1
|
Slater AS, McDonald AG, Hickey RM, Davey GP. Glycosyltransferases: glycoengineers in human milk oligosaccharide synthesis and manufacturing. Front Mol Biosci 2025; 12:1587602. [PMID: 40370521 PMCID: PMC12074965 DOI: 10.3389/fmolb.2025.1587602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of complex carbohydrates that play crucial roles in infant health, promoting a beneficial gut microbiota, modulating immune responses, and protecting against pathogens. Central to the synthesis of HMOs are glycosyltransferases, a specialized class of enzymes that catalyse the transfer of sugar moieties to form the complex glycan structures characteristic of HMOs. This review provides an in-depth analysis of glycosyltransferases, beginning with their classification based on structural and functional characteristics. The catalytic activity of these enzymes is explored, highlighting the mechanisms by which they facilitate the precise addition of monosaccharides in HMO biosynthesis. Structural insights into glycosyltransferases are also discussed, shedding light on how their conformational features enable specific glycosidic bond formations. This review maps out the key biosynthetic pathways involved in HMO production, including the synthesis of lactose, and subsequent fucosylation and sialylation processes, all of which are intricately regulated by glycosyltransferases. Industrial methods for HMO synthesis, including chemical, enzymatic, and microbial approaches, are examined, emphasizing the role of glycosyltransferases in these processes. Finally, the review discusses future directions in glycosyltransferase research, particularly in enhancing the efficiency of HMO synthesis and developing advanced analytical techniques to better understand the structural complexity and biological functions of HMOs.
Collapse
Affiliation(s)
- Alanna S. Slater
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Andrew G. McDonald
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Nyquist SK, Annepureddy LD, Sejane K, Furst A, Trahan GD, Rudolph MC, Twigger AJ, Bode L, Engelhardt BE, Martin Carli JF, Goods BA. Integrated 'omics analysis reveals human milk oligosaccharide biosynthesis programs in human lactocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643803. [PMID: 40166160 PMCID: PMC11956926 DOI: 10.1101/2025.03.17.643803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Human milk oligosaccharides (HMOs) are integral to infant health. Yet, their complex biosynthesis pathways in the mammary gland during lactation remain under characterized. To address this knowledge gap, we performed integrated analyses of single-cell RNA-sequencing (scRNA-seq) datasets combined with select HMO concentration measures. We identify differential expression patterns of known HMO synthesis genes in epithelial subsets and nominate several candidate genes that vary with HMO concentration. Additionally, we identify novel gene patterns and transcription factors that may regulate the expression of HMO biosynthesis genes and the cellular pathways supporting HMO production. Finally, we demonstrate that co-expression of HMO synthesis genes and milk fat synthesis genes is limited, suggesting distinct epithelial cell subtypes may be responsible for the production of different milk components. Our study suggests that HMO synthesis may be achieved through cell type specialization within the lactocyte compartment.
Collapse
|
3
|
Sato S, Iwaki J, Hirabayashi J. Decoding the multifaceted roles of galectins in self-defense. Semin Immunol 2025; 77:101926. [PMID: 39721561 DOI: 10.1016/j.smim.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In this review, we aim to explore the multifaceted roles of galectins in host defense from a broader perspective, particularly regarding their functions when host integrity is compromised. Numerous comprehensive reviews on galectin functions in immunity have already been published. For researchers new to the field, this wealth of information may create an impression of galectins as proteins involved in a wide array of biological processes. Furthermore, due to the heterogeneity of galectin ligands, glycans, there is a risk of perceiving galectin-specific functions as ambiguous, potentially obscuring their core biological significance. To address this, we revisit foundational aspects, focusing on the significance of the recognition of galactose, a "late-comer" monosaccharide in evolutionary terms, provide an overview of galectin glycan binding specificity, with emphasis on the potential biological importance of each carbohydrate-recognition domain. We also discuss the biological implications of the galectin location paradox wherein these cytosolic lectins function in host defense despite their glycan ligands being synthesized in the secretory pathway. Additionally, we examine the role of galectins in liquid-liquid phase separation on membranes, which may facilitate their diverse functions in cellular responses. Through this approach, we aim to re-evaluate the complex and diverse biological roles of galectins in host defense.
Collapse
Affiliation(s)
- Sachiko Sato
- Axe of Infectious and Immune Diseases, CHU de Quebec-Université Laval Research Centre, Faculty of Medicine, and Research Centre for Infectious Diseases, Laval University, Quebec City, Canada.
| | - Jun Iwaki
- Tokyo Chemical Industry Co., Ltd., Tokyo, Japan.
| | - Jun Hirabayashi
- Institute for Glyco-core Research, Nagoya University, Tokai Higher Education and Research System, Nagoya, Japan.
| |
Collapse
|
4
|
Osuka RF, Yamasaki T, Kizuka Y. Structure and function of N-acetylglucosaminyltransferase V (GnT-V). Biochim Biophys Acta Gen Subj 2024; 1868:130709. [PMID: 39233219 DOI: 10.1016/j.bbagen.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The β1,6-GlcNAc branch in N-glycans, produced by a glycosyltransferase N-acetylglucosaminyltransferase V (GnT-V or MGAT5), is associated with cancer and autoimmune diseases. SCOPE Here, we summarize the structure and activity regulation of GnT-V. We also describe the roles of the β1,6-GlcNAc branch on glycoproteins in cells and the phenotypes of Mgat5-deficient mice, focusing on cancer and the immune system. MAJOR CONCLUSIONS GnT-V has a unique structure for substrate recognition, and its activity and function are regulated by shedding. The glycans produced by GnT-V play pivotal roles in the differentiation of neural cells, cancer malignancy and immunotherapy, and the development of autoimmune diseases by regulating the functions and cell surface residency of glycoproteins. GENERAL SIGNIFICANCE Controlling the expression or activity of GnT-V could be a therapeutic option against cancer and autoimmune diseases. Future work should clarify how GnT-V selectively modifies the specific glycoproteins or N-glycosylation sites in vivo.
Collapse
Affiliation(s)
- Reina F Osuka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Takahiro Yamasaki
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan.
| |
Collapse
|
5
|
Nishikawa A, Karita S, Umekawa M. Ngk1 kinase-mediated N-acetylglucosamine metabolism promotes UDP-GlcNAc biosynthesis in Saccharomyces cerevisiae. FEBS Lett 2024; 598:1644-1654. [PMID: 38622055 DOI: 10.1002/1873-3468.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
N-acetylglucosamine (GlcNAc) is an important structural component of the cell wall chitin, N-glycans, glycolipids, and GPI-anchors in eukaryotes. GlcNAc kinase phosphorylates GlcNAc into GlcNAc-6-phosphate, a precursor of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that serves as a substrate for glycan synthesis. Although GlcNAc kinase is found widely in organisms ranging from microorganisms to mammals, it has never been found in the model yeast Saccharomyces cerevisiae. Here, we demonstrate the presence of GlcNAc metabolism for UDP-GlcNAc biosynthesis in S. cerevisiae through Ngk1, a GlcNAc kinase we discovered previously. The overexpression or deletion of Ngk1 in the presence of GlcNAc affected the amount of both UDP-GlcNAc and chitin, suggesting that GlcNAc metabolism via Ngk1 promotes UDP-GlcNAc synthesis. Our data suggest that the Ngk1-mediated GlcNAc metabolism compensates for the hexosamine pathway, a known pathway for UDP-GlcNAc synthesis.
Collapse
Affiliation(s)
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Midori Umekawa
- Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
6
|
Imae R, Manya H, Tsumoto H, Umezawa K, Miura Y, Endo T. Changes in the amount of nucleotide sugars in aged mouse tissues. Glycobiology 2024; 34:cwae032. [PMID: 38598324 DOI: 10.1093/glycob/cwae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
Aging affects tissue glycan profiles, which may alter cellular functions and increase the risk of age-related diseases. Glycans are biosynthesized by glycosyltransferases using the corresponding nucleotide sugar, and the availability of nucleotide sugars affects glycosylation efficiency. However, the effects of aging on nucleotide sugar profiles and contents are yet to be elucidated. Therefore, this study aimed to investigate the effects of aging on nucleotide sugars using a new LC-MS/MS method. Specifically, the new method was used to determine the nucleotide sugar contents of various tissues (brain, liver, heart, skeletal muscle, kidney, lung, and colon) of male C57BL/6NCr mice (7- or 26-month-old). Characteristic age-associated nucleotide sugar changes were observed in each tissue sample. Particularly, there was a significant decrease in UDP-glucuronic acid content in the kidney of aged mice and a decrease in the contents of several nucleotide sugars, including UDP-N-acetylgalactosamine, in the brain of aged mice. Additionally, there were variations in nucleotide sugar profiles among the tissues examined regardless of the age. The kidneys had the highest concentration of UDP-glucuronic acid among the seven tissues. In contrast, the skeletal muscle had the lowest concentration of total nucleotide sugars among the tissues; however, CMP-N-acetylneuraminic acid and CDP-ribitol were relatively enriched. Conclusively, these findings may contribute to the understanding of the roles of glycans in tissue aging.
Collapse
Affiliation(s)
- Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroki Tsumoto
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Keitaro Umezawa
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuri Miura
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
7
|
de-Souza-Ferreira M, Ferreira ÉE, de-Freitas-Junior JCM. Aberrant N-glycosylation in cancer: MGAT5 and β1,6-GlcNAc branched N-glycans as critical regulators of tumor development and progression. Cell Oncol 2023; 46:481-501. [PMID: 36689079 DOI: 10.1007/s13402-023-00770-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Changes in protein glycosylation are widely observed in tumor cells. N-glycan branching through adding β1,6-linked N-acetylglucosamine (β1,6-GlcNAc) to an α1,6-linked mannose, which is catalyzed by the N-acetylglucosaminyltransferase V (MGAT5 or GnT-V), is one of the most frequently observed tumor-associated glycan structure formed. Increased levels of this branching structure play a pro-tumoral role in various ways, for example, through the stabilization of growth factor receptors, the destabilization of intercellular adhesion, or the acquisition of a migratory phenotype. CONCLUSION In this review, we provide an updated and comprehensive summary of the physiological and pathophysiological roles of MGAT5 and β1,6-GlcNAc branched N-glycans, including their regulatory mechanisms. Specific emphasis is given to the role of MGAT5 and β1,6-GlcNAc branched N-glycans in cellular mechanisms that contribute to the development and progression of solid tumors. We also provide insight into possible future clinical implications, such as the use of MGAT5 as a prognostic biomarker.
