1
|
Wang WA, Garofoli A, Ferrada E, Klimek C, Steurer B, Ingles-Prieto A, Osthushenrich T, MacNamara A, Malarstig A, Wiedmer T, Superti-Furga G. Human genetic variants in SLC39A8 impact uptake and steady-state metal levels within the cell. Life Sci Alliance 2025; 8:e202403028. [PMID: 39884836 PMCID: PMC11782468 DOI: 10.26508/lsa.202403028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
The human SLC39A8 (hSLC39A8) gene encodes a plasma membrane protein SLC39A8 (ZIP8) that mediates the specific uptake of the metals Cd2+, Mn2+, Zn2+, Fe2+, Co2+, and Se4+ Pathogenic variants within hSLC39A8 are associated with congenital disorder of glycosylation type 2 (CDG type II) or Leigh-like syndrome. However, numerous mutations of uncertain significance are also linked to different conditions or benign traits. Our study characterized 21 hSLC39A8 variants and measured their impact on protein localization and intracellular levels of Cd2+, Zn2+, and Mn2+ We identified four variants that disrupt protein expression, five variants with high retention in the endoplasmic reticulum, and 12 variants with localization to the plasma membrane. From the 12 variants with plasma membrane localization, we identified three with complete loss of detectable ion uptake by the cell and five with differential uptake between metal ions. Further in silico analysis on protein stability identified variants that may affect the stability of homodimer interfaces. This study elucidates the variety of effects of hSLC39A8 variants on ZIP8 and on diseases involving disrupted metal ion homeostasis.
Collapse
Affiliation(s)
- Wen-An Wang
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Garofoli
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Evandro Ferrada
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, Chile
| | - Christoph Klimek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Barbara Steurer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Anders Malarstig
- Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Kim Y, Ha TY, Lee MS, Chang KA. Regulatory Mechanisms and Therapeutic Implications of Lysosomal Dysfunction in Alzheimer's Disease. Int J Biol Sci 2025; 21:1014-1031. [PMID: 39897039 PMCID: PMC11781173 DOI: 10.7150/ijbs.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs) formed from hyperphosphorylated Tau, and widespread neuronal loss. The autophagy-lysosomal pathway plays a crucial role in maintaining cellular homeostasis by degrading and recycling of damaged organelles and aggregate amyloid proteins implicated in AD. Lysosomes are key effectors of autophagic process, responsible for the breakdown of a variety of damaged organelles and aggregate or dysfunctional proteins. This review examines the role of lysosomal dysfunction in AD pathophysiology, focusing on genetic factors, acidification abnormalities, and other contributing factors. We also explore the involvement of lysosomal dysfunction of microglia in AD pathology, and cover the role of lysosomal stress response (LSR) in cellular response to neuronal injury associated with AD. Furthermore, we discuss potential therapeutic strategies targeting lysosomal proteolysis pathway and addressing lysosomal dysfunction for AD treatment, including the pharmacologically activating lysosomal activity, regulating TFEB, and considering other emerging approaches.
Collapse
Affiliation(s)
- Yeji Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Korea
| | - Tae-Young Ha
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science & Division of Endocrinology, Department of Internal Medicine & Immunology, Soonchunhyang University College of Medicine, Cheonan 31151, Korea
- Chief Scientific Officer, LysoTech, Inc., Seoul 03766, Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| |
Collapse
|
3
|
Choi EK, Aring L, Peng Y, Correia AB, Lieberman AP, Iwase S, Seo YA. Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis. JCI Insight 2024; 9:e168440. [PMID: 39435657 PMCID: PMC11530126 DOI: 10.1172/jci.insight.168440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Solute carrier family 39, member 8 (SLC39A8), is a transmembrane transporter that mediates the cellular uptake of zinc, iron, and manganese (Mn). Human genetic studies document the involvement of SLC39A8 in Mn homeostasis, brain development, and function. However, the role and pathophysiological mechanisms of SLC39A8 in the central nervous system remain elusive. We generated Slc39a8 neuron-specific knockout (Slc39a8-NSKO) mice to study SLC39A8 function in neurons. The Slc39a8-NSKO mice displayed markedly decreased Mn levels in the whole brain and brain regions, especially the cerebellum. Radiotracer studies using 54Mn revealed that Slc39a8-NSKO mice had impaired brain uptake of Mn. Slc39a8-NSKO cerebellums exhibited morphological defects and abnormal dendritic arborization of Purkinje cells. Reduced neurogenesis and increased apoptotic cell death occurred in the cerebellar external granular layer of Slc39a8-NSKO mice. Brain Mn deficiency in Slc39a8-NSKO mice was associated with motor dysfunction. Unbiased RNA-Seq analysis revealed downregulation of key pathways relevant to neurodevelopment and synaptic plasticity, including cAMP signaling pathway genes. We further demonstrated that Slc39a8 was required for the optimal transcriptional response to the cAMP-mediated signaling pathway. In summary, our study highlighted the essential roles of SLC39A8 in brain Mn uptake and cerebellum development and functions.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Yujie Peng
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Briggs K, Tomar V, Ollberding N, Haberman Y, Bourgonje AR, Hu S, Chaaban L, Sunuwar L, Weersma RK, Denson LA, Melia JMP. Crohn's Disease-Associated Pathogenic Mutation in the Manganese Transporter ZIP8 Shifts the Ileal and Rectal Mucosal Microbiota Implicating Aberrant Bile Acid Metabolism. Inflamm Bowel Dis 2024; 30:1379-1388. [PMID: 38289995 PMCID: PMC11291615 DOI: 10.1093/ibd/izae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND A pathogenic mutation in the manganese transporter ZIP8 (A391T; rs13107325) increases the risk of Crohn's disease. ZIP8 regulates manganese homeostasis and given the shared need for metals between the host and resident microbes, there has been significant interest in alterations of the microbiome in carriers of ZIP8 A391T. Prior studies have not examined the ileal microbiome despite associations between ileal disease and ZIP8 A391T. METHODS Here, we used the Pediatric Risk Stratification Study (RISK) cohort to perform a secondary analysis of 16S ribosomal RNA gene sequencing data obtained from ileal and rectal mucosa to study associations between ZIP8 A391T carrier status and microbiota composition. RESULTS We found sequence variants mapping to Veillonella were decreased in the ileal mucosa of ZIP8 A391T carriers. Prior human studies have demonstrated the sensitivity of Veillonella to bile acid abundance. We therefore hypothesized that bile acid homeostasis is differentially regulated in carriers of ZIP8 A391T. Using a mouse model of ZIP8 A391T, we demonstrate an increase in total bile acids in the liver and stool and decreased fibroblast growth factor 15 (Fgf15) signaling, consistent with our hypothesis. We confirmed dysregulation of FGF19 in the 1000IBD cohort, finding that plasma FGF19 levels are lower in ZIP8 A391T carriers with ileocolonic Crohn's disease. CONCLUSIONS In the search for genotype-specific therapeutic paradigms for patients with Crohn's disease, these data suggest targeting the FGF19 pathway in ZIP8 A391T carriers. Aberrant bile acid metabolism may precede development of Crohn's disease and prioritize study of the interactions between manganese homeostasis, bile acid metabolism and signaling, and complicated ileal Crohn's disease.
Collapse
Affiliation(s)
- Kristi Briggs
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vartika Tomar
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Ollberding
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yael Haberman
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Sheba Medical Center, Tel-Hashomer, affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lara Chaaban
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laxmi Sunuwar
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lee A Denson
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joanna M P Melia
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Jiang Y, Yu Y, Pan Z, Glandorff C, Sun M. Ferroptosis: a new hunter of hepatocellular carcinoma. Cell Death Discov 2024; 10:136. [PMID: 38480712 PMCID: PMC10937674 DOI: 10.1038/s41420-024-01863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Ferroptosis is an iron ion-dependent, regulatory cell death modality driven by intracellular lipid peroxidation that plays a key role in the development of HCC. Studies have shown that various clinical agents (e.g., sorafenib) have ferroptosis inducer-like effects and can exert therapeutic effects by modulating different key factors in the ferroptosis pathway. This implies that targeting tumor cell ferroptosis may be a very promising strategy for tumor therapy. In this paper, we summarize the prerequisites and defense systems for the occurrence of ferroptosis and the regulatory targets of drug-mediated ferroptosis action in HCC, the differences and connections between ferroptosis and other programmed cell deaths. We aim to summarize the theoretical basis, classical inducers of ferroptosis and research progress of ferroptosis in HCC cells, clued to the treatment of HCC by regulating ferroptosis network. Further investigation of the specific mechanisms of ferroptosis and the development of hepatocellular carcinoma and interventions at different stages of hepatocellular carcinoma will help us to deepen our understanding of hepatocellular carcinoma, with a view to providing new and more precise preventive as well as therapeutic measures for patients.
Collapse
Affiliation(s)
- Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyang Pan
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Christian Glandorff
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- University Clinic of Hamburg at the HanseMerkur Center of TCM, Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
8
|
Tan HW, Xu YM, Liang ZL, Cai NL, Wu YY, Lau ATY. Single-gene knockout-coupled omics analysis identifies C9orf85 and CXorf38 as two uncharacterized human proteins associated with ZIP8 malfunction. Front Mol Biosci 2022; 9:991308. [PMID: 36330220 PMCID: PMC9623088 DOI: 10.3389/fmolb.2022.991308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023] Open
Abstract
Human transmembrane protein metal cation symporter ZIP8 (SLC39A8) is a member of the solute carrier gene family responsible for intracellular transportation of essential micronutrients, including manganese, selenium, and zinc. Previously, we established a ZIP8-knockout (KO) human cell model using the CRISPR/Cas9 system and explored how the expression of ZIP8 could possibly contribute to a wide range of human diseases. To further assess the biophysiological role of ZIP8, in the current study, we employed isobaric tags for relative and absolute quantitation (iTRAQ) and detected the changes of the proteome in ZIP8-KO cells (proteomic data are available via ProteomeXchange with identifier PXD036680). A total of 286 differentially expressed proteins (206 downregulated and 80 upregulated proteins) were detected in the ZIP8-KO cell model, and subsequent bioinformatics analyses (GO, KEGG, KOG, and PPI) were performed on these proteins. Interestingly, four "uncharacterized" proteins (proteins with unknown biological function) were identified in the differentially expressed proteins: C1orf198, C9orf85, C17orf75, and CXorf38-all of which were under-expressed in the ZIP8-KO cells. Notably, C9orf85 and CXorf38 were amongst the top-10 most downregulated proteins, and their expressions could be selectively induced by essential micronutrients. Furthermore, clinical-based bioinformatic analysis indicated that positive correlations between the gene expressions of ZIP8 and C9orf85 or CXorf38 were observed in multiple cancer types. Overall, this study reveals the proteomic landscape of cells with impaired ZIP8 and uncovers the potential relationships between essential micronutrients and uncharacterized proteins C9orf85 and CXorf38. The differentially expressed proteins identified in ZIP8-KO cells could be the potential targets for diagnosing and/or treating human ZIP8-associated diseases, including but not limited to malnutrition, viral infection, and cancers.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
9
|
Alexander MR, Hank S, Dale BL, Himmel L, Zhong X, Smart CD, Fehrenbach DJ, Chen Y, Prabakaran N, Tirado B, Centrella M, Ao M, Du L, Shyr Y, Levy D, Madhur MS. A Single Nucleotide Polymorphism in SH2B3/LNK Promotes Hypertension Development and Renal Damage. Circ Res 2022; 131:731-747. [PMID: 36169218 PMCID: PMC9588739 DOI: 10.1161/circresaha.121.320625] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.
