota. Treatment of stressed communities with a microbial synbiotic resulted in the recovery of SCFA production as well as an increase in the abundance of beneficial commensal organisms. Our results suggest that treatment with a microbial synbiotic has the potential to restore healthy gut microbiome function after stress and merits further investigation in clinical studies.
Collapse
|
17
|
Francis F, Robertson RC, Bwakura-Dangarembizi M, Prendergast AJ, Manges AR. Antibiotic use and resistance in children with severe acute malnutrition and human immunodeficiency virus infection. Int J Antimicrob Agents 2023; 61:106690. [PMID: 36372343 DOI: 10.1016/j.ijantimicag.2022.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/12/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Severe acute malnutrition (SAM) and human immunodeficiency virus (HIV) infection underlie a major proportion of the childhood disease burden in low- and middle-income countries. These diseases commonly co-occur and lead to higher risk of other endemic infectious diseases, thereby compounding the risk of mortality and morbidity. The widespread use of antibiotics as treatment and prophylaxis in childhood SAM and HIV infections, respectively, has reduced mortality and morbidity but canlead to increasing antibiotic resistance. Development of antibiotic resistance could render future infections untreatable. This review summarises the endemic co-occurrence of undernutrition, particularly SAM, and HIV in children, and current treatment practices, specifically WHO-recommended antibiotic usage. The risks and benefits of antibiotic treatment, prophylaxis and resistance are reviewed in the context of patients with SAM and HIV and associated sub-populations. Finally, the review highlights possible research areas and populations where antibiotic resistance progression can be studied to best address concerns associated with the future impact of resistance. Current antibiotic usage is lifesaving in complicated SAM and HIV-infected populations; nevertheless, increasing baseline resistance and infection remain a significant concern. In conclusion, antibiotic usage currently addresses the immediate needs of children in SAM and HIV endemic regions; however, it is prudent to evaluate the impact of antibiotic use on resistance dynamics and long-term child health.
Collapse
Affiliation(s)
- Freddy Francis
- Experimental Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | | | | | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, U.K; Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe..
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada; British Columbia Centre for Disease Control (BCCDC), Vancouver, BC, Canada.
| |
Collapse
|
18
|
Wang S, Cui J, Jiang S, Zheng C, Zhao J, Zhang H, Zhai Q. Early life gut microbiota: Consequences for health and opportunities for prevention. Crit Rev Food Sci Nutr 2022; 64:5793-5817. [PMID: 36537331 DOI: 10.1080/10408398.2022.2158451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gut microbiota influences many aspects of the host, including immune system maturation, nutrient absorption and metabolism, and protection from pathogens. Increasing evidences from cohort and animal studies indicate that changes in the gut microbiota early in life increases the risk of developing specific diseases early and later in life. Therefore, it is becoming increasingly important to identify specific disease prevention or therapeutic solutions targeting the gut microbiota, especially during infancy, which is the window of the human gut microbiota establishment process. In this review, we provide an overview of current knowledge concerning the relationship between disturbances in the gut microbiota early in life and health consequences later in life (e.g., necrotizing enterocolitis, celiac disease, asthma, allergies, autism spectrum disorders, overweight/obesity, diabetes and growth retardation), with a focus on changes in the gut microbiota prior to disease onset. In addition, we summarize and discuss potential microbiota-based interventions early in life (e.g., diet adjustments, probiotics, prebiotics, fecal microbiota transplantation, environmental changes) to promote health or prevent the development of specific diseases. This knowledge should aid the understanding of early life microbiology and inform the development of prediction and prevention measures for short- and long-term health disorders based on the gut microbiota.
Collapse
Affiliation(s)
- Shumin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Chengdong Zheng
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Heng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Upadhaya SD, Kim IH. Maintenance of gut microbiome stability for optimum intestinal health in pigs - a review. J Anim Sci Biotechnol 2022; 13:140. [PMID: 36474259 PMCID: PMC9727896 DOI: 10.1186/s40104-022-00790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pigs are exposed to various challenges such as weaning, environmental stressors, unhealthy diet, diseases and infections during their lifetime which adversely affects the gut microbiome. The inability of the pig microbiome to return to the pre-challenge baseline may lead to dysbiosis resulting in the outbreak of diseases. Therefore, the maintenance of gut microbiome diversity, robustness and stability has been influential for optimum intestinal health after perturbations. Nowadays human and animal researches have focused on more holistic approaches to obtain a robust gut microbiota that provides protection against pathogens and improves the digestive physiology and the immune system. In this review, we present an overview of the swine gut microbiota, factors affecting the gut microbiome and the importance of microbial stability in promoting optimal intestinal health. Additionally, we discussed the current understanding of nutritional interventions using fibers and pre/probiotics supplementation as non-antibiotic alternatives to maintain microbiota resilience to replace diminished species.
Collapse
Affiliation(s)
- Santi Devi Upadhaya
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| | - In Ho Kim
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| |
Collapse
|
20
|
The Role of the Gut Microbiome in Pediatric Obesity and Bariatric Surgery. Int J Mol Sci 2022; 23:ijms232315421. [PMID: 36499739 PMCID: PMC9740713 DOI: 10.3390/ijms232315421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity affects 42.4% of adults and 19.3% of children in the United States. Childhood obesity drives many comorbidities including hypertension, fatty liver disease, and type 2 diabetes mellitus. Prior research suggests that aberrant compositional development of the gut microbiome, with low-grade inflammation, precedes being overweight. Therefore, childhood may provide opportunities for interventions that shape the microbiome to mitigate obesity-related diseases. Children with obesity have gut microbiota compositional and functional differences, including increased proinflammatory bacterial taxa, compared to lean controls. Restoration of the gut microbiota to a healthy state may ameliorate conditions associated with obesity and help maintain a healthy weight. Pediatric bariatric (weight-loss) surgery is an effective treatment for childhood obesity; however, there is limited research into the role of the gut microbiome after weight-loss surgery in children. This review will discuss the magnitude of childhood obesity, the importance of the developing microbiome in establishing metabolic pathways, interventions such as bariatric surgery that may modulate the gut microbiome, and future directions for the potential development of microbiome-based therapeutics to treat obesity.
Collapse
|
21
|
Kowallik V, Das A, Mikheyev AS. Experimental inheritance of antibiotic acquired dysbiosis affects host phenotypes across generations. Front Microbiol 2022; 13:1030771. [PMID: 36532456 PMCID: PMC9751584 DOI: 10.3389/fmicb.2022.1030771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 04/12/2024] Open
Abstract
Microbiomes can enhance the health, fitness and even evolutionary potential of their hosts. Many organisms propagate favorable microbiomes fully or partially via vertical transmission. In the long term, such co-propagation can lead to the evolution of specialized microbiomes and functional interdependencies with the host. However, microbiomes are vulnerable to environmental stressors, particularly anthropogenic disturbance such as antibiotics, resulting in dysbiosis. In cases where microbiome transmission occurs, a disrupted microbiome may then become a contagious pathology causing harm to the host across generations. We tested this hypothesis using the specialized socially transmitted gut microbiome of honey bees as a model system. By experimentally passaging tetracycline-treated microbiomes across worker 'generations' we found that an environmentally acquired dysbiotic phenotype is heritable. As expected, the antibiotic treatment disrupted the microbiome, eliminating several common and functionally important taxa and strains. When transmitted, the dysbiotic microbiome harmed the host in subsequent generations. Particularly, naïve bees receiving antibiotic-altered microbiomes died at higher rates when challenged with further antibiotic stress. Bees with inherited dysbiotic microbiomes showed alterations in gene expression linked to metabolism and immunity, among other pathways, suggesting effects on host physiology. These results indicate that there is a possibility that sublethal exposure to chemical stressors, such as antibiotics, may cause long-lasting changes to functional host-microbiome relationships, possibly weakening the host's progeny in the face of future ecological challenges. Future studies under natural conditions would be important to examine the extent to which negative microbiome-mediated phenotypes could indeed be heritable and what role this may play in the ongoing loss of biodiversity.