Collapse
Affiliation(s)
- Michelle de-Souza-Ferreira
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Érika Elias Ferreira
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Julio Cesar Madureira de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil.
| |
Collapse
|
8
|
Dysregulation of hexosamine biosynthetic pathway wiring metabolic signaling circuits in cancer. Biochim Biophys Acta Gen Subj 2023; 1867:130250. [PMID: 36228878 DOI: 10.1016/j.bbagen.2022.130250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
Metabolite sensing, a fundamental biological process, plays a key role in metabolic signaling circuit rewiring. Hexosamine biosynthetic pathway (HBP) is a glucose metabolic pathway essential for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which senses key nutrients and integrally maintains cellular homeostasis. UDP-GlcNAc dynamically regulates protein N-glycosylation and O-linked-N-acetylglucosamine modification (O-GlcNAcylation). Dysregulated HBP flux leads to abnormal protein glycosylation, and contributes to cancer development and progression by affecting protein function and cellular signaling. Furthermore, O-GlcNAcylation regulates cellular signaling pathways, and its alteration is linked to various cancer characteristics. Additionally, recent findings have suggested a close association between HBP stimulation and cancer stemness; an elevated HBP flux promotes cancer cell conversion to cancer stem cells and enhances chemotherapy resistance via downstream signal activation. In this review, we highlight the prominent roles of HBP in metabolic signaling and summarize the recent advances in HBP and its downstream signaling, relevant to cancer.
Collapse
|
9
|
Vibhute AM, Tanaka HN, Mishra SK, Osuka RF, Nagae M, Yonekawa C, Korekane H, Doerksen RJ, Ando H, Kizuka Y. Structure-based design of UDP-GlcNAc analogs as candidate GnT-V inhibitors. Biochim Biophys Acta Gen Subj 2022; 1866:130118. [PMID: 35248671 PMCID: PMC9947920 DOI: 10.1016/j.bbagen.2022.130118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND N-Glycan branching regulates various functions of glycoproteins. N-Acetylglucosaminyltransferase V (GnT-V) is a GlcNAc transferase that acts on N-glycans and the GnT-V-producing branch is highly related to cancer progression. This indicates that specific GnT-V inhibitors may be drug candidates for cancer treatment. To design novel GnT-V inhibitors, we focused on the unique and weak recognition of the donor substrate UDP-GlcNAc by GnT-V. On the basis of the catalytic pocket structure, we hypothesized that UDP-GlcNAc analogs with increasing hydrophobicity may be GnT-V inhibitors. METHODS We chemically synthesized 10 UDP-GlcNAc analogs in which one or two phosphate groups were replaced with hydrophobic groups. To test these compounds, we set up an HPLC-based enzyme assay system for all N-glycan-branching GlcNAc transferases in which GnT-I-V activity was measured using purified truncated enzymes. Using this system, we assessed the inhibitory effects of the synthesized compounds on GnT-V and their specificity. RESULTS Several UDP-GlcNAc analogs inhibited GnT-V activity, although the inhibition potency was modest. Compared with other GnTs, these compounds showed a preference for GnT-V, which suggested that GnT-V was relatively tolerant of hydrophobicity in the donor substrate. Docking models of the inhibitory compounds with GnT-V suggested the mechanisms of how these compounds interacted with GnT-V and inhibited its action. CONCLUSIONS Chemical modification of the donor substrate may be a promising strategy to develop selective inhibitors of GnT-V. GENERAL SIGNIFICANCE Our findings provide new insights into the design of GnT inhibitors and how GnTs recognize the donor substrate.
Collapse
Affiliation(s)
- Amol M Vibhute
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| | - Sushil K Mishra
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Reina F Osuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Chizuko Yonekawa
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiroaki Korekane
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako 351-0198, Japan
| | - Robert J Doerksen
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
10
|
Increased levels of acidic free-N-glycans, including multi-antennary and fucosylated structures, in the urine of cancer patients. PLoS One 2022; 17:e0266927. [PMID: 35413075 PMCID: PMC9004742 DOI: 10.1371/journal.pone.0266927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022] Open
Abstract
We recently reported increased levels of urinary free-glycans in some cancer patients. Here, we focused on cancer related alterations in the levels of high molecular weight free-glycans. The rationale for this study was that branching, elongation, fucosylation and sialylation, which lead to increases in the molecular weight of glycans, are known to be up-regulated in cancer. Urine samples from patients with gastric cancer, pancreatic cancer, cholangiocarcinoma and colorectal cancer and normal controls were analyzed. The extracted free-glycans were fluorescently labeled with 2-aminopyridine and analyzed by multi-step liquid chromatography. Comparison of the glycan profiles revealed increased levels of glycans in some cancer patients. Structural analysis of the glycans was carried out by performing chromatography and mass spectrometry together with enzymatic or chemical treatments. To compare glycan levels between samples with high sensitivity and selectivity, simultaneous measurements by reversed-phase liquid chromatography-selected ion monitoring of mass spectrometry were also performed. As a result, three lactose-core glycans and 78 free-N-glycans (one phosphorylated oligomannose-type, four sialylated hybrid-type and 73 bi-, tri- and tetra-antennary complex-type structures) were identified. Among them, glycans with α1,3-fucosylation ((+/− sialyl) Lewis X), triply α2,6-sialylated tri-antennary structures and/or a (Man3)GlcNAc1-core displayed elevated levels in cancer patients. However, simple α2,3-sialylation and α1,6-core-fucosylation did not appear to contribute to the observed increase in the level of glycans. Interestingly, one tri-antennary free-N-glycan that showed remarkable elevation in some cancer patients contained a unique Glcβ1-4GlcNAc-core instead of the common GlcNAc2-core at the reducing end. This study provides further insights into free-glycans as potential tumor markers and their processing pathways in cancer.
Collapse
|
11
|
van Houtum EJH, Büll C, Cornelissen LAM, Adema GJ. Siglec Signaling in the Tumor Microenvironment. Front Immunol 2021; 12:790317. [PMID: 34966391 PMCID: PMC8710542 DOI: 10.3389/fimmu.2021.790317] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors that recognize sialoglycans - sialic acid containing glycans that are abundantly present on cell membranes. Siglecs are expressed on most immune cells and can modulate their activity and function. The majority of Siglecs contains immune inhibitory motifs comparable to the immune checkpoint receptor PD-1. In the tumor microenvironment (TME), signaling through the Siglec-sialoglycan axis appears to be enhanced through multiple mechanisms favoring tumor immune evasion similar to the PD-1/PD-L1 signaling pathway. Siglec expression on tumor-infiltrating immune cells appears increased in the immune suppressive microenvironment. At the same time, enhanced Siglec ligand expression has been reported for several tumor types as a result of aberrant glycosylation, glycan modifications, and the increased expression of sialoglycans on proteins and lipids. Siglec signaling has been identified as important regulator of anti-tumor immunity in the TME, but the key factors contributing to Siglec activation by tumor-associated sialoglycans are diverse and poorly defined. Among others, Siglec activation and signaling are co-determined by their expression levels, cell surface distribution, and their binding preferences for cis- and trans-ligands in the TME. Siglec binding preference are co-determined by the nature of the proteins/lipids to which the sialoglycans are attached and the multivalency of the interaction. Here, we review the current understanding and emerging conditions and factors involved in Siglec signaling in the TME and identify current knowledge gaps that exist in the field.
Collapse
Affiliation(s)
- Eline J. H. van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Büll
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lenneke A. M. Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
12
|
Zhao Y, Zhang J, Sun H, Brasier AR. Crosstalk of the IκB Kinase with Spliced X-Box Binding Protein 1 Couples Inflammation with Glucose Metabolic Reprogramming in Epithelial-Mesenchymal Transition. J Proteome Res 2021; 20:3475-3488. [PMID: 34124911 DOI: 10.1021/acs.jproteome.1c00093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays a critical role in airway injury, repair, and structural remodeling. IκB kinase (IKK)-NFκB signaling regulates late EMT-associated gene expression. However, IKK-mediated mesenchymal transition occurs earlier than NFκB/RelA subunit-dependent EMT gene expression, leading us to investigate the hypothesis that IKK plays an independent mechanism in transforming growth factor-β (TGFβ)-induced EMT. Time-resolved dissection of early proteome and phosphoproteome changes in response to TGFβ and a specific IKK inhibitor, BMS-345541, revealed that IKK regulates cascades of 23 signaling pathways essential in EMT, including TGFβ signaling, p38 mitogen associate protein kinase (MAPK), Toll receptor signaling, and integrin pathways. We identified early IKK-dependent phosphorylation of core regulatory proteins in essential EMT signaling cassettes, including ATF2, JUN, NFKB1/p105, and others. Interestingly, we found that IKKβ directly complexes with and phosphorylates the spliced X-box-binding protein 1 (XBP1s). XBP1s is an arm of the unfolded protein response (UPR) that activates the hexosamine biosynthetic pathway (HBP), a pathway that mediates protein N-glycosylation and survival from ER stress-induced apoptosis in EMT. We found that inhibition of IKK activity abolishes the phosphorylation of XBP1-T48, blocks XBP1s nuclear translocation, and inhibits the activation of HBP. Our study elucidates a previously unrecognized IKKβ-XBP1s-HBP crosstalk pathway that couples inflammation and glucose metabolic reprogramming in ETM. Because XBP1-HBP controls N-glycosylation of the extracellular matrix (ECM) in EMT, this novel IKKβ-XBP1-HBP pathway may contain therapeutic targets whose inhibition could prevent ECM remodeling in lung fibrosis or other airway remodeling diseases.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas 77555-1060, United States.,Institute for Translational Sciences, UTMB, Galveston, Texas 77555-0342, United States.,Sealy Center for Molecular Medicine, UTMB, Galveston, Texas 77555-0129, United States
| | - Jing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas 77555-1060, United States
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas 77555-1060, United States
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
13
|
Ricciardiello F, Bergamaschi L, De Vitto H, Gang Y, Zhang T, Palorini R, Chiaradonna F. Suppression of the HBP Function Increases Pancreatic Cancer Cell Sensitivity to a Pan-RAS Inhibitor. Cells 2021; 10:cells10020431. [PMID: 33670598 PMCID: PMC7923121 DOI: 10.3390/cells10020431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death and the search for a resolutive therapy is still a challenge. Since KRAS is commonly mutated in PDAC and is one of the main drivers of PDAC progression, its inhibition should be a key strategy for treatment, especially considering the recent development of specific KRAS inhibitors. Nevertheless, the effects of KRAS inhibition can be increased through the co-inhibition of other nodes important for cancer development. One of them could be the hexosamine biosynthetic pathway (HBP), whose enhancement is considered fundamental for PDAC. Here, we demonstrate that PDAC cells expressing oncogenic KRAS, owing to an increase in the HBP flux, become strongly reliant on HBP for both proliferation and survival. In particular, upon treatment with two different compounds, 2-deoxyglucose and FR054, inhibiting both HBP and protein N-glycosylation, these cells undergo apoptosis significantly more than PDAC cells expressing wild-type KRAS. Importantly, we also show that the combined treatment between FR054 and the pan-RAS inhibitor BI-2852 has an additive negative effect on cell proliferation and survival by means of the suppression of both Akt activity and cyclin D1 expression. Thus, co-inhibition of HBP and oncogenic RAS may represent a novel therapy for PDAC patients.