Collapse
Affiliation(s)
- Matthew R. Alexander
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Hank
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Bethany L. Dale
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, VUMC, Nashville, TN, USA
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Daniel J. Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Yuhan Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | | | | | - Megan Centrella
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Mingfang Ao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Liping Du
- Department of Biostatistics, VUMC, Nashville, TN
| | - Yu Shyr
- Department of Biostatistics, VUMC, Nashville, TN
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA and Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meena S. Madhur
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
The schizophrenia-associated missense variant rs13107325 regulates dendritic spine density. Transl Psychiatry 2022; 12:361. [PMID: 36056013 PMCID: PMC9440106 DOI: 10.1038/s41398-022-02137-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The missense variant rs13107325 (C/T, p.Ala391Thr) in SLC39A8 consistently showed robust association with schizophrenia in recent genome-wide association studies (GWASs), suggesting the potential pathogenicity of this non-synonymous risk variant. Nevertheless, how this missense variant confers schizophrenia risk remains unknown. Here we constructed a knock-in mouse model (by introducing a threonine at the 393th amino acid of mouse SLC39A8 (SLC39A8-p.393T), which corresponds to rs13107325 (p.Ala391Thr) of human SLC39A8) to explore the potential roles and biological effects of this missense variant in schizophrenia pathogenesis. We assessed multiple phenotypes and traits (associated with rs13107325) of the knock-in mice, including body and brain weight, concentrations of metal ions (including cadmium, zinc, manganese, and iron) transported by SLC39A8, blood lipids, proliferation and migration of neural stem cells (NSCs), cortical development, behaviors and cognition, transcriptome, dendritic spine density, and synaptic transmission. Many of the tested phenotypes did not show differences in SLC39A8-p.393T knock-in and wild-type mice. However, we found that zinc concentration in brain and blood of SLC39A8-p.393T knock-in mice was dysregulated compared with wild-types, validating the functionality of rs13107325. Further analysis indicated that cortical dendritic spine density of the SLC39A8-p.393T knock-in mice was significantly decreased compared with wild-types, indicating the important role of SLC39A8-p.393T in dendritic spine morphogenesis. These results indicated that SLC39A8-p.393T knock-in resulted in decreased dendritic spine density, thus mimicking the dendritic spine pathology observed in schizophrenia. Our study indicates that rs13107325 might confer schizophrenia risk by regulating zinc concentration and dendritic spine density, a featured characteristic that was frequently reported to be decreased in schizophrenia.
Collapse
|
11
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
12
|
Fujishiro H, Miyamoto S, Sumi D, Kambe T, Himeno S. Effects of individual amino acid mutations of zinc transporter ZIP8 on manganese- and cadmium-transporting activity. Biochem Biophys Res Commun 2022; 616:26-32. [DOI: 10.1016/j.bbrc.2022.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
|
13
|
Samuelson DR, Haq S, Knoell DL. Divalent Metal Uptake and the Role of ZIP8 in Host Defense Against Pathogens. Front Cell Dev Biol 2022; 10:924820. [PMID: 35832795 PMCID: PMC9273032 DOI: 10.3389/fcell.2022.924820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023] Open
Abstract
Manganese (Mn) and Zinc (Zn) are essential micronutrients whose concentration and location within cells are tightly regulated at the onset of infection. Two families of Zn transporters (ZIPs and ZnTs) are largely responsible for regulation of cytosolic Zn levels and to a certain extent, Mn levels, although much less is known regarding Mn. The capacity of pathogens to persevere also depends on access to micronutrients, yet a fundamental gap in knowledge remains regarding the importance of metal exchange at the host interface, often referred to as nutritional immunity. ZIP8, one of 14 ZIPs, is a pivotal importer of both Zn and Mn, yet much remains to be known. Dietary Zn deficiency is common and commonly occurring polymorphic variants of ZIP8 that decrease cellular metal uptake (Zn and Mn), are associated with increased susceptibility to infection. Strikingly, ZIP8 is the only Zn transporter that is highly induced following bacterial exposure in key immune cells involved with host defense against leading pathogens. We postulate that mobilization of Zn and Mn into key cells orchestrates the innate immune response through regulation of fundamental defense mechanisms that include phagocytosis, signal transduction, and production of soluble host defense factors including cytokines and chemokines. New evidence also suggests that host metal uptake may have long-term consequences by influencing the adaptive immune response. Given that activation of ZIP8 expression by pathogens has been shown to influence parenchymal, myeloid, and lymphoid cells, the impact applies to all mucosal surfaces and tissue compartments that are vulnerable to infection. We also predict that perturbations in metal homeostasis, either genetic- or dietary-induced, has the potential to impact bacterial communities in the host thereby adversely impacting microbiome composition. This review will focus on Zn and Mn transport via ZIP8, and how this vital metal transporter serves as a "go to" conductor of metal uptake that bolsters host defense against pathogens. We will also leverage past studies to underscore areas for future research to better understand the Zn-, Mn- and ZIP8-dependent host response to infection to foster new micronutrient-based intervention strategies to improve our ability to prevent or treat commonly occurring infectious disease.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sabah Haq
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Daren L. Knoell,
| |
Collapse
|
14
|
Verouti SN, Pujol-Giménez J, Bermudez-Lekerika P, Scherler L, Bhardwaj R, Thomas A, Lenglet S, Siegrist M, Hofstetter W, Fuster DG, Hediger MA, Escher G, Vogt B. The Allelic Variant A391T of Metal Ion Transporter ZIP8 (SLC39A8) Leads to Hypotension and Enhanced Insulin Resistance. Front Physiol 2022; 13:912277. [PMID: 35784893 PMCID: PMC9240775 DOI: 10.3389/fphys.2022.912277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
The metal ion transporter ZIP8 (SLC39A8) mediates cellular uptake of vital divalent metal ions. Genome-wide association studies (GWAS) showed that the single-nucleotide polymorphism (SNP) variant A391T (rs13107325) is associated with numerous human traits, including reduced arterial blood pressure, increased body mass index and hyperlipidemia. We analyzed in vitro the transport properties of mutant ZIP8 A391T and investigated in vivo in mice the physiological effects of this polymorphism. In vitro, the intrinsic transport properties of mutant ZIP8 were similar to those of wild type ZIP8, but cellular uptake of zinc, cadmium and iron was attenuated due to reduced ZIP8 plasma membrane expression. We then generated the ZIP8 A393T mice (ZIP8KI) that carry the corresponding polymorphism and characterized their phenotype. We observed lower protein expression in lung and kidney membrane extracts in ZIP8KI mice. The ZIP8KI mice exhibited striking changes in metal ion composition of the tissues, including cobalt, palladium, mercury and platinum. In agreement with GWAS, ZIP8KI mice showed reduced arterial blood pressure. Body weight and plasma lipid composition remained unchanged, although these features were reported to be increased in GWAS. ZIP8KI mice also exhibited remarkable insulin resistance and were protected from elevated blood glucose when challenged by dietary sucrose supplementation. We showed that increased hepatic insulin receptor expression and decreased ZnT8 (slc30a8) metal ion transporter mRNA expression are associated with this phenotypic change. In conclusion, our data reveal that ZIP8 plays an important role in blood pressure regulation and glucose homeostasis.
Collapse
Affiliation(s)
- Sophia N. Verouti
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jonai Pujol-Giménez
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Paola Bermudez-Lekerika
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laeticia Scherler
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rajesh Bhardwaj
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Aurélien Thomas
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Lenglet
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University, Geneva, Switzerland
| | - Mark Siegrist
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias A. Hediger
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Matthias A. Hediger, ; Geneviève Escher, ; Bruno Vogt,
| | - Geneviève Escher
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Matthias A. Hediger, ; Geneviève Escher, ; Bruno Vogt,
| | - Bruno Vogt
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Matthias A. Hediger, ; Geneviève Escher, ; Bruno Vogt,
| |
Collapse
|
15
|
Santamaria-Juarez C, Atonal-Flores F, Diaz A, Sarmiento-Ortega VE, Garcia-Gonzalez M, Aguilar-Alonso P, Lopez-Lopez G, Brambila E, Treviño S. Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Arch Physiol Biochem 2022; 128:748-756. [PMID: 32067514 DOI: 10.1080/13813455.2020.1726403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT The chronic exposure to Cadmium (Cd) constitute an risk to develop hypertension and cardiovascular diseases associated with the increase of oxidative stress. OBJECTIVE In this study, we investigate the role of metabolic changes produced by exposure to Cd on the endothelial dysfunction via oxidative stress. METHODS Male Wistar rats were exposed to Cd (32.5-ppm) for 2-months. The zoometry and blood pressure were evaluated, also glucose and lipids profiles in serum and vascular reactivity evaluated in isolated aorta rings. RESULTS Rats exposed to Cd showed an increase of blood pressure and biochemical parameters similar to metabolic syndrome. Additionally, rats exposed to Cd showed a reduced relaxation in aortic rings, which was reversed after the addition of SOD and apocynin an inhibitor of NADPH. CONCLUSION The Cd-exposition induced hypertension and endothelial injury by that modifying the vascular relaxation and develop oxidative stress via NADPH oxidase, superoxide and loss nitric oxide bioavailability.
Collapse
Affiliation(s)
- Celeste Santamaria-Juarez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Fausto Atonal-Flores
- Department of Physiology, Faculty of Medicine, University Autonomous of Puebla, The Volcano, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Victor E Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Miguel Garcia-Gonzalez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Patricia Aguilar-Alonso
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Gustavo Lopez-Lopez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| |
Collapse
|
16
|
Cataloging the potential SNPs (single nucleotide polymorphisms) associated with quantitative traits, viz. BMI (body mass index), IQ (intelligence quotient) and BP (blood pressure): an updated review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single nucleotide polymorphism (SNP) variants are abundant, persistent and widely distributed across the genome and are frequently linked to the development of genetic diseases. Identifying SNPs that underpin complex diseases can aid scientists in the discovery of disease-related genes by allowing for early detection, effective medication and eventually disease prevention.
Main body
Various SNP or polymorphism-based studies were used to categorize different SNPs potentially related to three quantitative traits: body mass index (BMI), intelligence quotient (IQ) and blood pressure, and then uncovered common SNPs for these three traits. We employed SNPedia, RefSNP Report, GWAS Catalog, Gene Cards (Data Bases), PubMed and Google Scholar search engines to find relevant material on SNPs associated with three quantitative traits. As a result, we detected three common SNPs for all three quantitative traits in global populations: SNP rs6265 of the BDNF gene on chromosome 11p14.1, SNP rs131070325 of the SL39A8 gene on chromosome 4p24 and SNP rs4680 of the COMT gene on chromosome 22q11.21.
Conclusion
In our review, we focused on the prevalent SNPs and gene expression activities that influence these three quantitative traits. These SNPs have been used to detect and map complex, common illnesses in communities for homogeneity testing and pharmacogenetic studies. High blood pressure, diabetes and heart disease, as well as BMI, schizophrenia and IQ, can all be predicted using common SNPs. Finally, the results of our work can be used to find common SNPs and genes that regulate these three quantitative features across the genome.