Collapse
Affiliation(s)
- Vienna Kowallik
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
| | - Ashutosh Das
- Australian National University, Canberra, ACT, Australia
- Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
- Australian National University, Canberra, ACT, Australia
| |
Collapse
|
22
|
Miller AW, Penniston KL, Fitzpatrick K, Agudelo J, Tasian G, Lange D. Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat Rev Urol 2022; 19:695-707. [PMID: 36127409 PMCID: PMC11234243 DOI: 10.1038/s41585-022-00647-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 02/08/2023]
Abstract
Kidney stone disease affects ~10% of the global population and the incidence continues to rise owing to the associated global increase in the incidence of medical conditions associated with kidney stone disease including, for example, those comprising the metabolic syndrome. Considering that the intestinal microbiome has a substantial influence on host metabolism, that evidence has suggested that the intestinal microbiome might have a role in maintaining oxalate homeostasis and kidney stone disease is unsurprising. In addition, the discovery that urine is not sterile but, like other sites of the human body, harbours commensal bacterial species that collectively form a urinary microbiome, is an additional factor that might influence the induction of crystal formation and stone growth directly in the kidney. Collectively, the microbiomes of the host could influence kidney stone disease at multiple levels, including intestinal oxalate absorption and direct crystal formation in the kidneys.
Collapse
Affiliation(s)
- Aaron W Miller
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Kristina L Penniston
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kate Fitzpatrick
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - José Agudelo
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gregory Tasian
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
The Effect of Quadruple Therapy with Polaprezinc or Bismuth on Gut Microbiota after Helicobacter pylori Eradication: A Randomized Controlled Trial. J Clin Med 2022; 11:jcm11237050. [PMID: 36498624 PMCID: PMC9739995 DOI: 10.3390/jcm11237050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Quadruple therapy with polaprezinc provided an alternative to Helicobacter pylori eradication; however, the effect on gut microbiota remains uncertain. This study aims to identify whether polaprezinc-containing quadruple therapy causes adverse microbiota effects among asymptomatic adults, compared with bismuth therapy. Methods: This was a randomized control trial. One hundred asymptomatic H. pylori-infected adults were randomly (1:1) assigned to two treatment groups (polaprezinc-containing therapy, PQT; or bismuth-containing therapy, BQT). Fecal samples were collected from subjects before and 4−8 weeks after therapy. Samples were sequenced for the V4 regions of the 16S rRNA gene. Results: The relative abundance of the three dominant bacterial phyla (Bacteroidota, Firmicutes, and Proteobacteria) accounted for more than 95% of each treatment group. The alpha diversity between eradications that succeeded and those that failed had no significant difference (p > 0.05). After successful eradication, the alpha diversity in the BQT group decreased in comparison with the baseline (p < 0.05). Subjects who were successfully eradicated by BQT showed considerably lower alpha diversity indices than those of the PQT at follow-up (p < 0.05). The abundance of Parasutterella in subjects who were successfully eradicated by PQT was four times greater than that of BQT (q < 0.05). Conclusion: A 14-day PQT may be superior to BQT in maintaining short-term gut microbiota homeostasis after H. pylori treatment. Our findings preliminarily provide evidence of the short-term impacts of the gut microbiota after PQT treatment of H. pylori infection.
Collapse
|
24
|
Heisel T, Johnson AJ, Gonia S, Dillon A, Skalla E, Haapala J, Jacobs KM, Nagel E, Pierce S, Fields D, Demerath E, Knights D, Gale CA. Bacterial, fungal, and interkingdom microbiome features of exclusively breastfeeding dyads are associated with infant age, antibiotic exposure, and birth mode. Front Microbiol 2022; 13:1050574. [PMID: 36466688 PMCID: PMC9714262 DOI: 10.3389/fmicb.2022.1050574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
The composition and function of early life gut bacterial communities (microbiomes) have been proposed to modulate health for the long term. In addition to bacteria, fungi (mycobiomes) also colonize the early life gut and have been implicated in health disorders such as asthma and obesity. Despite the potential importance of mycobiomes in health, there has been a lack of study regarding fungi and their interkingdom interactions with bacteria during infancy. The goal of this study was to obtain a more complete understanding of microbial communities thought to be relevant for the early life programming of health. Breastmilk and infant feces were obtained from a unique cohort of healthy, exclusively breastfeeding dyads recruited as part of the Mothers and Infants Linked for Healthy Growth (MILk) study with microbial taxa characterized using amplicon-based sequencing approaches. Bacterial and fungal communities in breastmilk were both distinct from those of infant feces, consistent with niche-specific microbial community development. Nevertheless, overlap was observed among sample types (breastmilk, 1-month feces, 6-month feces) with respect to the taxa that were the most prevalent and abundant. Self-reported antibacterial antibiotic exposure was associated with micro- as well as mycobiome variation, which depended upon the subject receiving antibiotics (mother or infant), timing of exposure (prenatal, peri- or postpartum), and sample type. In addition, birth mode was associated with bacterial and fungal community variation in infant feces, but not breastmilk. Correlations between bacterial and fungal taxa abundances were identified in all sample types. For infant feces, congruency between bacterial and fungal communities was higher for older infants, consistent with the idea of co-maturation of bacterial and fungal gut communities. Interkingdom connectedness also tended to be higher in older infants. Additionally, higher interkingdom connectedness was associated with Cesarean section birth and with antibiotic exposure for microbial communities of both breastmilk and infant feces. Overall, these results implicate infant age, birth mode, and antibiotic exposure in bacterial, fungal and interkingdom relationship variation in early-life-relevant microbiomes, expanding the current literature beyond bacteria.
Collapse
Affiliation(s)
- Timothy Heisel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Abigail J. Johnson
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Sara Gonia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Abrielle Dillon
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Emily Skalla
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Haapala
- School of Public Health, University of Minnesota, Minneapolis, MN, United States,HealthPartners Institute, Minneapolis, MN, United States
| | - Katherine M. Jacobs
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Emily Nagel
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Stephanie Pierce
- College of Medicine, University of Oklahoma, Oklahoma City, OK, United States
| | - David Fields
- College of Medicine, University of Oklahoma, Oklahoma City, OK, United States
| | - Ellen Demerath
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Cheryl A. Gale,
| |
Collapse
|
25
|
Gelli HP, Vazquez-Uribe R, Sommer MOA. Screening for effective cell-penetrating peptides with minimal impact on epithelial cells and gut commensals in vitro. Front Pharmacol 2022; 13:1049324. [PMID: 36408245 PMCID: PMC9666501 DOI: 10.3389/fphar.2022.1049324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
One of the biggest challenges for oral drug absorption is the epithelial barrier of the gastrointestinal tract. The use of cell-penetrating peptides (CPPs) to modulate the epithelial barrier function is known to be an effective strategy to improve drug absorption and bioavailability. In this study we compare side-by-side, 9 most promising CPPs to study their cytotoxicity (Cytotox Red dye staining) and cell viability (AlamarBlue staining) on epithelial cells and their effects on paracellular permeability of the intestinal barrier in vitro in a differentiated Caco-2 epithelial monolayer model. The data revealed that 4 out of 9 well-studied CPPs significantly improved Caco-2 paracellular permeability without compromising on cellular health. To assess the impact of CPPs on the human microbiota we studied the antimicrobial effects of the 4 effective CPPs from our permeation studies against 10 representative strains of the gut microbiota in vitro using microbroth dilution. Our data revealed that these 4 CPPs affected the growth of almost all tested commensal strains. Interestingly, we found that two synthetic CPPs (Shuffle and Penetramax) outperformed all the other CPPs in their ability to increase intestinal paracellular permeability at 50 µM and had only a small to moderate effect on the tested gut commensal strains. Based on these data Shuffle and Penetramax represent relevant CPPs to be further characterized in vivo for safe delivery of poorly absorbed therapeutics while minimizing negative impacts on the gut microbiota.
