1
|
Deemer SE, Roberts BM, Smith DL, Plaisance EP, Philp A. Exogenous ketone esters as a potential therapeutic for treatment of sarcopenic obesity. Am J Physiol Cell Physiol 2024; 327:C140-C150. [PMID: 38766768 DOI: 10.1152/ajpcell.00471.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Identifying effective treatment(s) for sarcopenia and sarcopenic obesity is of paramount importance as the global population advances in age and obesity continues to be a worldwide concern. Evidence has shown that a ketogenic diet can be beneficial for the preservation of muscle quality and function in older adults, but long-term adherence is low due in part to the high-fat (≥80%), very low carbohydrate (<5%) composition of the diet. When provided in adequate amounts, exogenous ketone esters (KEs) can increase circulating ketones to concentrations that exceed those observed during prolonged fasting or starvation without significant alterations in the diet. Ketone esters first emerged in the mid-1990s and their use in preclinical and clinical research has escalated within the past 10-15 years. We present findings from a narrative review of the existing literature for a proposed hypothesis on the effects of exogenous ketones as a therapeutic for preservation of skeletal muscle and function within the context of sarcopenic obesity and future directions for exploration. Much of the reviewed literature herein examines the mechanisms of the ketone diester (R,S-1,3-butanediol diacetoacetate) on skeletal muscle mass, muscle protein synthesis, and epigenetic regulation in murine models. Additional studies are needed to further examine the key regulatory factors producing these effects in skeletal muscle, examine convergent and divergent effects among different ketone ester formulations, and establish optimal frequency and dosing regimens to translate these findings into humans.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Kinesiology, Health Promotion & Recreation, University of North Texas, Denton, Texas, United States
| | - Brandon M Roberts
- US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Eric P Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Oliver T, Nguyen NY, Tully CB, McCormack NM, Sun CM, Fiorillo AA, Heier CR. The glucocorticoid receptor acts locally to protect dystrophic muscle and heart during disease. Dis Model Mech 2024; 17:dmm050397. [PMID: 38770680 PMCID: PMC11139035 DOI: 10.1242/dmm.050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.
Collapse
MESH Headings
- Animals
- Mice
- Cardiomyopathies/pathology
- Cardiomyopathies/metabolism
- Dystrophin/metabolism
- Dystrophin/genetics
- Dystrophin/deficiency
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Myocardium/pathology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Phenotype
- Receptors, Glucocorticoid/metabolism
Collapse
Affiliation(s)
- Trinitee Oliver
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Biology, Howard University, Washington, DC 20059, USA
- Graduate School of Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Nhu Y. Nguyen
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Nikki M. McCormack
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20037, USA
- Center for Inherited Muscle Research, Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20037, USA
- Center for Inherited Muscle Research, Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Rozen EJ, Ozeroff CD, Allen MA. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome. Hum Genomics 2023; 17:83. [PMID: 37670378 PMCID: PMC10481493 DOI: 10.1186/s40246-023-00531-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Christopher D Ozeroff
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave., Boulder, CO, 80309, USA
| | - Mary Ann Allen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Han X, Ji G, Wang N, Yi L, Mao Y, Deng J, Wu H, Ma S, Han J, Bu Y, Fang P, Liu J, Sun F, Song X. Comprehensive analysis of m 6A regulators characterized by the immune microenvironment in Duchenne muscular dystrophy. J Transl Med 2023; 21:459. [PMID: 37434186 DOI: 10.1186/s12967-023-04301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked, incurable, degenerative neuromuscular disease that is exacerbated by secondary inflammation. N6-methyladenosine (m6A), the most common base modification of RNA, has pleiotropic immunomodulatory effects in many diseases. However, the role of m6A modification in the immune microenvironment of DMD remains elusive. METHODS Our study retrospectively analyzed the expression data of 56 muscle tissues from DMD patients and 26 from non-muscular dystrophy individuals. Based on single sample gene set enrichment analysis, immune cells infiltration was identified and the result was validated by flow cytometry analysis and immunohistochemical staining. Then, we described the features of genetic variation in 26 m6A regulators and explored their relationship with the immune mircoenvironment of DMD patients through a series of bioinformatical analysis. At last, we determined subtypes of DMD patients by unsupervised clustering analysis and characterized the molecular and immune characteristics in different subgroups. RESULTS DMD patients have a sophisticated immune microenvironment that is significantly different from non-DMD controls. Numerous m6A regulators were aberrantly expressed in the muscle tissues of DMD and inversely related to most muscle-infiltrating immune cell types and immune response-related signaling pathways. A diagnostic model involving seven m6A regulators was established using LASSO. Furthermore, we determined three m6A modification patterns (cluster A/B/C) with distinct immune microenvironmental characteristics. CONCLUSION In summary, our study demonstrated that m6A regulators are intimately linked to the immune microenvironment of muscle tissues in DMD. These findings may facilitate a better understanding of the immunomodulatory mechanisms in DMD and provide novel strategies for the treatment.
Collapse
Affiliation(s)
- Xu Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Ning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yafei Mao
- Department of Laboratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jinliang Deng
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Shaojuan Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Jingzhe Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yi Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Pingping Fang
- Department of Neurology, Handan Central Hospital, Handan, 050000, Hebei, People's Republic of China
| | - Juyi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Fanzhe Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
5
|
Phosphodiesterase 5a Signalling in Skeletal Muscle Pathophysiology. Int J Mol Sci 2022; 24:ijms24010703. [PMID: 36614143 PMCID: PMC9820699 DOI: 10.3390/ijms24010703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Phosphodiesterase 5A (PDE5A) is involved in cGMP hydrolysis, regulating many physiological processes. Increased activity of PDE5A has been found in several pathological conditions, and the pharmacological inhibition of PDE5 has been demonstrated to have several therapeutic applications. We have identified the presence of three different Pde5a isoforms in cardiomyocytes, and we have found that the expression of specific Pde5a isoforms may have a causal role in the onset of pathological responses in these cells. In our previous study, we demonstrated that PDE5A inhibition could ameliorate muscular dystrophy by acting at different levels, as assessed by the altered genomic response of muscular cells following treatment with the PDE5A inhibitor tadalafil. Thus, considering the importance of PDE5A in various pathophysiological conditions, we further investigated the regulation of this enzyme. Here, we analysed the expression of Pde5a isoforms in the pathophysiology of skeletal muscle. We found that skeletal muscle tissues and myogenic cells express Pde5a1 and Pde5a2 isoforms, and we observed an increased expression of Pde5a1 in damaged skeletal muscles, while Pde5a2 levels remained unchanged. We also cloned and characterized the promoters that control the transcription of Pde5a isoforms, investigating which of the transcription factors predicted by bioinformatics analysis could be involved in their modulation. In conclusion, we found an overexpression of Pde5a1 in compromised muscle and identified an involvement of MyoD and Runx1 in Pde5a1 transcriptional activity.
Collapse
|
6
|
De la Garza-Rodea AS, Moore SA, Zamora-Pineda J, Hoffman EP, Mistry K, Kumar A, Strober JB, Zhao P, Suh JH, Saba JD. Sphingosine Phosphate Lyase Is Upregulated in Duchenne Muscular Dystrophy, and Its Inhibition Early in Life Attenuates Inflammation and Dystrophy in Mdx Mice. Int J Mol Sci 2022; 23:7579. [PMID: 35886926 PMCID: PMC9316262 DOI: 10.3390/ijms23147579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a congenital myopathy caused by mutations in the dystrophin gene. DMD pathology is marked by myositis, muscle fiber degeneration, and eventual muscle replacement by fibrosis and adipose tissue. Satellite cells (SC) are muscle stem cells critical for muscle regeneration. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes SC proliferation, regulates lymphocyte trafficking, and is irreversibly degraded by sphingosine phosphate lyase (SPL). Here, we show that SPL is virtually absent in normal human and murine skeletal muscle but highly expressed in inflammatory infiltrates and degenerating fibers of dystrophic DMD muscle. In mdx mice that model DMD, high SPL expression is correlated with dysregulated S1P metabolism. Perinatal delivery of the SPL inhibitor LX2931 to mdx mice augmented muscle S1P and SC numbers, reduced leukocytes in peripheral blood and skeletal muscle, and attenuated muscle inflammation and degeneration. The effect on SC was also observed in SCID/mdx mice that lack mature T and B lymphocytes. Transcriptional profiling in the skeletal muscles of LX2931-treated vs. control mdx mice demonstrated changes in innate and adaptive immune functions, plasma membrane interactions with the extracellular matrix (ECM), and axon guidance, a known function of SC. Our cumulative findings suggest that by raising muscle S1P and simultaneously disrupting the chemotactic gradient required for lymphocyte egress, SPL inhibition exerts a combination of muscle-intrinsic and systemic effects that are beneficial in the context of muscular dystrophy.
Collapse
Affiliation(s)
- Anabel S. De la Garza-Rodea
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Steven A. Moore
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Jesus Zamora-Pineda
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Eric P. Hoffman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-State University of New York, Binghamton, NY 13902, USA;
| | - Karishma Mistry
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Ashok Kumar
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Jonathan B. Strober
- Department of Neurology, UCSF Benioff Children’s Hospital San Francisco, 550 16th Street, San Francisco, CA 94158, USA;
| | - Piming Zhao
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Jung H. Suh
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Julie D. Saba
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| |
Collapse
|
7
|
Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22168954. [PMID: 34445659 PMCID: PMC8396646 DOI: 10.3390/ijms22168954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also be efficiently targeted within the heart in the widest patient population. New perspectives are clearly required to effectively address the unanswered questions concerning the identification of authentic and effectual readouts of DAC occurrence and severity. A potential way forward to achieve further therapy breakthroughs lies in combining multiomic analysis with advanced preclinical precision models. This review presents the fundamental discoveries made using relevant models of DAC and how omics approaches have been incorporated to date.