Collapse
|
17
|
Fujishiro H, Kambe T. Manganese transport in mammals by zinc transporter family proteins, ZNT and ZIP. J Pharmacol Sci 2021; 148:125-133. [PMID: 34924116 DOI: 10.1016/j.jphs.2021.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Manganese (Mn) is an essential trace element required for various biological processes. However, excess Mn causes serious side effects in humans, including parkinsonism. Thus, elucidation of Mn homeostasis at the systemic, cellular, and molecular levels is important. Many metal transporters and channels can be involved in the transport and homeostasis of Mn, and an increasing body of evidence shows that several zinc (Zn) transporters belonging to the ZIP and ZNT families, specifically, ZNT10, ZIP8, and ZIP14, play pivotal roles in Mn metabolism. Mutations in the genes encoding these transporter proteins are associated with congenital disorders related to dysregulated Mn homeostasis in humans. Moreover, single nucleotide polymorphisms of ZIP8 are associated with multiple clinical phenotypes. In this review, we discuss the recent literature on the structural and biochemical features of ZNT10, ZIP8, and ZIP14, including transport mechanisms, regulation of expression, and pathophysiological functions. Because a disturbance in Mn homeostasis is closely associated with a variety of phenotypes and risk of human diseases, these transporters constitute a significant target for drug development. An understanding of the roles of these key transporters in Mn metabolism should provide new insights into pharmacological applications of their inhibitors and enhancers in human diseases.
Collapse
Affiliation(s)
- Hitomi Fujishiro
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
18
|
Zhang J, Yu Y, Pan L, Yu T, Luo G. C Deletion at the re74650330 Locus of the SLC39A8 Gene (rs74650330) Increases the Risk of Coronary Artery Disease in Individuals with Low-Density Lipoprotein Cholesterol Levels. Genet Test Mol Biomarkers 2021; 25:660-667. [PMID: 34672770 DOI: 10.1089/gtmb.2021.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Genetic variants of the SLC39A8 gene are associated with several cardiovascular disease risk factors, including body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-density lipoprotein cholesterol (HDL-C) levels. The present study aimed to investigate the association between the SLC39A8 SNPs rs13107325 and rs74650330 and CAD in the Han population in Jiangsu (China). Methods: Genotyping of these SNPs was performed in 258 patients with CAD and 170 healthy controls using the base-quenched probe technique. The association between the alleles of the rs74650330 locus and blood lipid and glucose profiles was investigated. Receiver operating characteristic (ROC) curve analysis was used to quantify the optimal thresholds for lipid and FBG levels and the risk factors for CAD were estimated by logistic regression analysis. Results: The rs13107325 polymorphism was not found in the 428 Chinese individuals enrolled in the current study. For rs74650330, individuals harboring the C allele had significantly higher HDL levels than those without this allele in the control group (p = 0.039), while the opposite was true for low-density lipoprotein cholesterol (LDL-C) levels (p = 0.046). Further analysis indicated that when LDL-C levels were lower than 2.365 mmol/L, subjects with C/del and del/del had a 7.293-fold increased risk of CAD compared with that of controls without the mutation (odds ratio: 7.293; 95% confidence interval: 0.953-55.79). Conclusions: The susceptibility of SLC39A8 polymorphisms to CAD were studied and revealed a possible role for the deletion variant of rs74650330 in increasing the risk of CAD among the Chinese Han population.
Collapse
Affiliation(s)
- Jun Zhang
- Clinical Medical Research Center, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yang Yu
- Clinical Medical Research Center, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lili Pan
- Clinical Medical Research Center, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tianhong Yu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Clinical Medical Research Center, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
19
|
Liang ZL, Tan HW, Wu JY, Chen XL, Wang XY, Xu YM, Lau ATY. The Impact of ZIP8 Disease-Associated Variants G38R, C113S, G204C, and S335T on Selenium and Cadmium Accumulations: The First Characterization. Int J Mol Sci 2021; 22:ijms222111399. [PMID: 34768831 PMCID: PMC8583799 DOI: 10.3390/ijms222111399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 02/05/2023] Open
Abstract
The metal cation symporter ZIP8 (SLC39A8) is a transmembrane protein that imports the essential micronutrients iron, manganese, and zinc, as well as heavy toxic metal cadmium (Cd). It has been recently suggested that selenium (Se), another essential micronutrient that has long been known for its role in human health and cancer risk, may also be transported by the ZIP8 protein. Several mutations in the ZIP8 gene are associated with the aberrant ion homeostasis of cells and can lead to human diseases. However, the intricate relationships between ZIP8 mutations, cellular Se homeostasis, and human diseases (including cancers and illnesses associated with Cd exposure) have not been explored. To further verify if ZIP8 is involved in cellular Se transportation, we first knockout (KO) the endogenous expression of ZIP8 in the HeLa cells using the CRISPR/Cas9 system. The elimination of ZIP8 expression was examined by PCR, DNA sequencing, immunoblot, and immunofluorescence analyses. Inductively coupled plasma mass spectrometry indicated that reduced uptake of Se, along with other micronutrients and Cd, was observed in the ZIP8-KO cells. In contrast, when ZIP8 was overexpressed, increased Se uptake could be detected in the ZIP8-overexpressing cells. Additionally, we found that ZIP8 with disease-associated single-point mutations G38R, G204C, and S335T, but not C113S, showed reduced Se transport ability. We then evaluated the potential of Se on Cd cytotoxicity prevention and therapy of cancers. Results indicated that Se could suppress Cd-induced cytotoxicity via decreasing the intracellular Cd transported by ZIP8, and Se exhibited excellent anticancer activity against not all but only selected cancer cell lines, under restricted experimental conditions. Moreover, clinical-based bioinformatic analyses revealed that up-regulated ZIP8 gene expression was common across multiple cancer types, and selenoproteins that were significantly co-expressed with ZIP8 in these cancers had been identified. Taken together, this study concludes that ZIP8 is an important protein in modulating cellular Se levels and provides insights into the roles of ZIP8 and Se in disease prevention and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan-Ming Xu
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
20
|
Hall SC, Smith DR, Dyavar SR, Wyatt TA, Samuelson DR, Bailey KL, Knoell DL. Critical Role of Zinc Transporter (ZIP8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1357-1370. [PMID: 34380651 PMCID: PMC10575710 DOI: 10.4049/jimmunol.2001395] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
Zinc (Zn) is required for proper immune function and host defense. Zn homeostasis is tightly regulated by Zn transporters that coordinate biological processes through Zn mobilization. Zn deficiency is associated with increased susceptibility to bacterial infections, including Streptococcus pneumoniae, the most commonly identified cause of community-acquired pneumonia. Myeloid cells, including macrophages and dendritic cells (DCs), are at the front line of host defense against invading bacterial pathogens in the lung and play a critical role early on in shaping the immune response. Expression of the Zn transporter ZIP8 is rapidly induced following bacterial infection and regulates myeloid cell function in a Zn-dependent manner. To what extent ZIP8 is instrumental in myeloid cell function requires further study. Using a novel, myeloid-specific, Zip8 knockout model, we identified vital roles of ZIP8 in macrophage and DC function upon pneumococcal infection. Administration of S. pneumoniae into the lung resulted in increased inflammation, morbidity, and mortality in Zip8 knockout mice compared with wild-type counterparts. This was associated with increased numbers of myeloid cells, cytokine production, and cell death. In vitro analysis of macrophage and DC function revealed deficits in phagocytosis and increased cytokine production upon bacterial stimulation that was, in part, due to increased NF-κB signaling. Strikingly, alteration of myeloid cell function resulted in an imbalance of Th17/Th2 responses, which is potentially detrimental to host defense. These results (for the first time, to our knowledge) reveal a vital ZIP8- and Zn-mediated axis that alters the lung myeloid cell landscape and the host response against pneumococcus.
Collapse
Affiliation(s)
- Sannette C Hall
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Shetty Ravi Dyavar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Derrick R Samuelson
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
| | - Kristina L Bailey
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE;
| |
Collapse
|
21
|
Chargui A, Belaid A, Ndiaye PD, Imbert V, Samson M, Guigonis JM, Tauc M, Peyron JF, Poujeol P, Brest P, Hofman P, Mograbi B. The Carcinogen Cadmium Activates Lysine 63 (K63)-Linked Ubiquitin-Dependent Signaling and Inhibits Selective Autophagy. Cancers (Basel) 2021; 13:2490. [PMID: 34065348 PMCID: PMC8161291 DOI: 10.3390/cancers13102490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
Signaling, proliferation, and inflammation are dependent on K63-linked ubiquitination-conjugation of a chain of ubiquitin molecules linked via lysine 63. However, very little information is currently available about how K63-linked ubiquitination is subverted in cancer. The present study provides, for the first time, evidence that cadmium (Cd), a widespread environmental carcinogen, is a potent activator of K63-linked ubiquitination, independently of oxidative damage, activation of ubiquitin ligase, or proteasome impairment. We show that Cd induces the formation of protein aggregates that sequester and inactivate cylindromatosis (CYLD) and selective autophagy, two tumor suppressors that deubiquitinate and degrade K63-ubiquitinated proteins, respectively. The aggregates are constituted of substrates of selective autophagy-SQSTM1, K63-ubiquitinated proteins, and mitochondria. These protein aggregates also cluster double-membrane remnants, which suggests an impairment in autophagosome maturation. However, failure to eliminate these selective cargos is not due to alterations in the general autophagy process, as degradation of long-lived proteins occurs normally. We propose that the simultaneous disruption of CYLD and selective autophagy by Cd feeds a vicious cycle that further amplifies K63-linked ubiquitination and downstream activation of the NF-κB pathway, processes that support cancer progression. These novel findings link together impairment of selective autophagy, K63-linked ubiquitination, and carcinogenesis.
Collapse
Affiliation(s)
- Abderrahman Chargui
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
- Higher School of Agriculture of Kef, University Jendouba, Le Kef and Laboratory of Histology, Embryology and Cell Biology, Faculty of Medicine Tunis, 7110 Le Kef, Tunisia
| | - Amine Belaid
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Papa Diogop Ndiaye
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Véronique Imbert
- Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale (INSERM), F-06204 Nice, France; (V.I.); (J.-F.P.)
| | - Michel Samson
- Université Côte d’Azur, Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux énergies alternatives (CEA), F-06107 Nice, France; (M.S.); (J.-M.G.)
| | - Jean-Marie Guigonis
- Université Côte d’Azur, Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux énergies alternatives (CEA), F-06107 Nice, France; (M.S.); (J.-M.G.)
| | - Michel Tauc
- Université Côte d’Azur, Laboratoire de Physiomédecine Moléculaire, LP2M, Labex ICST, Centre National de la Recherche Scientifique (CNRS), F-06107 Nice, France; (M.T.); (P.P.)
| | - Jean-François Peyron
- Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale (INSERM), F-06204 Nice, France; (V.I.); (J.-F.P.)
| | - Philippe Poujeol
- Université Côte d’Azur, Laboratoire de Physiomédecine Moléculaire, LP2M, Labex ICST, Centre National de la Recherche Scientifique (CNRS), F-06107 Nice, France; (M.T.); (P.P.)
| | - Patrick Brest
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Paul Hofman
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
- Université Côte d’Azur, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, F-06001 Nice, France
| | - Baharia Mograbi
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| |
Collapse
|
22
|
Grau-Perez M, Voruganti VS, Balakrishnan P, Haack K, Goessler W, Franceschini N, Redón J, Cole SA, Navas-Acien A, Tellez-Plaza M. Genetic variation and urine cadmium levels: ABCC1 effects in the Strong Heart Family Study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116717. [PMID: 33640655 PMCID: PMC8026674 DOI: 10.1016/j.envpol.2021.116717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Genetic effects are suspected to influence cadmium internal dose. Our objective was to assess genetic determinants of urine cadmium in American Indian adults participating in the Strong Heart Family Study (SHFS). Urine cadmium levels and genotyped short tandem repeat (STR) markers were available on 1936 SHFS participants. We investigated heritability, including gene-by-sex and smoking interactions, and STR-based quantitative trait locus (QTL) linkage, using a variance-component decomposition approach, which incorporates the genetic information contained in the pedigrees. We also used available single nucleotide polymorphisms (SNPs) from Illumina's Metabochip and custom panel to assess whether promising QTLs associated regions could be attributed to SNPs annotated to specific genes. Median urine cadmium levels were 0.44 μg/g creatinine. The heritability of urine cadmium concentrations was 28%, with no evidence of gene-by-sex or -smoking interaction. We found strong statistical evidence for a genetic locus at chromosome 16 determining urine cadmium concentrations (Logarithm of odds score [LOD] = 3.8). Among the top 20 associated SNPs in this locus, 17 were annotated to ABCC1 (p-values from 0.0002 to 0.02), and attenuated the maximum linkage peak by a ∼40%. Suggestive QTL signals (LOD>1.9) in chromosomes 2, 6, 11, 14, and 19, showed associated SNPs in the genes NDUFA10, PDE10A, PLEKHA7, BAZ1A and CHAF1A, respectively. Our findings support that urinary cadmium levels are heritable and influenced by a QTL on chromosome 16, which was explained by genetic variation in ABCC1. Studies with extended sets of genome-wide markers are needed to confirm these findings and to identify additional metabolism and toxicity pathways for cadmium.