Collapse
|
26
|
Nausch B, Bittner CB, Höller M, Abramov-Sommariva D, Hiergeist A, Gessner A. Contribution of Symptomatic, Herbal Treatment Options to Antibiotic Stewardship and Microbiotic Health. Antibiotics (Basel) 2022; 11:1331. [PMID: 36289988 PMCID: PMC9598931 DOI: 10.3390/antibiotics11101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/03/2022] Open
Abstract
Epithelial surfaces in humans are home to symbiotic microbes (i.e., microbiota) that influence the defensive function against pathogens, depending on the health of the microbiota. Healthy microbiota contribute to the well-being of their host, in general (e.g., via the gut-brain axis), and their respective anatomical site, in particular (e.g., oral, urogenital, skin, or respiratory microbiota). Despite efforts towards a more responsible use of antibiotics, they are often prescribed for uncomplicated, self-limiting infections and can have a substantial negative impact on the gut microbiota. Treatment alternatives, such as non-steroidal anti-inflammatory drugs, may also influence the microbiota; thus, they can have lasting adverse effects. Herbal drugs offer a generally safe treatment option for uncomplicated infections of the urinary or respiratory tract. Additionally, their microbiota preserving properties allow for a more appropriate therapy of uncomplicated infections, without contributing to an increase in antibiotic resistance or disturbing the gut microbiota. Here, herbal treatments may be a more appropriate therapy, with a generally favorable safety profile.
Collapse
Affiliation(s)
- Bernhard Nausch
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Claudia B. Bittner
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Martina Höller
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Dimitri Abramov-Sommariva
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
27
|
Zhang Q, Li J, Yi X, Li Z, Liang S, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Wu D, Che L. Rhodotorula benthica culture as an alternative to antibiotics improves growth performance by improving nutrients digestibility and intestinal morphology, and modulating gut microbiota of weaned piglets. Front Microbiol 2022; 13:964531. [PMID: 36118236 PMCID: PMC9479635 DOI: 10.3389/fmicb.2022.964531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of Rhodotorula benthica culture (RBC) and antibiotics (AB) on the growth performance, nutrients digestibility, morphological indicators, and colonic microbiota of weaning piglets were explored. Ninety-six (Duroc × Landrace × Large) weaned piglets (21-day-old) weighing 7.7 ± 0.83 kg, were randomly allocated to 4 dietary treatments. They were fed with basal diet (CON), basal diet + 25 mg/kg bacitracin zinc + 5 mg/kg colistin sulfate (AB), 5 g/kg reduction in soybean meal of basal diet + 5 g/kg RBC (RBC1), or 10 g/kg reduction in soybean meal of basal diet + 10 g/kg RBC (RBC2). The results showed that dietary RBC1 improved the body gain/feed intake (G/F) of weaned piglets than the CON diet, and the RBC2 diet improved the average daily gain and G/F than CON and AB diets from days 15 to 28 (P < 0.05). Supplementation of RBC2 improved the apparent total tract digestibility of dry matter, nitrogen, and gross energy in weaned piglets compared to controls from days 15 to 28 (P < 0.05). Dietary AB, RBC1, and RBC2 enhanced the ileal villus height (VH) and VH/crypt depth (CD), and these two indicators were greater in the RBC2-treated piglets than in the AB- and RBC1-treated piglets (P < 0.05). The activity of serum superoxide dismutase (SOD) was enhanced by dietary AB, RBC1, and RBC2 (P < 0.05). Serum glutathione (GSH) concentration was elevated by dietary RBC1 and RBC2 (P < 0.05). According to 16S rRNA sequence analysis, AB- and RBC2-treated piglets had a higher relative abundance of Firmicutes and Lachnospiraceae in the colon digesta, and more abundant Lactobacillus was found in RBC1-treated piglets, as compared to the CON group. Additionally, RBC2 supplementation increased the α diversity [Chao1, PD-whole-tree, and observed operational taxonomic units (OTUs)] compared to the CON group. Taken together, the dietary RBC improved the growth performance of weaned piglets. In addition, 10 g/kg of RBC2 in the diet achieved better effects on higher ADG, ileal villi morphology, and stronger antioxidant capacity than dietary AB and RBC1 in weaning piglets.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xin Yi
- The First Affiliated Hospital, Department of Pain, Hengyang Medical School, University of South China, Hengyang, China
| | - Zipeng Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shuang Liang
- Guangzhou Prosyn Biological Technology Feed CO., LTD., Guangzhou, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Harshaw C, Kojima S, Wellman CL, Demas GE, Morrow AL, Taft DH, Kenkel WM, Leffel JK, Alberts JR. Maternal antibiotics disrupt microbiome, behavior, and temperature regulation in unexposed infant mice. Dev Psychobiol 2022; 64:e22289. [PMID: 35748626 PMCID: PMC9236156 DOI: 10.1002/dev.22289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Maternal antibiotic (ABx) exposure can significantly perturb the transfer of microbiota from mother to offspring, resulting in dysbiosis of potential relevance to neurodevelopmental disorders such as autism spectrum disorder (ASD). Studies in rodent models have found long-term neurobehavioral effects in offspring of ABx-treated dams, but ASD-relevant behavior during the early preweaning period has thus far been neglected. Here, we exposed C57BL/6J mouse dams to ABx (5 mg/ml neomycin, 1.25 μg/ml pimaricin, .075% v/v acetic acid) dissolved in drinking water from gestational day 12 through offspring postnatal day 14. A number of ASD-relevant behaviors were assayed in offspring, including ultrasonic vocalization (USV) production during maternal separation, group huddling in response to cold challenge, and olfactory-guided home orientation. In addition, we obtained measures of thermoregulatory competence in pups during and following behavioral testing. We found a number of behavioral differences in offspring of ABx-treated dams (e.g., modulation of USVs by pup weight, activity while huddling) and provide evidence that some of these behavioral effects can be related to thermoregulatory deficiencies, particularly at younger ages. Our results suggest not only that ABx can disrupt microbiomes, thermoregulation, and behavior, but that metabolic effects may confound the interpretation of behavioral differences observed after early-life ABx exposure.
Collapse
Affiliation(s)
| | - Sayuri Kojima
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | - Cara L. Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | | | - Ardythe L. Morrow
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Diana Hazard Taft
- Department of Food Science and Technology, University of California, Davis, Davis, CA
| | - William M. Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE
| | - Joseph K. Leffel
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | - Jeffrey R. Alberts
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| |
Collapse
|
29
|
Reyes-García DV, Canul-Euan AA, Rivera-Rueda MA, Cruz-Alvarado CE, Bermejo-Martínez LB, Arreola-Ramírez G, Cordero-González G, Carrera-Muiños S, Diaz-Valencia JD, Estrada-Gutiérrez G, Irles C, Gonzalez-Perez G. Neonatal Antibiotic Treatment Can Affect Stool Pattern and Oral Tolerance in Preterm Infants. Life (Basel) 2022; 12:life12071043. [PMID: 35888130 PMCID: PMC9319374 DOI: 10.3390/life12071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Preterm neonates are at high risk of infectious and inflammatory diseases which require antibiotic treatment. Antibiotics influence neonatal gut microbiome development, and intestinal dysbiosis has been associated with delayed gastrointestinal transit. Neonates who take less time to pass meconium have a better tolerance to enteral feeding. We analyzed the effect of neonatal antibiotic treatment on the stool pattern and oral tolerance in 106 preterm infants < 33 weeks gestational age. Neonates were classified in 3 groups according to neonatal antibiotic (ABT) treatment days: no antibiotics, 3−7 d ABT, and ≥8 d ABT. Preterm infants from the ≥8 d ABT group took longer to pass meconium and to start green and yellow stools, took longer to reach 100 and 150 mL/kg/day, and reached reduced volumes in enteral feeds at day of life 14 and 28 than infants from no ABT and 3−7 d ABT groups. Multiple linear regression models showed that neonatal antibiotic treatment, birth weight, invasive mechanical ventilation, surfactant, enteral feeding start day, neonatal parenteral nutrition, and neonatal fasting days are associated with the stool pattern and oral tolerance in preterm infants.