Collapse
Affiliation(s)
- Francesca Ricciardiello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
| | - Laura Bergamaschi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
| | - Humberto De Vitto
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
| | - Yang Gang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.G.); (T.Z.)
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.G.); (T.Z.)
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
- Correspondence: (R.P.); (F.C.)
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (F.R.); (L.B.); (H.D.V.)
- Correspondence: (R.P.); (F.C.)
| |
Collapse
|
14
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Taniguchi N, Ohkawa Y, Maeda K, Harada Y, Nagae M, Kizuka Y, Ihara H, Ikeda Y. True significance of N-acetylglucosaminyltransferases GnT-III, V and α1,6 fucosyltransferase in epithelial-mesenchymal transition and cancer. Mol Aspects Med 2020; 79:100905. [PMID: 33010941 DOI: 10.1016/j.mam.2020.100905] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
It is well known that numerous cancer-related changes occur in glycans that are attached to glycoproteins, glycolipids and proteoglycans on the cell surface and these changes in structure and the expression of the glycans are largely regulated by glycosyl-transferases, glycosidases, nucleotide sugars and their related genes. Such structural changes in glycans on cell surface proteins may accelerate the progression, invasion and metastasis of cancer cells. Among the over 200 known glycosyltransferases and related genes, β 1,6 N-acetylglucosaminyltransferase V (GnT-V) (the MGAT5 gene) and α 1,6 fucosyltransferase (FUT8) (the FUT8 gene) are representative enzymes in this respect because changes in glycans caused by these genes appear to be related to cancer metastasis and invasion in vitro as well as in vivo, and a number of reports on these genes in related to epithelial-mesenchymal transition (EMT) have also appeared. Another enzyme, one of the N-glycan branching enzymes, β1,4 N-acetylglucosaminyltransferase III (GnT-III) (the MGAT3 gene) has been reported to suppress EMT. However, there are intermediate states between EMT and mesenchymal-epithelial transition (MET) and some of these genes have been implicated in both EMT and MET and are also probably in an intermediate state. Therefore, it would be difficult to clearly define which specific glycosyltransferase is involved in EMT or MET or an intermediate state. The significance of EMT and N-glycan branching glycosyltransferases needs to be reconsidered and the inhibition of their corresponding genes would also be desirable in therapeutics. This review mainly focuses on GnT-III, GnT-V and FUT8, major players as N-glycan branching enzymes in cancer in relation to EMT programs, and also discusses the catalytic mechanisms of GnT-V and FUT8 whose crystal structures have now been obtained.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Masamichi Nagae
- Department of Molecular Immunology, RIMD, Osaka University, Osaka, Japan.
| | - Yasuhiko Kizuka
- Glyco-biochemistry Laboratory, G-Chain, Gifu University, Gifu, Japan.
| | - Hideyuki Ihara
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| |
Collapse
|
16
|
Abstract
The maintenance of organismal homeostasis requires partitioning and transport of biochemical molecules between organ systems, their composite cells, and subcellular organelles. Although transcriptional programming undeniably defines the functional state of cells and tissues, underlying biochemical networks are intricately intertwined with transcriptional, translational, and post-translational regulation. Studies of the metabolic regulation of immunity have elegantly illustrated this phenomenon. The cells of the immune system interface with a diverse set of environmental conditions. Circulating immune cells perfuse peripheral organs in the blood and lymph, patrolling for pathogen invasion. Resident immune cells remain in tissues and play more newly appreciated roles in tissue homeostasis and immunity. Each of these cell populations interacts with unique and dynamic tissue environments, which vary greatly in biochemical composition. Furthermore, the effector response of immune cells to a diverse set of activating cues requires unique cellular adaptations to supply the requisite biochemical landscape. In this review, we examine the role of spatial partitioning of metabolic processes in immune function. We focus on studies of lymphocyte metabolism, with reference to the greater immunometabolism literature when appropriate to illustrate this concept.
Collapse
Affiliation(s)
- Justin A Shyer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Will Bailis
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Del Solar V, Gupta R, Zhou Y, Pawlowski G, Matta KL, Neelamegham S. Robustness in glycosylation systems: effect of modified monosaccharides, acceptor decoys and azido sugars on cellular nucleotide-sugar levels and pattern of N-linked glycosylation. Mol Omics 2020; 16:377-386. [PMID: 32352119 DOI: 10.1039/d0mo00023j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small molecule monosaccharide analogs (e.g. 4F-GlcNAc, 4F-GalNAc) and acceptor decoys (e.g. ONAP, SNAP) are commonly used as metabolic glycoengineering tools to perturb molecular and cellular recognition processes. Azido-derivatized sugars (e.g. ManNAz, GlcNAz, GalNAz) are also used as bioorthogonal probes to assay the glycosylation status of cells and tissue. With the goal of obtaining a systems-level understanding of how these compounds work, we cultured cells with these molecules and systematically evaluated their impact on: (i) cellular nucleotide-sugar levels, and (ii) N-linked glycosylation. To this end, we developed a streamlined, simple workflow to quantify nucleotide-sugar levels using amide-based hydrophilic interaction liquid chromatography (HILIC) separation followed by negative-mode electrospray ionization mass spectrometry (ESI-MS/MS) using an Orbitrap detector. N-Glycans released from cells were also procainamide functionalized and quantified using positive-mode ESI-MS/MS. Results show that all tested compounds changed the baseline nucleotide-sugar levels, with the effect being most pronounced for the fluoro-HexNAc compounds. These molecules depressed UDP-HexNAc levels in cells by up to 80%, while concomitantly elevating UDP-4F-GalNAc and UDP-4F-GlcNAc. While the measured changes in nucleotide-sugar concentration were substantial in many cases, their impact on N-linked glycosylation was relatively small. This may be due to the high nucleotide-sugar concentrations in the Golgi, which far exceed the KM values of the glycosylating enzymes. Thus, the glycosylation system output exhibits 'robustness' even in the face of significant changes in cellular nucleotide-sugar concentrations.
Collapse
Affiliation(s)
- Virginia Del Solar
- Department of Chemical & Biological Engineering, Biomedical Engineering and Medicine, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Human Melanoma-Cell Metabolic Profiling: Identification of Novel Biomarkers Indicating Metastasis. Int J Mol Sci 2020; 21:ijms21072436. [PMID: 32244549 PMCID: PMC7177954 DOI: 10.3390/ijms21072436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer, leading to metabolic rewiring and enhancement of metastatic transformation. Efforts to improve its early and accurate diagnosis are largely based on preclinical models and especially cell lines. Hence, we herein present a combinational Nuclear Magnetic Resonance (NMR)- and Ultra High Performance Liquid Chromatography-High-Resolution Tandem Mass Spectrometry (UHPLC-HRMS/MS)-mediated untargeted metabolomic profiling of melanoma cells, to landscape metabolic alterations likely controlling metastasis. The cell lines WM115 and WM2664, which belong to the same patient, were examined, with WM115 being derived from a primary, pre-metastatic, tumor and WM2664 clonally expanded from lymph-node metastases. Metabolite samples were analyzed using NMR and UHPLC-HRMS. Multivariate statistical analysis of high resolution NMR and MS (positive and negative ionization) results was performed by Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA), while metastasis-related biomarkers were determined on the basis of VIP lists, S-plots and Student's t-tests. Receiver Operating Characteristic (ROC) curves of NMR and MS data revealed significantly differentiated metabolite profiles for each cell line, with WM115 being mainly characterized by upregulated levels of phosphocholine, choline, guanosine and inosine. Interestingly, WM2664 showed notably increased contents of hypoxanthine, myo-inositol, glutamic acid, organic acids, purines, pyrimidines, AMP, ADP, ATP and UDP(s), thus indicating the critical roles of purine, pyrimidine and amino acid metabolism during human melanoma metastasis.
Collapse
|
19
|
Roberts JT, Patel KR, Barb AW. Site-specific N-glycan Analysis of Antibody-binding Fc γ Receptors from Primary Human Monocytes. Mol Cell Proteomics 2020; 19:362-374. [PMID: 31888963 PMCID: PMC7000114 DOI: 10.1074/mcp.ra119.001733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
FcγRIIIa (CD16a) and FcγRIIa (CD32a) on monocytes are essential for proper effector functions including antibody dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Indeed, therapeutic monoclonal antibodies (mAbs) that bind FcγRs with greater affinity exhibit greater efficacy. Furthermore, post-translational modification impacts antibody binding affinity, most notably the composition of the asparagine(N)-linked glycan at N162 of CD16a. CD16a is widely recognized as the key receptor for the monocyte response, however the post-translational modifications of CD16a from endogenous monocytes are not described. Here we isolated monocytes from individual donors and characterized the composition of CD16a and CD32a N-glycans from all modified sites. The composition of CD16a N-glycans varied by glycosylation site and donor. CD16a displayed primarily complex-type biantennary N-glycans at N162, however some individuals expressed CD16a V158 with ∼20% hybrid and oligomannose types which increased affinity for IgG1 Fc according to surface plasmon resonance binding analyses. The CD16a N45-glycans contain markedly less processing than other sites with >75% hybrid and oligomannose forms. N38 and N74 of CD16a both contain highly processed complex-type N-glycans with N-acetyllactosamine repeats and complex-type biantennary N-glycans dominate at N169. The composition of CD16a N-glycans isolated from monocytes included a higher proportion of oligomannose-type N-glycans at N45 and less sialylation plus greater branch fucosylation than we observed in a recent analysis of NK cell CD16a. The additional analysis of CD32a from monocytes revealed different features than observed for CD16a including the presence of a predominantly biantennary complex-type N-glycans with two sialic acids at both sites (N64 and N145).