Collapse
Affiliation(s)
- Maria Grau-Perez
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia (INCLIVA), Valencia, Valencia, Spain; Department of Preventive Medicine and Public Health and Microbiology, Universidad Autonoma de Madrid, Madrid, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain.
| | - V Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University of Graz, Graz, Austria
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josep Redón
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia (INCLIVA), Valencia, Valencia, Spain; Department of Internal Medicine, Hospital Clinic of Valencia, University of Valencia, Valencia, Valencia, Spain
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia (INCLIVA), Valencia, Valencia, Spain; Department of Preventive Medicine and Public Health and Microbiology, Universidad Autonoma de Madrid, Madrid, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Madrid, Spain; Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Satarug S, Garrett SH, Somji S, Sens MA, Sens DA. Zinc, Zinc Transporters, and Cadmium Cytotoxicity in a Cell Culture Model of Human Urothelium. TOXICS 2021; 9:toxics9050094. [PMID: 33923173 PMCID: PMC8145463 DOI: 10.3390/toxics9050094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 01/27/2023]
Abstract
We explored the potential role of zinc (Zn) and zinc transporters in protection against cytotoxicity of cadmium (Cd) in a cell culture model of human urothelium, named UROtsa. We used real-time qRT-PCR to quantify transcript levels of 19 Zn transporters of the Zrt-/Irt-like protein (ZIP) and ZnT gene families that were expressed in UROtsa cells and were altered by Cd exposure. Cd as low as 0.1 µM induced expression of ZnT1, known to mediate efflux of Zn and Cd. Loss of cell viability by 57% was seen 24 h after exposure to 2.5 µM Cd. Exposure to 2.5 µM Cd together with 10–50 µM Zn prevented loss of cell viability by 66%. Pretreatment of the UROtsa cells with an inhibitor of glutathione biosynthesis (buthionine sulfoximine) diminished ZnT1 induction by Cd with a resultant increase in sensitivity to Cd cytotoxicity. Conversely, pretreatment of UROtsa cells with an inhibitor of DNA methylation, 5-aza-2’-deoxycytidine (aza-dC) did not change the extent of ZnT1 induction by Cd. The induced expression of ZnT1 that remained impervious in cells treated with aza-dC coincided with resistance to Cd cytotoxicity. Therefore, expression of ZnT1 efflux transporter and Cd toxicity in UROtsa cells could be modulated, in part, by DNA methylation and glutathione biosynthesis. Induced expression of ZnT1 may be a viable mechanistic approach to mitigating cytotoxicity of Cd.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Centre for Health Service Research, University of Queensland Translational Research Institute, Woolloongabba, Brisbane 4102, Australia
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
- Correspondence:
| | - Scott H. Garrett
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| | - Seema Somji
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| | - Mary Ann Sens
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| | - Donald A. Sens
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| |
Collapse
|
24
|
Abstract
The known genetic architecture of blood pressure now comprises >30 genes, with rare variants resulting in monogenic forms of hypertension or hypotension and >1,477 common single-nucleotide polymorphisms (SNPs) being associated with the blood pressure phenotype. Monogenic blood pressure syndromes predominantly involve the renin-angiotensin-aldosterone system and the adrenal glucocorticoid pathway, with a smaller fraction caused by neuroendocrine tumours of the sympathetic and parasympathetic nervous systems. The SNPs identified in genome-wide association studies (GWAS) as being associated with the blood pressure phenotype explain only approximately 27% of the 30-50% estimated heritability of blood pressure, and the effect of each SNP on the blood pressure phenotype is small. A paucity of SNPs from GWAS are mapped to known genes causing monogenic blood pressure syndromes. For example, a GWAS signal mapped to the gene encoding uromodulin has been shown to affect blood pressure by influencing sodium homeostasis, and the effects of another GWAS signal were mediated by endothelin. However, the majority of blood pressure-associated SNPs show pleiotropic associations. Unravelling these associations can potentially help us to understand the underlying biological pathways. In this Review, we appraise the current knowledge of blood pressure genomics, explore the causal pathways for hypertension identified in Mendelian randomization studies and highlight the opportunities for drug repurposing and pharmacogenomics for the treatment of hypertension.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
25
|
Martins AC, Santos AAD, Lopes ACBA, Skalny AV, Aschner M, Tinkov AA, Paoliello MMB. Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension. Curr Hypertens Rev 2021; 17:14-26. [PMID: 33475076 DOI: 10.2174/1573402117666210121102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Hypertension is an important public health concern that affects millions globally, leading to a large number of morbidities and fatalities. The etiology of hypertension is complex and multifactorial, and it involves environmental factors, including heavy metals. Cadmium and mercury are toxic elements commonly found in the environment, contributing to hypertension. We aimed to assess the role of cadmium and mercury-induced endothelial dysfunction in the development of hypertension. A narrative review was carried out through database searches. In this review, we discussed the critical roles of cadmium and mercury in the etiology of hypertension and provided new insights into potential mechanisms of their effect, focusing primarily on endothelial dysfunction. Although the mechanisms by which cadmium and mercury induce hypertension have yet to be completely elucidated, evidence for both implicates impaired nitric oxide signaling in their hypertensive etiology.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alessanda A D Santos
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Ana C B A Lopes
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, Brazil
| | - Anatoly V Skalny
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alexey A Tinkov
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
26
|
Martins AC, Almeida Lopes ACB, Urbano MR, Carvalho MDFH, Silva AMR, Tinkov AA, Aschner M, Mesas AE, Silbergeld EK, Paoliello MMB. An updated systematic review on the association between Cd exposure, blood pressure and hypertension. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111636. [PMID: 33396156 PMCID: PMC7785863 DOI: 10.1016/j.ecoenv.2020.111636] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Since the first report by Perry et al. (1955), most studies affirmed the hypertensive effects of cadmium (Cd) in humans. Nonetheless, conclusions between studies remain inconsistent. OBJECTIVE The aim of this study was to reevaluate the evidence for a potential relationship between Cd exposure and altered blood pressure and/or hypertension, focusing on studies published between January 2010 and March 2020. METHODS We reviewed all observational studies from database searches (PubMed and SCOPUS) on Cd exposure and blood pressure or hypertension. We extracted information from studies that provided sufficient data on population characteristics, smoking status, exposure, outcomes, and design. RESULTS Thirty-eight studies met our inclusion criteria; of those, twenty-nine were cross sectional, three case control, five cohort and one interventional study. Blood or urinary Cd levels were the most commonly used biomarkers. CONCLUSIONS A positive association between blood Cd levels and blood pressure and/or hypertension was identified in numerous studies at different settings. Limited number of representative population-based studies of never-smokers was observed, which may have confounded our conclusions. The association between urinary Cd and blood pressure and/or hypertension remains uncertain due to conflicting results, including inverse relationships with lack of strong mechanistic support. We point to the urgent need for additional longitudinal studies to confirm our findings.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA
| | - Ana Carolina B Almeida Lopes
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil
| | - Mariana R Urbano
- Department of Statistics, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/no, Campus Universitário, 86057-970 Londrina, PR, Brazil
| | - Maria de Fatima H Carvalho
- Inorganic Contaminants Department, Adolfo Lutz Institute, Sao Paulo, Avenida Doutor Arnaldo, 355, 01246-000 São Paulo, SP, Brazil
| | - Ana Maria R Silva
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil
| | - Alexey A Tinkov
- I. M. Sechenov First Moscow Medical University (Sechenov University), Bolshaya Pirogovskaya St., 19-1, 119146 Moscow, Russia; Yaroslavl State University, Yaroslavl 150000, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA; I. M. Sechenov First Moscow Medical University (Sechenov University), Bolshaya Pirogovskaya St., 19-1, 119146 Moscow, Russia
| | - Arthur E Mesas
- Universidad de Castilla-La Mancha, Facultad de Enfermería, Edificio Melchor Cano, Campus Universitario de Cuenca, Camino de Pozuelo, s/n 16071 Cuenca, Spain
| | - Ellen K Silbergeld
- Emerita Professor, Johns Hopkins University, Bloomberg School of Public Health, 615N Wolfe St, 21205 Baltimore, MD, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA; Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil.
| |
Collapse
|
27
|
Sunuwar L, Frkatović A, Sharapov S, Wang Q, Neu HM, Wu X, Haritunians T, Wan F, Michel S, Wu S, Donowitz M, McGovern D, Lauc G, Sears C, Melia J. Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease. JCI Insight 2020; 5:140978. [PMID: 32897876 PMCID: PMC7605523 DOI: 10.1172/jci.insight.140978] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
ZIP8 is a metal transporter with a role in manganese (Mn) homeostasis. A common genetic variant in ZIP8 (rs13107325; A391T) ranks in the top 10 of pleiotropic SNPs identified in GWAS; A391T has associations with an increased risk of schizophrenia, obesity, Crohn’s disease, and reduced blood Mn. Here, we used CRISPR/Cas9-mediated knockin (KI) to generate a mouse model of ZIP8 A391T (Zip8 393T-KI mice). Recapitulating the SNP association with blood Mn, blood Mn was reduced in Zip8 393T-KI mice. There was restricted abnormal tissue Mn homeostasis, with decreases in liver and kidney Mn and a reciprocal increase in biliary Mn, providing in vivo evidence of hypomorphic Zip8 function. Upon challenge in a chemically induced colitis model, male Zip8 393T-KI mice exhibited enhanced disease susceptibility. ZIP8 391-Thr associated with reduced triantennary plasma N-glycan species in a population-based cohort to define a genotype-specific glycophenotype hypothesized to be linked to Mn-dependent glycosyltransferase activity. This glycophenotype was maintained in a cohort of patients with Crohn’s disease. These data and the pleiotropic disease associations with ZIP8 391-Thr suggest underappreciated roles of Mn homeostasis in complex human disease. Abnormal manganese homeostasis is implicated by a GWAS disease-associated SNP, rs13107325 (ZIP8 A391T), studied in a knockin mouse model and human N-glycome analyses.