Collapse
Affiliation(s)
- Diana Verónica Reyes-García
- Neonatal Intensive Care Unit, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico; (D.V.R.-G.); (M.A.R.-R.); (C.E.C.-A.); (G.C.-G.); (S.C.-M.)
| | - Arturo Alejandro Canul-Euan
- Department of Developmental Neurobiology, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico;
| | - María Antonieta Rivera-Rueda
- Neonatal Intensive Care Unit, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico; (D.V.R.-G.); (M.A.R.-R.); (C.E.C.-A.); (G.C.-G.); (S.C.-M.)
| | - Claudia Edith Cruz-Alvarado
- Neonatal Intensive Care Unit, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico; (D.V.R.-G.); (M.A.R.-R.); (C.E.C.-A.); (G.C.-G.); (S.C.-M.)
| | - Luisa Bertha Bermejo-Martínez
- Department of Immunobiochemistry, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico;
| | - Gabriela Arreola-Ramírez
- Department of Pediatric Follow-Up, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico;
| | - Guadalupe Cordero-González
- Neonatal Intensive Care Unit, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico; (D.V.R.-G.); (M.A.R.-R.); (C.E.C.-A.); (G.C.-G.); (S.C.-M.)
| | - Sandra Carrera-Muiños
- Neonatal Intensive Care Unit, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico; (D.V.R.-G.); (M.A.R.-R.); (C.E.C.-A.); (G.C.-G.); (S.C.-M.)
| | - Juan Daniel Diaz-Valencia
- Department of Physiology and Cellular Development, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico; (J.D.D.-V.); (C.I.)
| | - Guadalupe Estrada-Gutiérrez
- Research Direction, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico;
| | - Claudine Irles
- Department of Physiology and Cellular Development, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico; (J.D.D.-V.); (C.I.)
| | - Gabriela Gonzalez-Perez
- Department of Physiology and Cellular Development, National Institute of Perinatology “Isidro Espinosa de los Reyes”, Mexico City 11000, Mexico; (J.D.D.-V.); (C.I.)
- Correspondence: ; Tel.: +52-55-55209900 (ext. 340)
| |
Collapse
|
30
|
Johnson KVA, Steenbergen L. Do common antibiotic treatments influence emotional processing? Physiol Behav 2022; 255:113900. [PMID: 35810835 DOI: 10.1016/j.physbeh.2022.113900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Antibiotics are among the most commonly prescribed medications worldwide, yet research in recent years has revealed the detrimental effect they can have on the human microbiome, with implications for health. The community of microorganisms inhabiting the gut has been shown to regulate physiological and neural processes. Since studies in both humans and animal models have revealed that the gut microbiome can affect the brain, influencing emotion and cognition, here we investigate whether antibiotic treatment is associated with changes in emotional processing and mood with a between-subject design in 105 young healthy adult volunteers, using both psychological tests and questionnaires. As both the immune system and vagal signalling can mediate the microbiome-gut-brain axis, we also assess whether there is any evidence of such changes in participant physiology. We find that individuals who have taken antibiotics in the past three months show a stronger emotional bias towards sadness and at a physiological level they have a higher heart rate (though this does not mediate the relationship with negative bias). While we cannot rule out a possible role of prior infection, our findings are in any case highly relevant in light of research revealing that antibiotics are linked to increased susceptibility to depression and anxiety. Our results also have implications for listing antibiotic use as an exclusion criterion in studies on emotional processing and psychophysiology.
Collapse
Affiliation(s)
- Katerina V-A Johnson
- Leiden University, Institute of Psychology, Clinical Psychology Unit, Leiden, 2333 AK, The Netherlands.
| | - Laura Steenbergen
- Leiden University, Institute of Psychology, Clinical Psychology Unit, Leiden, 2333 AK, The Netherlands
| |
Collapse
|
31
|
Cruz N, Abernathy GA, Dichosa AEK, Kumar A. The Age of Next-Generation Therapeutic-Microbe Discovery: Exploiting Microbe-Microbe and Host-Microbe Interactions for Disease Prevention. Infect Immun 2022; 90:e0058921. [PMID: 35384688 PMCID: PMC9119102 DOI: 10.1128/iai.00589-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Humans are considered "superorganisms," harboring a diverse microbial collective that outnumbers human cells 10 to 1. Complex and gravely understudied host- and microbe-microbe interactions-the product of millions of years of host-microbe coevolution-govern the superorganism in almost every aspect of life functions and overall well-being. Abruptly disrupting these interactions via extrinsic factors has undesirable consequences for the host. On the other hand, supplementing commensal or beneficial microbes may mitigate perturbed interactions or enhance the interactive relationships that ultimately benefit all parties. Hence, immense efforts have focused on dissecting the innumerable host- and microbe-microbe relationships to characterize if a "positive" or "negative" interaction is at play and to exploit such behavior for broader implications. For example, microbiome research has worked to identify and isolate naturally antipathogenic microbes that may offer therapeutic potential either in a direct, one-on-one application or by leveraging its unique metabolic properties. However, the discovery and isolation of such desired therapeutic microbes from complex microbiota have proven challenging. Currently, there is no conventional technique to universally and functionally screen for these microbes. With this said, we first describe in this review the historical (probiotics) and current (fecal microbiota or defined consortia) perspectives on therapeutic microbes, present the discoveries of therapeutic microbes through exploiting microbe-microbe and host-microbe interactions, and detail our team's efforts in discovering therapeutic microbes via our novel microbiome screening platform. We conclude this minireview by briefly discussing challenges and possible solutions with therapeutic microbes' applications and paths ahead for discovery.
Collapse
Affiliation(s)
- Nathan Cruz
- B-10: Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - George A. Abernathy
- B-10: Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Armand E. K. Dichosa
- B-10: Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Anand Kumar
- B-10: Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
32
|
Effect of Killed PRRSV Vaccine on Gut Microbiota Diversity in Pigs. Viruses 2022; 14:v14051081. [PMID: 35632822 PMCID: PMC9145812 DOI: 10.3390/v14051081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens affecting the global swine industry. Vaccination is still a main strategy for PRRSV control; however, host factors associated with vaccine efficacy remain poorly understood. Growing evidence suggests that mucosa-associated microbiomes may play a role in the responses to vaccination. In this study, we investigated the effects of a killed virus vaccine on the gut microbiome diversity in pigs. Fecal microbial communities were longitudinally assessed in three groups of pigs (vaccinated/challenged with PRRSV, unvaccinated/challenged with PRRSV, and unvaccinated/unchallenged) before and after vaccination and after viral challenge. We observed significant interaction effects between viral challenge and vaccination on both taxonomic richness and community diversity of the gut microbiota. While some specific taxonomic alterations appear to be enhanced in vaccinated/challenged pigs, others appeared to be more consistent with the levels in control animals (unvaccinated/unchallenged), indicating that vaccination incompletely protects against viral impacts on the microbiome. The abundances of several microbial taxa were further determined to be correlated with the level of viral load and the amount of PRRSV reactive CD4+ and CD8+ T-cells. This study highlights the potential roles of gut microbiota in the response of pigs to vaccination, which may pave the road for the development of novel strategies to enhance vaccine efficacy.