Collapse
Affiliation(s)
- Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames Iowa 50011
| | - Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames Iowa 50011
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames Iowa 50011
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
20
|
Zhang J, Jamaluddin M, Zhang Y, Widen SG, Sun H, Brasier AR, Zhao Y. Type II Epithelial-Mesenchymal Transition Upregulates Protein N-Glycosylation To Maintain Proteostasis and Extracellular Matrix Production. J Proteome Res 2019; 18:3447-3460. [PMID: 31424945 DOI: 10.1021/acs.jproteome.9b00342] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type II epithelial-mesenchymal transition (EMT) plays a vital role in airway injury, repair, and remodeling. Triggered by growth factors, such as transforming growth factor beta (TGFβ), EMT induced a biological process that converts epithelial cells into secretory mesenchymal cells with a substantially increased production of extracellular matrix (ECM) proteins. Epithelial cells are not professional secretory cells and produce few ECM proteins under normal conditions. The molecular mechanism underlying the transformation of the protein factory and secretory machinery during EMT is significant because ECM secretion is central to the pathogenesis of airway remodeling. Here we report that type II EMT upregulates the protein N-glycosylation of ECMs. The mechanism study reveals that the substantial increase in synthesis of ECM proteins in EMT activates the inositol-requiring protein 1 (IRE1α)-X-box-binding protein 1 (XBP1) axis of the unfolded protein response (UPR) coupled to the hexosamine biosynthesis pathway (HBP). These two pathways coordinately up-regulate the protein N-glycosylation of ECM proteins and increase ER folding capacity and ER-associated degradation (ERAD), which improve ER protein homeostasis and protect transitioned cells from proteotoxicity. Inhibition of the alternative splicing of XBP1 or protein N-glycosylation blocks ECM protein secretion, indicating the XBP1-HBP plays a prominent role in regulating the secretion of ECM proteins in the mesenchymal transition. Our data suggest that the activation of XBP1-HBP pathways and elevation of protein N-glycosylation is an adaptive response to maintain protein quality control and facilitate the secretion of ECM proteins during the mesenchymal transition. The components of the XBP1-HBP pathways may be therapeutic targets to prevent airway remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | - Allan R Brasier
- Institute for Clinical and Translational Research , University of Wisconsin-Madison School of Medicine and Public Health , Madison , Wisconsin 53705 , United States
| | | |
Collapse
|
21
|
Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett 2019; 593:1598-1615. [PMID: 31215021 DOI: 10.1002/1873-3468.13495] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
N-glycosylation is a ubiquitous protein modification, and N-glycosylation profiles are emerging as both biomarkers and functional effectors in various types of diabetes. Genome-wide association studies identified glycosyltransferase genes as candidate causal genes for type 1 and type 2 diabetes. Studies focused on N-glycosylation changes in type 2 diabetes demonstrated that patients can be distinguished from healthy controls based on N-glycome composition. In addition, individuals at an increased risk of future disease development could be identified based on N-glycome profiles. Moreover, accumulating evidence indicates that N-glycans have a major role in preventing the impairment of glucose-stimulated insulin secretion by maintaining the glucose transporter in proper orientation, indicating that interindividual variation in protein N-glycosylation might be a novel risk factor contributing to diabetes development. Defective N-glycosylation of T cells has been implicated in type 1 diabetes pathogenesis. Furthermore, studies of N-glycan alterations have successfully been used to identify individuals with rare types of diabetes (such as the HNF1A-MODY), and also to evaluate functional significance of novel diabetes-associated mutations. In conclusion, both N-glycans and glycosyltransferases emerge as potential therapeutic targets in diabetes.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
22
|
Gebrehiwot AG, Melka DS, Kassaye YM, Gemechu T, Lako W, Hinou H, Nishimura SI. Exploring serum and immunoglobulin G N-glycome as diagnostic biomarkers for early detection of breast cancer in Ethiopian women. BMC Cancer 2019; 19:588. [PMID: 31208374 PMCID: PMC6580580 DOI: 10.1186/s12885-019-5817-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alterations in protein glycosylation patterns have potentially been targeted for biomarker discovery in a wide range of diseases including cancer. Although there have been improvements in patient diagnosis and survival for breast cancer (BC), there is no clinically validated serum biomarker for its early diagnosis. Here, we profiled whole serum and purified Immunoglobulin G (IgG) fraction N-glycome towards identification of non-invasive glycan markers of BC. METHODS We employed a comprehensive glycomics approach by integrating glycoblotting-based glycan purification with MALDI-TOF/MS based quantitative analysis. Sera of BC patients belonging to stages I-IV and normal controls (NC) were collected from Ethiopian women during 2015-2016. IgG was purified by affinity chromatography using protein G spin plate and further subjected to glycoblotting for glycan release. Mass spectral data were further processed and evaluated rigorously, using various bioinformatics and statistical tools. RESULTS Out of 35 N-glycans that were significantly up-regulated in the sera of all BC patients compared to the NC, 17 complex type N-glycans showed profound expression abundance and diagnostic potential (AUC = 0.8-1) for the early stage (I and II) BC patients. Most of these glycans were core-fucosylated, multiply branched and sialylated structures, whose abundance has been strongly associated with greater invasive and metastatic potential of cancer. N-glycans quantified form IgG confirmed their abundance in BC patients, of which two core-fucosylated and agalactosylated glycans (m/z 1591, 1794) could specifically distinguish (AUC = 0.944 and 0.921, p ≤ 0.001) stage II patients from NC. Abundance of such structural features in IgG is associated with a decrease in its immunosuppressive potential towards tumor cells, which in part may correlate with the aggressive nature of BC commonly noticed in black population. CONCLUSIONS Our comprehensive study has addressed for the first time both whole serum and IgG N-glycosylation signatures of native black women suffering from BC and revealed novel glyco-biomarkers with marked overexpression and distinguishing ability at early stage patients. Further studies on direct identification of the intact glycoproteins using a glycoprteomics approach will provide a deeper understanding of specific biomarkers towards their clinical utility.
Collapse
Affiliation(s)
- Abrha G. Gebrehiwot
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021 Japan
| | - Daniel Seifu Melka
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yimenashu Mamo Kassaye
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tufa Gemechu
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wajana Lako
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021 Japan
| |
Collapse
|
23
|
Phillips RM, Lam C, Wang H, Tran PT. Bittersweet tumor development and progression: Emerging roles of epithelial plasticity glycosylations. Adv Cancer Res 2019; 142:23-62. [PMID: 30885363 DOI: 10.1016/bs.acr.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Altered metabolism is one of the hallmarks of cancer. The best-known cancer metabolic anomaly is an increase in aerobic glycolysis, which generates ATP and other basic building blocks, such as nucleotides, lipids, and proteins to support tumor cell growth and survival. Epithelial plasticity (EP) programs such as the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are evolutionarily conserved processes that are essential for embryonic development. EP also plays an important role during tumor progression toward metastasis and treatment resistance, and new roles in the acceleration of tumorigenesis have been found. Recent evidence has linked EMT-related transcriptomic alterations with metabolic reprogramming in cancer cells, which include increased aerobic glycolysis. More recent studies have revealed a novel connection between EMT and altered glycosylation in tumor cells, in which EMT drives an increase in glucose uptake and flux into the hexosamine biosynthetic pathway (HBP). The HBP is a side-branch pathway from glycolysis which generates the end product uridine-5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc). A key downstream utilization of UDP-GlcNAc is for the post-translational modification O-GlcNAcylation which involves the attachment of the GlcNAc moiety to Ser/Thr/Asn residues of proteins. Global changes in protein O-GlcNAcylation are emerging as a general characteristic of cancer cells. In our recent study, we demonstrated that the EMT-HBP-O-GlcNAcylation axis drives the O-GlcNAcylation of key proteins such as c-Myc, which previous studies have shown to suppress oncogene-induced senescence (OIS) and contribute to accelerated tumorigenesis. Here, we review the HBP and O-GlcNAcylation and their putative roles in driving EMT-related cancer processes with examples to illuminate potential new therapeutic targets for cancer.
Collapse
Affiliation(s)
- Ryan M Phillips
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christine Lam
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
24
|
Pereira MS, Alves I, Vicente M, Campar A, Silva MC, Padrão NA, Pinto V, Fernandes Â, Dias AM, Pinho SS. Glycans as Key Checkpoints of T Cell Activity and Function. Front Immunol 2018; 9:2754. [PMID: 30538706 PMCID: PMC6277680 DOI: 10.3389/fimmu.2018.02754] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The immune system is highly controlled and fine-tuned by glycosylation, through the addition of a diversity of carbohydrates structures (glycans) to virtually all immune cell receptors. Despite a relative backlog in understanding the importance of glycans in the immune system, due to its inherent complexity, remarkable findings have been highlighting the essential contributions of glycosylation in the regulation of both innate and adaptive immune responses with important implications in the pathogenesis of major diseases such as autoimmunity and cancer. Glycans are implicated in fundamental cellular and molecular processes that regulate both stimulatory and inhibitory immune pathways. Besides being actively involved in pathogen recognition through interaction with glycan-binding proteins (such as C-type lectins), glycans have been also shown to regulate key pathophysiological steps within T cell biology such as T cell development and thymocyte selection; T cell activity and signaling as well as T cell differentiation and proliferation. These effects of glycans in T cells functions highlight their importance as determinants of either self-tolerance or T cell hyper-responsiveness which ultimately might be implicated in the creation of tolerogenic pathways in cancer or loss of immunological tolerance in autoimmunity. This review discusses how specific glycans (with a focus on N-linked glycans) act as regulators of T cell biology and their implications in disease.