Collapse
Affiliation(s)
- Laxmi Sunuwar
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Sodbo Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Qinchuan Wang
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heather M Neu
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Xinqun Wu
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology and.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Michel
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Shaoguang Wu
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Cynthia Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joanna Melia
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Katz N, Rader DJ. Manganese homeostasis: from rare single-gene disorders to complex phenotypes and diseases. J Clin Invest 2020; 129:5082-5085. [PMID: 31682237 DOI: 10.1172/jci133120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Manganese (Mn) participates in a variety of distinct physiological processes, including acting as a cofactor for several enzymes and metalloenzymes, in addition to playing a role in immune function, endocrine function, hematopoiesis, and oxidative stress regulation. Mn homeostasis is tightly regulated via intestinal absorption and hepatobiliary and intestinal excretion. In this issue of the JCI, Mercadante and colleagues explored the role of the metal transporter Slc30a10 in vivo using a mouse model system. The authors used whole-body and tissue-specific gene knockouts to show that Slc30a10 is paramount for Mn excretion in the liver and small intestines. These findings provide further insights into mechanisms for Mn homeostasis as well as potential targets for addressing Mn-associated disorders or environmental exposures.
Collapse
|
29
|
Yang X, Yang W, McVey DG, Zhao G, Hu J, Poston RN, Ren M, Willeit K, Coassin S, Willeit J, Webb TR, Samani NJ, Mayr M, Kiechl S, Ye S. FURIN Expression in Vascular Endothelial Cells Is Modulated by a Coronary Artery Disease-Associated Genetic Variant and Influences Monocyte Transendothelial Migration. J Am Heart Assoc 2020; 9:e014333. [PMID: 32067586 PMCID: PMC7070217 DOI: 10.1161/jaha.119.014333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Genome-wide association studies have shown an association between the single-nucleotide polymorphism rs17514846 on chromosome 15q26.1 and coronary artery disease susceptibility. The underlying biological mechanism is, however, not fully understood. rs17514846 is located in the FES Upstream Region (FURIN) gene, which is expressed in vascular endothelial cells (ECs). We investigated whether rs17514846 has an influence on FURIN expression in ECs and whether FURIN affects EC behavior. Methods and Results Quantitative reverse transcription-polymerase chain reaction analysis showed that cultured vascular ECs from individuals carrying the coronary artery disease risk allele of rs17514846 had higher FURIN expression than cells from noncarriers. In support, luciferase reporter analyses in ECs indicated that the risk allele had higher transcriptional activity than the nonrisk allele. Electrophoretic mobility shift assays using EC nuclear protein extracts detected a DNA-protein complex with allele-specific differential binding of a nuclear protein. Knockdown of FURIN in ECs reduced endothelin-1 secretion, nuclear factor-κB activity, vascular cell adhesion molecule-1, and MCP1 (monocyte chemotactic protein-1) expression and monocyte-endothelial adhesion and transmigration. A population-based study showed an association of the rs17514846 risk allele with higher circulating MCP1 levels and greater carotid intima-media thickness. Conclusions The coronary artery disease risk variant at the 15q26.1 locus modulates FURIN expression in vascular ECs. FURIN levels in ECs affect monocyte-endothelial adhesion and migration.
Collapse
Affiliation(s)
- Xu Yang
- Shantou University Medical CollegeShantouChina
- Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Wei Yang
- Shantou University Medical CollegeShantouChina
| | - David G. McVey
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research CentreUniversity of LeicesterUnited Kingdom
| | - Guojun Zhao
- Shantou University Medical CollegeShantouChina
- The Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan City People's HospitalQingyuanChina
| | - Jinfu Hu
- Shantou University Medical CollegeShantouChina
| | - Robin N. Poston
- William Harvey Research InstituteQueen Mary University of LondonLondonUnited Kingdom
| | - Meixia Ren
- Department of Geriatric MedicineFujian Provincial HospitalFuzhouChina
| | - Karin Willeit
- Department of NeurologyBern University HospitalUniversity of BernSwitzerland
| | - Stefan Coassin
- Institute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - Johann Willeit
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Thomas R. Webb
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research CentreUniversity of LeicesterUnited Kingdom
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research CentreUniversity of LeicesterUnited Kingdom
| | - Manuel Mayr
- Cardiovascular DivisionKing's College LondonLondonUnited Kingdom
| | - Stefan Kiechl
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Shu Ye
- Shantou University Medical CollegeShantouChina
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research CentreUniversity of LeicesterUnited Kingdom
| |
Collapse
|
30
|
Cabrera CP, Ng FL, Nicholls HL, Gupta A, Barnes MR, Munroe PB, Caulfield MJ. Over 1000 genetic loci influencing blood pressure with multiple systems and tissues implicated. Hum Mol Genet 2019; 28:R151-R161. [PMID: 31411675 PMCID: PMC6872427 DOI: 10.1093/hmg/ddz197] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
High blood pressure (BP) remains the major heritable and modifiable risk factor for cardiovascular disease. Persistent high BP, or hypertension, is a complex trait with both genetic and environmental interactions. Despite swift advances in genomics, translating new discoveries to further our understanding of the underlying molecular mechanisms remains a challenge. More than 500 loci implicated in the regulation of BP have been revealed by genome-wide association studies (GWAS) in 2018 alone, taking the total number of BP genetic loci to over 1000. Even with the large number of loci now associated to BP, the genetic variance explained by all loci together remains low (~5.7%). These genetic associations have elucidated mechanisms and pathways regulating BP, highlighting potential new therapeutic and drug repurposing targets. A large proportion of the BP loci were discovered and reported simultaneously by multiple research groups, creating a knowledge gap, where the reported loci to date have not been investigated in a harmonious way. Here, we review the BP-associated genetic variants reported across GWAS studies and investigate their potential impact on the biological systems using in silico enrichment analyses for pathways, tissues, gene ontology and genetic pleiotropy.
Collapse
Affiliation(s)
- Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Fu Liang Ng
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Hannah L Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ajay Gupta
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Michael R Barnes
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
31
|
Steimle BL, Smith FM, Kosman DJ. The solute carriers ZIP8 and ZIP14 regulate manganese accumulation in brain microvascular endothelial cells and control brain manganese levels. J Biol Chem 2019; 294:19197-19208. [PMID: 31699897 DOI: 10.1074/jbc.ra119.009371] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Manganese supports numerous neuronal functions but in excess is neurotoxic. Consequently, regulation of manganese flux at the blood-brain barrier (BBB) is critical to brain homeostasis. However, the molecular pathways supporting the transcellular trafficking of divalent manganese ions within the microvascular capillary endothelial cells (BMVECs) that constitute the BBB have not been examined. In this study, we have determined that ZIP8 and ZIP14 (Zrt- and Irt-like proteins 8 and 14) support Mn2+ uptake by BMVECs and that neither DMT1 nor an endocytosis-dependent pathway play any significant role in Mn2+ uptake. Specifically, siRNA-mediated knockdown of ZIP8 and ZIP14 coincided with a decrease in manganese uptake, and kinetic analyses revealed that manganese uptake depends on pH and bicarbonate and is up-regulated by lipopolysaccharide, all biochemical markers of ZIP8 or ZIP14 activity. Mn2+ uptake also was associated with cell-surface membrane presentation of ZIP8 and ZIP14, as indicated by membrane protein biotinylation. Importantly, surface ZIP8 and ZIP14 biotinylation and Mn2+-uptake experiments together revealed that these transporters support manganese uptake at both the apical, blood and basal, brain sides of BMVECs. This indicated that in the BMVECs of the BBB, these two transporters support a bidirectional Mn2+ flux. We conclude that BMVECs play a critical role in controlling manganese homeostasis in the brain.
Collapse
Affiliation(s)
- Brittany L Steimle
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| |
Collapse
|
32
|
Wang X, Mo X, Zhang H, Zhang Y, Shen Y. Identification of Phosphorylation Associated SNPs for Blood Pressure, Coronary Artery Disease and Stroke from Genome-wide Association Studies. Curr Mol Med 2019; 19:731-738. [PMID: 31456518 DOI: 10.2174/1566524019666190828151540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Phosphorylation-related SNP (phosSNP) is a non-synonymous SNP that might influence protein phosphorylation status. The aim of this study was to assess the effect of phosSNPs on blood pressure (BP), coronary artery disease (CAD) and ischemic stroke (IS). METHODS We examined the association of phosSNPs with BP, CAD and IS in shared data from genome-wide association studies (GWAS) and tested if the disease loci were enriched with phosSNPs. Furthermore, we performed quantitative trait locus analysis to find out if the identified phosSNPs have impacts on gene expression, protein and metabolite levels. RESULTS We found numerous phosSNPs for systolic BP (count=148), diastolic BP (count=206), CAD (count=20) and IS (count=4). The most significant phosSNPs for SBP, DBP, CAD and IS were rs1801131 in MTHFR, rs3184504 in SH2B3, rs35212307 in WDR12 and rs3184504 in SH2B3, respectively. Our analyses revealed that the associated SNPs identified by the original GWAS were significantly enriched with phosSNPs and many well-known genes predisposing to cardiovascular diseases contain significant phosSNPs. We found that BP, CAD and IS shared for phosSNPs in loci that contain functional genes involve in cardiovascular diseases, e.g., rs11556924 (ZC3HC1), rs1971819 (ICA1L), rs3184504 (SH2B3), rs3739998 (JCAD), rs903160 (SMG6). Four phosSNPs in ADAMTS7 were significantly associated with CAD, including the known functional SNP rs3825807. Moreover, the identified phosSNPs seemed to have the potential to affect transcription regulation and serum levels of numerous cardiovascular diseases-related proteins and metabolites. CONCLUSION The findings suggested that phosSNPs may play important roles in BP regulation and the pathological mechanisms of CAD and IS.
Collapse
Affiliation(s)
- Xingchen Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Yueping Shen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
33
|
Jian X, Chen J, Li Z, Song Z, Zhou J, Xu W, Liu Y, Shen J, Wang Y, Yi Q, Shi Y. SLC39A8 is a risk factor for schizophrenia in Uygur Chinese: a case-control study. BMC Psychiatry 2019; 19:293. [PMID: 31533672 PMCID: PMC6751796 DOI: 10.1186/s12888-019-2240-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Schizophrenia is a severe mental disease with high morbidity and heritability. The SLC39A8 gene is located in 4q24 and encodes a protein that transports many metal ions. Multiple previous studies found that one of the most pleiotropic single nucleotide polymorphisms (SNPs) in SLC39A8, rs13107325, is associated with schizophrenia in the European population. However, the polymorphism of this locus is rare in other populations. In China, the Han Chinese and the Uygur Chinese are two ethnic populations that originate from different races. METHODS A case-control study was conducted with 983 schizophrenia cases and 1230 healthy controls of the Chinese Uygur population. To validate the most promising SNP, meta-analyses were conducted with the Han Chinese and the European PGC2 data sets reported previously. RESULTS A susceptible locus, rs10014145 (pallele = 0.014, pallele = 0.098 after correction; pgenotype = 0.004, pgenotype = 0.032 after correction) was identified in case-control study of the Chinese Uygur population. Further, the association between rs10014145 and schizophrenia was supported by a meta-analysis of Han and Uygur Chinese samples (pooled OR [95% CI] =1.10 [1.03-1.17], Z = 2.73, p = 0.006). The association between rs10014145 and schizophrenia was not significant in a meta-analysis of combined Chinese and European samples (pooled OR [95% CI] =1.07 [1.00-1.14], Z = 1.88, and p = 0.06). In addition, the "CCAC" haplotype of rs4698844-rs233814-rs13114343-rs151394 was significantly associated with schizophrenia in Uygur Chinese (P = 0.003, corrected p = 0.012). CONCLUSIONS The results of this study support that SLC39A8 is a susceptible gene for schizophrenia in the populations of Han Chinese and Uygur Chinese in China, further studies are suggested to validate the association.