Collapse
|
8
|
Finkel RS, McDonald CM, Lee Sweeney H, Finanger E, Neil Knierbein E, Wagner KR, Mathews KD, Marks W, Statland J, Nance J, McMillan HJ, McCullagh G, Tian C, Ryan MM, O'Rourke D, Müller-Felber W, Tulinius M, Bryan Burnette W, Nguyen CT, Vijayakumar K, Johannsen J, Phan HC, Eagle M, MacDougall J, Mancini M, Donovan JM. A Randomized, Double-Blind, Placebo-Controlled, Global Phase 3 Study of Edasalonexent in Pediatric Patients with Duchenne Muscular Dystrophy: Results of the PolarisDMD Trial. J Neuromuscul Dis 2021; 8:769-784. [PMID: 34120912 PMCID: PMC8543277 DOI: 10.3233/jnd-210689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Edasalonexent (CAT-1004) is an orally-administered novel small molecule drug designed to inhibit NF-κB and potentially reduce inflammation and fibrosis to improve muscle function and thereby slow disease progression and muscle decline in Duchenne muscular dystrophy (DMD). Objective: This international, randomized 2 : 1, placebo-controlled, phase 3 study in patients ≥4 – < 8 years old with DMD due to any dystrophin mutation examined the effect of edasalonexent (100 mg/kg/day) compared to placebo over 52 weeks. Methods: Endpoints were changes in the North Star Ambulatory Assessment (NSAA; primary) and timed function tests (TFTs; secondary). Assessment of health-related function used the Pediatric Outcomes Data Collection tool (PODCI). Results: One hundred thirty one patients received edasalonexent (n = 88) and placebo (n = 43). At week 52, differences between edasalonexent and placebo for NSAA total score and TFTs were not statistically significant, although there were consistently less functional declines in the edasalonexent group. A pre-specified analysis by age demonstrated that younger patients (≤6.0 years) showed more robust and statistically significant differences between edasalonexent and placebo for some assessments. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly involved the gastrointestinal system (primarily diarrhea). Conclusions: Edasalonexent was generally well-tolerated with a manageable safety profile at the dose of 100 mg/kg/day. Although edasalonexent did not achieve statistical significance for improvement in primary and secondary functional endpoints for assessment of DMD, subgroup analysis suggested that edasalonexent may slow disease progression if initiated before 6 years of age. (NCT03703882)
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL
| | | | - H Lee Sweeney
- University of Florida College of Medicine, Gainesville, FL
| | | | | | - Kathryn R Wagner
- Kennedy Krieger Institute, The Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | - Cuixia Tian
- Cincinnati Children's Hospital & University of Cincinnati, Cincinnati, OH
| | | | | | | | - Mar Tulinius
- Queen Silvia Children's Hospital, Gothenburg, Sweden
| | | | | | | | | | - Han C Phan
- Rare Disease Research, LLC, Atlanta GA, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Finkel RS, Finanger E, Vandenborne K, Sweeney HL, Tennekoon G, Shieh PB, Willcocks R, Walter G, Rooney WD, Forbes SC, Triplett WT, Yum SW, Mancini M, MacDougall J, Fretzen A, Bista P, Nichols A, Donovan JM. Disease-modifying effects of edasalonexent, an NF-κB inhibitor, in young boys with Duchenne muscular dystrophy: Results of the MoveDMD phase 2 and open label extension trial. Neuromuscul Disord 2021; 31:385-396. [PMID: 33678513 DOI: 10.1016/j.nmd.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL, United States.
| | - Erika Finanger
- Oregon Health & Science University, Portland, OR, United States
| | | | - H Lee Sweeney
- University of Florida Health, Gainesville, FL, United States
| | - Gihan Tennekoon
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Perry B Shieh
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Glenn Walter
- University of Florida Health, Gainesville, FL, United States
| | | | - Sean C Forbes
- University of Florida Health, Gainesville, FL, United States
| | | | - Sabrina W Yum
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Mancini
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | | | | - Pradeep Bista
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | - Andrew Nichols
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | |
Collapse
|
10
|
Kastenschmidt JM, Coulis G, Farahat PK, Pham P, Rios R, Cristal TT, Mannaa AH, Ayer RE, Yahia R, Deshpande AA, Hughes BS, Savage AK, Giesige CR, Harper SQ, Locksley RM, Mozaffar T, Villalta SA. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep 2021; 35:108997. [PMID: 33852849 PMCID: PMC8127948 DOI: 10.1016/j.celrep.2021.108997] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the well-accepted view that chronic inflammation contributes to the pathogenesis of Duchenne muscular dystrophy (DMD), the function and regulation of eosinophils remain an unclear facet of type II innate immunity in dystrophic muscle. We report the observation that group 2 innate lymphoid cells (ILC2s) are present in skeletal muscle and are the principal regulators of muscle eosinophils during muscular dystrophy. Eosinophils were elevated in DMD patients and dystrophic mice along with interleukin (IL)-5, a major eosinophil survival factor that was predominantly expressed by muscle ILC2s. We also find that IL-33 was upregulated in dystrophic muscle and was predominantly produced by fibrogenic/adipogenic progenitors (FAPs). Exogenous IL-33 and IL-2 complex (IL-2c) expanded muscle ILC2s and eosinophils, decreased the cross-sectional area (CSA) of regenerating myofibers, and increased the expression of genes associated with muscle fibrosis. The deletion of ILC2s in dystrophic mice mitigated muscle eosinophilia and impaired the induction of IL-5 and fibrosis-associated genes. Our findings highlight a FAP/ILC2/eosinophil axis that promotes type II innate immunity, which influences the balance between regenerative and fibrotic responses during muscular dystrophy. Immune cells that comprise type II innate immunity coalesce to regulate tissue repair and fibrosis. Kastenschmidt et al. report that ILC2s reside in skeletal muscle, are activated in muscular dystrophy, and promote muscle eosinophilia. Stromal progenitors expressed IL-33, which expanded ILC2s and promoted a transcriptional program associated with muscle fibrosis.
Collapse
Affiliation(s)
- Jenna M Kastenschmidt
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Philip K Farahat
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Phillip Pham
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rodolfo Rios
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Therese T Cristal
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Ali H Mannaa
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rachel E Ayer
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rayan Yahia
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Archis A Deshpande
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Brandon S Hughes
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Adam K Savage
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA; Departments of Medicine and Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Carlee R Giesige
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Scott Q Harper
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Tahseen Mozaffar
- Institute for Immunology, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA; Department of Orthopaedic Surgery, University of California Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Wang L, Li H, Lin J, He R, Chen M, Zhang Y, Liao Z, Zhang C. CCR2 improves homing and engraftment of adipose-derived stem cells in dystrophic mice. Stem Cell Res Ther 2021; 12:12. [PMID: 33413615 PMCID: PMC7791736 DOI: 10.1186/s13287-020-02065-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/02/2020] [Indexed: 02/17/2023] Open
Abstract
Background Dystrophinopathy, a common neuromuscular disorder caused by the absence of dystrophin, currently lacks effective treatments. Systemic transplantation of adipose-derived stem cells (ADSCs) is a promising treatment approach, but its low efficacy remains a challenge. Chemokine system-mediated stem cell homing plays a critical role in systemic transplantation. Here, we investigated whether overexpression of a specific chemokine receptor could improve muscle homing and therapeutic effects of ADSC systemic transplantation in dystrophic mice. Methods We analysed multiple microarray datasets from the Gene Expression Omnibus to identify a candidate chemokine receptor and then evaluated the protein expression of target ligands in different tissues and organs of dystrophic mice. The candidate chemokine receptor was overexpressed using the lentiviral system in mouse ADSCs, which were used for systemic transplantation into the dystrophic mice, followed by evaluation of motor function, stem cell muscle homing, dystrophin expression, and muscle pathology. Results Chemokine-profile analysis identified C–C chemokine receptor (CCR)2 as the potential target for improving ADSC homing. We found that the levels of its ligands C–C chemokine ligand (CCL)2 and CCL7 were higher in muscles than in other tissues and organs of dystrophic mice. Additionally, CCR2 overexpression improved ADSC migration ability and maintained their multilineage-differentiation potentials. Compared with control ADSCs, transplantation of those overexpressing CCR2 displayed better muscle homing and further improved motor function, dystrophin expression, and muscle pathology in dystrophic mice. Conclusions These results demonstrated that CCR2 improved ADSC muscle homing and therapeutic effects following systemic transplantation in dystrophic mice.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Jinfu Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Ruojie He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Menglong Chen
- Department of Neurology, Guangzhou Overseas Chinese Hospital, No. 613 Huangpu Road, Guangzhou, GD, 510630, China
| | - Yu Zhang
- Department of Neurology, Guangzhou Overseas Chinese Hospital, No. 613 Huangpu Road, Guangzhou, GD, 510630, China
| | - Ziyu Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China. .,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China.
| |
Collapse
|
12
|
Riddell A, McBride M, Braun T, Nicklin SA, Cameron E, Loughrey CM, Martin TP. RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovasc Res 2020; 116:1410-1423. [PMID: 32154891 PMCID: PMC7314639 DOI: 10.1093/cvr/cvaa034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Runt-related transcription factor-1 (RUNX1), also known as acute myeloid leukaemia 1 protein (AML1), is a member of the core-binding factor family of transcription factors which modulate cell proliferation, differentiation, and survival in multiple systems. It is a master-regulator transcription factor, which has been implicated in diverse signalling pathways and cellular mechanisms during normal development and disease. RUNX1 is best characterized for its indispensable role for definitive haematopoiesis and its involvement in haematological malignancies. However, more recently RUNX1 has been identified as a key regulator of adverse cardiac remodelling following myocardial infarction. This review discusses the role RUNX1 plays in the heart and highlights its therapeutic potential as a target to limit the progression of adverse cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Martin McBride
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1BD, UK
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
13
|
Yanay N, Elbaz M, Konikov-Rozenman J, Elgavish S, Nevo Y, Fellig Y, Rabie M, Mitrani-Rosenbaum S, Nevo Y. Pax7, Pax3 and Mamstr genes are involved in skeletal muscle impaired regeneration of dy2J/dy2J mouse model of Lama2-CMD. Hum Mol Genet 2020; 28:3369-3390. [PMID: 31348492 DOI: 10.1093/hmg/ddz180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. This study is the first report of dy2J/dy2J model whole transcriptome profile. RNA-Seq of the mdx mouse model of DMD and wild-type (WT) mouse was carried as well in order to enable a novel comparison of dy2J/dy2J to mdx. A large group of shared differentially expressed genes (DEGs) was found in dy2J/dy2J and mdx models (1834 common DEGs, false discovery rate [FDR] < 0.05). Enrichment pathway analysis using ingenuity pathway analysis showed enrichment of inflammation, fibrosis, cellular movement, migration and proliferation of cells, apoptosis and necrosis in both mouse models (P-values 3E-10-9E-37). Via canonical pathway analysis, actin cytoskeleton, integrin, integrin-linked kinase, NF-kB, renin-angiotensin, epithelial-mesenchymal transition, and calcium signaling were also enriched and upregulated in both models (FDR < 0.05). Interestingly, significant downregulation of Pax7 was detected in dy2J/dy2J compared to upregulation of this key regeneration gene in mdx mice. Pax3 and Mamstr genes were also downregulated in dy2J/dy2J compared to WT mice. These results may explain the distinct disease course and severity in these models. While the mdx model at that stage shows massive regeneration, the dy2J/dy2J shows progressive dystrophic process. Our data deepen our understanding of the molecular pathophysiology and suggest new targets for additional therapies to upregulate regeneration in Lama2-CMD.
