1
|
Ghorashi AC, Boucher A, Archer-Hartmann SA, Zalem D, Taherzadeh Ghahfarrokhi M, Murray NB, Konada RSR, Zhang X, Xing C, Teneberg S, Azadi P, Yrlid U, Kohler JJ. Fucosylation of glycoproteins and glycolipids: opposing roles in cholera intoxication. Nat Chem Biol 2025; 21:555-566. [PMID: 39414978 DOI: 10.1038/s41589-024-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Cholera toxin (CT) is the etiological agent of cholera. Here we report that multiple classes of fucosylated glycoconjugates function in CT binding and intoxication of intestinal epithelial cells. In Colo205 cells, knockout (KO) of B3GNT5, which encodes an enzyme required for synthesis of lacto and neolacto series glycosphingolipids (GSLs), reduces CT binding but sensitizes cells to intoxication. Overexpressing B3GNT5 to generate more fucosylated GSLs confers protection against intoxication, indicating that fucosylated GSLs act as decoy receptors for CT. KO of B3GALT5 causes increased production of fucosylated O-linked and N-linked glycoproteins and leads to increased CT binding and intoxication. KO of B3GNT5 in B3GALT5-KO cells eliminates production of fucosylated GSLs but increases intoxication, identifying fucosylated glycoproteins as functional receptors for CT. These findings provide insight into the molecular determinants regulating CT sensitivity of host cells.
Collapse
Affiliation(s)
- Atossa C Ghorashi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Dani Zalem
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Nathan B Murray
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | | | - Xunzhi Zhang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Susann Teneberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Merz N, Hartel JC, Grösch S. How ceramides affect the development of colon cancer: from normal colon to carcinoma. Pflugers Arch 2024; 476:1803-1816. [PMID: 38635059 PMCID: PMC11582153 DOI: 10.1007/s00424-024-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The integrity of the colon and the development of colon cancer depend on the sphingolipid balance in colon epithelial cells. In this review, we summarize the current knowledge on how ceramides and their complex derivatives influence normal colon development and colon cancer development. Ceramides, glucosylceramides and sphingomyelin are essential membrane components and, due to their biophysical properties, can influence the activation of membrane proteins, affecting protein-protein interactions and downstream signalling pathways. Here, we review the cellular mechanisms known to be affected by ceramides and their effects on colon development. We also describe which ceramides are deregulated during colorectal carcinogenesis, the molecular mechanisms involved in ceramide deregulation and how this affects carcinogenesis. Finally, we review new methods that are now state of the art for studying lipid-protein interactions in the physiological environment.
Collapse
Affiliation(s)
- Nadine Merz
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Jennifer Christina Hartel
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Sabine Grösch
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany.
| |
Collapse
|
3
|
Tsukamoto B, Kurebayashi Y, Takahashi T, Abe Y, Ota R, Wakabayashi Y, Nishiie A, Minami A, Suzuki T, Takeuchi H. VP1 of human and murine noroviruses recognizes glycolipid sulfatide via the P domain. J Biochem 2024; 176:299-312. [PMID: 39012025 DOI: 10.1093/jb/mvae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
Noroviruses are a prevalent cause of human viral gastroenteritis, yet the precise mechanisms underlying their infection cycle, particularly their interactions with and entry into cells, remain poorly understood. Human norovirus (HuNoV) primarily targets human small intestinal epithelial cells, within which 3-O-sulfogalactosylceramide (sulfatide) ranks among the most abundant glycosphingolipids (GSLs). While sulfatide involvement in the binding and infection mechanism of several viruses has been documented, its interaction with noroviruses remains underexplored. This study investigated whether noroviruses interact with sulfatide. We found that the recombinant viral capsid protein VP1 of HuNoV (genogroups I and II) and murine norovirus (genogroup V) exhibited robust binding to sulfatide compared with other tested GSLs using enzyme-linked immunosorbent assay, thin-layer chromatography binding assay and real-time quantitative reverse transcription polymerase chain reaction binding assay. VP1 also bound 3-O-sulfated lactosylceramide, which shares the 3-O-sulfated galactose moiety with sulfatide. However, both VP1 and its P domain, identified as the sulfatide-binding domain, exhibited limited binding to structural analogues of sulfatide and other sulfated compounds. These findings suggest a specific recognition of the 3-O-sulfated galactose moiety. Notably, we found that sulfatide is a novel binding target for norovirus particles. Overall, our findings reveal a previously unknown norovirus-sulfatide interaction, proposing sulfatide as a potential candidate for norovirus infection receptors.
Collapse
Affiliation(s)
- Bunta Tsukamoto
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yusuke Abe
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryohei Ota
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshiki Wakabayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Anju Nishiie
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
4
|
Nilsson J, Rimkute I, Sihlbom C, Tenge VR, Lin SC, Atmar RL, Estes MK, Larson G. N-glycoproteomic analyses of human intestinal enteroids, varying in histo-blood group geno- and phenotypes, reveal a wide repertoire of fucosylated glycoproteins. Glycobiology 2024; 34:cwae029. [PMID: 38590172 PMCID: PMC11041853 DOI: 10.1093/glycob/cwae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.
Collapse
Affiliation(s)
- Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
- Department of Clinical Chemistry, Region Västra Götaland, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
- Proteomics Core Facilities, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 413 90, Gothenburg, Sweden
| | - Inga Rimkute
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 7A, SE 413 90, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facilities, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 413 90, Gothenburg, Sweden
| | - Victoria R Tenge
- Department of Molecular Virology, Baylor College School of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
| | - Shih-Ching Lin
- Department of Molecular Virology, Baylor College School of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
- Present address: Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Robert L Atmar
- Department of Molecular Virology, Baylor College School of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
| | - Mary K Estes
- Department of Molecular Virology, Baylor College School of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
- Department of Clinical Chemistry, Region Västra Götaland, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
| |
Collapse
|
5
|
Singla A, Boucher A, Wallom KL, Lebens M, Kohler JJ, Platt FM, Yrlid U. Cholera intoxication of human enteroids reveals interplay between decoy and functional glycoconjugate ligands. Glycobiology 2023; 33:801-816. [PMID: 37622990 PMCID: PMC10629719 DOI: 10.1093/glycob/cwad069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Prior research on cholera toxin (CT) binding and intoxication has relied on human colonic cancer derived epithelial cells. While these transformed cell lines have been beneficial, they neither derive from small intestine where intoxication occurs, nor represent the diversity of small intestinal epithelial cells (SI-ECs) and variation in glycoconjugate expression among individuals. Here, we used human enteroids, derived from jejunal biopsies of multipledonors to study CT binding and intoxication of human non-transformed SI-ECs. We modulated surface expression of glycosphingolipids, glycoproteins and specific glycans to distinguish the role of each glycan/glycoconjugate. Cholera-toxin-subunit-B (CTB) mutants were generated to decipher the preference of each glycoconjugate to different binding sites and the correlation between CT binding and intoxication. Human enteroids contain trace amounts of GM1, but other glycosphingolipids may be contributing to CT intoxication. We discovered that inhibition of either fucosylation or O-glycosylation sensitize enteroids to CT-intoxication. This can either be a consequence of the removal of fucosylated "decoy-like-ligands" binding to CTB's non-canonical site and/or increase in the availability of Gal/GalNAc-terminating glycoconjugates binding to the canonical site. Furthermore, simultaneous inhibition of fucosylation and O-glycosylation increased the availability of additional Gal/GalNAc-terminating glycoconjugates but counteracted the sensitization in CT intoxication caused by inhibiting O-glycosylation because of reduction in fucose. This implies a dual role of fucose as a functional glycan and a decoy, the interplay of which influences CT binding and intoxication. Finally, while the results were similar for enteroids from different donors, they were not identical, pointing to a role for human genetic variation in determining sensitivity to CT.
Collapse
Affiliation(s)
- Akshi Singla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, United States
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| |
Collapse
|
6
|
Park JY, Abekura F, Cho SH. GM1a ganglioside-binding domain peptide inhibits host adhesion and inflammatory response of enterotoxigenic Escherichia coli heat-labile enterotoxin-B in HCT-8 cells. Sci Rep 2023; 13:16835. [PMID: 37803175 PMCID: PMC10558473 DOI: 10.1038/s41598-023-44220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of illness and death but has no effective therapy. The heat-labile enterotoxin LT is a significant virulence factor produced by ETEC. The heat-labile enterotoxin-B (LT-B) subunit may enter host cells by binding to monosialotetrahexosylganglioside-a (GM1a), a monosialoganglioside found on the plasma membrane surface of animal epithelial cells. This research was conducted to develop conformationally comparable peptides to the carbohydrate epitope of GM1a for the treatment of ETEC. We used the LT-B subunit to select LT-B-binding peptides that structurally resemble GM1a. The ganglioside microarray and docking simulations were used to identify three GM1a ganglioside-binding domain (GBD) peptides based on LT-B recognition. Peptides had an inhibiting effect on the binding of LT-B to GM1a. The binding capacity, functional inhibitory activity, and in vitro effects of the GBD peptides were evaluated using HCT-8 cells, a human intestinal epithelial cell line, to evaluate the feasibility of deploying GBD peptides to combat bacterial infections. KILSYTESMAGKREMVIIT was the most efficient peptide in inhibiting cellular absorption of LT-B in cells. Our findings offer compelling evidence that GM1a GBD-like peptides might act as new therapeutics to inhibit LT-B binding to epithelial cells and avoid the subsequent physiological consequences of LT.