Collapse
Affiliation(s)
- Márcia S Pereira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Inês Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Manuel Vicente
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Ana Campar
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal.,Centro Hospitalar do Porto Porto, Portugal
| | - Mariana C Silva
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Nuno A Padrão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Vanda Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ângela Fernandes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| |
Collapse
|
25
|
Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat Commun 2018; 9:3380. [PMID: 30140003 PMCID: PMC6107550 DOI: 10.1038/s41467-018-05931-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
N-acetylglucosaminyltransferase-V (GnT-V) alters the structure of specific N-glycans by modifying α1-6-linked mannose with a β1-6-linked N-acetylglucosamine branch. β1-6 branch formation on cell surface receptors accelerates cancer metastasis, making GnT-V a promising target for drug development. However, the molecular basis of GnT-V's catalytic mechanism and substrate specificity are not fully understood. Here, we report crystal structures of human GnT-V luminal domain with a substrate analog. GnT-V luminal domain is composed of a GT-B fold and two accessary domains. Interestingly, two aromatic rings sandwich the α1-6 branch of the acceptor N-glycan and restrain the global conformation, partly explaining the fine branch specificity of GnT-V. In addition, interaction of the substrate N-glycoprotein with GnT-V likely contributes to protein-selective and site-specific glycan modification. In summary, the acceptor-GnT-V complex structure suggests a catalytic mechanism, explains the previously observed inhibition of GnT-V by branching enzyme GnT-III, and provides a basis for the rational design of drugs targeting N-glycan branching.
Collapse
|
26
|
Rancourt A, Dufresne SS, St-Pierre G, Lévesque JC, Nakamura H, Kikuchi Y, Satoh MS, Frenette J, Sato S. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy. FASEB J 2018; 32:fj201701151RRR. [PMID: 29894670 PMCID: PMC6219824 DOI: 10.1096/fj.201701151rrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/21/2018] [Indexed: 01/12/2023]
Abstract
The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration. The damaged muscles are repaired through myogenesis. Consequently, myogenesis is highly active in patients with DMD, and the repeated activation of myogenesis leads to the exhaustion of the myogenic stem cells. Therefore, approaches to reducing the risk of the exhaustion are to develop a treatment that strengthens the interaction between the sarcolemma and the basal lamina and increases the efficiency of the myogenesis. Galectin-3 is an oligosaccharide-binding protein and is known to be involved in cell-cell interactions and cell-matrix interactions. Galectin-3 is expressed in myoblasts and skeletal muscle, although its function in muscle remains elusive. In this study, we found evidence that galectin-3 and the monosaccharide N-acetylglucosamine, which increases the synthesis of binding partners (oligosaccharides) of galectin-3, promote myogenesis in vitro. Moreover, in the mdx mouse model of DMD, treatment with N-acetylglucosamine increased muscle-force production. The results suggest that treatment with N-acetylglucosamine might mitigate the burden of DMD.-Rancourt, A., Dufresne, S. S., St-Pierre, G., Lévesque, J.-C., Nakamura, H., Kikuchi, Y., Satoh, M. S., Frenette, J., Sato, S. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Ann Rancourt
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Laboratory of DNA Damage Responses and Bioimaging, Research Centre Centre Hospitalier Universitaire (CHU) de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Sébastien S. Dufresne
- Department of Rehabilitation, Research Centre of Centre Hospitalier Universitaire (CHU) de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Guillaume St-Pierre
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | | | - Haruka Nakamura
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Yodai Kikuchi
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Masahiko S. Satoh
- Laboratory of DNA Damage Responses and Bioimaging, Research Centre Centre Hospitalier Universitaire (CHU) de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Jérôme Frenette
- Department of Rehabilitation, Research Centre of Centre Hospitalier Universitaire (CHU) de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Sachiko Sato
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Bioimaging Platform, Research Centre of CHU de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
27
|
Demetriou M, Nabi IR, Dennis JW. Galectins as Adaptors: Linking Glycosylation and Metabolism with Extracellular Cues. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1732.1se] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia
| | - James W. Dennis
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital
- Department of Molecular Genetics, & Department of Laboratory Medicine and Pathology, Department of Medicine, University of Toronto
| |
Collapse
|
28
|
Abu Bakar N, Lefeber DJ, van Scherpenzeel M. Clinical glycomics for the diagnosis of congenital disorders of glycosylation. J Inherit Metab Dis 2018; 41:499-513. [PMID: 29497882 PMCID: PMC5959975 DOI: 10.1007/s10545-018-0144-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/28/2023]
Abstract
Clinical glycomics comprises a spectrum of different analytical methodologies to analyze glycan structures, which provides insights into the mechanisms of glycosylation. Within clinical diagnostics, glycomics serves as a functional readout of genetic variants, and can form a basis for therapy development, as was described for PGM1-CDG. Integration of glycomics with genomics has resulted in the elucidation of previously unknown disorders of glycosylation, namely CCDC115-CDG, TMEM199-CDG, ATP6AP1-CDG, MAN1B1-CDG, and PGM1-CDG. This review provides an introduction into protein glycosylation and presents the different glycomics methodologies ranging from gel electrophoresis to mass spectrometry (MS) and from free glycans to intact glycoproteins. The role of glycomics in the diagnosis of congenital disorders of glycosylation (CDG) is presented, including a diagnostic flow chart and an overview of glycomics data of known CDG subtypes. The review ends with some future perspectives, showing upcoming technologies as system wide mapping of the N- and O-glycoproteome, intact glycoprotein profiling and analysis of sugar metabolism. These new advances will provide additional insights and opportunities to develop personalized therapy. This is especially true for inborn errors of metabolism, which are amenable to causal therapy, because interventions through supplementation therapy can directly target the pathogenesis at the molecular level.
Collapse
Affiliation(s)
- Nurulamin Abu Bakar
- Translational Metabolic Laboratory, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 DA, The Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 DA, The Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique van Scherpenzeel
- Translational Metabolic Laboratory, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 DA, The Netherlands.
| |
Collapse
|
29
|
Abstract
Glycosylation is a ubiquitous posttranslational modification of proteins that occurs in the endoplasmic reticulum/Golgi. N-glycans and mucin-type O-glycans are achieved via a series of glycohydrolase- and glycosyltransferase-mediated reactions. Glycosylation modulates immune responses by regulating thymocyte development and T helper cell differentiation. Autoimmune diseases result from an abnormal immune response by self-antigens and subsequently lead to the destruction of the target tissues. The modification of N-glycans has been studied in several animal models of T-cell-mediated autoimmune diseases. This review summarizes and highlights the modulatory effects of N-glycosylation in several autoimmune diseases, including multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Ming-Wei Chien
- Department of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
| | - Shin-Huei Fu
- Department of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
| | - Chao-Yuan Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan.
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
| |
Collapse
|
30
|
Very N, Lefebvre T, El Yazidi-Belkoura I. Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 2018; 9:1380-1402. [PMID: 29416702 PMCID: PMC5787446 DOI: 10.18632/oncotarget.22377] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths in the world. Drug resistance of tumour cells remains the main challenge toward curative treatments efficiency. Several epidemiologic studies link emergence and recurrence of this cancer to metabolic disorders. Glycosylation that modifies more than 80% of human proteins is one of the most widepread nutrient-sensitive post-translational modifications. Aberrant glycosylation participates in the development and progression of cancer. Thus, some of these glycan changes like carbohydrate antigen CA 19-9 (sialyl Lewis a, sLea) or those found on carcinoembryonic antigen (CEA) are already used as clinical biomarkers to detect and monitor CRC. The current review highlights emerging evidences accumulated mainly during the last decade that establish the role played by altered glycosylations in CRC drug resistance mechanisms that induce resistance to apoptosis and activation of signaling pathways, alter drug absorption and metabolism, and led to stemness acquisition. Knowledge in this field of investigation could aid to the development of better therapeutic approaches with new predictive biomarkers and targets tied in with adapted diet.
Collapse
Affiliation(s)
- Ninon Very
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Ikram El Yazidi-Belkoura
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| |
Collapse
|
31
|
de Freitas Junior JCM, Morgado-Díaz JA. The role of N-glycans in colorectal cancer progression: potential biomarkers and therapeutic applications. Oncotarget 2017; 7:19395-413. [PMID: 26539643 PMCID: PMC4991391 DOI: 10.18632/oncotarget.6283] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Changes in glycosylation, which is one of the most common protein post-translational modifications, are considered to be a hallmark of cancer. N-glycans can modulate cell migration, cell-cell adhesion, cell signaling, growth and metastasis. The colorectal cancer (CRC) is a leading cause of cancer-related mortality and the correlation between CRC progression and changes in the pattern of expression of N-glycans is being considered in the search for new biomarkers. Here, we review the role of N-glycans in CRC cell biology. The perspectives on emerging N-glycan-related anticancer therapies, along with new insights and challenges, are also discussed.
Collapse
Affiliation(s)
| | - José Andrés Morgado-Díaz
- Cellular Biology Program, Structural Biology Group, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Integrins and Cell Metabolism: An Intimate Relationship Impacting Cancer. Int J Mol Sci 2017; 18:ijms18010189. [PMID: 28106780 PMCID: PMC5297821 DOI: 10.3390/ijms18010189] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Integrins are important regulators of cell survival, proliferation, adhesion and migration. Once activated, integrins establish a regulated link between the extracellular matrix and the cytoskeleton. Integrins have well-established functions in cancer, such as in controlling cell survival by engagement of many specific intracellular signaling pathways and in facilitating metastasis. Integrins and associated proteins are regulated by control of transcription, membrane traffic, and degradation, as well as by a number of post-translational modifications including glycosylation, allowing integrin function to be modulated to conform to various cellular needs and environmental conditions. In this review, we examine the control of integrin function by cell metabolism, and the impact of this regulation in cancer. Within this context, nutrient sufficiency or deprivation is sensed by a number of metabolic signaling pathways such as AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) 1, which collectively control integrin function by a number of mechanisms. Moreover, metabolic flux through specific pathways also controls integrins, such as by control of integrin glycosylation, thus impacting integrin-dependent cell adhesion and migration. Integrins also control various metabolic signals and pathways, establishing the reciprocity of this regulation. As cancer cells exhibit substantial changes in metabolism, such as a shift to aerobic glycolysis, enhanced glucose utilization and a heightened dependence on specific amino acids, the reciprocal regulation of integrins and metabolism may provide important clues for more effective treatment of various cancers.