Collapse
Affiliation(s)
- Nurit Yanay
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Moran Elbaz
- Pediatric Neuromuscular Laboratory, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jenya Konikov-Rozenman
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Sharona Elgavish
- Info-CORE, I-CORE Bioinformatics Unit, The Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, I-CORE Bioinformatics Unit, The Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Malcolm Rabie
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yoram Nevo
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Finanger E, Vandenborne K, Finkel RS, Lee Sweeney H, Tennekoon G, Yum S, Mancini M, Bista P, Nichols A, Liu H, Fretzen A, Donovan JM. Phase 1 Study of Edasalonexent (CAT-1004), an Oral NF-κB Inhibitor, in Pediatric Patients with Duchenne Muscular Dystrophy. J Neuromuscul Dis 2020; 6:43-54. [PMID: 30452422 PMCID: PMC6398836 DOI: 10.3233/jnd-180341] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Edasalonexent is an orally administered small molecule designed to inhibit NF-κB, which is activated from infancy in Duchenne muscular dystrophy and is central to causing muscle damage and preventing muscle regeneration. Objective: Evaluate the safety, tolerability, pharmacokinetics and exploratory pharmacodynamics of three doses of edasalonexent in ambulatory males ≥4 to <8 years of age with genetically confirmed Duchenne muscular dystrophy. Methods: This was a 1-week, open-label, multiple-dose study with 3 sequential ascending doses (33, 67 and 100 mg/kg/day) of edasalonexent administered under different dietary conditions to 17 males with a mean age of 5.5 years. Results: All doses of edasalonexent were well tolerated, with no serious adverse events, no drug discontinuations and no dose reductions. The majority of adverse events were mild, and the most common adverse events were gastrointestinal (primarily diarrhea). Edasalonexent was rapidly absorbed with peak levels observed 2–6 hours after dosing and exposures appeared to increase nearly proportionally to dose for the 2 lower and all 3 doses under low-fat and high-fat meal conditions, respectively. Only minor plasma accumulation of edasalonexent was observed with 7 days of dosing. After treatment with edasalonexent for 7 days, levels of NF-κB-regulated genes and serum proteins were decreased. Conclusions: This first report of edasalonexent oral administration for one week in male pediatric patients with Duchenne muscular dystrophy showed that treatment was well tolerated and inhibited NF-kB pathways.
Collapse
Affiliation(s)
- Erika Finanger
- Oregon Health Sciences University Pediatrics, Portland, OR, USA
| | | | - Richard S Finkel
- Nemours Children's Hospital, Division of Pediatric Neurology, Orlando, FL, USA
| | - H Lee Sweeney
- University of Florida Health Myology Institute, Gainesville, FL, USA
| | - Gihan Tennekoon
- Children's Hospital of Philadelphia Pediatric Neurology, Philadelphia, PA, USA
| | - Sabrina Yum
- Children's Hospital of Philadelphia Pediatric Neurology, Philadelphia, PA, USA
| | | | | | | | - Hanlan Liu
- Catabasis Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
15
|
Bohlen MO, Bui K, Stahl JS, May PJ, Warren S. Mouse Extraocular Muscles and the Musculotopic Organization of Their Innervation. Anat Rec (Hoboken) 2019; 302:1865-1885. [PMID: 30993879 DOI: 10.1002/ar.24141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/18/2018] [Accepted: 11/25/2018] [Indexed: 12/24/2022]
Abstract
The organization of extraocular muscles (EOMs) and their motor nuclei was investigated in the mouse due to the increased importance of this model for oculomotor research. Mice showed a standard EOM organization pattern, although their eyes are set at the side of the head. They do have more prominent oblique muscles, whose insertion points differ from those of frontal-eyed species. Retrograde tracers revealed that the motoneuron layout aligns with the general vertebrate plan with respect to nuclei and laterality. The mouse departed in some significant respects from previously studied species. First, more overlap between the distributions of muscle-specific motoneuronal pools was present in the oculomotor nucleus (III). Furthermore, motoneuron dendrites for each pool filled the entire III and extended beyond the edge of the abducens nucleus (VI). This suggests mouse extraocular motoneuron afferents must target specific pools based on features other than dendritic distribution and nuclear borders. Second, abducens internuclear neurons are located outside the VI. We concluded this because no unlabeled abducens internuclear neurons were observed following lateral rectus muscle injections and because retrograde tracer injections into the III labeled cells immediately ventral and ventrolateral to the VI, not within it. This may provide an anatomical substrate for differential input to motoneurons and internuclear neurons that allows rodents to move their eyes more independently. Finally, while soma size measurements suggested motoneuron subpopulations supplying multiply and singly innervated muscle fibers are present, markers for neurofilaments and perineuronal nets indicated overlap in the size distributions of the two populations. Anat Rec, 302:1865-1885, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Kevin Bui
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - John S Stahl
- Neurology Service, Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio.,Department of Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Paul J May
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Ophthalmology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Susan Warren
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
16
|
Bao M, Liu S, Yu XY, Wu C, Chen Q, Ding H, Shen C, Wang B, Wang S, Song YH, Li Y. Runx1 promotes satellite cell proliferation during ischemia - Induced muscle regeneration. Biochem Biophys Res Commun 2018; 503:2993-2997. [PMID: 30115379 DOI: 10.1016/j.bbrc.2018.08.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
RUNX1 is a transcription factor that is not expressed in uninjured muscles, but can be detected in denervated muscles, suggesting a role of RUNX1 in muscle's response to injury. However, the role of RUNX1 in muscle's response to ischemia has not been reported. Our study showed that Runx1 is up regulated in skeletal muscle during ischemia reperfusion induced injury. Over-expression of Runx1 in C2C12 cells inhibits myogenic differentiation, but promotes proliferation of myoblasts. Consistent with these findings, we found that Runx1 expression was decreased in differentiated satellite cells. Our results indicate that Runx1 regulates muscle regeneration by promoting proliferation of satellite cells.
Collapse
Affiliation(s)
- Meiyu Bao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Songbai Liu
- Suzhou Vocational Health College, Suzhou Key Laboratory of Biotechnology for Laboratory Medicine, Suzhou, 215009, Jiangsu Province, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Chaofan Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qiongyuan Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hui Ding
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Congcong Shen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Baolong Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shuochen Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Yangxin Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital and The Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
17
|
Kemaladewi DU, Benjamin JS, Hyatt E, Ivakine EA, Cohn RD. Increased polyamines as protective disease modifiers in congenital muscular dystrophy. Hum Mol Genet 2018; 27:1905-1912. [PMID: 29566247 DOI: 10.1093/hmg/ddy097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2023] Open
Abstract
Most Mendelian disorders, including neuromuscular disorders, display extensive clinical heterogeneity that cannot be solely explained by primary genetic mutations. This phenotypic variability is largely attributed to the presence of disease modifiers, which can exacerbate or lessen the severity and progression of the disease. LAMA2-deficient congenital muscular dystrophy (LAMA2-CMD) is a fatal degenerative muscle disease resulting from mutations in the LAMA2 gene encoding Laminin-α2. Progressive muscle weakness is predominantly observed in the lower limbs in LAMA2-CMD patients, whereas upper limbs muscles are significantly less affected. However, very little is known about the molecular mechanism underlying differential pathophysiology between specific muscle groups. Here, we demonstrate that the triceps muscles of the dy2j/dy2j mouse model of LAMA2-CMD demonstrate very mild myopathic findings compared with the tibialis anterior (TA) muscles that undergo severe atrophy and fibrosis, suggesting a protective mechanism in the upper limbs of these mice. Comparative gene expression analysis reveals that S-Adenosylmethionine decarboxylase (Amd1) and Spermine oxidase (Smox), two components of polyamine pathway metabolism, are downregulated in the TA but not in the triceps of dy2j/dy2j mice. As a consequence, the level of polyamine metabolites is significantly lower in the TA than triceps. Normalization of either Amd1 or Smox expression in dy2j/dy2j TA ameliorates muscle fibrosis, reduces overactive profibrotic TGF-β pathway and leads to improved locomotion. In summary, we demonstrate that a deregulated polyamine metabolism is a characteristic feature of severely affected lower limb muscles in LAMA2-CMD. Targeted modulation of this pathway represents a novel therapeutic avenue for this devastating disease.
Collapse
Affiliation(s)
- D U Kemaladewi
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - J S Benjamin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - E Hyatt
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - E A Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - R D Cohn
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pediatrics, University of Toronto, and The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
18
|
Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schöls L. To die or not to die SGK1-sensitive ORAI/STIM in cell survival. Cell Calcium 2018; 74:29-34. [PMID: 29807219 DOI: 10.1016/j.ceca.2018.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
The pore forming Ca2+ release activated Ca2+ channel (CRAC) isoforms ORAI1-3 and their regulators STIM1,2 accomplish store operated Ca2+ entry (SOCE). Activation of SOCE may lead to cytosolic Ca2+ oscillations, which in turn support cell proliferation and cell survival. ORAI/STIM and thus SOCE are upregulated by the serum and glucocorticoid inducible kinase SGK1, a kinase under powerful genomic regulation and activated by phosphorylation via the phosphoinositol-3-phosphate pathway. SGK1 enhances ORAI1 abundance partially by phosphorylation of Nedd4-2, an ubiquitin ligase priming the channel protein for degradation. The SGK1-phosphorylated Nedd4-2 binds to the protein 14-3-3 and is thus unable to ubiquinate ORAI1. SGK1 further increases the ORAI1 and STIM1 protein abundance by activating nuclear factor kappa B (NF-κB), a transcription factor upregulating the expression of STIM1 and ORAI1. SGK1-sensitive upregulation of ORAI/STIM and thus SOCE is triggered by a wide variety of hormones and growth factors, as well as several cell stressors including ischemia, radiation, and cell shrinkage. SGK1 dependent upregulation of ORAI/STIM confers survival of tumor cells and thus impacts on growth and therapy resistance of cancer. On the other hand, SGK1-dependent upregulation of ORAI1 and STIM1 may support survival of neurons and impairment of SGK1-dependent ORAI/STIM activity may foster neurodegeneration. Clearly, further experimental effort is needed to define the mechanisms linking SGK1-dependent upregulation of ORAI1 and STIM1 to cell survival and to define the impact of SGK1-dependent upregulation of ORAI1 and STIM1 on malignancy and neurodegenerative disease.