Collapse
Affiliation(s)
- Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Wei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yahui Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Qizhong Yi
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Shanghai key laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China.
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong, 266003, People's Republic of China.
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Shanghai Changning Mental Health Center, Shanghai, 200030, People's Republic of China.
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People's Republic of China.
| |
Collapse
|
34
|
Nebert DW, Liu Z. SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum Genomics 2019; 13:51. [PMID: 31521203 PMCID: PMC6744627 DOI: 10.1186/s40246-019-0233-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
SLC39A8 is an evolutionarily highly conserved gene that encodes the ZIP8 metal cation transporter in all vertebrates. SLC39A8 is ubiquitously expressed, including pluripotent embryonic stem cells; SLC39A8 expression occurs in every cell type examined. Uptake of ZIP8-mediated Mn2+, Zn2+, Fe2+, Se4+, and Co2+ represents endogenous functions-moving these cations into the cell. By way of mouse genetic differences, the phenotype of "subcutaneous cadmium-induced testicular necrosis" was assigned to the Cdm locus in the 1970s. This led to identification of the mouse Slc39a8 gene, its most closely related Slc39a14 gene, and creation of Slc39a8-overexpressing, Slc39a8(neo/neo) knockdown, and cell type-specific conditional knockout mouse lines; the Slc39a8(-/-) global knockout mouse is early-embryolethal. Slc39a8(neo/neo) hypomorphs die between gestational day 16.5 and postnatal day 1-exhibiting severe anemia, dysregulated hematopoiesis, hypoplastic spleen, dysorganogenesis, stunted growth, and hypomorphic limbs. Not surprisingly, genome-wide association studies subsequently revealed human SLC39A8-deficiency variants exhibiting striking pleiotropy-defects correlated with clinical disorders in virtually every organ, tissue, and cell-type: numerous developmental and congenital disorders, the immune system, cardiovascular system, kidney, lung, liver, coagulation system, central nervous system, musculoskeletal system, eye, and gastrointestinal tract. Traits with which SLC39A8-deficiency variants are currently associated include Mn2+-deficient hypoglycosylation; numerous birth defects; Leigh syndrome-like mitochondrial redox deficiency; decreased serum high-density lipoprotein-cholesterol levels; increased body mass index; greater risk of coronary artery disease, hypotension, cardiovascular death, allergy, ischemic stroke, schizophrenia, Parkinson disease, inflammatory bowel disease, Crohn disease, myopia, and adolescent idiopathic scoliosis; systemic lupus erythematosus with primary Sjögren syndrome; decreased height; and inadvertent participation in the inflammatory progression of osteoarthritis.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA.
- Division of Human Genetics, Department of Pediatrics & Molecular Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229-2899, USA.
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
35
|
Broberg K, Taj T, Guazzetti S, Peli M, Cagna G, Pineda D, Placidi D, Wright RO, Smith DR, Lucchini RG, Wahlberg K. Manganese transporter genetics and sex modify the association between environmental manganese exposure and neurobehavioral outcomes in children. ENVIRONMENT INTERNATIONAL 2019; 130:104908. [PMID: 31233999 PMCID: PMC6682429 DOI: 10.1016/j.envint.2019.104908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 05/05/2023]
Abstract
There is increasing evidence that environmental manganese (Mn) exposure early in life can have negative effects on children's neurodevelopment and increase the risk of behavioral problems, including attention deficit hyperactivity disorder (ADHD). Factors that may contribute to differences in sensitivity to Mn exposure are sex and genetic variation of proteins involved in the regulation of Mn concentrations. Here we investigate if sex and polymorphisms in Mn transporter genes SLC30A10 and SLC39A8 influence the association between Mn exposure and ADHD-related behavioral problems in children. The SNPs rs1776029 and rs12064812 in SLC30A10, and rs13107325 in SLC39A8 were genotyped by TaqMan PCR or pyrosequencing in a population of Italian children (aged 11-14 years; n = 645) with a wide range of environmental Mn exposure. Mn in surface soil was measured in situ using XRF technology or modeled by geospatial analysis. Linear regression models or generalized additive models (GAM) were used for analyzing associations between soil Mn and neurobehavioral problems assessed by the Conners' behavior rating scales (self-, and parent-reported). Gene-environment interactions (Mn transporter genotype x soil Mn) were evaluated using a genetic score in which genotypes for the three SNPs were combined based on their association with blood Mn, as an indication of their influence on Mn regulation. We observed differences in associations between soil Mn and neurobehavior between sexes. For several self-reported Conners' scales, girls showed U-shaped relationships with higher (worse) Conners' scoring at higher soil Mn levels, and several parent-reported scales showed positive linear relationships between increasing soil Mn and higher Conner's scores. For boys, we observed a positive linear relationship with soil Mn for one Conner's outcome only (hyperactivity, parent-reported). We also observed some interactions between soil Mn and the genetic score on Conner's scales in girls and girls with genotypes linked to high blood Mn showed particularly strong positive associations between soil Mn and parent-reported Conners' scales. Our results indicate that sex and polymorphisms in Mn transporter genes contribute to differences in sensitivity to Mn exposure from the environment and that girls that are genetically less efficient at regulating Mn, may be a particularly vulnerable group.
Collapse
Affiliation(s)
- Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Klinikgatan 21, 221 85 Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 65 Solna, Sweden
| | - Tahir Taj
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Marco Peli
- Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa, 11, 25123 Brescia, BS, Italy
| | - Giuseppa Cagna
- Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa, 11, 25123 Brescia, BS, Italy
| | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Lund University, Klinikgatan 21, 221 85 Lund, Sweden
| | - Donatella Placidi
- Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa, 11, 25123 Brescia, BS, Italy
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-5674, USA
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Roberto G Lucchini
- Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa, 11, 25123 Brescia, BS, Italy; Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-5674, USA
| | - Karin Wahlberg
- Division of Occupational and Environmental Medicine, Lund University, Klinikgatan 21, 221 85 Lund, Sweden.
| |
Collapse
|
36
|
Melia JMP, Lin R, Xavier RJ, Thompson RB, Fu D, Wan F, Sears CL, Donowitz M. Induction of the metal transporter ZIP8 by interferon gamma in intestinal epithelial cells: Potential role of metal dyshomeostasis in Crohn's disease. Biochem Biophys Res Commun 2019; 515:325-331. [PMID: 31151823 DOI: 10.1016/j.bbrc.2019.05.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/22/2019] [Indexed: 01/14/2023]
Abstract
Transition metals are required for intestinal homeostasis and provide essential nutrients for the resident microbiota. Abnormalities in metal homeostasis are common in Crohn's disease (CD), but remain poorly defined and causes appear multifactorial. There has been renewed interest in understanding these mechanisms with the discovery of an association between a coding variant in SLC39A8 (rs13107325; ZIP8 A391T) and increased CD risk. SLC39A8 encodes the protein ZIP8, a metal transporter that is induced under inflammatory stimuli; however, studies of its gut-specific functions are lacking. Here, we show that SLC39A8 mRNA is differentially expressed in active CD with a high positive correlation with markers of disease severity, including CXCL8, TNFα, IFNγ, and calprotectin. SLC39A8 expression exhibits a negative correlation with SLC39A4 and SLC39A5, two key zinc importers in absorptive enterocytes, and a lack of correlation with two manganese transporters, SLC39A14 and SLC11A2. Immunohistochemistry demonstrates ZIP8 expression in intestinal epithelial cells and immune cells of the lamina propria. Patients with CD exhibit variable patterns of ZIP8 subcellular localization within IECs. In ileal enteroids, SLC39A8 was induced by IFNγ and IFNγ + TNFα, but not by TNFα alone, independent of NF-κB activation. IFNγ also down-regulated SLC39A5. To explore the functional implications of disease-associated genetic variation, in over-expression experiments in HEK293A cells, ZIP8 A391T was associated with increased TNFα-induced NF-κB activation, consistent with a loss of negative regulation. Taken together, these results suggest a potential role for ZIP8 in intestinal inflammation, induced by IFNγ in the intestinal epithelial compartment, and that perturbations in negative regulation of NF-κB by ZIP8 A391T may contribute to CD pathogenesis.
Collapse
Affiliation(s)
- Joanna M P Melia
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ruxian Lin
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Dax Fu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Cynthia L Sears
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
37
|
Luo Q, Chen Q, Wang W, Desrivières S, Quinlan EB, Jia T, Macare C, Robert GH, Cui J, Guedj M, Palaniyappan L, Kherif F, Banaschewski T, Bokde ALW, Büchel C, Flor H, Frouin V, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Artiges E, Paillère-Martinot ML, Nees F, Orfanos DP, Poustka L, Fröhner JH, Smolka MN, Walter H, Whelan R, Callicott JH, Mattay VS, Pausova Z, Dartigues JF, Tzourio C, Crivello F, Berman KF, Li F, Paus T, Weinberger DR, Murray RM, Schumann G, Feng J. Association of a Schizophrenia-Risk Nonsynonymous Variant With Putamen Volume in Adolescents: A Voxelwise and Genome-Wide Association Study. JAMA Psychiatry 2019; 76:435-445. [PMID: 30649180 PMCID: PMC6450291 DOI: 10.1001/jamapsychiatry.2018.4126] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/16/2018] [Indexed: 02/03/2023]
Abstract
Importance Deviation from normal adolescent brain development precedes manifestations of many major psychiatric symptoms. Such altered developmental trajectories in adolescents may be linked to genetic risk for psychopathology. Objective To identify genetic variants associated with adolescent brain structure and explore psychopathologic relevance of such associations. Design, Setting, and Participants Voxelwise genome-wide association study in a cohort of healthy adolescents aged 14 years and validation of the findings using 4 independent samples across the life span with allele-specific expression analysis of top hits. Group comparison of the identified gene-brain association among patients with schizophrenia, unaffected siblings, and healthy control individuals. This was a population-based, multicenter study combined with a clinical sample that included participants from the IMAGEN cohort, Saguenay Youth Study, Three-City Study, and Lieber Institute for Brain Development sample cohorts and UK biobank who were assessed for both brain imaging and genetic sequencing. Clinical samples included patients with schizophrenia and unaffected siblings of patients from the Lieber Institute for Brain Development study. Data were analyzed between October 2015 and April 2018. Main Outcomes and Measures Gray matter volume was assessed by neuroimaging and genetic variants were genotyped by Illumina BeadChip. Results The discovery sample included 1721 adolescents (873 girls [50.7%]), with a mean (SD) age of 14.44 (0.41) years. The replication samples consisted of 8690 healthy adults (4497 women [51.8%]) from 4 independent studies across the life span. A nonsynonymous genetic variant (minor T allele of rs13107325 in SLC39A8, a gene implicated in schizophrenia) was associated with greater gray matter volume of the putamen (variance explained of 4.21% in the left hemisphere; 8.66; 95% CI, 6.59-10.81; P = 5.35 × 10-18; and 4.44% in the right hemisphere; t = 8.90; 95% CI, 6.75-11.19; P = 6.80 × 10-19) and also with a lower gene expression of SLC39A8 specifically in the putamen (t127 = -3.87; P = 1.70 × 10-4). The identified association was validated in samples across the life span but was significantly weakened in both patients with schizophrenia (z = -3.05; P = .002; n = 157) and unaffected siblings (z = -2.08; P = .04; n = 149). Conclusions and Relevance Our results show that a missense mutation in gene SLC39A8 is associated with larger gray matter volume in the putamen and that this association is significantly weakened in schizophrenia. These results may suggest a role for aberrant ion transport in the etiology of psychosis and provide a target for preemptive developmental interventions aimed at restoring the functional effect of this mutation.