Collapse
Affiliation(s)
- Jun-Young Park
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Fukushi Abekura
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung-Hak Cho
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
7
|
Ghorashi AC, Boucher A, Archer-Hartmann SA, Murray NB, Konada RSR, Zhang X, Xing C, Azadi P, Yrlid U, Kohler JJ. Fucosylated glycoproteins and fucosylated glycolipids play opposing roles in cholera intoxication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551727. [PMID: 37577488 PMCID: PMC10418270 DOI: 10.1101/2023.08.02.551727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cholera toxin (CT) is the etiological agent of cholera. Here we report that multiple classes of fucosylated glycoconjugates function in CT binding and intoxication of intestinal epithelial cells. In Colo205 cells, knockout of B3GNT5, the enzyme required for synthesis of lacto- and neolacto-series glycosphingolipids (GSLs), reduces CT binding but sensitizes cells to intoxication. Overexpressing B3GNT5 to generate more fucosylated GSLs confers protection against intoxication, indicating that fucosylated GSLs act as decoy receptors for CT. Knockout (KO) of B3GALT5 causes increased production of fucosylated O-linked and N-linked glycoproteins, and leads to increased CT binding and intoxication. Knockout of B3GNT5 in B3GALT5 KO cells eliminates production of fucosylated GSLs but increases intoxication, identifying fucosylated glycoproteins as functional receptors for CT. These findings provide insight into molecular determinants regulating CT sensitivity of host cells.
Collapse
Affiliation(s)
- Atossa C. Ghorashi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas TX 75390 USA
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | - Nathan B. Murray
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | - Xunzhi Zhang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas TX 75390 USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas TX 75390 USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas TX 75390 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jennifer J. Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas TX 75390 USA
| |
Collapse
|
8
|
Ito M, Chisada S, Matsunaga N, Okino N. Vibrio-binding gangliosides in fish intestinal tracts. Glycoconj J 2023; 40:315-322. [PMID: 36933118 DOI: 10.1007/s10719-023-10110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023]
Abstract
It has been clarified that pathogens bind to glycosphingolipid (GSL) receptors in mammals, but there have been very few reports on pathogen-binding GSLs in fish. Vibrios are facultative anaerobic bacteria ubiquitous in marine and brackish environments. They are members of the normal intestinal microflora of healthy fish, but some species can cause a disease called vibriosis in fish and shellfish when the hosts are physiologically or immunologically weakened. The adherence of vibrios to host intestinal tracts is a significant event not only for survival and growth but also in terms of pathogenicity. We show in this mini-review that sialic acid-containing GSLs (gangliosides), GM4 and GM3, are receptors to which vibrios adhere to epithelial cells in the intestinal tract of fish. We also describe the enzymes responsible for synthesizing these Vibrio-binding gangliosides in fish.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0385, Japan.
| | - Shinichi Chisada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0385, Japan.,Department of Hygiene and Public Health, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Naoyuki Matsunaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0385, Japan.,Bizen Chemical Co. Ltd., 363 Tokudomi, Akaiwa-shi, Okayama, 709-0716, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0385, Japan
| |
Collapse
|
9
|
Reis A, Teixeira JPF, Silva AMG, Ferreira M, Gameiro P, de Freitas V. Modelling Hyperglycaemia in an Epithelial Membrane Model: Biophysical Characterisation. Biomolecules 2022; 12:biom12101534. [PMID: 36291743 PMCID: PMC9599690 DOI: 10.3390/biom12101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biomimetic models are valuable platforms to improve our knowledge on the molecular mechanisms governing membrane-driven processes in (patho)physiological conditions, including membrane permeability, transport, and fusion. However, current membrane models are over simplistic and do not include the membrane’s lipid remodelling in response to extracellular stimuli. Our study describes the synthesis of glycated dimyristoyl-phosphatidylethanolamine (DMPE-glyc), which was structurally characterised by mass spectrometry (ESI-MS) and quantified by NMR spectroscopy to be further incorporated in a complex phospholipid (PL) membrane model enriched in cholesterol (Chol) and (glyco)sphingolipids (GSL) designed to mimic epithelial membranes (PL/Chol/GSL) under hyperglycaemia conditions. Characterisation of synthesised DMPE-glyc adducts by tandem mass spectrometry (ESI-MS/MS) show that synthetic DMPE-glyc adducts correspond to Amadori products and quantification by 1H NMR spectroscopy show that the yield of glycation reaction was 8%. The biophysical characterisation of the epithelial membrane model shows that excess glucose alters the thermotropic behaviour and fluidity of epithelial membrane models likely to impact permeability of solutes. The epithelial membrane models developed to mimic normo- and hyperglycaemic scenarios are the basis to investigate (poly)phenol-lipid and drug–membrane interactions crucial in nutrition, pharmaceutics, structural biochemistry, and medicinal chemistry.
Collapse
|
10
|
Ren LL, Zhou JY, Liang SJ, Wang XQ. Impaired intestinal stem cell activity in ETEC infection: enterotoxins, cyclic nucleotides, and Wnt signaling. Arch Toxicol 2022; 96:1213-1225. [PMID: 35226135 DOI: 10.1007/s00204-021-03213-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) in humans and animals colonizes the intestine and thereafter secrets heat-stable enterotoxin (ST) with or without heat-labile enterotoxin (LT), which triggers massive fluid and electrolyte secretion into the gut lumen. The crosstalk between the cyclic nucleotide-dependent protein kinase/cystic fibrosis transmembrane conductance regulator (cAMP or cGMP/CFTR) pathway involved in ETEC-induced diarrhea channels, and the canonical Wnt/β-catenin signaling pathway leads to changes in intestinal stem cell (ISC) fates, which are strongly associated with developmental disorders caused by diarrhea. We review how alterations in enterotoxin-activated ion channel pathways and the canonical Wnt/β-catenin signaling pathway can explain inhibited intestinal epithelial activity, characterize alterations in the crosstalk of cyclic nucleotides, and predict harmful effects on ISCs in targeted therapy. Besides, we discuss current deficits in the understanding of enterotoxin-intestinal epithelial cell activity relationships that should be considered when interpreting sequelae of diarrhea.
Collapse
Affiliation(s)
- Lu-Lu Ren
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Shao-Jie Liang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Tenge VR, Hu L, Prasad BVV, Larson G, Atmar RL, Estes MK, Ramani S. Glycan Recognition in Human Norovirus Infections. Viruses 2021; 13:2066. [PMID: 34696500 PMCID: PMC8537403 DOI: 10.3390/v13102066] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Recognition of cell-surface glycans is an important step in the attachment of several viruses to susceptible host cells. The molecular basis of glycan interactions and their functional consequences are well studied for human norovirus (HuNoV), an important gastrointestinal pathogen. Histo-blood group antigens (HBGAs), a family of fucosylated carbohydrate structures that are present on the cell surface, are utilized by HuNoVs to initially bind to cells. In this review, we describe the discovery of HBGAs as genetic susceptibility factors for HuNoV infection and review biochemical and structural studies investigating HuNoV binding to different HBGA glycans. Recently, human intestinal enteroids (HIEs) were developed as a laboratory cultivation system for HuNoV. We review how the use of this novel culture system has confirmed that fucosylated HBGAs are necessary and sufficient for infection by several HuNoV strains, describe mechanisms of antibody-mediated neutralization of infection that involve blocking of HuNoV binding to HBGAs, and discuss the potential for using the HIE model to answer unresolved questions on viral interactions with HBGAs and other glycans.
Collapse
Affiliation(s)
- Victoria R. Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - B. V. Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden;
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
| |
Collapse
|
12
|
Lee D, Green A, Wu H, Kwon JS. Hybrid
PDE‐kMC
modeling approach to simulate multivalent lectin‐glycan binding process. AIChE J 2021. [DOI: 10.1002/aic.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongheon Lee
- Department of Biomedical Engineering Duke University Durham North Carolina USA
| | - Aaron Green
- Artie McFerrin Department of Chemical Engineering Texas A&M University Texas USA
| | - Hung‐Jen Wu
- Artie McFerrin Department of Chemical Engineering Texas A&M University Texas USA
| | - Joseph Sang‐Il Kwon
- Artie McFerrin Department of Chemical Engineering Texas A&M University Texas USA
| |
Collapse
|
13
|
Reza S, Ugorski M, Suchański J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology 2021; 31:1416-1434. [PMID: 34080016 PMCID: PMC8684486 DOI: 10.1093/glycob/cwab046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022] Open
Abstract
Numerous clinical observations and exploitation of cellular and animal models indicate that glucosylceramide (GlcCer) and galactosylceramide (GalCer) are involved in many physiological and pathological phenomena. In many cases, the biological importance of these monohexosylcermides has been shown indirectly as the result of studies on enzymes involved in their synthesis and degradation. Under physiological conditions, GalCer plays a key role in the maintenance of proper structure and stability of myelin and differentiation of oligodendrocytes. On the other hand, GlcCer is necessary for the proper functions of epidermis. Such an important lysosomal storage disease as Gaucher disease (GD) and a neurodegenerative disorder as Parkinson’s disease are characterized by mutations in the GBA1 gene, decreased activity of lysosomal GBA1 glucosylceramidase and accumulation of GlcCer. In contrast, another lysosomal disease, Krabbe disease, is associated with mutations in the GALC gene, resulting in deficiency or decreased activity of lysosomal galactosylceramidase and accumulation of GalCer and galactosylsphingosine. Little is known about the role of both monohexosylceramides in tumor progression; however, numerous studies indicate that GlcCer and GalCer play important roles in the development of multidrug-resistance by cancer cells. It was shown that GlcCer is able to provoke immune reaction and acts as a self-antigen in GD. On the other hand, GalCer was recognized as an important cellular receptor for HIV-1. Altogether, these two molecules are excellent examples of how slight differences in chemical composition and molecular conformation contribute to profound differences in their physicochemical properties and biological functions.