Collapse
|
33
|
Liu Z, Wang L, Zhang L, Wu X, Nie G, Chen C, Tang H, Wang Y. Metabolic Characteristics of 16HBE and A549 Cells Exposed to Different Surface Modified Gold Nanorods. Adv Healthc Mater 2016; 5:2363-75. [PMID: 27391541 DOI: 10.1002/adhm.201600164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/19/2016] [Indexed: 01/04/2023]
Abstract
Gold nanorods (AuNRs) have shown their great potential in cancer treatment due to their special physiochemical and optical properties, and the ease of surface modification. However, the molecular mechanism of biological effects induced by different surface modified AuNRs remains largely undetermined. Herein, this study for the first time systematically analyzed metabolic impacts of three surface modified AuNRs in cancer and noncancer cells detected by NMR and GC-FID/MS metabolomics and validated by molecular biological approach. It is found that positively and negatively charged AuNRs induce different metabolic consequences. Most importantly, it is found that the PEI-AuNRs display specific cytotoxicity to A549 cells while posing little impact on 16HBE cells. The cytotoxicity of PEI-AuNRs to A549 cells is manifested in large disruptions to the cell metabolisms, which affects energy metabolism, choline metabolism, the hexosamine biosynthesis pathway, and oxidative stress to cells. The results of this study provide comprehensive molecular information on the distinct biological effects of different surface modified AuNRs, and can be valuable in designing purpose-driven nanomaterials. Most importantly, this work highlights the potential of metabolomics coupled with molecular biological techniques in screening antitumor nanodrugs and revealing the molecular mechanism of their biological effects.
Collapse
Affiliation(s)
- Zhigang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Centre for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; University of Chinese Academy of Sciences; Wuhan 430071 China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology and Institute of High Energy Physics; Beijing 100190 China
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Centre for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; University of Chinese Academy of Sciences; Wuhan 430071 China
| | - Xiaochun Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology and Institute of High Energy Physics; Beijing 100190 China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology and Institute of High Energy Physics; Beijing 100190 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology and Institute of High Energy Physics; Beijing 100190 China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering; Biospectroscopy and Metabolomics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Centre for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; University of Chinese Academy of Sciences; Wuhan 430071 China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Hangzhou 310058 China
| |
Collapse
|
34
|
Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer. Biomolecules 2016; 6:biom6020025. [PMID: 27136596 PMCID: PMC4919920 DOI: 10.3390/biom6020025] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb)] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy.
Collapse
|
35
|
Takahashi M, Kizuka Y, Ohtsubo K, Gu J, Taniguchi N. Disease-associated glycans on cell surface proteins. Mol Aspects Med 2016; 51:56-70. [PMID: 27131428 DOI: 10.1016/j.mam.2016.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 01/02/2023]
Abstract
Most of membrane molecules including cell surface receptors and secreted proteins including ligands are glycoproteins and glycolipids. Therefore, identifying the functional significance of glycans is crucial for developing an understanding of cell signaling and subsequent physiological and pathological cellular events. In particular, the function of N-glycans associated with cell surface receptors has been extensively studied since they are directly involved in controlling cellular functions. In this review, we focus on the roles of glycosyltransferases that are involved in the modification of N-glycans and their target proteins such as epidermal growth factor receptor (EGFR), ErbB3, transforming growth factor β (TGF-β) receptor, T-cell receptors (TCR), β-site APP cleaving enzyme (BACE1), glucose transporter 2 (GLUT2), E-cadherin, and α5β1 integrin in relation to diseases and epithelial-mesenchymal transition (EMT) process. Above of those proteins are subjected to being modified by several glycosyltransferases such as N-acetylglucosaminyltransferase III (GnT-III), N-acetylglucosaminyltransferase IV (GnT-IV), N-acetylglucosaminyltransferase V (GnT-V), α2,6 sialyltransferase 1 (ST6GAL1), and α1,6 fucosyltransferase (Fut8), which are typical N-glycan branching enzymes and play pivotal roles in regulating the function of cell surface receptors in pathological cell signaling.
Collapse
Affiliation(s)
- Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsusima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| |
Collapse
|
36
|
Taparra K, Tran PT, Zachara NE. Hijacking the Hexosamine Biosynthetic Pathway to Promote EMT-Mediated Neoplastic Phenotypes. Front Oncol 2016; 6:85. [PMID: 27148477 PMCID: PMC4834358 DOI: 10.3389/fonc.2016.00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/27/2016] [Indexed: 01/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a highly conserved program necessary for orchestrating distant cell migration during embryonic development. Multiple studies in cancer have demonstrated a critical role for EMT during the initial stages of tumorigenesis and later during tumor invasion. Transcription factors (TFs) such as SNAIL, TWIST, and ZEB are master EMT regulators that are aberrantly overexpressed in many malignancies. Recent evidence correlates EMT-related transcriptomic alterations with metabolic reprograming in cancer. Metabolic alterations may allow cancer to adapt to environmental stressors, supporting the irregular macromolecular demand of rapid proliferation. One potential metabolic pathway of increasing importance is the hexosamine biosynthesis pathway (HBP). The HBP utilizes glycolytic intermediates to generate the metabolite UDP-GlcNAc. This and other charged nucleotide sugars serve as the basis for biosynthesis of glycoproteins and other glycoconjugates. Recent reports in the field of glycobiology have cultivated great curiosity within the cancer research community. However, specific mechanistic relationships between the HBP and fundamental pathways of cancer, such as EMT, have yet to be elucidated. Altered protein glycosylation downstream of the HBP is well positioned to mediate many cellular changes associated with EMT including cell-cell adhesion, responsiveness to growth factors, immune system evasion, and signal transduction programs. Here, we outline some of the basics of the HBP and putative roles the HBP may have in driving EMT-related cancer processes. With novel appreciation of the HBP's connection to EMT, we hope to illuminate the potential for new therapeutic targets of cancer.
Collapse
Affiliation(s)
- Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
37
|
Willems AP, van Engelen BGM, Lefeber DJ. Genetic defects in the hexosamine and sialic acid biosynthesis pathway. Biochim Biophys Acta Gen Subj 2015; 1860:1640-54. [PMID: 26721333 DOI: 10.1016/j.bbagen.2015.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Congenital disorders of glycosylation are caused by defects in the glycosylation of proteins and lipids. Classically, gene defects with multisystem disease have been identified in the ubiquitously expressed glycosyltransferases required for protein N-glycosylation. An increasing number of defects are being described in sugar supply pathways for protein glycosylation with tissue-restricted clinical symptoms. SCOPE OF REVIEW In this review, we address the hexosamine and sialic acid biosynthesis pathways in sugar metabolism. GFPT1, PGM3 and GNE are essential for synthesis of nucleotide sugars uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-sialic acid) as precursors for various glycosylation pathways. Defects in these enzymes result in contrasting clinical phenotypes of congenital myasthenia, immunodeficiency or adult-onset myopathy, respectively. We therefore discuss the biochemical mechanisms of known genetic defects in the hexosamine and CMP-sialic acid synthesis pathway in relation to the clinical phenotypes. MAJOR CONCLUSIONS Both UDP-GlcNAc and CMP-sialic acid are important precursors for diverse protein glycosylation reactions and for conversion into other nucleotide-sugars. Defects in the synthesis of these nucleotide sugars might affect a wide range of protein glycosylation reactions. Involvement of multiple glycosylation pathways might contribute to disease phenotype, but the currently available biochemical information on sugar metabolism is insufficient to understand why defects in these pathways present with tissue-specific phenotypes. GENERAL SIGNIFICANCE Future research on the interplay between sugar metabolism and different glycosylation pathways in a tissue- and cell-specific manner will contribute to elucidation of disease mechanisms and will create new opportunities for therapeutic intervention. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Anke P Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Assembly, organization and regulation of cell-surface receptors by lectin–glycan complexes. Biochem J 2015; 469:1-16. [DOI: 10.1042/bj20150461] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Galectins are a family of β-galactoside-binding lectins carrying at least one consensus sequence in the carbohydrate-recognition domain. Properties of glycosylated ligands, such as N- and O-glycan branching, LacNAc (N-acetyl-lactosamine) content and the balance of α2,3- and α2,6-linked sialic acid dramatically influence galectin binding to a preferential set of counter-receptors. The presentation of specific glycans in galectin-binding partners is also critical, as proper orientation and clustering of oligosaccharide ligands on multiple carbohydrate side chains increase the binding avidity of galectins for particular glycosylated receptors. When galectins are released from the cells, they typically concentrate on the cell surface and the local matrix, raising their local concentration. Thus galectins can form their own multimers in the extracellular milieu, which in turn cross-link glycoconjugates on the cell surface generating galectin–glycan complexes that modulate intracellular signalling pathways, thus regulating cellular processes such as apoptosis, proliferation, migration and angiogenesis. Subtle changes in receptor expression, rates of protein synthesis, activities of Golgi enzymes, metabolite concentrations supporting glycan biosynthesis, density of glycans, strength of protein–protein interactions at the plasma membrane and stoichiometry may modify galectin–glycan complexes. Although galectins are key contributors to the formation of these extended glycan complexes leading to promotion of receptor segregation/clustering, and inhibition of receptor internalization by surface retention, when these complexes are disrupted, some galectins, particularly galectin-3 and -4, showed the ability to drive clathrin-independent mechanisms of endocytosis. In the present review, we summarize the data available on the assembly, hierarchical organization and regulation of conspicuous galectin–glycan complexes, and their implications in health and disease.
Collapse
|
39
|
Kamada Y, Sato M, Kida S, Akita M, Mizutani K, Fujii H, Sobajima T, Yoshida Y, Shinzaki S, Takamatsu S, Takehara T, Miyoshi E. N-acetylglucosaminyltransferase V exacerbates concanavalin A-induced hepatitis in mice. Mol Med Rep 2015; 11:3573-3584. [PMID: 25572342 DOI: 10.3892/mmr.2015.3168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/09/2014] [Indexed: 01/14/2023] Open
Abstract
N‑Acetylglucosaminyltransferase V (GnT‑V) catalyzes β1‑6 branching in asparagine‑linked oligosaccharides and is one of the most important glycosyltransferases involved in carcinogenesis, cancer metastasis and immunity. To investigate the biological functions of GnT‑V, the present study developed GnT‑V transgenic (Tg) mice and the role of GnT‑V in experimental immune‑mediated hepatitis, induced by concanavalin A (ConA), were investigated. It was found that the aberrant expression of GnT‑V exacerbated ConA‑induced hepatitis in the Tg mice compared with the wild‑type (WT) mice. The survival rate of the ConA‑induced hepatitis at a high‑dose of ConA was significantly lower in the Tg mice. Intravenously injected ConA is known to initially bind predominantly to the mannose gland of the liver sinusoidal endothelial cell (LSEC) surface and to leads to the activation of various immune cells. In the present study, the binding affinity of ConA to the LSECs did not differ between the WT and Tg mice. In addition, T cell receptor stimulation by anti‑cluster of differentiation (CD)3/CD28 antibodies produced lower levels of T helper (Th)1 cytokine (interferon‑γ) and higher levels of Th2 cytokine (interleukin‑10) in the Tg mouse splenic lymphocytes compared with WT mice. The composition of the hepatic mononuclear cells revealed that CD11b‑positive cells were significantly increased in the GnT‑V Tg mice. In addition, F4/80‑positive cells were significantly increased in the Tg mouse liver and the depletion of macrophages reduced the difference in the severity of ConA‑induced hepatitis between the WT and Tg mice. In conclusion, the present findings indicated that the aberrant expression of GnT‑V led to an increase in hepatic macrophage infiltration and enhanced ConA‑induced hepatitis. Modulation of glycosylation may be a novel therapeutic target for immunity‑associated acute hepatitis.