Collapse
Affiliation(s)
- Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- School of Life Sciences and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Social Genetic and Developmental Psychiatry Centre, London, England
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Wenjia Wang
- Pharnext, Issy-les-Moulineaux, Ile de France, France
- Institut National de la Santé et de la Recherche Médicale Unit 897, University of Bordeaux, Bordeaux, Aquitaine, France
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Social Genetic and Developmental Psychiatry Centre, London, England
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Social Genetic and Developmental Psychiatry Centre, London, England
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Social Genetic and Developmental Psychiatry Centre, London, England
| | - Christine Macare
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Social Genetic and Developmental Psychiatry Centre, London, England
| | - Gabriel H. Robert
- EA 4712 “Behavior and Basal Ganglia,” Rennes University 1, Rennes, France
| | - Jing Cui
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mickaël Guedj
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | - Lena Palaniyappan
- Departments of Psychiatry and Medical Biophysics, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, Commissariat à L'énergie Atomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, England
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt Braunschweig and Berlin, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale Unit 1000, Neuroimaging and Psychiatry, University Paris Sud–Paris Saclay, University Paris Descartes, Paris, France
- Service Hospitalier Frédéric Joliot, Orsay, France
- Maison de Solenn, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale Unit 1000, Neuroimaging and Psychiatry, University Paris Sud–Paris Saclay, University Paris Descartes, Paris, France
- Service Hospitalier Frédéric Joliot, Orsay, France
- GH Nord Essonne Psychiatry Department, Orsay, France
| | - Marie-Laure Paillère-Martinot
- Institut National de la Santé et de la Recherche Médicale Unit 1000, Neuroimaging and Psychiatry, University Paris Sud–Paris Saclay, University Paris Descartes, Paris, France
- Assistance Publique–Hôpitaux de Paris, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Währinger Gürtel, Vienna, Austria
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Joseph H. Callicott
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Venkata S. Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departments of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jean-François Dartigues
- Institut National de la Santé et de la Recherche Médicale Unit 1219, Université de Bordeaux, Bordeaux, France
| | - Christophe Tzourio
- Institut National de la Santé et de la Recherche Médicale Unit 1219, Université de Bordeaux, Bordeaux, France
| | - Fabrice Crivello
- University de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Bordeaux, France
- Commissariat à L'énergie Atomiquecea, Institut des Maladies Neurodégénératives-Equipe 5, Bordeaux, France
| | - Karen F. Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Fei Li
- Developmental and Behavioral Pediatric Department and Child Primary Care Department, MOE-Shanghai Key Lab for Children's Environmental Health, Xinhua Hospital Affiliated To Shang Jiaotong University School of Medicine, Shanghai, China
| | - Tomáš Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Robin M. Murray
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Social Genetic and Developmental Psychiatry Centre, London, England
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Social Genetic and Developmental Psychiatry Centre, London, England
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- School of Life Sciences and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, England
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, China
| |
Collapse
|
38
|
Tachmazidou I, Hatzikotoulas K, Southam L, Esparza-Gordillo J, Haberland V, Zheng J, Johnson T, Koprulu M, Zengini E, Steinberg J, Wilkinson JM, Bhatnagar S, Hoffman JD, Buchan N, Süveges D, Yerges-Armstrong L, Smith GD, Gaunt TR, Scott RA, McCarthy LC, Zeggini E. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet 2019; 51:230-236. [PMID: 30664745 PMCID: PMC6400267 DOI: 10.1038/s41588-018-0327-1] [Citation(s) in RCA: 340] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
Osteoarthritis is the most common musculoskeletal disease and the leading cause of disability globally. Here, we perform a genome-wide association study for osteoarthritis (77,052 cases and 378,169 controls), analysing 4 phenotypes: knee osteoarthritis, hip osteoarthritis, knee and/or hip osteoarthritis, and any osteoarthritis. We discover 64 signals, 52 of them novel, more than doubling the number of established disease loci. Six signals fine map to a single variant. We identify putative effector genes by integrating eQTL colocalization, fine-mapping, human rare disease, animal model, and osteoarthritis tissue expression data. We find enrichment for genes underlying monogenic forms of bone development diseases, and for the collagen formation and extracellular matrix organisation biological pathways. Ten of the likely effector genes, including TGFB1, FGF18, CTSK and IL11 have therapeutics approved or in clinical trials, with mechanisms of action supportive of evaluation for efficacy in osteoarthritis.
Collapse
Affiliation(s)
| | - Konstantinos Hatzikotoulas
- Human Genetics, Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge, UK.,Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lorraine Southam
- Human Genetics, Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge, UK.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Valeriia Haberland
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Toby Johnson
- Target Sciences-R&D, GSK Medicines Research Centre, Stevenage, UK
| | - Mine Koprulu
- Human Genetics, Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge, UK.,Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Eleni Zengini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,5th Psychiatric Department, Dromokaiteio Psychiatric Hospital, Haidari, Athens, Greece
| | - Julia Steinberg
- Human Genetics, Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge, UK.,Cancer Research Division, Cancer Council NSW, Woolloomooloo, New South Wales, Australia
| | - Jeremy M Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Sahir Bhatnagar
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | | | - Natalie Buchan
- Target Sciences-R&D, GSK Medicines Research Centre, Stevenage, UK
| | - Dániel Süveges
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert A Scott
- Target Sciences-R&D, GSK Medicines Research Centre, Stevenage, UK
| | - Linda C McCarthy
- Target Sciences-R&D, GSK Medicines Research Centre, Stevenage, UK
| | - Eleftheria Zeggini
- Human Genetics, Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge, UK. .,Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
39
|
Cheng L, Qiu L, Zhang R, Qian D, Wang M, Sun M, Zhu X, Wang Y, Guo W, Wei Q. Functional variant of MTOR rs2536 and survival of Chinese gastric cancer patients. Int J Cancer 2019; 144:251-262. [PMID: 29978580 DOI: 10.1002/ijc.31656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/06/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
We previously reported that some single nucleotide polymorphisms (SNPs) of candidate genes involved in the MTOR complex1 (MTORC1) were associated with risk of gastric cancer (GCa). In the present study, we further evaluated associations of eight potentially functional SNPs of MTOR, MLST8 and RPTOR with survival of 1002 GCa patients and also investigated molecular mechanisms underlying such associations. Specifically, we found that the MTOR rs2536 C allele at the microRNA binding site was independently associated with a 26% reduction of death risk (HR = 0.74, 95% CI = 0.57-0.96, p = 0.022). The results remained noteworthy with a prior false positive probability of 0.1. Genotype-phenotype correlation analysis in 144 patients' adjacent normal gastric tissue samples revealed that the MTOR expression levels were lower in rs2536 TC/CC carriers than that in wild-type TT carriers (p = 0.043). Dual luciferase assays revealed that the rs2536 C allele had a higher binding affinity to microRNA-150, leading to a decreased transcriptional activity of MTOR, compared to the rs2536 T allele. Further functional analysis revealed that MTOR knockdown by small interference RNA impaired proliferation, migration, and invasion ability in GCa cell lines. In conclusion, The MTOR rs2536 T > C change may be a biomarker for survival of Chinese GCa patients, likely by modulating microRNA-induced gene expression silencing. Additional studies are needed to validate our findings.
Collapse
Affiliation(s)
- Lei Cheng
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lixin Qiu
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ruoxin Zhang
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Danwen Qian
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Mengyun Wang
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Menghong Sun
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaodong Zhu
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yanong Wang
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Weijian Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Qingyi Wei
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
40
|
Wahlberg KE, Guazzetti S, Pineda D, Larsson SC, Fedrighi C, Cagna G, Zoni S, Placidi D, Wright RO, Smith DR, Lucchini RG, Broberg K. Polymorphisms in Manganese Transporters SLC30A10 and SLC39A8 Are Associated With Children's Neurodevelopment by Influencing Manganese Homeostasis. Front Genet 2018; 9:664. [PMID: 30619481 PMCID: PMC6307466 DOI: 10.3389/fgene.2018.00664] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022] Open
Abstract
Background: Manganese (Mn) is an essential element but at excessive levels, it is neurotoxic. Even a moderate increase in Mn has been suggested to interfere with neurodevelopment in children. Genetics influencing Mn concentrations and toxicity is unclear. Objective: We assessed, in a cross-sectional study, whether common single-nucleotide polymorphisms in the Mn transporters SLC39A8 (influx) and SLC30A10 (efflux) are associated with neurodevelopment in children. Design: We genotyped SLC39A8 (rs13107325 C/T) and SLC30A10 (rs1776029 G/A and rs12064812 T/C) in Italian children (n = 686, ages 11–14). We then used linear regression models to analyze associations between genotype, blood Mn concentrations, and neurodevelopmental outcomes including intelligence, behavior, motor function, and sway. Inferred causal relationships were evaluated using instrumental variables (IV) analysis. Results: For SLC30A10 rs1776029, the minor allele (A) was associated with increased average blood Mn of 41% (p < 0.001), whereas minor alleles for rs12064812 (C) and rs13107325 (T) were associated with reduced blood Mn of 7% (p = 0.002) and 15% (p < 0.001), respectively. For children carrying genotypes associated with high blood Mn, we observed lower performance for certain IQ subtests, increased sway, and increased scores for behavioral problems. High Mn genotypes showed odds ratios of 2–4 (p ≤ 0.01) for high scores in tests assessing ADHD-related behavior. IV analyses suggested that several of the associations were mediated by blood Mn. Conclusions: Our results suggest that common polymorphisms in SLC39A8 and SLC30A10 influence neurodevelopmental outcomes in children via differences in Mn homeostasis.
Collapse
Affiliation(s)
- Karin E Wahlberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Chiara Fedrighi
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Silvia Zoni
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Roberto G Lucchini
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
41
|
Role of ZIP8 in regulation of cisplatin sensitivity through Bcl-2. Toxicol Appl Pharmacol 2018; 362:52-58. [PMID: 30342059 DOI: 10.1016/j.taap.2018.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
ZIP8 is a membrane transporter that facilitates the uptake of divalent metals (e.g., Zn, Mn, Fe, Cd) and the mineral selenite in anionic form. ZIP8 functionality has been recently reported to regulate cell proliferation, migration and cytoskeleton arrangement, exhibiting an essential role for normal physiology. In this study, we report a ZIP8 role in chemotherapy response. We show ZIP8 regulates cell sensitivity to the anti-cancer drug cisplatin. Overexpression of ZIP8 in mouse embryonic fibroblast (MEF) cells induces cisplatin sensitivity, while knockout of ZIP8 in leukemia HAP1 cells leads to cisplatin resistance. In ZIP8 altered cells and transgenic mice, we show cisplatin is not a direct ZIP8 substrate. Further studies demonstrate that ZIP8 regulates anti-apoptotic protein Bcl-2. ZIP8 overexpression decreases Bcl-2 levels in cultured cells, mice lung and liver tissue while loss of ZIP8 elevates Bcl-2 expression in HAP1 cells and liver tissue. We also observe that ZIP8 overexpression modulates cisplatin-induced cell apoptosis, manifested by the increased protein level of cleaved Caspase-3. Since Bcl-2 elevation was previously discovered to induce cisplatin drug resistance, our results suggest ZIP8 may modulate cisplatin drug responses as well as apoptosis through Bcl-2. We therefore conclude ZIP8 is a new molecule to be involved in cisplatin drug responses and is predicted as a genetic factor to be considered in cisplatin therapy.