Collapse
Affiliation(s)
- Safoura Reza
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| |
Collapse
|
14
|
Han L, Xue X, Roy R, Kitova EN, Zheng RB, St-Pierre Y, Lowary TL, Klassen JS. Neoglycolipids as Glycosphingolipid Surrogates for Protein Binding Studies Using Nanodiscs and Native Mass Spectrometry. Anal Chem 2020; 92:14189-14196. [PMID: 32940034 DOI: 10.1021/acs.analchem.0c03344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interactions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) in the membranes of cells are implicated in a wide variety of normal and pathophysiological processes. Despite the critical biological roles these interactions play, the GSL ligands of most GBPs have not yet been identified. The limited availability of purified GSLs represents a significant challenge to the discovery and characterization of biologically relevant GBP-GSL interactions. The present work investigates the use of neoglycolipids (NGLs) as surrogates for GSLs for catch-and-release-electrospray ionization mass spectrometry (CaR-ESI-MS)-based screening, implemented with nanodiscs, for the discovery of GSL ligands. Three pairs of NGLs based on the blood group type A and B trisaccharides, with three different lipid head groups but all with "ring-closed" monosaccharide residue at the reducing end, were synthesized. The incorporation efficiencies (into nanodiscs) of the NGLs and their affinities for a fragment of family 51 carbohydrate-binding module (CBM) identified an amide-linked 1,3-di-O-hexadecyl-glycerol moiety as the optimal lipid structure. Binding measurements performed on cholera toxin B subunit homopentamer (CTB5) and nanodiscs containing an NGL consisting of the optimal lipid moiety and the GM1 ganglioside pentasaccharide yielded affinities similar, within a factor of 2, to those of native GM1. Finally, nanodiscs containing the optimal A and B trisaccharide NGLs, as well as the corresponding NGLs of lactose, A type 2 tetrasaccharide, and the GM1 and GD2 pentasaccharides were screened against the family 51 CBM, human galectin-7, and CTB5 to illustrate the potential of NGLs to accelerate the discovery of GSL ligands of GBPs.
Collapse
Affiliation(s)
- Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xiaochao Xue
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rashmi Roy
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ruixiang Blake Zheng
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
15
|
Youn G, Cervin J, Yu X, Bhatia SR, Yrlid U, Sampson NS. Targeting Multiple Binding Sites on Cholera Toxin B with Glycomimetic Polymers Promotes the Formation of Protein-Polymer Aggregates. Biomacromolecules 2020; 21:4878-4887. [PMID: 32960582 DOI: 10.1021/acs.biomac.0c01122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The canonical binding site on the B subunit of cholera toxin (CTB) binds to GM1 gangliosides on host cells. However, the recently discovered noncanonical binding site on CTB with affinity for fucosylated molecules has raised the possibility that both sites can be involved in initiating intoxication. Previously, we showed that blocking CTB binding to human and murine small intestine epithelial cells can be increased by simultaneously targeting both binding sites with multivalent norbornene-based glycopolymers [ACS Infect. Dis. 2020, 6, 5, 1192-1203]. However, the mechanistic origin of the increased blocking efficacy was unclear. Herein, we observed that mixing CTB pentamers and glycopolymers that display fucose and galactose sugars results in the formation of large aggregates, which further inhibits binding of CTB to human granulocytes. Dynamic light scattering analysis, small-angle X-ray scattering analysis, transmission electron microscopy, and turbidimetric assays revealed that the facial directionality of CTB promotes interchain cross-linking, which in turn leads to self-assembly of protein-polymer networks. This cross-linking-induced self-assembly occurs only when the glycopolymer system contains both galactose and fucose. In an assay of the glycopolymer's ability to block CTB binding to human granulocytes, we observed a direct correlation between IC50 and self-assembly size. The aggregation mechanism of inhibition proposed herein has potential utility for the development of low-cost macromolecular clinical therapeutics for cholera that do not have exotic architectures and do not require complex synthetic sequences.
Collapse
Affiliation(s)
- Gyusaang Youn
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-6500, United States
| | - Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Xiaoxi Yu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-6500, United States
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-6500, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-6500, United States
| |
Collapse
|
16
|
Rimkute I, Thorsteinsson K, Henricsson M, Tenge VR, Yu X, Lin SC, Haga K, Atmar RL, Lycke N, Nilsson J, Estes MK, Bally M, Larson G. Histo-blood group antigens of glycosphingolipids predict susceptibility of human intestinal enteroids to norovirus infection. J Biol Chem 2020; 295:15974-15987. [PMID: 32913124 DOI: 10.1074/jbc.ra120.014855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Indexed: 01/23/2023] Open
Abstract
The molecular mechanisms behind infection and propagation of human restricted pathogens such as human norovirus (HuNoV) have defied interrogation because they were previously unculturable. However, human intestinal enteroids (HIEs) have emerged to offer unique ex vivo models for targeted studies of intestinal biology, including inflammatory and infectious diseases. Carbohydrate-dependent histo-blood group antigens (HBGAs) are known to be critical for clinical infection. To explore whether HBGAs of glycosphingolipids contribute to HuNoV infection, we obtained HIE cultures established from stem cells isolated from jejunal biopsies of six individuals with different ABO, Lewis, and secretor genotypes. We analyzed their glycerolipid and sphingolipid compositions and quantified interaction kinetics and the affinity of HuNoV virus-like particles (VLPs) to lipid vesicles produced from the individual HIE-lipid extracts. All HIEs had a similar lipid and glycerolipid composition. Sphingolipids included HBGA-related type 1 chain glycosphingolipids (GSLs), with HBGA epitopes corresponding to the geno- and phenotypes of the different HIEs. As revealed by single-particle interaction studies of Sydney GII.4 VLPs with glycosphingolipid-containing HIE membranes, both binding kinetics and affinities explain the patterns of susceptibility toward GII.4 infection for individual HIEs. This is the first time norovirus VLPs have been shown to interact specifically with secretor gene-dependent GSLs embedded in lipid membranes of HIEs that propagate GII.4 HuNoV ex vivo, highlighting the potential of HIEs for advanced future studies of intestinal glycobiology and host-pathogen interactions.
Collapse
Affiliation(s)
- Inga Rimkute
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Konrad Thorsteinsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoming Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shih-Ching Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kei Haga
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
| | - Marta Bally
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
17
|
Reis A, Perez-Gregorio R, Mateus N, de Freitas V. Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Crit Rev Food Sci Nutr 2020; 61:3007-3030. [PMID: 32654502 DOI: 10.1080/10408398.2020.1791794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, diet-related diseases such as diabetes, obesity, hypertension, and cardiovascular diseases account for 70% of all global deaths. To counteract the rising prevalence of non-communicable diseases governments are investing in persuasive educational campaigns toward the ingestion of fresh fruits and vegetables. The intake of dietary polyphenols abundant in Mediterranean and Nordic-type diets holds great potential as nutritional strategies in the management of diet-related diseases. However, the successful implementation of healthy nutritional strategies relies on a pleasant sensory perception in the mouth able to persuade consumers to adopt polyphenol-rich diets and on a deeper understanding on the chemical modifications, that affect not only their chemical properties but also their physical interaction with epithelial lipids and in turn their permeability, location within the lipid bilayer, toxicity and biological activity, and fate during absorption at the gastro-intestinal epithelium, transport in circulation and delivery to the endothelium. In this paper, we review the current knowledge on the interactions between polyphenols and their metabolites with membrane lipids in artificial membranes and epithelial cell models (oral, stomach, gut and endothelium) and the findings from polyphenol-lipid interactions to physiological processes such as oral taste perception, gastrointestinal absorption and endothelial health. Finally, we discuss the limitations and challenges associated with the current experimental approaches in membrane and cell model studies and the potential of polyphenol-rich diets in the quest for personalized nutritional strategies ("personalized nutrition") to assist in the prevention, treatment, and management of non-communicable diseases in an increasingly aged population.
Collapse
Affiliation(s)
- Ana Reis
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosa Perez-Gregorio
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
18
|
Kaiser F, Huebecker M, Wachten D. Sphingolipids controlling ciliary and microvillar function. FEBS Lett 2020; 594:3652-3667. [PMID: 32415987 DOI: 10.1002/1873-3468.13816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
Cilia and microvilli are membrane protrusions that extend from the surface of many different mammalian cell types. Motile cilia or flagella are only found on specialized cells, where they control cell movement or the generation of fluid flow, whereas immotile primary cilia protrude from the surface of almost every mammalian cell to detect and transduce extracellular signals. Despite these differences, all cilia consist of a microtubule core called the axoneme. Microvilli instead contain bundled linear actin filaments and are mainly localized on epithelial cells, where they modulate the absorption of nutrients. Cilia and microvilli constitute subcellular compartments with distinctive lipid and protein repertoires and specialized functions. Here, we summarize the role of sphingolipids in defining the identity and controlling the function of cilia and microvilli in mammalian cells.