Collapse
Affiliation(s)
- Florian Lang
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany.
| | - Lisann Pelzl
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Andreas Hermann
- Department of Neurology and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Germany & DZNE, German Center for Neurodegenerative Diseases, Research Site Dresden, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
19
|
Expression profiling of disease progression in canine model of Duchenne muscular dystrophy. PLoS One 2018; 13:e0194485. [PMID: 29554127 PMCID: PMC5858769 DOI: 10.1371/journal.pone.0194485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) causes progressive disability in 1 of every 5,000 boys due to the lack of functional dystrophin protein. Despite much advancement in knowledge about DMD disease presentation and progression—attributable in part to studies using mouse and canine models of the disease–current DMD treatments are not equally effective in all patients. There remains, therefore, a need for translational animal models in which novel treatment targets can be identified and evaluated. Golden Retriever muscular dystrophy (GRMD) is a phenotypically and genetically homologous animal model of DMD. As with DMD, speed of disease progression in GRMD varies substantially. However, unlike DMD, all GRMD dogs possess the same causal mutation; therefore genetic modifiers of phenotypic variation are relatively easier to identify. Furthermore, the GRMD dogs used in this study reside within the same colony, reducing the confounding effects of environment on phenotypic variation. To detect modifiers of disease progression, we developed gene expression profiles using RNA sequencing for 9 dogs: 6 GRMD dogs (3 with faster-progressing and 3 with slower-progressing disease, based on quantitative, objective biomarkers) and 3 control dogs from the same colony. All dogs were evaluated at 2 time points: early disease onset (3 months of age) and the point at which GRMD stabilizes (6 months of age) using quantitative, objective biomarkers identified as robust against the effects of relatedness/inbreeding. Across all comparisons, the most differentially expressed genes fell into 3 categories: myogenesis/muscle regeneration, metabolism, and inflammation. Our findings are largely in concordance with DMD and mouse model studies, reinforcing the utility of GRMD as a translational model. Novel findings include the strong up-regulation of chitinase 3-like 1 (CHI3L1) in faster-progressing GRMD dogs, suggesting previously unexplored mechanisms underlie progression speed in GRMD and DMD. In summary, our findings support the utility of RNA sequencing for evaluating potential biomarkers of GRMD progression speed, and are valuable for identifying new avenues of exploration in DMD research.
Collapse
|
20
|
Wells E, Kambhampati M, Damsker JM, Gordish-Dressman H, Yadavilli S, Becher OJ, Gittens J, Stampar M, Packer RJ, Nazarian J. Vamorolone, a dissociative steroidal compound, reduces pro-inflammatory cytokine expression in glioma cells and increases activity and survival in a murine model of cortical tumor. Oncotarget 2018; 8:9366-9374. [PMID: 28030841 PMCID: PMC5354737 DOI: 10.18632/oncotarget.14070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Corticosteroids, such as dexamethasone, are routinely used as palliative care in neuro-oncology for their anti-inflammatory benefits, however many patients experience dose limiting side effects caused by glucocorticoid response element (GRE)-mediated transcription. The purpose of this study was to use a murine model to investigate a new steroid alternative, vamorolone, which promises to reduce side effects through dissociating GRE-mediated transcription and NF-κB -mediated anti-inflammatory actions. To compare vamorolone to dexamethasone in reducing pro-inflammatory signals in vitro, murine glioma cells were treated with dexamethasone, vamorolone or vehicle control. Changes in mRNA expression were assessed using the nanostring inflammatory platform. Furthermore, drug efficacy, post-treatment behavioral activity and side effects were assessed by treating two cohorts of brain tumor bearing mice with dexamethasone, vamorolone, or vehicle control. Our investigation showed that treatment with vamorolone resulted in a reduction of pro-inflammatory signals in tumor cells in vitro similar to treatment with dexamethasone. Treatment with vamorolone resulted in a better safety profile in comparison to dexamethasone treatment. Vamorolone- treated mice showed similar or better activity and survival when compared to dexamethasone-treated mice. Our data indicate vamorolone is a potential steroid-sparing alternative for treating patients with brain tumors.
Collapse
Affiliation(s)
- Elizabeth Wells
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | | | | | - Sridevi Yadavilli
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | | | - Jamila Gittens
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Mojca Stampar
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
21
|
Lardenois A, Jagot S, Lagarrigue M, Guével B, Ledevin M, Larcher T, Dubreil L, Pineau C, Rouger K, Guével L. Quantitative proteome profiling of dystrophic dog skeletal muscle reveals a stabilized muscular architecture and protection against oxidative stress after systemic delivery of MuStem cells. Proteomics 2017; 16:2028-42. [PMID: 27246553 DOI: 10.1002/pmic.201600002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/02/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022]
Abstract
Proteomic profiling plays a decisive role in the elucidation of molecular signatures representative of a specific clinical context. MuStem cell based therapy represents a promising approach for clinical applications to cure Duchenne muscular dystrophy (DMD). To expand our previous studies collected in the clinically relevant DMD animal model, we decided to investigate the skeletal muscle proteome 4 months after systemic delivery of allogenic MuStem cells. Quantitative proteomics with isotope-coded protein labeling was used to compile quantitative changes in the protein expression profiles of muscle in transplanted Golden Retriever muscular dystrophy (GRMD) dogs as compared to Golden Retriever muscular dystrophy dogs. A total of 492 proteins were quantified, including 25 that were overrepresented and 46 that were underrepresented after MuStem cell transplantation. Interestingly, this study demonstrates that somatic stem cell therapy impacts on the structural integrity of the muscle fascicle by acting on fibers and its connections with the extracellular matrix. We also show that cell infusion promotes protective mechanisms against oxidative stress and favors the initial phase of muscle repair. This study allows us to identify putative candidates for tissue markers that might be of great value in objectively exploring the clinical benefits resulting from our cell-based therapy for DMD. All MS data have been deposited in the ProteomeXchange with identifier PXD001768 (http://proteomecentral.proteomexchange.org/dataset/PXD001768).
Collapse
Affiliation(s)
- Aurélie Lardenois
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Sabrina Jagot
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France.,Université de Nantes, Nantes, France
| | - Mélanie Lagarrigue
- Protim, Irset Inserm UMR 1085, Campus de Beaulieu, Rennes, France.,Université de Rennes I, Campus de Beaulieu, Rennes, France
| | - Blandine Guével
- Protim, Irset Inserm UMR 1085, Campus de Beaulieu, Rennes, France.,Université de Rennes I, Campus de Beaulieu, Rennes, France
| | - Mireille Ledevin
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Thibaut Larcher
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Laurence Dubreil
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Charles Pineau
- Protim, Irset Inserm UMR 1085, Campus de Beaulieu, Rennes, France.,Université de Rennes I, Campus de Beaulieu, Rennes, France
| | - Karl Rouger
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Laëtitia Guével
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France.,Université de Nantes, Nantes, France
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To discuss current knowledge on the role of connexins and pannexins in the musculoskeletal system. RECENT FINDINGS Connexins and pannexins are crucial for the development and maintenance of both bone and skeletal muscle. In bone, the presence of connexin and more recently of pannexin channels in osteoblasts, osteoclasts, and osteocytes has been described and shown to be essential for normal skeletal development and bone adaptation. In skeletal muscles, connexins and pannexins play important roles during development and regeneration through coordinated regulation of metabolic functions via cell-to-cell communication. Further, under pathological conditions, altered expression of these proteins can promote muscle atrophy and degeneration by stimulating inflammasome activity. In this review, we highlight the important roles of connexins and pannexins in the development, maintenance, and regeneration of musculoskeletal tissues, with emphasis on the mechanisms by which these molecules mediate chemical (e.g., ATP and prostaglandin E2) and physical (e.g., mechanical stimulation) stimuli that target the musculoskeletal system and their involvement in the pathophysiological changes in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA
| | - Bruno A Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
23
|
GRMD cardiac and skeletal muscle metabolism gene profiles are distinct. BMC Med Genomics 2017; 10:21. [PMID: 28390424 PMCID: PMC5385041 DOI: 10.1186/s12920-017-0257-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, which codes for the dystrophin protein. While progress has been made in defining the molecular basis and pathogenesis of DMD, major gaps remain in understanding mechanisms that contribute to the marked delay in cardiac compared to skeletal muscle dysfunction. Methods To address this question, we analyzed cardiac and skeletal muscle tissue microarrays from golden retriever muscular dystrophy (GRMD) dogs, a genetically and clinically homologous model for DMD. A total of 15 dogs, 3 each GRMD and controls at 6 and 12 months plus 3 older (47–93 months) GRMD dogs, were assessed. Results GRMD dogs exhibited tissue- and age-specific transcriptional profiles and enriched functions in skeletal but not cardiac muscle, consistent with a “metabolic crisis” seen with DMD microarray studies. Most notably, dozens of energy production-associated molecules, including all of the TCA cycle enzymes and multiple electron transport components, were down regulated. Glycolytic and glycolysis shunt pathway-associated enzymes, such as those of the anabolic pentose phosphate pathway, were also altered, in keeping with gene expression in other forms of muscle atrophy. On the other hand, GRMD cardiac muscle genes were enriched in nucleotide metabolism and pathways that are critical for neuromuscular junction maintenance, synaptic function and conduction. Conclusions These findings suggest differential metabolic dysfunction may contribute to distinct pathological phenotypes in skeletal and cardiac muscle. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0257-2) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Donovan JM, Zimmer M, Offman E, Grant T, Jirousek M. A Novel NF-κB Inhibitor, Edasalonexent (CAT-1004), in Development as a Disease-Modifying Treatment for Patients With Duchenne Muscular Dystrophy: Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics in Adult Subjects. J Clin Pharmacol 2017; 57:627-639. [PMID: 28074489 PMCID: PMC5412838 DOI: 10.1002/jcph.842] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022]
Abstract
In Duchenne muscular dystrophy (DMD), NF‐κB is activated in skeletal muscle from infancy regardless of the underlying dystrophin mutation and drives inflammation and muscle degeneration while inhibiting muscle regeneration. Edasalonexent (CAT‐1004) is a bifunctional orally administered small molecule that covalently links 2 compounds known to inhibit NF‐κB, salicylic acid and docosahexaenoic acid (DHA). Edasalonexent is designed to inhibit activated NF‐κB upon intracellular cleavage to these bioactive components. Preclinical data demonstrate disease‐modifying activity in DMD animal models. Three placebo‐controlled studies in adult subjects assessed the safety, pharmacokinetics, and pharmacodynamics of single or multiple edasalonexent doses up to 6000 mg. Seventy‐nine adult subjects received edasalonexent, and 25 received placebo. Pharmacokinetic results were consistent with the intracellular cleavage of edasalonexent to its active components. Food increased plasma exposures of edasalonexent and salicyluric acid, an intracellularly formed metabolite of salicylic acid. The NF‐κB pathway and proteosome gene expression profiles in peripheral mononuclear cells were significantly decreased (P = .02 and P = .002, respectively) after 2 weeks of edasalonexent treatment. NF‐κB activity was inhibited following a single dose of edasalonexent but not by equimolar doses of salicylic acid and DHA. Edasalonexent was well tolerated, and the most common adverse events were mild diarrhea and headache. In first‐in‐human studies, edasalonexent was safe, well tolerated, and inhibited activated NF‐κB pathways, suggesting potential therapeutic utility in DMD regardless of the causative dystrophin mutation, as well as other NF‐κB–mediated diseases.