Collapse
|
33
|
Lao S, Zhou T, Kuo HC, Zhong G, Zeng W. Risk Factors for Coronary Artery Lesionsin Kawasaki Disease Independent of Antibiotic Use in Chinese Children. Front Public Health 2022; 10:817613. [PMID: 35602151 PMCID: PMC9118346 DOI: 10.3389/fpubh.2022.817613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To study the impact of antibiotics used in Kawasaki disease (KD) with coronary artery lesions (CAL) and identify independent risk factors. METHODOLOGY This study reviewed the records of 287 KD patients between the years 2016 and 2020. Patients were grouped by their outcome, the CAL group, and a no-coronary artery lesions (NCAL) group, and stratified by the use of antibiotics. We collected clinical and laboratory data before the intravenous immunoglobulin (IVIG) treatment. RESULTS The two groups of KD patients with and without CAL were compared. The results showed that there are significant differences between groups which were erythrocyte count (p = 0.045) and hemoglobin (p = 0.005), red blood cell-specific volume (p = 0.001), immature granular cells percentage (p = 0.006), total protein (p = 0.045), albumin (p = 0.041), alkaline phosphatase (p = 0.023), and chlorine (p = 0.006). After multivariate logistic regression, neutrophil granulocyte percentage (odds ratio [OR] = 1.200, 95% confidence interval [CI]: 1.008-1.428, p = 0.040), lymphocyte percentage (p = 0.028, OR = 1.243, 95% CI: 1.024-1.508, p = 0.028) and total protein (OR = 4.414, 95% CI: 1.092-17.846, p = 0.037) were found to be independent risk factors for CAL. After analyzing the cases with a history of antibiotic use, multivariate analysis showed no indicators were considered independent risk factors for CAL. CONCLUSION Neutrophil granulocyte percentage, Lymphocyte percentage and total protein were independent risks for CAL in KD without antibiotics use history. The use of antibiotics affected physiological indicators of KD patients.
Collapse
Affiliation(s)
- Sixian Lao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Tao Zhou
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Ho-Chang Kuo
- Kawasaki Disease Center and Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- The Second People's Hospital of Longgang District, Shenzhen, China
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
34
|
Niewiem M, Grzybowska-Chlebowczyk U. Intestinal Barrier Permeability in Allergic Diseases. Nutrients 2022; 14:nu14091893. [PMID: 35565858 PMCID: PMC9101724 DOI: 10.3390/nu14091893] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The role of intestinal permeability (IP) markers among children and adults with food allergies is not fully understood, and the identification of biological indicators/markers that predict growth retardation in children with allergic diseases and atopy has not been well explained. Studies have shown that patients with atopic diseases respond abnormally to food allergens. Accordingly, differences in the types of immune complexes formed in response to antigen challenges are significant, which seems to underlie the systemic signs of the food allergy. Increased intestinal permeability over the course of a food allergy allows allergens to penetrate through the intestinal barrier and stimulate the submucosal immune system. Additionally, the release of cytokines and inflammatory mediators enhances the degradation of the epithelial barrier and leads to an improper cycle, resulting in increased intestinal permeability. Several studies have also demonstrated increased permeability of the epithelial cells in those afflicted with atopic eczema and bronchial asthma. Ongoing research is aimed at finding various indicators to assess IP in patients with atopic diseases.
Collapse
|
35
|
Seethalakshmi PS, Charity OJ, Giakoumis T, Kiran GS, Sriskandan S, Voulvoulis N, Selvin J. Delineating the impact of COVID-19 on antimicrobial resistance: An Indian perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151702. [PMID: 34798093 PMCID: PMC8592853 DOI: 10.1016/j.scitotenv.2021.151702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/24/2021] [Accepted: 11/11/2021] [Indexed: 05/23/2023]
Abstract
The COVID-19 pandemic has shattered millions of lives globally and continues to be a challenge to public health due to the emergence of variants of concern. Fear of secondary infections following COVID-19 has led to an escalation in antimicrobial use during the pandemic, while some antimicrobials have been repurposed as treatments for SARS-CoV-2, further driving antimicrobial resistance. India is one of the largest producers and consumers of antimicrobials globally, hence the task of curbing antimicrobial resistance is a huge challenge. Practices like empirical antimicrobial prescription and repurposing of drugs in clinical settings, self-medication and excessive use of antimicrobial hygiene products may have negatively impacted the prevalence of antimicrobial resistance in India. However, the expanded production of antimicrobials and disinfectants during the pandemic in response to increased demand may have had an even greater impact on the threat of antimicrobial resistance through major impacts on the environment. The review provides an outline of the impact COVID-19 can have on antimicrobial resistance in clinical settings and the possible outcomes on the environment. This review calls for the upgrading of existing antimicrobial policies and emphasizes the need for research studies to understand the impact of the pandemic on antimicrobial resistance in India.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - Oliver J Charity
- NIHR Health Protection Research Unit in Healthcare associated infection and AMR, Department of Infectious Disease, Imperial College London, UK.
| | | | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Shiranee Sriskandan
- NIHR Health Protection Research Unit in Healthcare associated infection and AMR, Department of Infectious Disease, Imperial College London, UK; MRC Centre for Molecular Bacteriology & Infection, Imperial College London, UK.
| | | | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
36
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
37
|
Qiu W, Chen B, Tang L, Zheng C, Xu B, Liu Z, Magnuson JT, Zhang S, Schlenk D, Xu EG, Xing B. Antibiotic Chlortetracycline Causes Transgenerational Immunosuppression via NF-κB. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4251-4261. [PMID: 35286074 PMCID: PMC8988297 DOI: 10.1021/acs.est.1c07343] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/01/2023]
Abstract
The extensive and increasing global use of antibiotics results in the ubiquitous presence of antibiotics in the environment, which has made them "pseudo persistent organic contaminants." Despite numerous studies showing wide adverse effects of antibiotics on organisms, the chronic environmental risk of their exposure is unknown, and the molecular and cellular mechanisms of antibiotic toxicity remain unclear. Here, we systematically quantified transgenerational immune disturbances after chronic parental exposure to environmental levels of a common antibiotic, chlortetracycline (CTC), using zebrafish as a model. CTC strongly reduced the antibacterial activities of fish offspring by transgenerational immunosuppression. Both innate and adaptive immunities of the offspring were suppressed, showing significant perturbation of macrophages and neutrophils, expression of immune-related genes, and other immune functions. Moreover, these CTC-induced immune effects were either prevented or alleviated by the supplementation with PDTC, an antagonist of nuclear factor-κB (NF-κB), uncovering a seminal role of NF-κB in CTC immunotoxicity. Our results provide the evidence in fish that CTC at environmentally relevant concentrations can be transmitted over multiple generations and weaken the immune defense of offspring, raising concerns on the population hazards and ecological risk of antibiotics in the natural environment.
Collapse
Affiliation(s)
- Wenhui Qiu
- School
of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong
Provincial Key Laboratory of Soil and Groundwater Pollution Control,
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bei Chen
- Fisheries
Research Institute of Fujian, Xiamen 361013, China
| | - Liang Tang
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chunmiao Zheng
- Guangdong
Provincial Key Laboratory of Soil and Groundwater Pollution Control,
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- School
of Life and Environmental Science, Wenzhou
University, Wenzhou 325035, China
| | - Zhiyu Liu
- Fisheries
Research Institute of Fujian, Xiamen 361013, China
| | - Jason T. Magnuson
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Shuwen Zhang
- Guangdong
Provincial Key Laboratory of Soil and Groundwater Pollution Control,
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Elvis Genbo Xu
- Department
of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
38
|
Changes to Gut Microbiota Following Systemic Antibiotic Administration in Infants. Antibiotics (Basel) 2022; 11:antibiotics11040470. [PMID: 35453221 PMCID: PMC9025670 DOI: 10.3390/antibiotics11040470] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Long-term antibiotic use can have consequences on systemic diseases, such as obesity, allergy, and depression, implicating the causal role of gut microbiome imbalance. However, the evaluation of the effect of antibiotics in early infancy on alterations to the gut microbiome remains poorly understood. This study aimed to evaluate the gut microbiome state in infancy following systemic antibiotic treatment. Twenty infants under 3 months of age who had received antibiotics for at least 3 days were enrolled, and their fecal samples were collected 4 weeks after antibiotic administration finished. Thirty-four age-matched healthy controls without prior exposure to antibiotics were also assessed. The relative bacterial abundance in feces was obtained via sequencing of 16 S rRNA genes, and alpha and beta diversities were evaluated. At the genus level, the relative abundance of Escherichia/Shigella and Bifidobacterium increased (p = 0.03 and p = 0.017, respectively) but that of Bacteroides decreased (p = 0.02) in the antibiotic treatment group. The microbiome of the antibiotic treatment group exhibited an alpha diversity lower than that of the control group. Thus, systemic antibiotic administration in early infancy affects the gut microbiome composition even after a month has passed; long-term studies are needed to further evaluate this.