Collapse
Affiliation(s)
- Fabian Kaiser
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Mylene Huebecker
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| |
Collapse
|
19
|
Cervin J, Boucher A, Youn G, Björklund P, Wallenius V, Mottram L, Sampson NS, Yrlid U. Fucose-Galactose Polymers Inhibit Cholera Toxin Binding to Fucosylated Structures and Galactose-Dependent Intoxication of Human Enteroids. ACS Infect Dis 2020; 6:1192-1203. [PMID: 32134631 PMCID: PMC7227030 DOI: 10.1021/acsinfecdis.0c00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
A promising strategy to limit cholera
severity involves blockers
mimicking the canonical cholera toxin ligand (CT) ganglioside GM1.
However, to date the efficacies of most of these blockers have been
evaluated in noncellular systems that lack ligands other than GM1.
Importantly, the CT B subunit (CTB) has a noncanonical site that binds
fucosylated structures, which in contrast to GM1 are highly expressed
in the human intestine. Here we evaluate the capacity of norbornene
polymers displaying galactose and/or fucose to block CTB binding to
immobilized protein-linked glycan structures and also to primary human
and murine small intestine epithelial cells (SI ECs). We show that
the binding of CTB to human SI ECs is largely dependent on the noncanonical
binding site, and interference with the canonical site has a limited
effect while the opposite is observed with murine SI ECs. The galactose–fucose
polymer blocks binding to fucosylated glycans but not to GM1. However,
the preincubation of CT with the galactose–fucose polymer only
partially blocks toxic effects on cultured human enteroid cells, while
preincubation with GM1 completely blocks CT-mediated secretion. Our
results support a model whereby the binding of fucose to the noncanonical
site places CT in close proximity to scarcely expressed galactose
receptors such as GM1 to enable binding via the canonical site leading
to CT internalization and intoxication. Our finding also highlights
the importance of complementing CTB binding studies with functional
intoxication studies when assessing the efficacy inhibitors of CT.
Collapse
Affiliation(s)
- Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gyusaang Youn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, United States
| | - Per Björklund
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, 416 85 Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, 416 85 Gothenburg, Sweden
| | - Lynda Mottram
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
20
|
Haksar D, Quarles van Ufford L, Pieters RJ. A hybrid polymer to target blood group dependence of cholera toxin. Org Biomol Chem 2020; 18:52-55. [DOI: 10.1039/c9ob02369k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New hybrid glycopolymers were synthesized that contain two epitopes blocking GM1- and fucose-based intoxication modes of the cholera toxin.
Collapse
Affiliation(s)
- Diksha Haksar
- Department of Chemical Biology & Drug Discovery
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Linda Quarles van Ufford
- Department of Chemical Biology & Drug Discovery
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| |
Collapse
|
21
|
González-Cuesta M, Ortiz Mellet C, García Fernández JM. Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chem Commun (Camb) 2020; 56:5207-5222. [DOI: 10.1039/d0cc01135e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Hetero)multivalency acts as a multichannel switch that shapes the supramolecular properties of carbohydrates in an intrinsically multifactorial biological context.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | | |
Collapse
|
22
|
Choi HK, Lee D, Singla A, Kwon JSI, Wu HJ. The influence of heteromultivalency on lectin-glycan binding behavior. Glycobiology 2019; 29:397-408. [PMID: 30824941 DOI: 10.1093/glycob/cwz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
We recently discovered that the nature of lectin multivalency and glycolipid diffusion on cell membranes could lead to the heteromultivalent binding (i.e., a single lectin simultaneously binding to different types of glycolipid ligands). This heteromultivalent binding may even govern the lectin-glycan recognition process. To investigate this, we developed a kinetic Monte Carlo simulation, which only considers the fundamental physics/chemistry principles, to model the process of lectin binding to glycans on cell surfaces. We found that the high-affinity glycan ligands could facilitate lectin binding to other low-affinity glycan ligands, even though these low-affinity ligands are barely detectable in microarrays with immobilized glycan ligands. Such heteromultivalent binding processes significantly change lectin binding behaviors. We hypothesize that living organisms probably utilize this mechanism to regulate the downstream lectin functions. Our finding not only offers a mechanism to describe the concept that lectins are pattern recognition molecules, but also suggests that the two overlooked parameters, surface diffusion of glycan ligand and lectin binding kinetics, can play important roles in glycobiology processes. In this paper, we identified the critical parameters that influence the heteromultivalent binding process. We also discussed how our discovery can impact the current lectin-glycan analysis.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Dongheon Lee
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Joseph Sang-Il Kwon
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| |
Collapse
|
23
|
Dual Recognition of Sialic Acid and αGal Epitopes by the VP8* Domains of the Bovine Rotavirus G6P[5] WC3 and of Its Mono-reassortant G4P[5] RotaTeq Vaccine Strains. J Virol 2019; 93:JVI.00941-19. [PMID: 31243129 PMCID: PMC6714814 DOI: 10.1128/jvi.00941-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023] Open
Abstract
Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human. Group A rotaviruses, an important cause of severe diarrhea in children and young animals, initiate infection via interactions of the VP8* domain of the VP4 spike protein with cell surface sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is also used in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for the VP8* domain of WC3 and its reassortant strains have not yet been identified. In the present study, HBGA- and saliva-binding assays showed that both G6P[5] WC3 and mono-reassortant G4P[5] strains recognized the αGal HBGA. The infectivity of both P[5]-bearing strains was significantly reduced in αGal-free MA-104 cells by pretreatment with a broadly specific neuraminidase or by coincubation with the α2,6-linked SA-specific Sambucus nigra lectin, but not by the α2,3-linked specific sialidase or by Maackia amurensis lectin. Free NeuAc and the αGal trisaccharide also prevented the infectivity of both strains. This indicated that both P[5]-bearing strains utilize α2,6-linked SA as a ligand on MA104 cells. However, the two strains replicated in differentiated bovine small intestinal enteroids and in their human counterparts that lack α2,6-linked SA or αGal HBGA, suggesting that additional or alternative receptors such as integrins, hsp70, and tight-junction proteins bound directly to the VP5* domain can be used by the P[5]-bearing strains to initiate the infection of human cells. In addition, these data also suggested that P[5]-bearing strains have potential for cross-species transmission. IMPORTANCE Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human.
Collapse
|
24
|
Crystal structures of cholera toxin in complex with fucosylated receptors point to importance of secondary binding site. Sci Rep 2019; 9:12243. [PMID: 31439922 PMCID: PMC6706398 DOI: 10.1038/s41598-019-48579-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/02/2019] [Indexed: 01/15/2023] Open
Abstract
Cholera is a life-threatening diarrhoeal disease caused by the human pathogen Vibrio cholerae. Infection occurs after ingestion of the bacteria, which colonize the human small intestine and secrete their major virulence factor – the cholera toxin (CT). The GM1 ganglioside is considered the primary receptor of the CT, but recent studies suggest that also fucosylated receptors such as histo-blood group antigens are important for cellular uptake and toxicity. Recently, a special focus has been on the histo-blood group antigen Lewisx (Lex), however, where and how the CT binds to Lex remains unclear. Here we report the high-resolution crystal structure (1.5 Å) of the receptor-binding B-subunits of the CT bound to the Lex trisaccharide, and complementary quantitative binding data for CT holotoxins. Lex, and also l-fucose alone, bind to the secondary binding site of the toxin, distinct from the GM1 binding site. In contrast, fucosyl-GM1 mainly binds to the primary binding site due to high-affinity interactions of its GM1 core. Lex is the first histo-blood group antigen of non-secretor phenotype structurally investigated in complex with CT. Together with the quantitative binding data, this allows unique insight into why individuals with non-secretor phenotype are more prone to severe cholera than so-called ‘secretors’.
Collapse
|
25
|
Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, Farese AM, MacVittie TJ, Kane MA. Characterizing the Natural History of Acute Radiation Syndrome of the Gastrointestinal Tract: Combining High Mass and Spatial Resolution Using MALDI-FTICR-MSI. HEALTH PHYSICS 2019; 116:454-472. [PMID: 30681424 PMCID: PMC6384159 DOI: 10.1097/hp.0000000000000948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The acute radiation syndrome of the gastrointestinal tract has been histologically characterized, but the molecular and functional mechanisms that lead to these cellular alterations remain enigmatic. Mass spectrometry imaging is the only technique that enables the simultaneous detection and cellular or regional localization of hundreds of biomolecules in a single experiment. This current study utilized matrix-assisted laser desorption/ionization mass spectrometry imaging for the molecular characterization of the first natural history study of gastrointestinal acute radiation syndrome in the nonhuman primate. Jejunum samples were collected at days 4, 8, 11, 15, and 21 following 12-Gy partial-body irradiation with 2.5% bone marrow sparing. Mass spectrometry imaging investigations identified alterations in lipid species that further understanding of the functional alterations that occur over time in the different cellular regions of the jejunum following exposure to high doses of irradiation. Alterations in phosphatidylinositol species informed on dysfunctional epithelial cell differentiation and maturation. Differences in glycosphingolipids of the villi epithelium that would influence the absorptive capacity and functional structure of the brush border membrane were detected. Dichotomous alterations in cardiolipins indicated altered structural and functional integrity of mitochondria. Phosphatidylglycerol species, known regulators of toll-like receptors, were detected and localized to regions in the lamina propria that contained distinct immune cell populations. These results provide molecular insight that can inform on injury mechanism in a nonhuman primate model of the acute radiation syndrome of the gastrointestinal tract. Findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | | | | | - George A. Parker
- Charles River Laboratories, Pathology Associates, Raleigh-Durham, North Carolina, USA
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| |
Collapse
|
26
|
Sethi A, Wands AM, Mettlen M, Krishnamurthy S, Wu H, Kohler JJ. Cell type and receptor identity regulate cholera toxin subunit B (CTB) internalization. Interface Focus 2019; 9:20180076. [PMID: 30842875 PMCID: PMC6388018 DOI: 10.1098/rsfs.2018.0076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Cholera toxin (CT) is a secreted bacterial toxin that binds to glycoconjugate receptors on the surface of mammalian cells, enters mammalian cells through endocytic mechanisms and intoxicates mammalian cells by activating cytosolic adenylate cyclase. CT recognizes cell surface receptors through its B subunit (CTB). While the ganglioside GM1 has been historically described as the sole receptor, CTB is also capable of binding to fucosylated glycoconjugates, and fucosylated molecules have been shown to play a functional role in host cell intoxication by CT. Here, we use colonic epithelial and respiratory epithelial cell lines to examine how two types of CT receptors-gangliosides and fucosylated glycoconjugates-contribute to CTB internalization. We show that fucosylated glycoconjugates contribute to CTB binding to and internalization into host cells, even when the ganglioside GM1 is present. The contributions of the two classes of receptors to CTB internalization depend on cell type. Additionally, in a cell line that harbours both classes of receptors, gangliosides dictate the efficiency of CTB internalization. Together, the results lend support to the idea that fucosylated glycoconjugates play a functional role in CTB internalization, and suggest that CT internalization depends on both receptor identity and cell type.