Collapse
|
25
|
Chadwick JA, Bhattacharya S, Lowe J, Weisleder N, Rafael-Fortney JA. Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles. Am J Physiol Cell Physiol 2016; 312:C155-C168. [PMID: 27881412 PMCID: PMC5336592 DOI: 10.1152/ajpcell.00269.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023]
Abstract
Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD.
Collapse
Affiliation(s)
- Jessica A Chadwick
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and.,Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Noah Weisleder
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and.,Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
26
|
Kaminski HJ, Himuro K, Alshaikh J, Gong B, Cheng G, Kusner LL. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats. Front Physiol 2016; 7:524. [PMID: 27891095 PMCID: PMC5102901 DOI: 10.3389/fphys.2016.00524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/24/2016] [Indexed: 01/14/2023] Open
Abstract
The differential susceptibility of skeletal muscle by myasthenia gravis (MG) is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM), diaphragm (DIA), and extensor digitorum (EDL) of rats with experimental autoimmune MG (EAMG) to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, 359 probes (1.16%) with greater than 2-fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism.
Collapse
Affiliation(s)
- Henry J Kaminski
- Department of Neurology, George Washington University Washington, DC, USA
| | - Keiichi Himuro
- Department of Neurology, Graduate School of Medicine, Chiba University Chiba, Japan
| | - Jumana Alshaikh
- Department of Neurology, George Washington University Washington, DC, USA
| | - Bendi Gong
- Department of Pediatrics, Washington University St. Louis, MO, USA
| | - Georgiana Cheng
- Department of Pathobiology, Cleveland Clinic Cleveland, OH, USA
| | - Linda L Kusner
- Pharmacology and Physiology, George Washington University Washington, DC, USA
| |
Collapse
|
27
|
Fröhlich T, Kemter E, Flenkenthaler F, Klymiuk N, Otte KA, Blutke A, Krause S, Walter MC, Wanke R, Wolf E, Arnold GJ. Progressive muscle proteome changes in a clinically relevant pig model of Duchenne muscular dystrophy. Sci Rep 2016; 6:33362. [PMID: 27634466 PMCID: PMC5025886 DOI: 10.1038/srep33362] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. We recently generated a novel genetically engineered pig model reflecting pathological hallmarks of human DMD better than the widely used mdx mouse. To get insight into the hierarchy of molecular derangements during DMD progression, we performed a proteome analysis of biceps femoris muscle samples from 2-day-old and 3-month-old DMD and wild-type (WT) pigs. The extent of proteome changes in DMD vs. WT muscle increased markedly with age, reflecting progression of the pathological changes. In 3-month-old DMD muscle, proteins related to muscle repair such as vimentin, nestin, desmin and tenascin C were found to be increased, whereas a large number of respiratory chain proteins were decreased in abundance in DMD muscle, indicating serious disturbances in aerobic energy production and a reduction of functional muscle tissue. The combination of proteome data for fiber type specific myosin heavy chain proteins and immunohistochemistry showed preferential degeneration of fast-twitch fiber types in DMD muscle. The stage-specific proteome changes detected in this large animal model of clinically severe muscular dystrophy provide novel molecular readouts for future treatment trials.
Collapse
Affiliation(s)
- Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Kathrin A Otte
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, LMU Munich, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, LMU Munich, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| |
Collapse
|
28
|
Hilgendorff A, Windhorst A, Klein M, Tchatalbachev S, Windemuth-Kieselbach C, Kreuder J, Heckmann M, Gkatzoflia A, Ehrhardt H, Mysliwietz J, Maier M, Izar B, Billion A, Gortner L, Chakraborty T, Hossain H. Gene expression profiling at birth characterizing the preterm infant with early onset infection. J Mol Med (Berl) 2016; 95:169-180. [PMID: 27576916 PMCID: PMC5239802 DOI: 10.1007/s00109-016-1466-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/09/2016] [Accepted: 08/18/2016] [Indexed: 12/02/2022]
Abstract
Abstract Early onset infection (EOI) in preterm infants <32 weeks gestational age (GA) is associated with a high mortality rate and the development of severe acute and long-term complications. The pathophysiology of EOI is not fully understood and clinical and laboratory signs of early onset infections in this patient cohort are often not conclusive. Thus, the aim of this study was to identify signatures characterizing preterm infants with EOI by using genome-wide gene expression (GWGE) analyses from umbilical arterial blood of preterm infants. This prospective cohort study was conducted in preterm infants <32 weeks GA. GWGE analyses using CodeLink human microarrays were performed from umbilical arterial blood of preterm infants with and without EOI. GWGE analyses revealed differential expression of 292 genes in preterm infants with EOI as compared to infants without EOI. Infants with EOI could be further differentiated into two subclasses and were distinguished by the magnitude of the expression of genes involved in both neutrophil and T cell activation. A hallmark activity for both subclasses of EOI was a common suppression of genes involved in natural killer (NK) cell function, which was independent from NK cell numbers. Significant results were recapitulated in an independent validation cohort. Gene expression profiling may enable early and more precise diagnosis of EOI in preterm infants. Key message Gene expression (GE) profiling at birth characterizes preterm infants with EOI. GE analysis indicates dysregulation of NK cell activity. NK cell activity at birth may be a useful marker to improve early diagnosis of EOI.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-016-1466-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Department of Neonatology, Grosshadern, Ludwig-Maximilian University Munich, Germany and the Comprehensive Pneumology Center, Helmholtz Zentrum Muenchen, Munich, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Pediatrics and Neonatology, Justus-Liebig University Giessen, Germany, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Anita Windhorst
- Institute for Medical Microbiology, Justus-Liebig University Giessen, Member of the German Center for Infection Research (DZIF), Schubertstr. 81, 35392, Giessen, Germany.,Institute for Medical Informatics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Manuel Klein
- Hospital Barmherzige Brueder, Regensburg, Germany
| | - Svetlin Tchatalbachev
- Institute for Medical Microbiology, Justus-Liebig University Giessen, Member of the German Center for Infection Research (DZIF), Schubertstr. 81, 35392, Giessen, Germany
| | | | - Joachim Kreuder
- Department of Pediatrics and Neonatology, Justus-Liebig University Giessen, Germany, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University Medicine, Greifswald, Germany
| | - Anna Gkatzoflia
- Department of Pediatrics and Neonatology, Justus-Liebig University Giessen, Germany, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Harald Ehrhardt
- Department of Pediatrics and Neonatology, Justus-Liebig University Giessen, Germany, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Josef Mysliwietz
- Institute for Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Michael Maier
- Institute for Medical Microbiology, Justus-Liebig University Giessen, Member of the German Center for Infection Research (DZIF), Schubertstr. 81, 35392, Giessen, Germany
| | - Benjamin Izar
- Institute for Medical Microbiology, Justus-Liebig University Giessen, Member of the German Center for Infection Research (DZIF), Schubertstr. 81, 35392, Giessen, Germany.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andre Billion
- Institute for Medical Microbiology, Justus-Liebig University Giessen, Member of the German Center for Infection Research (DZIF), Schubertstr. 81, 35392, Giessen, Germany
| | - Ludwig Gortner
- Department of Pediatrics and Neonatology, University of Saarland, Homburg, Germany
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University Giessen, Member of the German Center for Infection Research (DZIF), Schubertstr. 81, 35392, Giessen, Germany
| | - Hamid Hossain
- Institute for Medical Microbiology, Justus-Liebig University Giessen, Member of the German Center for Infection Research (DZIF), Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
29
|
Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2745-58. [PMID: 27621596 PMCID: PMC5012616 DOI: 10.2147/dddt.s110163] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.
Collapse
Affiliation(s)
- Shouta Miyatake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
30
|
Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY, Cochrane Neuromuscular Group. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev 2016; 2016:CD003725. [PMID: 27149418 PMCID: PMC8580515 DOI: 10.1002/14651858.cd003725.pub4] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy of childhood. Untreated, this incurable disease, which has an X-linked recessive inheritance, is characterised by muscle wasting and loss of walking ability, leading to complete wheelchair dependence by 13 years of age. Prolongation of walking is a major aim of treatment. Evidence from randomised controlled trials (RCTs) indicates that corticosteroids significantly improve muscle strength and function in boys with DMD in the short term (six months), and strength at two years (two-year data on function are very limited). Corticosteroids, now part of care recommendations for DMD, are largely in routine use, although questions remain over their ability to prolong walking, when to start treatment, longer-term balance of benefits versus harms, and choice of corticosteroid or regimen.We have extended the scope of this updated review to include comparisons of different corticosteroids and dosing regimens. OBJECTIVES To assess the effects of corticosteroids on prolongation of walking ability, muscle strength, functional ability, and quality of life in DMD; to address the question of whether benefit is maintained over the longer term (more than two years); to assess adverse events; and to compare efficacy and adverse effects of different corticosteroid preparations and regimens. SEARCH METHODS On 16 February 2016 we searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, EMBASE, CINAHL Plus, and LILACS. We wrote to authors of published studies and other experts. We checked references in identified trials, handsearched journal abstracts, and searched trials registries. SELECTION CRITERIA We considered RCTs or quasi-RCTs of corticosteroids (e.g. prednisone, prednisolone, and deflazacort) given for a minimum of three months to patients with a definite DMD diagnosis. We considered comparisons of different corticosteroids, regimens, and corticosteroids versus placebo. DATA COLLECTION AND ANALYSIS The review authors followed standard Cochrane methodology. MAIN RESULTS We identified 12 studies (667 participants) and two new ongoing studies for inclusion. Six RCTs were newly included at this update and important non-randomised cohort studies have also been published. Some important studies remain unpublished and not all published studies provide complete outcome data. PRIMARY OUTCOME MEASURE one two-year deflazacort RCT (n = 28) used prolongation of ambulation as an outcome measure but data were not adequate for drawing conclusions. SECONDARY OUTCOME MEASURES meta-analyses showed that corticosteroids (0.75 mg/kg/day prednisone or prednisolone) improved muscle strength and function versus placebo over six months (moderate quality evidence from up to four RCTs). Evidence from single trials showed 0.75 mg/kg/day superior to 0.3 mg/kg/day on most strength and function measures, with little evidence of further benefit at 1.5 mg/kg/day. Improvements were seen in time taken to rise from the floor (Gowers' time), timed walk, four-stair climbing time, ability to lift weights, leg function grade, and forced vital capacity. One new RCT (n = 66), reported better strength, function and quality of life with daily 0.75 mg/kg/day prednisone at 12 months. One RCT (n = 28) showed that deflazacort stabilised muscle strength versus placebo at two years, but timed function test results were too imprecise for conclusions to be drawn.One double-blind RCT (n = 64), largely at low risk of bias, compared daily prednisone (0.75 mg/kg/day) with weekend-only prednisone (5 mg/kg/weekend day), finding no overall difference in muscle strength and function over 12 months (moderate to low quality evidence). Two small RCTs (n = 52) compared daily prednisone 0.75 mg/kg/day with daily deflazacort 0.9 mg/kg/day, but study methods limited our ability to compare muscle strength or function. ADVERSE EFFECTS excessive weight gain, behavioural abnormalities, cushingoid appearance, and excessive hair growth were all previously shown to be more common with corticosteroids than placebo; we assessed the quality of evidence (for behavioural changes and weight gain) as moderate. Hair growth and cushingoid features were more frequent at 0.75 mg/kg/day than 0.3 mg/kg/day prednisone. Comparing daily versus weekend-only prednisone, both groups gained weight with no clear difference in body mass index (BMI) or in behavioural changes (low quality evidence for both outcomes, one study); the weekend-only group had a greater linear increase in height. Very low quality evidence suggested less weight gain with deflazacort than with prednisone at 12 months, and no difference in behavioural abnormalities. Data are insufficient to assess the risk of fractures or cataracts for any comparison.Non-randomised studies support RCT evidence in showing improved functional benefit from corticosteroids. These studies suggest sustained benefit for up to 66 months. Adverse effects were common, although generally manageable. According to a large comparative longitudinal study of daily or intermittent (10 days on, 10 days off) corticosteroid for a mean period of four years, a daily regimen prolongs ambulation and improves functional scores over the age of seven, but with a greater frequency of side effects than an intermittent regimen. AUTHORS' CONCLUSIONS Moderate quality evidence from RCTs indicates that corticosteroid therapy in DMD improves muscle strength and function in the short term (twelve months), and strength up to two years. On the basis of the evidence available for strength and function outcomes, our confidence in the effect estimate for the efficacy of a 0.75 mg/kg/day dose of prednisone or above is fairly secure. There is no evidence other than from non-randomised trials to establish the effect of corticosteroids on prolongation of walking. In the short term, adverse effects were significantly more common with corticosteroids than placebo, but not clinically severe. A weekend-only prednisone regimen is as effective as daily prednisone in the short term (12 months), according to low to moderate quality evidence from a single trial, with no clear difference in BMI (low quality evidence). Very low quality evidence indicates that deflazacort causes less weight gain than prednisone after a year's treatment. We cannot evaluate long-term benefits and hazards of corticosteroid treatment or intermittent regimens from published RCTs. Non-randomised studies support the conclusions of functional benefits, but also identify clinically significant adverse effects of long-term treatment, and a possible divergence of efficacy in daily and weekend-only regimens in the longer term. These benefits and adverse effects have implications for future research and clinical practice.