Collapse
|
39
|
Liu Z, Wei S, Chen X, Liu L, Wei Z, Liao Z, Wu J, Li Z, Zhou H, Wang D. The Effect of Long-Term or Repeated Use of Antibiotics in Children and Adolescents on Cognitive Impairment in Middle-Aged and Older Person(s) Adults: A Cohort Study. Front Aging Neurosci 2022; 14:833365. [PMID: 35401157 PMCID: PMC8984107 DOI: 10.3389/fnagi.2022.833365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives We evaluated the effects of long-term/recurrent use of antibiotics in childhood on developing cognitive impairment in middle and old age from UK Biobank Database. Methods UK Biobank recruited participants aged 37-73 years. Cognitive impairment was ascertained by fluid intelligence questionnaire. Primary outcome was the occurrence of cognitive impairment in middle and old age. Multivariate logistic regression models were used to explore the relationship between long-term/recurrent use of antibiotics and cognitive impairment. Results Over 3.8-10.8 years' follow-up, 4,781 of the 35,921 participants developed cognitive impairment. The odds of cognitive impairment in middle and old age among long-term/recurrent use of antibiotics in childhood were increased by 18% compared with their counterparts (adjusted odd ratio 1.18, 95% confidence interval 1.08-1.29, p < 0.01). The effect of long-term/recurrent use of antibiotics in childhood on cognitive impairment was homogeneous across different categories of various subgroup variables such as sex, age, APOE4, ethnic groups, income before tax, smoking status, alcohol status, BMI, hypertension and diabetes but the effect of long-term/recurrent use of antibiotics in childhood was modified by the educational qualification (p-value for interaction <0.05). Conclusion Long-term/recurrent use of antibiotics in childhood may increase the risk of cognitive impairment in middle and old age.
Collapse
Affiliation(s)
- Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shouchao Wei
- Department of Neurology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Xiaoxia Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lingying Liu
- Department of Neurology, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Zhuangsheng Wei
- Department of Neurology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Zhimin Liao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiayuan Wu
- Department of Clinical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhichao Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Duolao Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
40
|
Guo X, Yan Z, Wang J, Fan X, Kang J, Niu R, Sun Z. Effect of traditional chinese medicine (TCM) and its fermentation using Lactobacillus plantarum on ceftriaxone sodium-induced dysbacteriotic diarrhea in mice. Chin Med 2022; 17:20. [PMID: 35139871 PMCID: PMC8827261 DOI: 10.1186/s13020-022-00575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background Buzhongyiqi decoction (BD), Sijunzi decoction (SD), and Shenlingbaizhu decoction (SHD) have been extensively used clinically for the treatment of diseases caused by spleen-Qi deficiency and microbial fermentation has historically been utilized in traditional Chinese medicine (TCM). This study aimed to investigate the mitigative effect of TCM and fermented TCM (FTCM) with Lactobacillus plantarum (LP) on antibiotic-associated diarrhea, and to select an optimal formula and then identify its compounds. Methods Dysbacteriosis in mice was induced by ceftriaxone sodium (CS). The mice were then treated with LP, BD, SD, SHD, fermented BD, fermented SD (FSD), and fermented SHD. Diarrhea indexes, the abundances of gut bacteria, intestinal morphometrics, and mRNA expressions of genes related to intestinal barrier function were assessed. Then, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) were employed to identify and relatively quantify the compounds in the selected decoctions. Results CS significantly increased the fecal output weight, the total number of fecal output, and fecal water content, indicating the occurrence of diarrhea. Bacterial culture tests showed that the above symptoms were accompanied by the disruption of specific intestinal flora. TCM, LP, and FTCM alleviated the diarrhea index and recovered the intestinal microbiota. FTCM showed more advantageous than TCM or LP alone. The mRNA expressions of aquaporins (AQPs) and tight junctions (TJs) decreased by CS were enhanced by TCM, LP, and FTCM. In addition, through UHPLC-Q-TOF/MS, (S)-(-)-2-hydroxyisocaproic acid, L-methionine, 4-guanidinobutyric acid (4GBA), and phenyllactate (PLA) in SD and FSD were identified and relatively quantified. Conclusions TCM, LP, and TCM fermented with LP alleviated CS-induced diarrhea symptoms, and improved the intestinal flora and barrier function. Four compounds including (S)-(-)-2-hydroxyisocaproic acid, L-methionine, 4GBA, and PLA in FSD, which were identified by UHPLC-Q-TOF/MS, might function in modulating intestinal flora and improving villi structure. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00575-x.
Collapse
Affiliation(s)
- Xin Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Zipeng Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Jixiang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xinfeng Fan
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Jie Kang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.,Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
41
|
Amat S, Holman DB, Schmidt K, McCarthy KL, Dorsam ST, Ward AK, Borowicz PP, Reynolds LP, Caton JS, Sedivec KK, Dahlen CR. Characterization of the Microbiota Associated With 12-Week-Old Bovine Fetuses Exposed to Divergent in utero Nutrition. Front Microbiol 2022; 12:771832. [PMID: 35126326 PMCID: PMC8811194 DOI: 10.3389/fmicb.2021.771832] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
A recent study reported the existence of a diverse microbiota in 5-to-7-month-old calf fetuses, suggesting that colonization of the bovine gut with so-called “pioneer” microbiota may begin during mid-gestation. In the present study, we investigated 1) the presence of microbiota in bovine fetuses at early gestation (12 weeks), and 2) whether the fetal microbiota is influenced by the maternal rate of gain or dietary supplementation with vitamins and minerals (VTM) during early gestation. Amniotic and allantoic fluids, and intestinal and placental (cotyledon) tissue samples obtained from fetuses (n = 33) on day 83 of gestation were processed for the assessment of fetal microbiota using 16S rRNA gene sequencing. The sequencing results revealed that a diverse and complex microbial community was present in each of these fetal compartments evaluated. Allantoic and amniotic fluids, and fetal intestinal and placenta microbiota each had distinctly different (0.047 ≥ R2 ≥ 0.019, P ≤ 0.031) microbial community structures. Allantoic fluid had a greater (P < 0.05) microbial richness (number of OTUs) (Mean 122) compared to amniotic fluid (84), intestine (63), and placenta (66). Microbial diversity (Shannon index) was similar for the intestinal and placental samples, and both were less diverse compared with fetal fluid microbiota (P < 0.05). Thirty-nine different archaeal and bacterial phyla were detected across all fetal samples, with Proteobacteria (55%), Firmicutes (16.2%), Acidobacteriota (13.6%), and Bacteroidota (5%) predominating. Among the 20 most relatively abundant bacterial genera, Acidovorax, Acinetobacter, Brucella, Corynebacterium, Enterococcus, Exiguobacterium, and Stenotrophomonas differed by fetal sample type (P < 0.05). A total of 55 taxa were shared among the four different microbial communities. qPCR of bacteria in the intestine and placenta samples as well as scanning electron microscopy imaging of fetal fluids provided additional evidence for the presence of a microbiota in these samples. Minor effects of maternal rate of gain and VTM supplementation, and their interactions on microbial richness and composition were detected. Overall, the results of this study indicate that colonization with pioneer microbiota may occur during early gestation in bovine fetuses, and that the maternal nutritional regime during gestation may influence the early fetal microbiota.