Collapse
Affiliation(s)
- Anirudh Sethi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amberlyn M Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Soumya Krishnamurthy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
27
|
Lee D, Mohr A, Kwon JSI, Wu HJ. Kinetic Monte Carlo modeling of multivalent binding of CTB proteins with GM1 receptors. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Jin C, Barone A, Borén T, Teneberg S. Helicobacter pylori-binding nonacid glycosphingolipids in the human stomach. J Biol Chem 2018; 293:17248-17266. [PMID: 30232154 DOI: 10.1074/jbc.ra118.004854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/13/2018] [Indexed: 01/06/2023] Open
Abstract
Helicobacter pylori has a number of well-characterized carbohydrate-binding adhesins (BabA, SabA, and LabA) that promote adhesion to the gastric mucosa. In contrast, information on the glycoconjugates present in the human stomach remains unavailable. Here, we used MS and binding of carbohydrate-recognizing ligands to characterize the glycosphingolipids of three human stomachs from individuals with different blood group phenotypes (O(Rh-)P, A(Rh+)P, and A(Rh+)p), focusing on compounds recognized by H. pylori We observed a high degree of structural complexity, and the composition of glycosphingolipids differed among individuals with different blood groups. The type 2 chain was the dominating core chain of the complex glycosphingolipids in the human stomach, in contrast to the complex glycosphingolipids in the human small intestine, which have mainly a type 1 core. H. pylori did not bind to the O(Rh-)P stomach glycosphingolipids, whose major complex glycosphingolipids were neolactotetraosylceramide, the Lex, Lea, and H type 2 pentaosylceramides, and the Ley hexaosylceramide. Several H. pylori-binding compounds were present among the A(Rh+)P and A(Rh+)p stomach glycosphingolipids. Ligands for BabA-mediated binding of H. pylori were the Leb hexaosylceramide, the H type 1 pentaosylceramide, and the A type 1/ALeb heptaosylceramide. Additional H. pylori-binding glycosphingolipids recognized by BabA-deficient strains were lactosylceramide, lactotetraosylceramide, the x2 pentaosylceramide, and neolactohexaosylceramide. Our characterization of human gastric receptors required for H. pylori adhesion provides a basis for the development of specific compounds that inhibit the binding of this bacterium to the human gastric mucosa.
Collapse
Affiliation(s)
- Chunsheng Jin
- From the Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, P.O. Box 440, University of Gothenburg, SE-405 30 Göteborg, Sweden and
| | - Angela Barone
- From the Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, P.O. Box 440, University of Gothenburg, SE-405 30 Göteborg, Sweden and
| | - Thomas Borén
- the Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Susann Teneberg
- From the Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, P.O. Box 440, University of Gothenburg, SE-405 30 Göteborg, Sweden and .,the Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
29
|
Lee D, Singla A, Wu HJ, Kwon JSI. An integrated numerical and experimental framework for modeling of CTB and GD1b ganglioside binding kinetics. AIChE J 2018. [DOI: 10.1002/aic.16209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dongheon Lee
- Artie McFerrin Dept. of Chemical Engineering; Texas A&M University; College Station TX 77840
| | - Akshi Singla
- Artie McFerrin Dept. of Chemical Engineering; Texas A&M University; College Station TX 77840
| | - Hung-Jen Wu
- Artie McFerrin Dept. of Chemical Engineering; Texas A&M University; College Station TX 77840
| | - Joseph Sang-Il Kwon
- Artie McFerrin Dept. of Chemical Engineering; Texas A&M University; College Station TX 77840
| |
Collapse
|
30
|
Wong M, Xu G, Park D, Barboza M, Lebrilla CB. Intact glycosphingolipidomic analysis of the cell membrane during differentiation yields extensive glycan and lipid changes. Sci Rep 2018; 8:10993. [PMID: 30030471 PMCID: PMC6054638 DOI: 10.1038/s41598-018-29324-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/05/2018] [Indexed: 11/09/2022] Open
Abstract
Glycosphingolipids (GSLs) are found in cellular membranes of most organisms and play important roles in cell-cell recognition, signaling, growth, and adhesion, among others. A method based on nanoflow high performance liquid chromatography-chip-quadrupole-time-of-flight mass spectrometry (nanoHPLC Chip-Q-TOF MS) was applied towards identifying and quantifying intact GSLs from a variety of samples, including cultured cell lines and animal tissue. The method provides the composition and sequence of the glycan, as well as variations in the ceramide portion of the GSL. It was used to profile the changes in the glycolipidome of Caco-2 cells as they undergo differentiation. A total of 226 unique GSLs were found among Caco-2 samples from five differentiation time-points. The method provided a comprehensive glycolipidomic profile of a cell during differentiation to yield the dynamic variation of intact GSL structures.
Collapse
Affiliation(s)
- Maurice Wong
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Gege Xu
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Mariana Barboza
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA.
| |
Collapse
|
31
|
Barone A, Benktander J, Whiddon C, Jin C, Galli C, Teneberg S, Breimer ME. Glycosphingolipids of porcine, bovine, and equine pericardia as potential immune targets in bioprosthetic heart valve grafts. Xenotransplantation 2018; 25:e12406. [PMID: 29932253 DOI: 10.1111/xen.12406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pericardial tissue from various animal species is utilized for the production of the bioprosthetic heart valves (BHV) used clinically. Experimental data show that the eventual breakdown of BHV is partly due to immunological interactions with carbohydrate tissue antigens. To understand these processes, we have examined the glycolipid-based carbohydrate antigens in naïve porcine, bovine, and equine pericardia. EXPERIMENTAL Total non-acid and acid glycosphingolipid fractions were isolated from porcine, bovine, and equine pericardia, and individual glycolipid compounds were characterized by thin-layer chromatography, mass spectrometry, and binding of monoclonal antibodies, lectins and bacteria in chromatogram binding assays. RESULTS The non-acid glycolipid fractions from all species contained glycosphingolipids based on the globo- and neolacto-series, including pentaglycosylceramides with terminal Galα3 determinants. Terminal blood group A and H (O) structures based on type 2 core chains were present in porcine pericardium, while the Forssman pentaosylceramide was found in equine pericardium. All acid glycolipid fractions contained sulfatide and several gangliosides with both N-acetyl- and N-glycolyl-neuraminic acid as terminal saccharide chain determinants. CONCLUSION Several carbohydrate antigens which are potential targets for the human immune system have been identified in the animal pericardial tissues used for the production of BHV. Which of these antigens are left in the tissues after industrial BHV production processes, as well as their potential role in eventual BHV degradation, remains to be elucidated.
Collapse
Affiliation(s)
- Angela Barone
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - John Benktander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christy Whiddon
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cesare Galli
- Avantea Laboratory of Reproductive Technologies, Cremona, Italy
| | - Susann Teneberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael E Breimer
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Alisson-Silva F, Liu JZ, Diaz SL, Deng L, Gareau MG, Marchelletta R, Chen X, Nizet V, Varki N, Barrett KE, Varki A. Human evolutionary loss of epithelial Neu5Gc expression and species-specific susceptibility to cholera. PLoS Pathog 2018; 14:e1007133. [PMID: 29912959 PMCID: PMC6023241 DOI: 10.1371/journal.ppat.1007133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/28/2018] [Accepted: 06/01/2018] [Indexed: 01/31/2023] Open
Abstract
While infectious agents have typical host preferences, the noninvasive enteric bacterium Vibrio cholerae is remarkable for its ability to survive in many environments, yet cause diarrheal disease (cholera) only in humans. One key V. cholerae virulence factor is its neuraminidase (VcN), which releases host intestinal epithelial sialic acids as a nutrition source and simultaneously remodels intestinal polysialylated gangliosides into monosialoganglioside GM1. GM1 is the optimal binding target for the B subunit of a second virulence factor, the AB5 cholera toxin (Ctx). This coordinated process delivers the CtxA subunit into host epithelia, triggering fluid loss via cAMP-mediated activation of anion secretion and inhibition of electroneutral NaCl absorption. We hypothesized that human-specific and human-universal evolutionary loss of the sialic acid N-glycolylneuraminic acid (Neu5Gc) and the consequent excess of N-acetylneuraminic acid (Neu5Ac) contributes to specificity at one or more steps in pathogenesis. Indeed, VcN was less efficient in releasing Neu5Gc than Neu5Ac. We show enhanced binding of Ctx to sections of small intestine and isolated polysialogangliosides from human-like Neu5Gc-deficient Cmah-/- mice compared to wild-type, suggesting that Neu5Gc impeded generation of the GM1 target. Human epithelial cells artificially expressing Neu5Gc were also less susceptible to Ctx binding and CtxA intoxication following VcN treatment. Finally, we found increased fluid secretion into loops of Cmah-/- mouse small intestine injected with Ctx, indicating an additional direct effect on ion transport. Thus, V. cholerae evolved into a human-specific pathogen partly by adapting to the human evolutionary loss of Neu5Gc, optimizing multiple steps in cholera pathogenesis.