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Motoya Sato
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Sachiho Kida
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Maaya Akita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Kayo Mizutani
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Hironobu Fujii
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Tomoaki Sobajima
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Shinichiro Shinzaki
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| |
Collapse
|
40
|
Muthusamy S, Malhotra P, Hosameddin M, Dudeja AK, Borthakur S, Saksena S, Gill RK, Dudeja PK, Alrefai WA. N-glycosylation is essential for ileal ASBT function and protection against proteases. Am J Physiol Cell Physiol 2015; 308:C964-71. [PMID: 25855079 DOI: 10.1152/ajpcell.00023.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022]
Abstract
The bile acid transporter ASBT is a glycoprotein responsible for active absorption of bile acids. Inhibiting ASBT function and bile acid absorption is an attractive approach to lower plasma cholesterol and improve glucose imbalance in diabetic patients. Deglycosylation of ASBT was shown to decrease its function. However, the exact roles of N-glycosylation of ASBT, and how it affects its function, is not known. Current studies investigated the roles of N-glycosylation in ASBT protein stability and protection against proteases utilizing HEK-293 cells stably transfected with ASBT-V5 fusion protein. ASBT-V5 protein was detected as two bands with molecular mass of ~41 and ~35 kDa. Inhibition of glycosylation by tunicamycin significantly decreased ASBT activity and shifted ASBT bands to ~30 kDa, representing a deglycosylated protein. Treatment of total cellular lysates with PNGase F or Endo H glycosidases showed that the upper 41-kDa band represents a fully mature N-acetylglucosamine-rich glycoprotein and the lower 35-kDa band represents a mannose-rich core glycoprotein. Studies with the glycosylation deficient ASBT mutant (N10Q) showed that the N-glycosylation is not essential for ASBT targeting to plasma membrane. However, mature glycosylation significantly increased the half-life and protected ASBT protein from digestion with trypsin. Incubating the cells with high glucose (25 mM) for 48 h increased mature glycosylated ASBT along with an increase in its function. These results unravel novel roles for N-glycosylation of ASBT and suggest that high levels of glucose alter the composition of the glycan and may contribute to the increase in ASBT function in diabetes mellitus.
Collapse
Affiliation(s)
- Saminathan Muthusamy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pooja Malhotra
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mobashir Hosameddin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Amish K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sujata Borthakur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pradeep K Dudeja
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Waddah A Alrefai
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
41
|
The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci Rep 2015; 5:8421. [PMID: 25672227 PMCID: PMC4325332 DOI: 10.1038/srep08421] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022] Open
Abstract
Chronic infection caused by the hepatitis B virus (HBV), is strongly associated with hepatitis, fatty liver and hepatocellular carcinoma. To investigate the underlying mechanisms, we characterize the metabolic features of host cells infected with the virus using systems biological approach. The results show that HBV replication induces systematic metabolic alterations in host cells. HBV infection up-regulates the biosynthesis of hexosamine and phosphatidylcholine by activating glutamine-fructose-6-phosphate amidotransferase 1 (GFAT1) and choline kinase alpha (CHKA) respectively, which were reported for the first time for HBV infection. Importantly suppressing hexosamine biosynthesis and phosphatidylcholine biosynthesis can inhibit HBV replication and expression. In addition, HBV induces oxidative stress and stimulates central carbon metabolism and nucleotide synthesis. Our results also indicate that HBV associated hepatocellular carcinoma could be attributed to GFAT1 activated hexosamine biosynthesis and CHKA activated phosphatidylcholine biosynthesis. This study provides further insights into the pathogenesis of HBV-induced diseases, and sheds new light on drug target for treating HBV infection.
Collapse
|
42
|
Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 2015; 126:11-51. [PMID: 25727145 DOI: 10.1016/bs.acr.2014.11.001] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer.
Collapse
|
43
|
Kämpf MM, Braun M, Sirena D, Ihssen J, Thöny-Meyer L, Ren Q. In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Microb Cell Fact 2015; 14:12. [PMID: 25612741 PMCID: PMC4308876 DOI: 10.1186/s12934-015-0195-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/12/2015] [Indexed: 11/26/2022] Open
Abstract
Background Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host Escherichia coli established a novel bioconjugation methodology termed bacterial glycoengineering. Results In this study, we report on the production of a new recombinant glycoconjugate vaccine against Shigella flexneri 2a representing the major serotype for global outbreaks of shigellosis. We demonstrate that S. flexneri 2a O-polysaccharides can be transferred to a detoxified variant of Pseudomonas aeruginosa carrier protein exotoxin A (EPA) by the C. jejuni oligosaccharyltransferase PglB, resulting in glycosylated EPA-2a. Moreover, we optimized the in vivo production of this novel vaccine by identification and quantitative analysis of critical process parameters for glycoprotein synthesis. It was found that sequential induction of oligosaccharyltransferase PglB and carrier protein EPA increased the specific productivity of EPA-2a by a factor of 1.6. Furthermore, by the addition of 10 g/L of the monosaccharide N-acetylglucosamine during induction, glycoconjugate vaccine yield was boosted up to 3.1-fold. The optimum concentration of Mg2+ ions for N-glycan transfer was determined to be 10 mM. Finally, optimized parameters were transferred to high cell density cultures with a 46-fold increase of overall yield of glycoconjugate compared to the one in initial shake flask production. Conclusion The present study is the first attempt to identify stimulating parameters for improved productivity of S. flexneri 2a bioconjugates. Optimization of glycosylation efficiency will ultimately foster the transfer of lab-scale expression to a cost-effective in vivo production process for a glycoconjugate vaccine against S. flexneri 2a in E. coli. This study is an important step towards this goal and provides a starting point for further optimization studies.
Collapse
Affiliation(s)
- Michael M Kämpf
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland. .,GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland.
| | - Martin Braun
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland.
| | | | - Julian Ihssen
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| | - Linda Thöny-Meyer
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| | - Qun Ren
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| |
Collapse
|
44
|
Nunes JB, Peixoto J, Soares P, Maximo V, Carvalho S, Pinho SS, Vieira AF, Paredes J, Rego AC, Ferreira IL, Gomez-Lazaro M, Sobrinho-Simoes M, Singh KK, Lima J. OXPHOS dysfunction regulates integrin- 1 modifications and enhances cell motility and migration. Hum Mol Genet 2014; 24:1977-90. [DOI: 10.1093/hmg/ddu612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Ogawa M, Sawaguchi S, Kawai T, Nadano D, Matsuda T, Yagi H, Kato K, Furukawa K, Okajima T. Impaired O-linked N-acetylglucosaminylation in the endoplasmic reticulum by mutated epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine transferase found in Adams-Oliver syndrome. J Biol Chem 2014; 290:2137-49. [PMID: 25488668 DOI: 10.1074/jbc.m114.598821] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS. Simultaneous expression of EOGT with Notch1 EGF repeats in human embryonic kidney 293T (HEK293T) cells led to immunoreactivity with the CTD110.6 antibody in the ER. Consistent with the GlcNAc modification in the ER, the enzymatic properties of EOGT are distinct from those of Golgi-resident GlcNAc transferases; the pH optimum of EOGT ranges from 7.0 to 7.5, and the Km value for UDP N-acetylglucosamine (UDP-GlcNAc) is 25 μm. Despite the relatively low Km value for UDP-GlcNAc, EOGT-catalyzed GlcNAcylation depends on the hexosamine pathway, as revealed by the increased O-GlcNAcylation of Notch1 EGF repeats upon supplementation with hexosamine, suggesting differential regulation of the luminal UDP-GlcNAc concentration in the ER and Golgi. As compared with wild-type EOGT, O-GlcNAcylation in the ER is nearly abolished in HEK293T cells exogenously expressing EOGT variants associated with AOS. Introduction of the W207S mutation resulted in degradation of the protein via the ubiquitin-proteasome pathway, although the stability and ER localization of EOGT(R377Q) were not affected. Importantly, the interaction between UDP-GlcNAc and EOGT(R377Q) was impaired without adversely affecting the acceptor substrate interaction. These results suggest that impaired glycosyltransferase activity in mutant EOGT proteins and the consequent defective O-GlcNAcylation in the ER constitute the molecular basis for AOS.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, the Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829
| | - Shogo Sawaguchi
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Takami Kawai
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Daita Nadano
- the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601
| | - Tsukasa Matsuda
- the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601
| | - Hirokazu Yagi
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, and
| | - Koichi Kato
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, and the Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | - Koichi Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Tetsuya Okajima
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065,
| |
Collapse
|
46
|
Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J, Kishnani PS, Thomson JA, Mosher DF, Ralphe JC, Kamp TJ. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 2014; 290:3121-36. [PMID: 25488666 DOI: 10.1074/jbc.m114.628628] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infantile-onset Pompe disease is an autosomal recessive disorder caused by the complete loss of lysosomal glycogen-hydrolyzing enzyme acid α-glucosidase (GAA) activity, which results in lysosomal glycogen accumulation and prominent cardiac and skeletal muscle pathology. The mechanism by which loss of GAA activity causes cardiomyopathy is poorly understood. We reprogrammed fibroblasts from patients with infantile-onset Pompe disease to generate induced pluripotent stem (iPS) cells that were differentiated to cardiomyocytes (iPSC-CM). Pompe iPSC-CMs had undetectable GAA activity and pathognomonic glycogen-filled lysosomes. Nonetheless, Pompe and control iPSC-CMs exhibited comparable contractile properties in engineered cardiac tissue. Impaired autophagy has been implicated in Pompe skeletal muscle; however, control and Pompe iPSC-CMs had comparable clearance rates of LC3-II-detected autophagosomes. Unexpectedly, the lysosome-associated membrane proteins, LAMP1 and LAMP2, from Pompe iPSC-CMs demonstrated higher electrophoretic mobility compared with control iPSC-CMs. Brefeldin A induced disruption of the Golgi in control iPSC-CMs reproduced the higher mobility forms of the LAMPs, suggesting that Pompe iPSC-CMs produce LAMPs lacking appropriate glycosylation. Isoelectric focusing studies revealed that LAMP2 has a more alkaline pI in Pompe compared with control iPSC-CMs due largely to hyposialylation. MALDI-TOF-MS analysis of N-linked glycans demonstrated reduced diversity of multiantennary structures and the major presence of a trimannose complex glycan precursor in Pompe iPSC-CMs. These data suggest that Pompe cardiomyopathy has a glycan processing abnormality and thus shares features with hypertrophic cardiomyopathies observed in the congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Kunil K Raval