Collapse
Affiliation(s)
- Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
- *Correspondence: Samat Amat,
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Kacie L. McCarthy
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Sheri T. Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Alison K. Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Pawel P. Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
42
|
Wuethrich I, W. Pelzer B, Khodamoradi Y, Vehreschild MJGT. The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes 2022; 13:1-13. [PMID: 33870869 PMCID: PMC8078746 DOI: 10.1080/19490976.2021.1911279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
About 100 years ago, the first antibiotic drug was introduced into health care. Since then, antibiotics have made an outstanding impact on human medicine. However, our society increasingly suffers from collateral damage exerted by these highly effective drugs. The rise of resistant pathogen strains, combined with a reduction of microbiota diversity upon antibiotic treatment, has become a significant obstacle in the fight against invasive infections worldwide.Alternative and complementary strategies to classical "Fleming antibiotics" comprise microbiota-based treatments such as fecal microbiota transfer and administration of probiotics, live-biotherapeutics, prebiotics, and postbiotics. Other promising interventions, whose efficacy may also be influenced by the human microbiota, are phages and vaccines. They will facilitate antimicrobial stewardship, to date the only globally applied antibiotic resistance mitigation strategy.In this review, we present the available evidence on these nontraditional interventions, highlight their interaction with the human microbiota, and discuss their clinical applicability.
Collapse
Affiliation(s)
- Irene Wuethrich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Benedikt W. Pelzer
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt Am Main, Germany,CONTACT Maria J. G. T. Vehreschild Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt Am Main, Germany
| |
Collapse
|
43
|
Zhou X, Liu X, He Q, Wang M, Lu H, You Y, Chen L, Cheng J, Li F, Fu X, Kwan HY, Zhou L, Zhao X. Ginger Extract Decreases Susceptibility to Dextran Sulfate Sodium-Induced Colitis in Mice Following Early Antibiotic Exposure. Front Med (Lausanne) 2022; 8:755969. [PMID: 35071260 PMCID: PMC8766511 DOI: 10.3389/fmed.2021.755969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Intestinal microbial colonization in early life plays a crucial role in immune development and mucosal homeostasis in later years. Antibiotic exposure in early life increases the risk of inflammatory bowel disease (IBD). Ginger acts like a prebiotic and has been used in traditional Chinese medicine for colitis. We investigated the protective effect of ginger against dextran sulfate sodium (DSS)-induced colitis in mice exposed to antibiotic in their early years. Methods: A weaned mouse model exposed to azithromycin (AZT) for 2 weeks was used to mimic antibiotic exposure in childhood among humans. A diet containing ginger extract was administered to mice for 4 weeks after antibiotic exposure. The susceptibility to DSS-induced colitis was evaluated in terms of weight loss, disease activity index (DAI) score, colon length, colitis biomarkers, and intestinal barrier function. The gut microbiota was analyzed in terms of 16S rRNA levels. Results: Ginger extract prevented weight loss, colon shortening, inflammation, and intestinal barrier dysfunction in mice exposed to antibiotics in early life. Ginger increased the bacterial diversity and changed the abundance of bacterial belonging to family Peptococcaceae and Helicobacter species to modulate microbiota structure and composition adversely affected by early antibiotic exposure. Conclusion: Ginger has a protective effect in potentially decreasing the susceptibility to colitis in mice exposed to antibiotics early in life.
Collapse
Affiliation(s)
- Xinghong Zhou
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoyu Liu
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuxing He
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Hanqi Lu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanting You
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liqian Chen
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingru Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Department of Traditional Chinese Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lin Zhou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshan Zhao
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Xiaoshan Zhao
| |
Collapse
|
44
|
Honey Bee Larval and Adult Microbiome Life Stages Are Effectively Decoupled with Vertical Transmission Overcoming Early Life Perturbations. mBio 2021; 12:e0296621. [PMID: 34933445 PMCID: PMC8689520 DOI: 10.1128/mbio.02966-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbiomes provide a range of benefits to their hosts which can lead to the coevolution of a joint ecological niche. However, holometabolous insects, some of the most successful organisms on Earth, occupy different niches throughout development, with larvae and adults being physiologically and morphologically highly distinct. Furthermore, transition between the stages usually involves the loss of the gut microbiome since the gut is remodeled during pupation. Most eusocial organisms appear to have evolved a workaround to this problem by sharing their communal microbiome across generations. However, whether this vertical microbiome transmission can overcome perturbations of the larval microbiome remains untested. Honey bees have a relatively simple, conserved, coevolved adult microbiome which is socially transmitted and affects many aspects of their biology. In contrast, larval microbiomes are more variable, with less clear roles. Here, we manipulated the gut microbiome of in vitro-reared larvae, and after pupation of the larvae, we inoculated the emerged bees with adult microbiome to test whether adult and larval microbiome stages may be coupled (e.g., through immune priming). Larval treatments differed in bacterial composition and abundance, depending on diet, which also drove larval gene expression. Nonetheless, adults converged on the typical core taxa and showed limited gene expression variation. This work demonstrates that honey bee adult and larval stages are effectively microbiologically decoupled, and the core adult microbiome is remarkably stable to early developmental perturbations. Combined with the transmission of the microbiome in early adulthood, this allows the formation of long-term host-microbiome associations. IMPORTANCE This work investigated host-microbiome interactions during a crucial developmental stage-the transition from larvae to adults, which is a challenge to both, the insect host and its microbiome. Using the honey bee as a tractable model system, we showed that microbiome transfer after emergence overrides any variation in the larvae, indicating that larval and adult microbiome stages are effectively decoupled. Together with the reliable vertical transfer in the eusocial system, this decoupling ensures that the adults are colonized with a consistent and derived microbiome after eclosion. Taken all together, our data provide additional support that the evolution of sociality, at least in the honey bee system tested here, is linked with host-microbiome relationships.
Collapse
|
45
|
Short- and long-term effects of amoxicillin/clavulanic acid or doxycycline on the gastrointestinal microbiome of growing cats. PLoS One 2021; 16:e0253031. [PMID: 34910719 PMCID: PMC8673677 DOI: 10.1371/journal.pone.0253031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Antibiotic treatment in early life influences gastrointestinal (GI) microbial composition and function. In humans, the resultant intestinal dysbiosis is associated with an increased risk for certain diseases later in life. The objective of this study was to determine the temporal effects of antibiotic treatment on the GI microbiome of young cats. Fecal samples were collected from cats randomly allocated to receive either amoxicillin/clavulanic acid (20 mg/kg q12h) for 20 days (AMC group; 15 cats) or doxycycline (10 mg/kg q24h) for 28 days (DOX group;15 cats) as part of the standard treatment of upper respiratory tract infection. In addition, feces were collected from healthy control cats (CON group;15 cats). All cats were approximately two months of age at enrolment. Samples were collected on days 0 (baseline), 20 or 28 (AMC and DOX, respectively; last day of treatment), 60, 120, and 300. DNA was extracted and sequencing of the 16S rRNA gene and qPCR assays were performed. Fecal microbial composition was different on the last day of treatment for AMC cats, and 1 month after the end of antibiotic treatment for DOX cats, compared to CON cats. Species richness was significantly greater in DOX cats compared to CON cats on the last day of treatment. Abundance of Enterobacteriales was increased, and that of Erysipelotrichi was decreased in cats of the AMC group on the last day of treatment compared to CON cats. The abundance of the phylum Proteobacteria was increased in cats of the DOX group on days 60 and 120 compared to cats of the CON group. Only minor differences in abundances between the treatment groups and the control group were present on day 300. Both antibiotics appear to delay the developmental progression of the microbiome, and this effect is more profound during treatment with amoxicillin/clavulanic acid and one month after treatment with doxycycline. Future studies are required to determine if these changes influence microbiome function and whether they have possible effects on disease susceptibility in cats.