Collapse
Affiliation(s)
- Frederico Alisson-Silva
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Janet Z. Liu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States of America
| | - Sandra L. Diaz
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Lingquan Deng
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Mélanie G. Gareau
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Ronald Marchelletta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis CA, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Nissi Varki
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Kim E. Barrett
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
- * E-mail: (AV); (KEB)
| | - Ajit Varki
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
- * E-mail: (AV); (KEB)
| |
Collapse
|
33
|
Worstell NC, Singla A, Saenkham P, Galbadage T, Sule P, Lee D, Mohr A, Kwon JSI, Cirillo JD, Wu HJ. Hetero-Multivalency of Pseudomonas aeruginosa Lectin LecA Binding to Model Membranes. Sci Rep 2018; 8:8419. [PMID: 29849092 PMCID: PMC5976636 DOI: 10.1038/s41598-018-26643-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022] Open
Abstract
A single glycan-lectin interaction is often weak and semi-specific. Multiple binding domains in a single lectin can bind with multiple glycan molecules simultaneously, making it difficult for the classic "lock-and-key" model to explain these interactions. We demonstrated that hetero-multivalency, a homo-oligomeric protein simultaneously binding to at least two types of ligands, influences LecA (a Pseudomonas aeruginosa adhesin)-glycolipid recognition. We also observed enhanced binding between P. aeruginosa and mixed glycolipid liposomes. Interestingly, strong ligands could activate weaker binding ligands leading to higher LecA binding capacity. This hetero-multivalency is probably mediated via a simple mechanism, Reduction of Dimensionality (RD). To understand the influence of RD, we also modeled LecA's two-step binding process with membranes using a kinetic Monte Carlo simulation. The simulation identified the frequency of low-affinity ligand encounters with bound LecA and the bound LecA's retention of the low-affinity ligand as essential parameters for triggering hetero-multivalent binding, agreeing with experimental observations. The hetero-multivalency can alter lectin binding properties, including avidities, capacities, and kinetics, and therefore, it likely occurs in various multivalent binding systems. Using hetero-multivalency concept, we also offered a new strategy to design high-affinity drug carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Nolan C Worstell
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Panatda Saenkham
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Thushara Galbadage
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Dongheon Lee
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Alec Mohr
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Joseph Sang-Il Kwon
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
34
|
Wands AM, Cervin J, Huang H, Zhang Y, Youn G, Brautigam CA, Matson Dzebo M, Björklund P, Wallenius V, Bright DK, Bennett CS, Wittung-Stafshede P, Sampson NS, Yrlid U, Kohler JJ. Fucosylated Molecules Competitively Interfere with Cholera Toxin Binding to Host Cells. ACS Infect Dis 2018; 4:758-770. [PMID: 29411974 DOI: 10.1021/acsinfecdis.7b00085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cholera toxin (CT) enters host intestinal epithelia cells, and its retrograde transport to the cytosol results in the massive loss of fluids and electrolytes associated with severe dehydration. To initiate this intoxication process, the B subunit of CT (CTB) first binds to a cell surface receptor displayed on the apical surface of the intestinal epithelia. While the monosialoganglioside GM1 is widely accepted to be the sole receptor for CT, intestinal epithelial cell lines also utilize fucosylated glycan epitopes on glycoproteins to facilitate cell surface binding and endocytic uptake of the toxin. Further, l-fucose can competively inhibit CTB binding to intestinal epithelia cells. Here, we use competition binding assays with l-fucose analogs to decipher the molecular determinants for l-fucose inhibition of cholera toxin subunit B (CTB) binding. Additionally, we find that mono- and difucosylated oligosaccharides are more potent inhibitors than l-fucose alone, with the LeY tetrasaccharide emerging as the most potent inhibitor of CTB binding to two colonic epithelial cell lines (T84 and Colo205). Finally, a non-natural fucose-containing polymer inhibits CTB binding two orders of magnitude more potently than the LeY glycan when tested against Colo205 cells. This same polymer also inhibits CTB binding to T84 cells and primary human jejunal epithelial cells in a dose-dependent manner. These findings suggest the possibility that polymeric display of fucose might be exploited as a prophylactic or therapeutic approach to block the action of CT toward the human intestinal epithelium.
Collapse
Affiliation(s)
| | - Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - He Huang
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | - Ye Zhang
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | - Gyusaang Youn
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | | | - Maria Matson Dzebo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Per Björklund
- Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, SE-41345 Gothenburg, Sweden
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, SE-41345 Gothenburg, Sweden
| | - Danielle K. Bright
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | | |
Collapse
|
35
|
Cervin J, Wands AM, Casselbrant A, Wu H, Krishnamurthy S, Cvjetkovic A, Estelius J, Dedic B, Sethi A, Wallom KL, Riise R, Bäckström M, Wallenius V, Platt FM, Lebens M, Teneberg S, Fändriks L, Kohler JJ, Yrlid U. GM1 ganglioside-independent intoxication by Cholera toxin. PLoS Pathog 2018; 14:e1006862. [PMID: 29432456 PMCID: PMC5825173 DOI: 10.1371/journal.ppat.1006862] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 02/23/2018] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors via its B subunit (CTB). We have recently shown that in addition to the previously described binding partner ganglioside GM1, CTB binds to fucosylated proteins. Using flow cytometric analysis of primary human jejunal epithelial cells and granulocytes, we now show that CTB binding correlates with expression of the fucosylated Lewis X (LeX) glycan. This binding is competitively blocked by fucosylated oligosaccharides and fucose-binding lectins. CTB binds the LeX glycan in vitro when this moiety is linked to proteins but not to ceramides, and this binding can be blocked by mAb to LeX. Inhibition of glycosphingolipid synthesis or sialylation in GM1-deficient C6 rat glioma cells results in sensitization to CT-mediated intoxication. Finally, CT gavage produces an intact diarrheal response in knockout mice lacking GM1 even after additional reduction of glycosphingolipids. Hence our results show that CT can induce toxicity in the absence of GM1 and support a role for host glycoproteins in CT intoxication. These findings open up new avenues for therapies to block CT action and for design of detoxified enterotoxin-based adjuvants.
Collapse
Affiliation(s)
- Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Amberlyn M. Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Anna Casselbrant
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Han Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Soumya Krishnamurthy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Aleksander Cvjetkovic
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Estelius
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benjamin Dedic
- Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anirudh Sethi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca Riise
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Malin Bäckström
- Mammalian Protein Expression Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Susann Teneberg
- Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Hetero-multivalent binding of cholera toxin subunit B with glycolipid mixtures. Colloids Surf B Biointerfaces 2017; 160:281-288. [PMID: 28946063 DOI: 10.1016/j.colsurfb.2017.09.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022]
Abstract
GM1 has generally been considered as the major receptor that binds to cholera toxin subunit B (CTB) due to its low dissociation constant. However, using a unique nanocube sensor technology, we have shown that CTB can also bind to other glycolipid receptors, fucosyl-GM1 and GD1b. Additionally, we have demonstrated that GM2 can contribute to CTB binding if present in a glycolipid mixture with a strongly binding receptor (GM1/fucosyl-GM1/GD1b). This hetero-multivalent binding result was unintuitive because the interaction between CTB and pure GM2 is negligible. We hypothesized that the reduced dimensionality of CTB-GM2 binding events is a major cause of the observed CTB binding enhancement. Once CTB has attached to a strong receptor, subsequent binding events are confined to a 2D membrane surface. Therefore, even a weak GM2 receptor could now participate in second or higher binding events because its surface reaction rate can be up to 104 times higher than the bulk reaction rate. To test this hypothesis, we altered the surface reaction rate by modulating the fluidity and heterogeneity of the model membrane. Decreasing membrane fluidity reduced the binding cooperativity between GM2 and a strong receptor. Our findings indicated a new protein-receptor binding assay, that can mimic complex cell membrane environment more accurately, is required to explore the inherent hetero-multivalency of the cell membrane. We have thus developed a new membrane perturbation protocol to efficiently screen receptor candidates involved in hetero-multivalent protein binding.