Collapse
|
42
|
Parajuli RP, Goodrich JM, Chan LHM, Ayotte P, Lemire M, Hegele RA, Basu N. Genetic polymorphisms are associated with exposure biomarkers for metals and persistent organic pollutants among Inuit from the Inuvialuit Settlement Region, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:569-578. [PMID: 29635199 DOI: 10.1016/j.scitotenv.2018.03.331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/12/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Inuit are exposed to some of the highest levels of contaminants worldwide. Studies suggest that several genes that mediate the metabolism of these contaminants are polymorphic. We hypothesize that single nucleotide polymorphisms (SNPs) in such genes may underline differences in biomarker concentrations and/or modify exposure-biomarker associations. METHODS Members from the Inuvialuit Settlement Region (Canada) were recruited. Blood concentrations of mercury (Hg), cadmium (Cd), lead (Pb), dichlorodiphenyldichloroethylene (DDE), and polychlorinated biphenyl (PCB-153) were measured. SNPs from pathways such as glutathione, metallothionein, oxidative stress, and xenobiotic transport were genotyped in 281 participants, and data from 112 SNPs were included in the analyses. Surveys were administered to obtain information on demographics, and key sources of Hg (diet) and Cd (smoking) exposure. ANOVA and linear regressions were used for data analyses. RESULTS Geometric mean concentrations of metals were 4.6μg/L for Hg, 1.3μg/L for Cd, and 32.2μg/L for Pb. Concentrations of organic pollutants were 2.0μg/L for DDE and 0.6μg/L for PCB-153. Biomarker levels for Hg, Cd, Pb, DDE, and PCB-153 differed (p<0.05) by genotype for 4, 3, 4, 3, and 3 SNPs, respectively. In multivariable analyses (for Pb, DDE, PCB-153) adjusting age, sex and body mass index (BMI), only 2 associations (one for Pb and one for DDE) remained significant. In multivariable analyses accounting for sources of Hg or Cd exposure, 24 SNPs (9 for Hg, 15 for Cd with 4 overlapping) had significant (p<0.05) main effects on biomarker levels and/or modified exposure-biomarker associations. CONCLUSION The findings suggest that polymorphisms in key environmentally responsive genes can influence biomarker levels and/or modify exposure-biomarker associations for contaminants of concern to Arctic populations. Consideration of such gene-environment results may help improve the ability to conduct exposure (and ultimately risk) assessments of country foods and Inuit health.
Collapse
Affiliation(s)
- Rajendra Prasad Parajuli
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Université Laval, QC, Canada; Centre de toxicologie du Québec, Institut national de santé publique du Québec, QC, Canada
| | - Melanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Université Laval, QC, Canada
| | | | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Ng FL, Warren HR, Caulfield MJ. Hypertension genomics and cardiovascular prevention. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:291. [PMID: 30211179 DOI: 10.21037/atm.2018.06.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypertension continues to be a major risk factor for global mortality, and recent genome-wide association studies (GWAS) have expanded in size, leading to the identification of further genetic loci influencing blood pressure. In light of the new knowledge from the largest cardiovascular GWAS to date, we review the potential impact of genomics on discovering potential drug targets, risk stratification with genetic risk scores, drug selection with pharmacogenetics, and exploring insights provided by gene-environment interactions.
Collapse
Affiliation(s)
- Fu Liang Ng
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| | - Helen R Warren
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| |
Collapse
|
44
|
Baltaci AK, Yuce K. Zinc Transporter Proteins. Neurochem Res 2018; 43:517-530. [PMID: 29243032 DOI: 10.1007/s11064-017-2454-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/06/2023]
Abstract
Zinc, which is involved in the structure of all enzyme classes, is a micro nutrient element and necessary for growth and development. The ability of zinc to function without causing toxic effects is depends on the protection of its homeostasis. Zinc transporter proteins are responsible for keeping zinc at certain concentrations. Based on their predicted membrane topology, Zn transporters are divided into two major families, SLC39s/ZIPs and SLC30s/ZnTs, which transport Zn in opposite directions through cellular and intracellular membranes. ZIPs increases the zinc concentration in the cytosol. For this, the ZIPs carries the zinc from extracellular and intracellular compartments to the cytosol. ZnTs, reduces the concentration of zinc in the cytosol. For this, ZnTs carries the zinc from the cytosol to extracellular and intracellular compartments. After being transported to the cell, 50% of the zinc is found in the cytoplasm, 30-40% in the nucleus, and 10% in the plasma and organelle membranes. The expression of many zinc transporter proteins in the cell is depending on the concentration of zinc and the physiological problems. The aim of this study is to give information about association of zinc transporter proteins with physiological events and health problems.
Collapse
Affiliation(s)
| | - Kemal Yuce
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
45
|
Costas J. The highly pleiotropic gene SLC39A8 as an opportunity to gain insight into the molecular pathogenesis of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2018; 177:274-283. [PMID: 28557351 DOI: 10.1002/ajmg.b.32545] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
There is a long way from the initial discovery of a genome-wide significant signal to mechanistic understanding of the association. Identification of the gene and causal polymorphism usually requires an extensive additional effort. The schizophrenia genome-wide significant locus at 4q24 may be a rare exception to this pattern. As discussed in this review, the association at this locus is most probably driven by a functional missense variant at the metal cations transporter SLC39A8. The variant, rs13107325, is almost exclusive of European populations and is one of the most pleiotropic variants of the genome, being associated at genome-wide significant level with several additional traits, such as body mass index, Crohn's disease, blood pressure related-traits, and serum levels of manganese, N-terminal pro-B-type natriuretic peptide and HDL-cholesterol. SLC39A8 seems to be subject to recent natural selection in Europeans. It is almost ubiquitously expressed and its physiological role is beginning to be elucidated, mainly in relation to immunity. This manuscript presents arguments in favor of the rs13107325 variant as the functional variant responsible for the association of this locus with schizophrenia, reviews the genetic associations with this gene, the evidences of natural selection on the gene, and the known aspects about its structure and physiological functions. Finally, some hypotheses about putative mechanisms for its association with schizophrenia are presented based on this knowledge, including impaired immunity/inflammation, interference with glutamatergic neurotransmission, homeostasis of essential metals in brain, such as iron, zinc or manganese, or neurotoxicity by heavy metals, such as cadmium or lead.
Collapse
Affiliation(s)
- Javier Costas
- Grupo de Xenética Psiquiátrica, Hospital Clínico Universitario de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
46
|
Mathew RO, Schulman-Marcus J, Nichols EL, Newman JD, Bangalore S, Farkouh M, Sidhu MS. Chelation Therapy as a Cardiovascular Therapeutic Strategy: the Rationale and the Data in Review. Cardiovasc Drugs Ther 2017; 31:619-625. [DOI: 10.1007/s10557-017-6759-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
47
|
Orr SE, Bridges CC. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int J Mol Sci 2017; 18:ijms18051039. [PMID: 28498320 PMCID: PMC5454951 DOI: 10.3390/ijms18051039] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/26/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of functional nephrons. As injured nephrons become sclerotic and die, the remaining healthy nephrons undergo numerous structural, molecular, and functional changes in an attempt to compensate for the loss of diseased nephrons. These compensatory changes enable the kidney to maintain fluid and solute homeostasis until approximately 75% of nephrons are lost. As CKD continues to progress, glomerular filtration rate decreases, and remaining nephrons are unable to effectively eliminate metabolic wastes and environmental toxicants from the body. This inability may enhance mortality and/or morbidity of an individual. Environmental toxicants of particular concern are arsenic, cadmium, lead, and mercury. Since these metals are present throughout the environment and exposure to one or more of these metals is unavoidable, it is important that the way in which these metals are handled by target organs in normal and disease states is understood completely.
Collapse
Affiliation(s)
- Sarah E Orr
- Mercer University School of Medicine, Division of Basic Medical Sciences, 1550 College St., Macon, GA 31207, USA.
| | - Christy C Bridges
- Mercer University School of Medicine, Division of Basic Medical Sciences, 1550 College St., Macon, GA 31207, USA.
| |
Collapse
|
48
|
Lin W, Vann DR, Doulias PT, Wang T, Landesberg G, Li X, Ricciotti E, Scalia R, He M, Hand NJ, Rader DJ. Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J Clin Invest 2017; 127:2407-2417. [PMID: 28481222 DOI: 10.1172/jci90896] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
Genetic variants at the solute carrier family 39 member 8 (SLC39A8) gene locus are associated with the regulation of whole-blood manganese (Mn) and multiple physiological traits. SLC39A8 encodes ZIP8, a divalent metal ion transporter best known for zinc transport. Here, we hypothesized that ZIP8 regulates Mn homeostasis and Mn-dependent enzymes to influence metabolism. We generated Slc39a8-inducible global-knockout (ZIP8-iKO) and liver-specific-knockout (ZIP8-LSKO) mice and observed markedly decreased Mn levels in multiple organs and whole blood of both mouse models. By contrast, liver-specific overexpression of human ZIP8 (adeno-associated virus-ZIP8 [AAV-ZIP8]) resulted in increased tissue and whole blood Mn levels. ZIP8 expression was localized to the hepatocyte canalicular membrane, and bile Mn levels were increased in ZIP8-LSKO and decreased in AAV-ZIP8 mice. ZIP8-LSKO mice also displayed decreased liver and kidney activity of the Mn-dependent enzyme arginase. Both ZIP8-iKO and ZIP8-LSKO mice had defective protein N-glycosylation, and humans homozygous for the minor allele at the lead SLC39A8 variant showed hypogalactosylation, consistent with decreased activity of another Mn-dependent enzyme, β-1,4-galactosyltransferase. In summary, hepatic ZIP8 reclaims Mn from bile and regulates whole-body Mn homeostasis, thereby modulating the activity of Mn-dependent enzymes. This work provides a mechanistic basis for the association of SLC39A8 with whole-blood Mn, potentially linking SLC39A8 variants with other physiological traits.
Collapse
Affiliation(s)
- Wen Lin
- Department of Medicine, Perelman School of Medicine, and
| | - David R Vann
- Department of Earth and Environmental Science, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Research Institute and Department of Pharmacology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tao Wang
- Department of Medicine, Perelman School of Medicine, and
| | - Gavin Landesberg
- Department of Physiology, Temple University, Philadelphia, Pennsylvania, USA
| | - Xueli Li
- Palmieri Metabolic Disease Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Rosario Scalia
- Department of Physiology, Temple University, Philadelphia, Pennsylvania, USA
| | - Miao He
- Palmieri Metabolic Disease Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, and
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, and.,Institute for Translational Medicine and Therapeutics.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|