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, the WiCell Institute, Madison, Wisconsin 53719
| | - Ran Tao
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Brent E White
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Willem J De Lange
- the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - Chad H Koonce
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Junying Yu
- Cellular Dynamics International, Madison, Wisconsin 53711
| | - Priya S Kishnani
- the Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| | - James A Thomson
- the Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, the Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, the Morgridge Institute for Research, Madison, Wisconsin 53715
| | - Deane F Mosher
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, the Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - John C Ralphe
- the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - Timothy J Kamp
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, the Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, the WiCell Institute, Madison, Wisconsin 53719,
| |
Collapse
|
47
|
Abdel Rahman AM, Ryczko M, Nakano M, Pawling J, Rodrigues T, Johswich A, Taniguchi N, Dennis JW. Golgi N-glycan branching N-acetylglucosaminyltransferases I, V and VI promote nutrient uptake and metabolism. Glycobiology 2014; 25:225-40. [PMID: 25395405 DOI: 10.1093/glycob/cwu105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nutrient transporters are critical gate-keepers of extracellular metabolite entry into the cell. As integral membrane proteins, most transporters are N-glycosylated, and the N-glycans are remodeled in the Golgi apparatus. The Golgi branching enzymes N-acetylglucosaminyltransferases I, II, IV, V and avian VI (encoded by Mgat1, Mgat2, Mgat4a/b/c Mgat5 and Mgat6), each catalyze the addition of N-acetylglucosamine (GlcNAc) in N-glycans. Here, we asked whether N-glycan branching promotes nutrient transport and metabolism in immortal human HeLa carcinoma and non-malignant HEK293 embryonic kidney cells. Mgat6 is absent in mammals, but ectopic expression can be expected to add an additional β1,4-linked branch to N-glycans, and may provide evidence for functional redundancy of the N-glycan branches. Tetracycline (tet)-induced overexpression of Mgat1, Mgat5 and Mgat6 resulted in increased enzyme activity and increased N-glycan branching concordant with the known specificities of these enzymes. Tet-induced Mgat1, Mgat5 and Mgat6 combined with stimulation of hexosamine biosynthesis pathway (HBP) to UDP-GlcNAc, increased cellular metabolite levels, lactate and oxidative metabolism in an additive manner. We then tested the hypothesis that N-glycan branching alone might promote nutrient uptake when glucose (Glc) and glutamine are limiting. In low glutamine and Glc medium, tet-induced Mgat5 alone increased amino acids uptake, intracellular levels of glycolytic and TCA intermediates, as well as HEK293 cell growth. More specifically, tet-induced Mgat5 and HBP elevated the import rate of glutamine, although transport of other metabolites may be regulated in parallel. Our results suggest that N-glycan branching cooperates with HBP to regulate metabolite import in a cell autonomous manner, and can enhance cell growth in low-nutrient environments.
Collapse
Affiliation(s)
- Anas M Abdel Rahman
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room #988, Toronto, ON, Canada M5G1X5
| | - Michael Ryczko
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room #988, Toronto, ON, Canada M5G1X5 Department of Molecular Genetics
| | - Miyako Nakano
- Disease Glycomics Team, Systems Glycobiology Research Group, Chemical Biology Department, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima 739-8530, Japan
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room #988, Toronto, ON, Canada M5G1X5
| | - Tania Rodrigues
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room #988, Toronto, ON, Canada M5G1X5 Department of Molecular Genetics
| | - Anita Johswich
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room #988, Toronto, ON, Canada M5G1X5
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, Chemical Biology Department, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room #988, Toronto, ON, Canada M5G1X5 Department of Molecular Genetics Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5G1X5
| |
Collapse
|
48
|
McDonald AG, Hayes JM, Bezak T, Głuchowska SA, Cosgrave EFJ, Struwe WB, Stroop CJM, Kok H, van de Laar T, Rudd PM, Tipton KF, Davey GP. Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation. J Cell Sci 2014; 127:5014-26. [PMID: 25271059 PMCID: PMC4248093 DOI: 10.1242/jcs.151878] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein N-glycosylation is a common post-translational modification that produces a complex array of branched glycan structures. The levels of branching, or antennarity, give rise to differential biological activities for single glycoproteins. However, the precise mechanism controlling the glycan branching and glycosylation network is unknown. Here, we constructed quantitative mathematical models of N-linked glycosylation that predicted new control points for glycan branching. Galactosyltransferase, which acts on N-acetylglucosamine residues, was unexpectedly found to control metabolic flux through the glycosylation pathway and the level of final antennarity of nascent protein produced in the Golgi network. To further investigate the biological consequences of glycan branching in nascent proteins, we glycoengineered a series of mammalian cells overexpressing human chorionic gonadotropin (hCG). We identified a mechanism in which galactosyltransferase 4 isoform regulated N-glycan branching on the nascent protein, subsequently controlling biological activity in an in vivo model of hCG activity. We found that galactosyltransferase 4 is a major control point for glycan branching decisions taken in the Golgi of the cell, which might ultimately control the biological activity of nascent glycoprotein.
Collapse
Affiliation(s)
- Andrew G McDonald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Dublin 4, Ireland
| | - Jerrard M Hayes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Dublin 4, Ireland
| | - Tania Bezak
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Dublin 4, Ireland
| | - Sonia A Głuchowska
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Eoin F J Cosgrave
- National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Dublin 4, Ireland
| | - Weston B Struwe
- National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Dublin 4, Ireland
| | | | - Han Kok
- Merck, Sharp & Dohme, 5340 BH Oss, The Netherlands
| | | | - Pauline M Rudd
- National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Dublin 4, Ireland
| | - Keith F Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
49
|
Abdel Rahman AM, Ryczko M, Pawling J, Dennis JW. Probing the hexosamine biosynthetic pathway in human tumor cells by multitargeted tandem mass spectrometry. ACS Chem Biol 2013; 8:2053-62. [PMID: 23875632 DOI: 10.1021/cb4004173] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer progression is accompanied by increases in glucose and glutamine metabolism, providing the carbon and nitrogen required in downstream anabolic pathways. Fructose-6P, glutamine, and acetyl-CoA are central metabolites and substrates of the hexosamine biosynthesis pathway (HBP) to UDP-N-acetylglucosamine (UDP-GlcNAc), an essential high-energy donor for protein glycosylation. Golgi and cytosolic glycosylation pathways are sensitive to UDP-GlcNAc levels, which in turn regulates metabolic homeostasis in a poorly understood manner. To study the hexosamine biosynthesis pathway in cancer cells, we developed a targeted approach for cellular metabolomics profiling by liquid chromatography-tandem mass spectrometry. Human cervical (HeLa) and prostate cancer (PC-3) cell lines were cultured in medium with increasing concentrations of glucose, glutamine, or GlcNAc to perturb the metabolic network. Principal component analysis indicated trends that were further analyzed as individual metabolites and pathways. HeLa cell metabolism was predominantly glycolytic, while PC-3 cells showed a greater dependency on extracellular glutamine. In both cell lines, UDP-GlcNAc levels declined with glucose but not glutamine starvation, whereas glutamine abundance increased UDP-GlcNAc levels 2-3-fold. GlcNAc supplementation increased UDP-GlcNAc 4-8-fold in both HeLa and PC-3 cells. GlcNAc supplementation in HeLa cells induced nonmonotonic changes in NADH/NAD+, NADPH/NADP+, reactive oxygen species, and reduced/oxidized glutathione. In PC-3 cells, GlcNAc supplementation also increased glucose and glutamine uptake and catabolism. Our results suggest that stimulation of the HBP in cancer cells regulates metabolism and redox potential, which might be exploited to target cancer cells.
Collapse
Affiliation(s)
- Anas M. Abdel Rahman
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University
Ave., R988 Toronto, Ontario, Canada, M5G 1X5
| | - Michael Ryczko
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University
Ave., R988 Toronto, Ontario, Canada, M5G 1X5
| | - Judy Pawling
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University
Ave., R988 Toronto, Ontario, Canada, M5G 1X5
| | - James W. Dennis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University
Ave., R988 Toronto, Ontario, Canada, M5G 1X5
| |
Collapse
|
50
|
Edvardson S, Ashikov A, Jalas C, Sturiale L, Shaag A, Fedick A, Treff NR, Garozzo D, Gerardy-Schahn R, Elpeleg O. Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis. J Med Genet 2013; 50:733-9. [PMID: 24031089 DOI: 10.1136/jmedgenet-2013-101753] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The heritability of autism spectrum disorder is currently estimated at 55%. Identification of the molecular basis of patients with syndromic autism extends our understanding of the pathogenesis of autism in general. The objective of this study was to find the gene mutated in eight patients from a large kindred, who suffered from autism spectrum disorder, arthrogryposis and epilepsy. METHODS AND RESULTS By linkage analysis and exome sequencing, we identified deleterious mutations in SLC35A3 in these patients. SLC35A3 encodes the major Golgi uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) transporter. In Golgi vesicles isolated from patient fibroblasts the transport of the respective nucleotide sugar was significantly reduced causing a massive decrease in the content of cell surface expressed highly branched N-glycans and a concomitant sharp increase of lower branched glycoforms. CONCLUSIONS Spontaneous mutation in SLC35A3 has been discovered in cattle worldwide, recapitulating the human phenotype with arthrogryposis and additional skeletal defects known as Complex Vertebral Malformation syndrome. The skeletal anomalies in the mutant cattle and in our patients, and perhaps even the neurological symptoms are likely the consequence of the lack of high-branched N-glycans and the concomitant abundance of lower-branched glycoforms at the cell surface. This pattern has previously been associated with growth arrest and induction of differentiation. With this study, we add SLC35A3 to the gene list of autism spectrum disorders, and underscore the crucial importance of UDP-GlcNAc in the regulation of the N-glycan branching pathway in the Golgi apparatus.
Collapse
Affiliation(s)
- Simon Edvardson
- Monique and Jacques Roboh, Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|