Collapse
|
37
|
Pakharukova N, Roy S, Tuittila M, Rahman MM, Paavilainen S, Ingars AK, Skaldin M, Lamminmäki U, Härd T, Teneberg S, Zavialov AV. Structural basis for Myf and Psa fimbriae-mediated tropism of pathogenic strains of Yersinia for host tissues. Mol Microbiol 2016; 102:593-610. [PMID: 27507539 DOI: 10.1111/mmi.13481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
Three pathogenic species of the genus Yersinia assemble adhesive fimbriae via the FGL-chaperone/usher pathway. Closely related Y. pestis and Y. pseudotuberculosis elaborate the pH6 antigen (Psa), which mediates bacterial attachment to alveolar cells of the lung. Y. enterocolitica, instead, assembles the homologous fimbriae Myf of unknown function. Here, we discovered that Myf, like Psa, specifically recognizes β1-3- or β1-4-linked galactose in glycosphingolipids, but completely lacks affinity for phosphatidylcholine, the main receptor for Psa in alveolar cells. The crystal structure of a subunit of Psa (PsaA) complexed with choline together with mutagenesis experiments revealed that PsaA has four phosphatidylcholine binding pockets that enable super-high-avidity binding of Psa-fibres to cell membranes. The pockets are arranged as six tyrosine residues, which are all missing in the MyfA subunit of Myf. Conversely, the crystal structure of the MyfA-galactose complex revealed that the galactose-binding site is more extended in MyfA, enabling tighter binding to lactosyl moieties. Our results suggest that during evolution, Psa has acquired a tyrosine-rich surface that enables it to bind to phosphatidylcholine and mediate adhesion of Y. pestis/pseudotuberculosis to alveolar cells, whereas Myf has specialized as a carbohydrate-binding adhesin, facilitating the attachment of Y. enterocolitica to intestinal cells.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Saumendra Roy
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCentre, P.O. BOX 7016, Uppsala, 75007, Sweden
| | - Minna Tuittila
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Mohammad M Rahman
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Sari Paavilainen
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Anna-Karin Ingars
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, P.O. BOX 440, Göteborg, 40530, Sweden
| | - Maksym Skaldin
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland.,Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, Turku, 20014, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, Turku, 20014, Finland
| | - Torleif Härd
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCentre, P.O. BOX 7016, Uppsala, 75007, Sweden
| | - Susann Teneberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, P.O. BOX 440, Göteborg, 40530, Sweden
| | - Anton V Zavialov
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCentre, P.O. BOX 7016, Uppsala, 75007, Sweden
| |
Collapse
|
38
|
Sarbu M, Robu AC, Ghiulai RM, Vukelić Ž, Clemmer DE, Zamfir AD. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides. Anal Chem 2016; 88:5166-78. [PMID: 27088833 DOI: 10.1021/acs.analchem.6b00155] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series.
Collapse
Affiliation(s)
- Mirela Sarbu
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| | - Adrian C Robu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania.,West University of Timisoara , 300223 Timisoara, Romania
| | - Roxana M Ghiulai
- Department of Pharmacy, Victor Babes University of Medicine and Pharmacy , 300041 Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School , HR-10000 Zagreb, Croatia
| | - David E Clemmer
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Alina D Zamfir
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| |
Collapse
|
39
|
High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence. PLoS Pathog 2016; 12:e1005567. [PMID: 27082955 PMCID: PMC4833353 DOI: 10.1371/journal.ppat.1005567] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1-1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera.
Collapse
|
40
|
Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H. Structural characterisation of human galectin-4 N-terminal carbohydrate recognition domain in complex with glycerol, lactose, 3'-sulfo-lactose, and 2'-fucosyllactose. Sci Rep 2016; 6:20289. [PMID: 26828567 PMCID: PMC4734333 DOI: 10.1038/srep20289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 01/02/2023] Open
Abstract
Galectin-4 is a tandem-repeat galectin with two distinct carbohydrate recognition domains (CRD). Galectin-4 is expressed mainly in the alimentary tract and is proposed to function as a lipid raft and adherens junction stabilizer by its glycan cross-linking capacity. Galectin-4 plays divergent roles in cancer and inflammatory conditions, either promoting or inhibiting each disease progression, depending on the specific pathological condition. The study of galectin-4's ligand-binding profile may help decipher its roles under specific conditions. Here we present the X-ray structures of human galectin-4 N-terminal CRD (galectin-4N) bound to different saccharide ligands. Galectin-4's overall fold and its core interactions to lactose are similar to other galectin CRDs. Galectin-4N recognises the sulfate cap of 3'-sulfated glycans by a weak interaction through Arg45 and two water-mediated hydrogen bonds via Trp84 and Asn49. When galectin-4N interacts with the H-antigen mimic, 2'-fucosyllactose, an interaction is formed between the ring oxygen of fucose and Arg45. The extended binding site of galectin-4N may not be well suited to the A/B-antigen determinants, α-GalNAc/α-Gal, specifically due to clashes with residue Phe47. Overall, galectin-4N favours sulfated glycans whilst galectin-4C prefers blood group determinants. However, the two CRDs of galectin-4 can, to a less extent, recognise each other's ligands.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, BMC-C1228b, Klinikgatan 28, SE-22184 Lund, Sweden
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
41
|
Wands AM, Fujita A, McCombs JE, Cervin J, Dedic B, Rodriguez AC, Nischan N, Bond MR, Mettlen M, Trudgian DC, Lemoff A, Quiding-Järbrink M, Gustavsson B, Steentoft C, Clausen H, Mirzaei H, Teneberg S, Yrlid U, Kohler JJ. Fucosylation and protein glycosylation create functional receptors for cholera toxin. eLife 2015; 4:e09545. [PMID: 26512888 PMCID: PMC4686427 DOI: 10.7554/elife.09545] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera. DOI:http://dx.doi.org/10.7554/eLife.09545.001 Cholera is a serious diarrheal disease that can be deadly if left untreated. It is caused by eating food, or drinking water, contaminated by the bacterium Vibrio cholerae. This bacterium can survive passage through the acidic conditions of the stomach. Inside the small intestine, V. cholerae attaches to the intestinal wall and starts producing cholera toxin. The toxin enters intestinal cells, causing them to release water and ions, including sodium and chloride ions. The salt-water environment created inside the intestine can, by osmosis, draw up to a further six liters of water into the intestine each day. This results in the copious production of watery diarrhea and severe dehydration. Cholera toxin is composed of six protein subunits, including five copies of cholera toxin subunit B (CTB). CTB subunits help the uptake of the toxin by intestinal cells, and it has long been reported that CTB subunits attach to intestinal cells by binding to a cell surface molecule called GM1. CTB subunits have a high affinity for GM1, yet recent work suggests CTB may not bind exclusively to GM1; one or more additional cell surface molecules may be directly involved in cholera toxin uptake. Wands et al. now reveal that numerous cell surface molecules are recognized by CTB, and that these molecules can assist cholera toxin uptake by host cells. Glycoproteins, proteins that are marked with sugar molecules, were shown to be the primary CTB binding sites on human colon cells, and it was the glycoprotein’s sugar component, not the protein itself, that interacted with CTB. Wands et al. discovered that in particular glycoproteins containing a sugar called fucose were largely responsible for CTB binding and toxin uptake. Together these findings reveal a previously unrecognized mechanism for cholera toxin entry into host cells, and suggest that fucose-containing or fucose-mimicking molecules could be developed as new treatments for cholera. DOI:http://dx.doi.org/10.7554/eLife.09545.002
Collapse
Affiliation(s)
- Amberlyn M Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Akiko Fujita
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Janet E McCombs
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benjamin Dedic
- Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrea C Rodriguez
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michelle R Bond
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcel Mettlen
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - David C Trudgian
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Gustavsson
- Department of Surgery, University of Gothenburg, Gothenburg, Sweden
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Susann Teneberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
42
|
Canela N, Herrero P, Mariné S, Nadal P, Ras MR, Rodríguez MÁ, Arola L. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis. J Chromatogr A 2015; 1428:16-38. [PMID: 26275862 DOI: 10.1016/j.chroma.2015.07.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR.
Collapse
Affiliation(s)
- Núria Canela
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pol Herrero
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Sílvia Mariné
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pedro Nadal
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Maria Rosa Ras
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | | | - Lluís Arola
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain.
| |
Collapse
|
43
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
Characterization of moose intestinal glycosphingolipids. Glycoconj J 2015; 32:393-412. [PMID: 26104834 PMCID: PMC4515253 DOI: 10.1007/s10719-015-9604-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 11/04/2022]
Abstract
As a part of a systematic investigation of the species-specific expression of glycosphingolipids, acid and non-acid glycosphingolipids were isolated from three small intestines and one large intestine of the moose (Alces alces). The glycosphingolipids were characterized by binding of monoclonal antibodies, lectins and bacteria in chromatogram binding assays, and by mass spectrometry. The non-acid fractions were complex mixtures, and all had glycosphingolipids belonging to the lacto- and neolactoseries (lactotriaosylceramide, lactotetraosylceramide, neolactotetraosylceramide, Galα3-Lex hexaosylceramide, and lacto-neolactohexaosylceramide), globo-series (globotriaosylceramide and globotetraosylceramide), and isogloboseries (isoglobotriaosylceramide). Penta- and heptaglycosylceramides with terminal Galili determinants were also characterized. Furthermore, glycosphingolipids with terminal blood group O determinants (H triaosylceramide, H type 2 pentaosylceramide, H type 1 penta- and heptaosylceramide) were characterized in two of the moose small intestines, and in the one large intestine, while the third small intestine had glycosphingolipids with terminal blood group A determinants (A tetraosylceramide, A type 1 hexa- and octaosylceramide, A dodecaosylceramide). The acid glycosphingolipid fractions of moose small and large intestine contained sulfatide, and the gangliosides GM3, GD3, GD1a, GD1b, and also NeuGc and NeuAc variants of the Sda ganglioside and the sialyl-globopenta/SSEA-4 ganglioside. In humans, the NeuAc-globopenta/SSEA-4 ganglioside is a marker of embryonic and adult stem cells, and is also expressed in several human cancers. This is the first time sialyl-globopentaosylceramide/SSEA-4 has been characterized in a fully differentiated normal tissue, and also the first time NeuGc-globopentaosylceramide has been characterized.