Collapse
|
46
|
Willers M, Viemann D. Role of the gut microbiota in airway immunity and host defense against respiratory infections. Biol Chem 2021; 402:1481-1491. [PMID: 34599869 DOI: 10.1515/hsz-2021-0281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Colonization of the intestine with commensal bacteria is known to play a major role in the maintenance of human health. An altered gut microbiome is associated with various ensuing diseases including respiratory diseases. Here, we summarize current knowledge on the impact of the gut microbiota on airway immunity with a focus on consequences for the host defense against respiratory infections. Specific gut commensal microbiota compositions and functions are depicted that mediate protection against respiratory infections with bacterial and viral pathogens. Lastly, we highlight factors that have imprinting effects on the establishment of the gut microbiota early in life and are potentially relevant in the context of respiratory infections. Deepening our understanding of these relationships will allow to exploit the knowledge on how gut microbiome maturation needs to be modulated to ensure lifelong enhanced resistance towards respiratory infections.
Collapse
Affiliation(s)
- Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, D-30625 Hannover, Germany
- Department of Pediatrics, Translational Pediatrics, University Hospital Würzburg, Zinklesweg 10, D-97078 Würzburg, Germany
| |
Collapse
|
47
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
48
|
Sadaka Y, Freedman J, Ashkenazi S, Vinker S, Golan-Cohen A, Green I, Israel A, Eran A, Merzon E. The Effect of Antibiotic Treatment of Early Childhood Shigellosis on Long-Term Prevalence of Attention Deficit/Hyperactivity Disorder. CHILDREN-BASEL 2021; 8:children8100880. [PMID: 34682145 PMCID: PMC8535120 DOI: 10.3390/children8100880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
It has recently been shown that children with early shigellosis are at increased risk of attention deficit/hyperactivity disorder (ADHD). This study aimed to evaluate the association between antibiotic treatment of shigellosis with long-term ADHD rates. A retrospective cohort study was conducted that included all the Leumit Health Services (LHS) enrollees aged 5-18 years between 2000-2018 with a documented Shigella-positive gastroenteritis before the age of 3 years. Of the 5176 children who were positive for Shigella gastroenteritis before the age of 3 years, 972 (18.8%) were treated with antibiotics early (<5 days), 250 (4.8%) were treated late (≥5 days), and 3954 children (76.4%) were not prescribed antibiotics. Late antibiotic treatment was associated with significantly increased rates of ADHD (adjusted OR = 1.61; 95% CI, 1.1-2.3). Early treatment with antibiotics was not associated with increased ADHD rates (adjusted OR = 1.02; 95% CI, 0.8-1.3). In conclusion, late antibiotic treatment of early childhood shigellosis was associated with increased rates of ADHD.
Collapse
Affiliation(s)
- Yair Sadaka
- The Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8443944, Israel; (Y.S.); (J.F.)
- Neuro-Developmental Research Center, Mental Health Institute, Beer Sheva 8461144, Israel
| | - Judah Freedman
- The Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8443944, Israel; (Y.S.); (J.F.)
- Neuro-Developmental Research Center, Mental Health Institute, Beer Sheva 8461144, Israel
| | - Shai Ashkenazi
- The Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Shlomo Vinker
- Leumit Health Services, Tel-Aviv 6473817, Israel; (S.V.); (A.G.-C.); (A.I.)
- Department of Family Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Avivit Golan-Cohen
- Leumit Health Services, Tel-Aviv 6473817, Israel; (S.V.); (A.G.-C.); (A.I.)
- Department of Family Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Ilan Green
- Department of Family Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Ariel Israel
- Leumit Health Services, Tel-Aviv 6473817, Israel; (S.V.); (A.G.-C.); (A.I.)
| | - Alal Eran
- Department of Life Sciences, Ben Gurion University, Beer Sheva 8443944, Israel;
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Eugene Merzon
- Leumit Health Services, Tel-Aviv 6473817, Israel; (S.V.); (A.G.-C.); (A.I.)
- Correspondence: ; Tel.: +972-50-7643281
| |
Collapse
|
49
|
Hawryłkowicz V, Lietz-Kijak D, Kaźmierczak-Siedlecka K, Sołek-Pastuszka J, Stachowska L, Folwarski M, Parczewski M, Stachowska E. Patient Nutrition and Probiotic Therapy in COVID-19: What Do We Know in 2021? Nutrients 2021; 13:3385. [PMID: 34684384 PMCID: PMC8538178 DOI: 10.3390/nu13103385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The main nutritional consequences of COVID-19 include reduced food intake, hypercatabolism, and rapid muscle wasting. Some studies showed that malnutrition is a significant problem among patients hospitalized due to COVID-19 infection, and the outcome of patients with SARS-CoV-2 is strongly associated with their nutritional status. The purpose of this study was to collect useful information about the possible elements of nutritional and probiotic therapy in patients infected with the SARS-CoV-2 virus. METHODS A narrative review of the literature, including studies published up to 13 September 2021. RESULTS Probiotics may support patients by inhibiting the ACE2 receptor, i.e., the passage of the virus into the cell, and may also be effective in suppressing the immune response caused by the proinflammatory cytokine cascade. In patients' diet, it is crucial to ensure an adequate intake of micronutrients, such as omega-3 fatty acids (at 2-4 g/d), selenium (300-450 μg/d) and zinc (30-50 mg/d), and vitamins A (900-700 µg/d), E (135 mg/d), D (20,000-50,000 IU), C (1-2 g/d), B6, and B12. Moreover, the daily calorie intake should amount to ≥1500-2000 with 75-100 g of protein. CONCLUSION In conclusion, the treatment of gut dysbiosis involving an adequate intake of prebiotic dietary fiber and probiotics could turn out to be an immensely helpful instrument for immunomodulation, both in COVID-19 patients and prophylactically in individuals with no history of infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Danuta Lietz-Kijak
- Department of Propedeutics, Physiodiagnostics and Dental Physiotherapy, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | | | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Marcin Folwarski
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Miłosz Parczewski
- Department of Infectious, Tropical and Acquired Immunological Diseases, Pomeranian Medical University, 71-455 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| |
Collapse
|
50
|
McLoughlin IJ, Wright EM, Tagg JR, Jain R, Hale JDF. Skin Microbiome-The Next Frontier for Probiotic Intervention. Probiotics Antimicrob Proteins 2021; 14:630-647. [PMID: 34383234 DOI: 10.1007/s12602-021-09824-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
The skin is the largest organ in the human body, and it orchestrates many functions that are fundamentally important for our survival. Although the skin might appear to present a relatively inhospitable or even hostile environment, a multitude of commensals and also some potentially pathogenic microorganisms have successfully adapted to survive and/or thrive within the diverse ecological niches created by the skin's topographical architecture. Dysbiosis within these microbial populations can result in the emergence and pathological progression of skin diseases. Unsurprisingly, this has led to a new focus of research both for the medical dermatology and cosmetic industries that is concerned with modulation of the skin microbiome to help address common microbially mediated or modulated conditions such as acne, body odour, and atopic dermatitis. This review presents an overview of our current understanding of the complex relationship of the skin with its microbiome and then introduces the concept of probiotic intervention for the management of microbial dysbiosis within the skin ecosystem.
Collapse
Affiliation(s)
| | - Eva M Wright
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, New Zealand
| | - John R Tagg
- Blis Technologies, 81 Glasgow St, South Dunedin, 9012, Dunedin, New Zealand
| | - Rohit Jain
- Blis Technologies, 81 Glasgow St, South Dunedin, 9012, Dunedin, New Zealand
| | - John D F Hale
- Blis Technologies, 81 Glasgow St, South Dunedin, 9012, Dunedin, New Zealand.
| |
Collapse
|