Collapse
Affiliation(s)
- Emma Matthews
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesQueen SquareLondonUK
| | - Ruth Brassington
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesQueen SquareLondonUK
| | - Thierry Kuntzer
- CHU Vaudois and University of LausanneNerve‐Muscle Unit, Service of NeurologyLausanneSwitzerland1011
| | - Fatima Jichi
- Joint Research Office, University College LondonUCL School of Life & Medical SciencesGower StreetLondonUKWC1E 6BT
| | - Adnan Y Manzur
- Great Ormond Street Hospital for Children NHS TrustDubowitz Neuromuscular CentreGreat Ormond StreetLondonUKWC1N 3JH
| | | |
Collapse
|
31
|
Almeida CF, Martins PC, Vainzof M. Comparative transcriptome analysis of muscular dystrophy models Large(myd), Dmd(mdx)/Large(myd) and Dmd(mdx): what makes them different? Eur J Hum Genet 2016; 24:1301-9. [PMID: 26932192 DOI: 10.1038/ejhg.2016.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of Mendelian diseases. The underlying pathophysiology and phenotypic variability in each form are much more complex, suggesting the involvement of many other genes. Thus, here we studied the whole genome expression profile in muscles from three mice models for MD, at different time points: Dmd(mdx) (mutation in dystrophin gene), Large(myd-/-) (mutation in Large) and Dmd(mdx)/Large(myd-/-) (both mutations). The identification of altered biological functions can contribute to understand diseases and to find prognostic biomarkers and points for therapeutic intervention. We identified a substantial number of differentially expressed genes (DEGs) in each model, reflecting diseases' complexity. The main biological process affected in the three strains was immune system, accounting for the majority of enriched functional categories, followed by degeneration/regeneration and extracellular matrix remodeling processes. The most notable differences were in 21-day-old Dmd(mdx), with a high proportion of DEGs related to its regenerative capacity. A higher number of positive embryonic myosin heavy chain (eMyHC) fibers confirmed this. The new Dmd(mdx)/Large(myd-/-) model did not show a highly different transcriptome from the parental lineages, with a profile closer to Large(myd-/-), but not bearing the same regenerative potential as Dmd(mdx). This is the first report about transcriptome profile of a mouse model for congenital MD and Dmd(mdx)/Large(myd). By comparing the studied profiles, we conclude that alterations in biological functions due to the dystrophic process are very similar, and that the intense regeneration in Dmd(mdx) involves a large number of activated genes, not differentially expressed in the other two strains.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Poliana Cm Martins
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Contreras O, Rebolledo DL, Oyarzún JE, Olguín HC, Brandan E. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res 2016; 364:647-660. [DOI: 10.1007/s00441-015-2343-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
|
33
|
Szklarczyk R, Megchelenbrink W, Cizek P, Ledent M, Velemans G, Szklarczyk D, Huynen MA. WeGET: predicting new genes for molecular systems by weighted co-expression. Nucleic Acids Res 2015; 44:D567-73. [PMID: 26582928 PMCID: PMC4702868 DOI: 10.1093/nar/gkv1228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/30/2015] [Indexed: 01/04/2023] Open
Abstract
We have developed the Weighted Gene Expression Tool and database (WeGET, http://weget.cmbi.umcn.nl) for the prediction of new genes of a molecular system by correlated gene expression. WeGET utilizes a compendium of 465 human and 560 murine gene expression datasets that have been collected from multiple tissues under a wide range of experimental conditions. It exploits this abundance of expression data by assigning a high weight to datasets in which the known genes of a molecular system are harmoniously up- and down-regulated. WeGET ranks new candidate genes by calculating their weighted co-expression with that system. A weighted rank is calculated for human genes and their mouse orthologs. Then, an integrated gene rank and p-value is computed using a rank-order statistic. We applied our method to predict novel genes that have a high degree of co-expression with Gene Ontology terms and pathways from KEGG and Reactome. For each query set we provide a list of predicted novel genes, computed weights for transcription datasets used and cell and tissue types that contributed to the final predictions. The performance for each query set is assessed by 10-fold cross-validation. Finally, users can use the WeGET to predict novel genes that co-express with a custom query set.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Maastricht University Medical Centre, P. Debyelaan 25, 6226XM Maastricht, The Netherlands Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, Nijmegen, The Netherlands
| | - Wout Megchelenbrink
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, Nijmegen, The Netherlands Institute for Computing and Information Sciences (ICIS), Radboud University, Toernooiveld 212, 6525 EC Nijmegen, The Netherlands Centre for Systems Biology and Bioenergetics (CSBB), Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6500 HB Nijmegen, Nijmegen, The Netherlands
| | - Pavel Cizek
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, Nijmegen, The Netherlands
| | - Marie Ledent
- Maastricht University Medical Centre, P. Debyelaan 25, 6226XM Maastricht, The Netherlands
| | - Gonny Velemans
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, Nijmegen, The Netherlands
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, Nijmegen, The Netherlands Centre for Systems Biology and Bioenergetics (CSBB), Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6500 HB Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
34
|
McDonald AA, Hebert SL, McLoon LK. Sparing of the extraocular muscles in mdx mice with absent or reduced utrophin expression: A life span analysis. Neuromuscul Disord 2015; 25:873-87. [PMID: 26429098 PMCID: PMC4630113 DOI: 10.1016/j.nmd.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/08/2015] [Accepted: 09/01/2015] [Indexed: 11/26/2022]
Abstract
Sparing of the extraocular muscles in muscular dystrophy is controversial. To address the potential role of utrophin in this sparing, mdx:utrophin(+/-) and mdx:utrophin(-/-) mice were examined for changes in myofiber size, central nucleation, and Pax7-positive and MyoD-positive cell density at intervals over their life span. Known to be spared in the mdx mouse, and contrary to previous reports, the extraocular muscles from both the mdx:utrophin(+/-) and mdx:utrophin(-/-) mice were also morphologically spared. In the mdx:utrophin(+/)(-) mice, which have a normal life span compared to the mdx:utrophin(-/-) mice, the myofibers were larger at 3 and 12 months than the wild type age-matched eye muscles. While there was a significant increase in central nucleation in the extraocular muscles from all mdx:utrophin(+/)(-) mice, the levels were still very low compared to age-matched limb skeletal muscles. Pax7- and MyoD-positive myogenic precursor cell populations were retained and were similar to age-matched wild type controls. These results support the hypothesis that utrophin is not involved in extraocular muscle sparing in these genotypes. In addition, it appears that these muscles retain the myogenic precursors that would allow them to maintain their regenerative capacity and normal morphology over a lifetime even in these more severe models of muscular dystrophy.