Collapse
|
45
|
Zhdanov VP. Kinetics of virus entry by endocytosis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042715. [PMID: 25974535 DOI: 10.1103/physreve.91.042715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 06/04/2023]
Abstract
Entry of virions into the host cells is either endocytotic or fusogenic. In both cases, it occurs via reversible formation of numerous relatively weak bonds resulting in wrapping of a virion by the host membrane with subsequent membrane rupture or scission. The corresponding kinetic models are customarily focused on the formation of bonds and do not pay attention to the energetics of the whole process, which is crucially dependent, especially in the case of endocytosis, on deformation of actin filaments forming the cytoskeleton of the host cell. The kinetic model of endocytosis, proposed by the author, takes this factor into account and shows that the whole process can be divided into a rapid initial transient stage and a long steady-state stage. The entry occurs during the latter stage and can be described as a first-order reaction. Depending on the details of the dependence of the grand canonical potential on the number of bonds, the entry can be limited either by the interplay of bond formation and membrane rupture (or scission) or by reaching a maximum of this potential.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
46
|
Basu I, Mukhopadhyay C. In silico phase separation in the presence of GM1 in ternary and quaternary lipid bilayers. Phys Chem Chem Phys 2015; 17:17130-9. [DOI: 10.1039/c5cp01970b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using coarse grain molecular dynamics simulations, the spontaneous phase separation in the ternary (POPC [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine]/cholesterol/GM1) and quaternary (POPC/PSM[palmitoyl sphingomyelin]/cholesterol/GM1) lipid bilayers into liquid ordered (Lo) and liquid disordered (Ld) domains, due to self-aggregation of GM1 molecules and co-localization of cholesterol with GM1 in accordance with experiments, is studied.
Collapse
Affiliation(s)
- Ipsita Basu
- Department of Chemistry
- University of Calcutta
- India
| | | |
Collapse
|
47
|
Nordgren J, Sharma S, Bucardo F, Nasir W, Günaydın G, Ouermi D, Nitiema LW, Becker-Dreps S, Simpore J, Hammarström L, Larson G, Svensson L. Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin Infect Dis 2014; 59:1567-73. [PMID: 25097083 DOI: 10.1093/cid/ciu633] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The live oral rotavirus (RV) vaccines have shown a reduced efficacy in Africa. Recent in vitro studies have shown binding of the RV surface protein (VP4) to histo-blood group antigens (HBGAs) in an RV genotype-dependent manner, suggesting them to be putative receptors for RV. The diversity of HBGA phenotypes in different ethnic populations, combined with prevalence/absence of specific RV genotypes, led us to hypothesize whether the genetic variations in HBGAs in a population limit susceptibility to certain RV genotypes, plausibly leading to reduced vaccine efficacy. METHODS Association between HBGAs status and susceptibility to RV P genotypes was investigated in children in Burkina Faso and Nicaragua. In total, 242 children with diarrhea in Burkina Faso and Nicaragua were investigated, 93 of whom were RV positive. RESULTS In Burkina Faso, the P[8] RV strains (n = 27) infected only Lewis- and secretor-positive children (27/27; P < .0001), but no Lewis-negative children. In contrast, the P[6] strains (n = 27) infected predominantly Lewis-negative children (n = 18; P < .0001) but also Lewis-positive children, irrespective of their secretor status. The results from Nicaragua confirmed that all P[8]-infected children (n = 22) were secretor Lewis positive. CONCLUSIONS As VP4 of genotype P[8] is a component of current RV vaccines, our finding that Lewis-negative children are resistant to P[8] strains provides a plausible explanation for the reduced vaccine efficacy in populations with a high percentage of Lewis-negative individuals, such as in Africa. Furthermore, our findings provide a plausible explanation as to why P[6] RV strains are more common in Africa.
Collapse
Affiliation(s)
- Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Sweden
| | - Sumit Sharma
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Sweden
| | | | - Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg
| | - Gökçe Günaydın
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Djeneba Ouermi
- Centre de Recherche Biomoléculaire Pietro Annigoni Saint Camille CERBA/LABIOGENE, Université de Ouagadougou, Burkina Faso
| | - Leon W Nitiema
- Centre de Recherche Biomoléculaire Pietro Annigoni Saint Camille CERBA/LABIOGENE, Université de Ouagadougou, Burkina Faso
| | - Sylvia Becker-Dreps
- Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill
| | - Jacques Simpore
- Centre de Recherche Biomoléculaire Pietro Annigoni Saint Camille CERBA/LABIOGENE, Université de Ouagadougou, Burkina Faso
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Sweden
| |
Collapse
|
48
|
Ghiulai RM, Sarbu M, Vukelić Ž, Ilie C, Zamfir AD. Early stage fetal neocortex exhibits a complex ganglioside profile as revealed by high resolution tandem mass spectrometry. Glycoconj J 2014; 31:231-45. [DOI: 10.1007/s10719-014-9517-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 11/30/2022]
|
49
|
Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L, Picard D, Anderson B, Scharf L, Kung JE, Sibener LV, Savage PB, Jabri B, Bendelac A, Adams EJ. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 2013; 39:1032-42. [PMID: 24239091 PMCID: PMC3875342 DOI: 10.1016/j.immuni.2013.11.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023]
Abstract
The nature of the antigens recognized by γδ T cells and their potential recognition of major histocompatibility complex (MHC)-like molecules has remained unclear. Members of the CD1 family of lipid-presenting molecules are suggested ligands for Vδ1 TCR-expressing γδ T cells, the major γδ lymphocyte population in epithelial tissues. We crystallized a Vδ1 TCR in complex with CD1d and the self-lipid sulfatide, revealing the unusual recognition of CD1d by germline Vδ1 residues spanning all complementarity-determining region (CDR) loops, as well as sulfatide recognition separately encoded by nongermline CDR3δ residues. Binding and functional analysis showed that CD1d presenting self-lipids, including sulfatide, was widely recognized by gut Vδ1+ γδ T cells. These findings provide structural demonstration of MHC-like recognition of a self-lipid by γδ T cells and reveal the prevalence of lipid recognition by innate-like T cell populations.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, CD1d/chemistry
- Antigens, CD1d/metabolism
- Crystallography, X-Ray
- Epitopes
- Humans
- Jurkat Cells
- Lipids/immunology
- Major Histocompatibility Complex/immunology
- Models, Molecular
- Protein Structure, Quaternary
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Sulfoglycosphingolipids/chemistry
- Sulfoglycosphingolipids/metabolism
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Adrienne M Luoma
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Caitlin D Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Toufic Mayassi
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Leslie A Bembinster
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Li Bai
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute
| | - Damien Picard
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute
| | - Brian Anderson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Louise Scharf
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer E Kung
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Leah V Sibener
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute
| | - Erin J Adams
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Holst S, Stavenhagen K, Balog CIA, Koeleman CAM, McDonnell LM, Mayboroda OA, Verhoeven A, Mesker WE, Tollenaar RAEM, Deelder AM, Wuhrer M. Investigations on aberrant glycosylation of glycosphingolipids in colorectal cancer tissues using liquid chromatography and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS). Mol Cell Proteomics 2013; 12:3081-93. [PMID: 23878401 PMCID: PMC3820925 DOI: 10.1074/mcp.m113.030387] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/24/2013] [Indexed: 11/06/2022] Open
Abstract
Cancer is a leading cause of death and alterations of glycosylation are characteristic features of malignant cells. Colorectal cancer is one of the most common cancers and its exact causes and biology are not yet well understood. Here, we compared glycosylation profiles of colorectal tumor tissues and corresponding control tissues of 13 colorectal cancer patients to contribute to the understanding of this cancer. Using MALDI-TOF(/TOF)-MS and 2-dimensional LC-MS/MS we characterized enzymatically released and 2-aminobenzoic acid labeled glycans from glycosphingolipids. Multivariate data analysis revealed significant differences between tumor and corresponding control tissues. Main discriminators were obtained, which represent the overall alteration in glycosylation of glycosphingolipids during colorectal cancer progression, and these were found to be characterized by (1) increased fucosylation, (2) decreased acetylation, (3) decreased sulfation, (4) reduced expression of globo-type glycans, as well as (5) disialyl gangliosides. The findings of our current research confirm former reports, and in addition expand the knowledge of glycosphingolipid glycosylation in colorectal cancer by revealing new glycans with discriminative power and characteristic, cancer-associated glycosylation alterations. The obtained discriminating glycans can contribute to progress the discovery of biomarkers to improve diagnostics and patient treatment.
Collapse
Affiliation(s)
- Stephanie Holst
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kathrin Stavenhagen
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Crina I. A. Balog
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolien A. M. Koeleman
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam M. McDonnell
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Oleg A. Mayboroda
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aswin Verhoeven
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wilma E. Mesker
- §Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - André M. Deelder
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|