Collapse
Affiliation(s)
- Abby A McDonald
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Sadie L Hebert
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
35
|
Zschüntzsch J, Zhang Y, Klinker F, Makosch G, Klinge L, Malzahn D, Brinkmeier H, Liebetanz D, Schmidt J. Treatment with human immunoglobulin G improves the early disease course in a mouse model of Duchenne muscular dystrophy. J Neurochem 2015; 136:351-62. [PMID: 26230042 DOI: 10.1111/jnc.13269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 01/14/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary myopathy. Standard treatment by glucocorticosteroids is limited because of numerous side effects. The aim of this study was to test immunomodulation by human immunoglobulin G (IgG) as treatment in the experimental mouse model (mdx) of DMD. 2 g/kg human IgG compared to human albumin was injected intraperitoneally in mdx mice at the age of 3 and 7 weeks. Advanced voluntary wheel running parameters were recorded continuously. At the age of 11 weeks, animals were killed so that blood, diaphragm, and lower limb muscles could be removed for quantitative PCR, histological analysis and ex vivo muscle contraction tests. IgG compared to albumin significantly improved the voluntary running performance and reduced muscle fatigability in an ex vivo muscle contraction test. Upon IgG treatment, serum creatine kinase values were diminished and mRNA expression levels of relevant inflammatory markers were reduced in the diaphragm and limb muscles. Macrophage infiltration and myopathic damage were significantly ameliorated in the quadriceps muscle. Collectively, this study demonstrates that, in the early disease course of mdx mice, human IgG improves the running performance and diminishes myopathic damage and inflammation in the muscle. Therefore, IgG may be a promising approach for treatment of DMD. Two monthly intraperitoneal injections of human immunoglobulin G (IgG) improved the early 11-week disease phase of mdx mice. Voluntary running was improved and serum levels of creatine kinase were diminished. In the skeletal muscle, myopathic damage was ameliorated and key inflammatory markers such as mRNA expression of SPP1 and infiltration by macrophages were reduced. The study suggests that IgG could be explored as a potential treatment option for Duchenne muscular dystrophy and that pre-clinical long-term studies should be helpful.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yaxin Zhang
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Florian Klinker
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Gregor Makosch
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research and Hertie Foundation, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Klinge
- Department of Pediatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neuroimmunology, Institute for Multiple Sclerosis Research and Hertie Foundation, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
36
|
Umansky KB, Gruenbaum-Cohen Y, Tsoory M, Feldmesser E, Goldenberg D, Brenner O, Groner Y. Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration. PLoS Genet 2015; 11:e1005457. [PMID: 26275053 PMCID: PMC4537234 DOI: 10.1371/journal.pgen.1005457] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/21/2015] [Indexed: 01/09/2023] Open
Abstract
Following myonecrosis, muscle satellite cells proliferate, differentiate and fuse, creating new myofibers. The Runx1 transcription factor is not expressed in naïve developing muscle or in adult muscle tissue. However, it is highly expressed in muscles exposed to myopathic damage yet, the role of Runx1 in muscle regeneration is completely unknown. Our study of Runx1 function in the muscle’s response to myonecrosis reveals that this transcription factor is activated and cooperates with the MyoD and AP-1/c-Jun transcription factors to drive the transcription program of muscle regeneration. Mice lacking dystrophin and muscle Runx1 (mdx-/Runx1f/f), exhibit impaired muscle regeneration leading to age-dependent muscle waste, gradual decrease in motor capabilities and a shortened lifespan. Runx1-deficient primary myoblasts are arrested at cell cycle G1 and consequently differentiate. Such premature differentiation disrupts the myoblasts’ normal proliferation/differentiation balance, reduces the number and size of regenerating myofibers and impairs muscle regeneration. Our combined Runx1-dependent gene expression, ChIP-seq, ATAC-seq and histone H3K4me1/H3K27ac modification analyses revealed a subset of Runx1-regulated genes that are co-occupied by MyoD and c-Jun in mdx-/Runx1f/f muscle. The data provide unique insights into the transcriptional program driving muscle regeneration and implicate Runx1 as an important participant in the pathology of muscle wasting diseases. In response to muscle injury, the muscle initiates a repair process that calls for the proliferation of muscle stem cells, which differentiate and fuse to create the myofibers that regenerate the tissue. Maintaining the balance between myoblast proliferation and differentiation is crucial for proper regeneration, with disruption leading to impaired regeneration characteristic of muscle-wasting diseases. Our study highlights the important role the Runx1 transcription factor plays in muscle regeneration and in regulating the balance between muscle stem cell proliferation and differentiation. While not expressed in healthy muscle tissue, Runx1 level significantly increases in response to various types of muscle damage. This aligns with our finding that mice lacking Runx1 in their muscles suffer from impaired muscle regeneration. Their muscles contained a significantly low number of regenerating myofibers, which were also relatively smaller in size, resulting in loss of muscle mass and motor capabilities. Our results indicate that Runx1 regulates muscle regeneration by preventing premature differentiation of proliferating myoblasts, thereby facilitating the buildup of the myoblast pool required for proper regeneration. Through genome-wide gene-expression analysis we identify a set of Runx1-regulated genes responsible for muscle regeneration thereby implicating Runx1 in the pathology of muscle wasting diseases such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Kfir Baruch Umansky
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Yael Gruenbaum-Cohen
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Grand Israel National Center for Personalized Medicine (INCPM), The Weizmann Institute of Science, Rehovot, Israel
| | - Dalia Goldenberg
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
37
|
Robriquet F, Lardenois A, Babarit C, Larcher T, Dubreil L, Leroux I, Zuber C, Ledevin M, Deschamps JY, Fromes Y, Cherel Y, Guevel L, Rouger K. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation. PLoS One 2015; 10:e0123336. [PMID: 25955839 PMCID: PMC4425432 DOI: 10.1371/journal.pone.0123336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. RESULTS In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. CONCLUSIONS Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular/cellular effects associated with muscle repair and the clinical efficacy of MuStem cell-based therapy.
Collapse
Affiliation(s)
- Florence Robriquet
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Université de Nantes, Nantes, France
| | - Aurélie Lardenois
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Candice Babarit
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Thibaut Larcher
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Laurence Dubreil
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Isabelle Leroux
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Céline Zuber
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Mireille Ledevin
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Jack-Yves Deschamps
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Yves Fromes
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Laboratoire RMN AIM-CEA, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Yan Cherel
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Laetitia Guevel
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Université de Nantes, Nantes, France
- * E-mail:
| | - Karl Rouger
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| |
Collapse
|
38
|
Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 2015; 55:119-49. [PMID: 24936034 DOI: 10.1093/ilar/ilu011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.
Collapse
|
39
|
Zhou Y, Kaminski HJ, Gong B, Cheng G, Feuerman JM, Kusner L. RNA expression analysis of passive transfer myasthenia supports extraocular muscle as a unique immunological environment. Invest Ophthalmol Vis Sci 2014; 55:4348-59. [PMID: 24917137 DOI: 10.1167/iovs.14-14422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Myasthenia gravis demonstrates a distinct predilection for involvement of the extraocular muscles (EOM), and we have hypothesized that this may be due to a unique immunological environment. To assess this hypothesis, we took an unbiased approach to analyze RNA expression profiles in EOM, diaphragm, and extensor digitorum longus (EDL) in rats with experimentally acquired myasthenia gravis (EAMG). METHODS Experimentally acquired myasthenia gravis was induced in rats by intraperitoneal injection of antibody directed against the acetylcholine receptor (AChR), whereas control rats received antibody known to bind the AChR but not induce disease. After 48 hours, animals were killed and muscles analyzed by RNA expression profiling. Profiling results were validated using qPCR and immunohistochemical analysis. RESULTS Sixty-two genes common among all muscle groups were increased in expression. These fell into four major categories: 12.8% stress response, 10.5% immune response, 10.5% metabolism, and 9.0% transcription factors. EOM expressed 212 genes at higher levels, not shared by the other two muscles, and a preponderance of EOM gene changes fell into the immune response category. EOM had the most uniquely reduced genes (126) compared with diaphragm (26) and EDL (50). Only 18 downregulated genes were shared by the three muscles. Histological evaluation and disease load index (sum of fold changes for all genes) demonstrated that EOM had the greatest degree of pathology. CONCLUSIONS Our studies demonstrated that consistent with human myasthenia gravis, EOM demonstrates a distinct RNA expression signature from EDL and diaphragm, which is based on differences in the degree of muscle injury and inflammatory response.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States
| | - Henry J Kaminski
- Departments of Neurology, Pharmacology, and Physiology, George Washington University, Washington, DC, United States
| | - Bendi Gong
- Department of Pediatrics, Washington University, St. Louis, Missouri, United States
| | - Georgiana Cheng
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio, United States
| | - Jason M Feuerman
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Linda Kusner
- Departments of Neurology, Pharmacology, and Physiology, George Washington University, Washington, DC, United States
| |
Collapse
|
40
|
Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, Sali A, Miller BK, Phadke A, Scheffer L, Quinn J, Tatem K, Jordan S, Dadgar S, Rodriguez OC, Albanese C, Calhoun M, Gordish-Dressman H, Jaiswal JK, Connor EM, McCall JM, Hoffman EP, Reeves EKM, Nagaraju K. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med 2013; 5:1569-85. [PMID: 24014378 PMCID: PMC3799580 DOI: 10.1002/emmm.201302621] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 01/01/2023] Open
Abstract
Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti-inflammatory signaling and membrane-stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF-κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live-imaging and pathology through both preventive and post-onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Christopher R Heier
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nakagawa T, Takeuchi A, Kakiuchi R, Lee T, Yagi M, Awano H, Iijima K, Takeshima Y, Urade Y, Matsuo M. A prostaglandin D2 metabolite is elevated in the urine of Duchenne muscular dystrophy patients and increases further from 8years old. Clin Chim Acta 2013; 423:10-4. [DOI: 10.1016/j.cca.2013.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
|
42
|
Morales MG, Gutierrez J, Cabello-Verrugio C, Cabrera D, Lipson KE, Goldschmeding R, Brandan E. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 2013; 22:4938-51. [PMID: 23904456 DOI: 10.1093/hmg/ddt352] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) and the mdx mouse model, the absence of the cytoskeletal protein dystrophin causes defective anchoring of myofibres to the basal lamina. The resultant myofibre degeneration and necrosis lead to a progressive loss of muscle mass, increased fibrosis and ultimately fatal weakness. Connective tissue growth factor (CTGF/CCN-2) is critically involved in several chronic fibro-degenerative diseases. In DMD, the role of CTGF might extend well beyond replacement fibrosis secondary to loss of muscle fibres, since its overexpression in skeletal muscle could by itself induce a dystrophic phenotype. Using two independent approaches, we here show that mdx mice with reduced CTGF availability do indeed have less severe muscular dystrophy. Mdx mice with hemizygous CTGF deletion (mdx-Ctgf+/-), and mdx mice treated with a neutralizing anti-CTGF monoclonal antibody (FG-3019), performed better in an exercise endurance test, had better muscle strength in isolated muscles and reduced skeletal muscle impairment, apoptotic damage and fibrosis. Transforming growth factor type-β (TGF-β), pERK1/2 and p38 signalling remained unaffected during CTGF suppression. Moreover, both mdx-Ctgf+/- and FG-3019 treated mdx mice had improved grafting upon intramuscular injection of dystrophin-positive satellite cells. These findings reveal the potential of targeting CTGF to reduce disease progression and to improve cell therapy in DMD.
Collapse
Affiliation(s)
- Maria Gabriela Morales
- Laboratorio de Diferenciación Celular y Patología, Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
43
|
Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome M, Kemter E, Nagashima H, Schoser B, Herbach N, Blum H, Wanke R, Aartsma-Rus A, Thirion C, Lochmüller H, Walter MC, Wolf E. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 2013; 22:4368-82. [PMID: 23784375 DOI: 10.1093/hmg/ddt287] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked dystrophin (DMD) gene. The absence of dystrophin protein leads to progressive muscle weakness and wasting, disability and death. To establish a tailored large animal model of DMD, we deleted DMD exon 52 in male pig cells by gene targeting and generated offspring by nuclear transfer. DMD pigs exhibit absence of dystrophin in skeletal muscles, increased serum creatine kinase levels, progressive dystrophic changes of skeletal muscles, impaired mobility, muscle weakness and a maximum life span of 3 months due to respiratory impairment. Unlike human DMD patients, some DMD pigs die shortly after birth. To address the accelerated development of muscular dystrophy in DMD pigs when compared with human patients, we performed a genome-wide transcriptome study of biceps femoris muscle specimens from 2-day-old and 3-month-old DMD and age-matched wild-type pigs. The transcriptome changes in 3-month-old DMD pigs were in good concordance with gene expression profiles in human DMD, reflecting the processes of degeneration, regeneration, inflammation, fibrosis and impaired metabolic activity. In contrast, the transcriptome profile of 2-day-old DMD pigs showed similarities with transcriptome changes induced by acute exercise muscle injury. Our studies provide new insights into early changes associated with dystrophin deficiency in a clinically severe animal model of DMD.
Collapse
|
44
|
Shin J, Tajrishi MM, Ogura Y, Kumar A. Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 2013; 45:2266-79. [PMID: 23669245 DOI: 10.1016/j.biocel.2013.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 12/11/2022]
Abstract
Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Jonghyun Shin
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
45
|
Brandan E, Gutierrez J. Role of proteoglycans in the regulation of the skeletal muscle fibrotic response. FEBS J 2013; 280:4109-17. [PMID: 23560928 DOI: 10.1111/febs.12278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023]
Abstract
Myogenesis consists of a highly organized and regulated sequence of cellular processes aimed at forming or repairing muscle tissue. Several processes occur during myogenesis, including cell proliferation, migration, and differentiation. Cytokines, proteinases, cell adhesion molecules and growth factors are involved, either activating or inhibiting these events, and are modulated by a group of molecules called proteoglycans (PGs), which play critical roles in skeletal muscle physiology. Particularly interesting are some of the factors responsible for the fibrotic response associated with skeletal muscular dystrophies. Transforming growth factor-β and connective tissue growth factor have gained great attention as factors participating in the fibrotic response in skeletal muscle. This review is focused on the advances achieved in understanding the roles of proteoglycans as modulators of profibrotic growth factors in fibrosis associated with diseases such as skeletal muscle dystrophies.
Collapse
Affiliation(s)
- Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile.
| | | |
Collapse
|
46
|
Mosqueira M, Zeiger U, Förderer M, Brinkmeier H, Fink RHA. Cardiac and respiratory dysfunction in Duchenne muscular dystrophy and the role of second messengers. Med Res Rev 2013; 33:1174-213. [PMID: 23633235 DOI: 10.1002/med.21279] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) affects young boys and is characterized by the absence of dystrophin, a large cytoskeletal protein present in skeletal and cardiac muscle cells and neurons. The heart and diaphragm become necrotic in DMD patients and animal models of DMD, resulting in cardiorespiratory failure as the leading cause of death. The major consequences of the absence of dystrophin are high levels of intracellular Ca(2+) and the unbalanced production of NO that can finally trigger protein degradation and cell death. Cytoplasmic increase in Ca(2+) concentration directly and indirectly triggers different processes such as necrosis, fibrosis, and activation of macrophages. The absence of the neuronal isoform of nitric oxide synthase (nNOS) and the overproduction of NO by the inducible isoform (iNOS) further increase the intracellular Ca(2+) via a hypernitrosylation of the ryanodine receptor. NO overproduction, which further induces the expression of iNOS but decreases the expression of the endothelial isoform (eNOS), deregulates the muscle tissue blood flow creating an ischemic situation. The high levels of Ca(2+) in dystrophic muscles and the ischemic state of the muscle tissue would culminate in a positive feedback loop. While efforts continue toward optimizing cardiac and respiratory care of DMD patients, both Ca(2+) and NO in cardiac and respiratory muscle pathways have been shown to be important to the etiology of the disease. Understanding the mechanisms behind the fine regulation of Ca(2+) -NO may be important for a noninterventional and noninvasive supportive approach to treat DMD patients, improving the quality of life and natural history of DMD patients.
Collapse
Affiliation(s)
- Matias Mosqueira
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, INF326, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Meyer GA, Schenk S, Lieber RL. Role of the cytoskeleton in muscle transcriptional responses to altered use. Physiol Genomics 2013; 45:321-31. [PMID: 23444318 DOI: 10.1152/physiolgenomics.00132.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this work, the interaction between the loss of a primary component of the skeletal muscle cytoskeleton, desmin, and two common physiological stressors, acute mechanical injury and aging, were investigated at the transcriptional, protein, and whole muscle levels. The transcriptional response of desmin knockout (des(-/-)) plantarflexors to a bout of 50 eccentric contractions (ECCs) showed substantial overlap with the response in wild-type (wt) muscle. However, changes in the expression of genes involved in muscle response to injury were blunted in adult des(-/-) muscle compared with wt (fold change with ECC in des(-/-) and wt, respectively: Mybph, 1.4 and 2.9; Xirp1, 2.2 and 5.7; Csrp3, 1.8 and 4.3), similar to the observed blunted mechanical response (torque drop: des(-/-) 30.3% and wt 55.5%). Interestingly, in the absence of stressors, des(-/-) muscle exhibited elevated expression of many these genes compared with wt. The largest transcriptional changes were observed in the interaction between aging and the absence of desmin, including many genes related to slow fiber pathway (Myh7, Myl3, Atp2a2, and Casq2) and insulin sensitivity (Tlr4, Trib3, Pdk3, and Pdk4). Consistent with these transcriptional changes, adult des(-/-) muscle exhibited a significant fiber type shift from fast to slow isoforms of myosin heavy chain (wt, 5.3% IIa and 71.7% IIb; des(-/-), 8.4% IIa and 61.4% IIb) and a decreased insulin-stimulated glucose uptake (wt, 0.188 μmol/g muscle/20 min; des(-/-), 0.085 μmol/g muscle/20 min). This work points to novel areas of influence of this cytoskeletal protein and directs future work to elucidate its function.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
48
|
Pereira JA, Taniguti APT, Matsumura C, Marques MJ, Neto HS. Doxycycline ameliorates the dystrophic phenotype of skeletal and cardiac muscles in mdx mice. Muscle Nerve 2012; 46:400-6. [PMID: 22907231 DOI: 10.1002/mus.23331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION We examined whether doxycycline, an antibiotic member of the tetracycline family, improves the histopathology and muscle function in mdx mice, the experimental model of DMD. METHODS Doxycycline was administered for 36 days (starting on postnatal day 0) and for 9 months (starting at 8 months of age) in drinking water. Histopathological, biochemical (creatine kinase), and functional (forelimb muscle grip strength) parameters were evaluated in limb, diaphragm, and cardiac muscle. RESULTS Doxycycline significantly minimized the dystrophic phenotype of skeletal and cardiac muscles and improved forelimb muscle strength. The drug protected muscle fibers against myonecrosis and reduced inflammation. Furthermore, it slowed the progression of myocardial fibrosis. CONCLUSIONS This study provides evidence that doxycycline may be a potential therapeutic agent for DMD.
Collapse
Affiliation(s)
- Juliano Alves Pereira
- Departamento de Anatomia, Biologia Celular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-970, Brazil
| | | | | | | | | |
Collapse
|
49
|
Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 2012; 52:347-54. [PMID: 22682960 DOI: 10.1016/j.ceca.2012.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023]
Abstract
STIM and Orai isoforms orchestrate store operated Ca2+ entry (SOCE) and thus cytosolic Ca2+ fluctuations following stimulation by hormones, growth factors and further mediators. Orai1 is a target of Nedd4-2, an ubiquitin ligase preparing several plasma membrane proteins for degradation. Phosphorylation of Nedd4-2 by the serum and glucocorticoid inducible kinase SGK1 leads to the binding of Nedd4-2 to the protein 14-3-3 thus preventing its interaction with Orai1. Nedd4-2 is activated by the energy sensing AMP activated kinase AMPK. Thus, SGK1 disrupts and AMPK fosters degradation of Orai1. New synthesis of both, Orai1 and STIM1, is stimulated by the transcription factor NF-κB (nuclear factor kappa B), which binds to the respective promoter regions of the genes encoding STIM1 and Orai1. SGK1 upregulates and AMPK presumably downregulates NF-κB and thus de novo synthesis of Orai1 and STIM1 proteins. The regulation by SGK1 links SOCE to the signaling of a wide variety of hormones and growth factors, the AMPK dependent regulation of Orai1 and STIM1 may serve to limit inadequate activation of SOCE following energy depletion, which is otherwise expected to activate SOCE by depletion of intracellular Ca2+ stores due to impairment of the ATP consuming sarco/endoplasmatic reticulum Ca2+ ATPase SERCA.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
50
|
Zhou Y, Gong B, Kaminski HJ. Genomic profiling reveals Pitx2 controls expression of mature extraocular muscle contraction-related genes. Invest Ophthalmol Vis Sci 2012; 53:1821-9. [PMID: 22408009 PMCID: PMC3995565 DOI: 10.1167/iovs.12-9481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To assess the influence of the Pitx2 transcription factor on the global gene expression profile of extraocular muscle (EOM) of mice. METHODS Mice with a conditional knockout of Pitx2, designated Pitx2(Δflox/Δflox) and their control littermates Pitx2(flox/flox), were used. RNA was isolated from EOM obtained at 3, 6, and 12 weeks of age and processed for microarray-based profiling. Pairwise comparisons were performed between mice of the same age and differentially expressed gene lists were generated. Select genes from the profile were validated using real-time quantitative polymerase chain reaction and protein immunoblot. Ultrastructural analysis was performed to evaluate EOM sarcomeric structure. RESULTS The number of differentially expressed genes was relatively small. Eleven upregulated and 23 downregulated transcripts were identified common to all three age groups in the Pitx2-deficient extraocular muscle compared with littermate controls. These fell into a range of categories including muscle-specific structural genes, transcription factors, and ion channels. The differentially expressed genes were primarily related to muscle contraction. We verified by protein and ultrastructural analysis that myomesin 2 was expressed in the Pitx2-deficient mice, and this was associated with development of M lines evident in their orbital region. CONCLUSIONS The global transcript expression analysis uncovered that Pitx2 primarily regulates a relatively select number of genes associated with muscle contraction. Pitx2 loss led to the development of M line structures, a feature more typical of other skeletal muscle.
Collapse
Affiliation(s)
- Yuefang Zhou
- From the Department of Neurology and Psychiatry, Saint Louis University, St. Louis, Missouri;the Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; andthe Department of Neurology, Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Bendi Gong
- From the Department of Neurology and Psychiatry, Saint Louis University, St. Louis, Missouri;the Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; andthe Department of Neurology, Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Henry J. Kaminski
- From the Department of Neurology and Psychiatry, Saint Louis University, St. Louis, Missouri;the Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; andthe Department of Neurology, Department of Pharmacology and Physiology, George Washington University, Washington, DC
| |
Collapse
|