1
|
Huang HYR, Vitali C, Zhang D, Hand NJ, Phillips MC, Creasy KT, Scorletti E, Park J, Regeneron Centre, Schneider KM, Rader DJ, Schneider CV. Deep metabolic phenotyping of humans with protein-altering variants in TM6SF2 using a genome-first approach. JHEP Rep 2025; 7:101243. [PMID: 39687601 PMCID: PMC11647476 DOI: 10.1016/j.jhepr.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024] Open
Abstract
Background & Aim An unbiased genome-first approach can expand the molecular understanding of specific genes in disease-agnostic biobanks for deeper phenotyping. TM6SF2 represents a good candidate for this approach due to its known association with steatotic liver disease (SLD). Methods We screened participants with whole-exome sequences in the Penn Medicine Biobank (PMBB, n >40,000) and the UK Biobank (UKB, n >200,000) for protein-altering variants in TM6SF2 and evaluated their association with liver phenotypes and clinical outcomes. Results Missense variants in TM6SF2 (E167K, L156P, P216L) were associated with an increased risk of clinically diagnosed and imaging-proven steatosis, independent of the PNPLA3 I48M risk allele and hepatitis B/C (p <0.001). E167K homozygotes had significantly increased risk of SLD (odds ratio [OR] 5.38, p <0.001), steatohepatitis (OR 5.76, p <0.05) and hepatocellular carcinoma (OR 11.22, p <0.0001), while heterozygous carriers of L156P and P216L were also at an increased risk of steatohepatitis. In addition, carriers of E167K are at a 3-fold increased risk of at-risk MASH (OR 2.75, p <0.001). CT-derived liver fat scores were higher in E167K and L156P in an allele-dose manner (p <0.05). This corresponded with the UKB nuclear magnetic resonance-derived lipidomic analyses (n = 105,348), revealing all carriers to exhibit lower total cholesterol, triglycerides and total choline. In silico predictions suggested that these missense variants cause structural disruptions in the EXPERA domain, leading to reduced protein function. This hypothesis was supported by the association of rare loss-of-function variants in TM6SF2 with an increased risk of SLD (OR 4.9, p <0.05), primarily driven by a novel rare stop-gain variant (W35X) with the same directionality. Conclusion The functional genetic study of protein-altering variants provides insights on the association between loss of TM6SF2 function and SLD and provides the basis for future mechanistic studies. Impact and implications The genome-first approach expands insights into genetic risk factors for steatotic liver disease with TM6SF2 being a focal point due to its known association with plasma lipid traits. Our findings validated the association of two missense variants (E167K and L156P) with increased risk of hepatic steatosis on CT and MRI scans, as well as the risk of clinically diagnosed hepatocellular carcinoma independent of the common PNPLA3 I48M risk variant. Notably, we also identified a predicted deleterious missense variant (P216L) linked to steatotic risk and demonstrated that an aggregated gene burden of rare putative loss-of-function variants was associated with the risk of hepatic steatosis. Combined, this study sets the stage for future mechanistic investigations into the functional consequences of TM6SF2 variants in metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Zhang
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Hand
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C. Phillips
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kate Townsend Creasy
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eleonora Scorletti
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Park
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- NewYork-Presbyterian, Weill Cornell Medical Center, New York, NY 10065, USA
| | | | - Kai Markus Schneider
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Medical Department 1, Technische Universität, Dresden, Germany
| | - Daniel J. Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolin Victoria Schneider
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
2
|
Burks KH, Stitziel NO, Davidson NO. Molecular Regulation and Therapeutic Targeting of VLDL Production in Cardiometabolic Disease. Cell Mol Gastroenterol Hepatol 2024; 19:101409. [PMID: 39406347 PMCID: PMC11609389 DOI: 10.1016/j.jcmgh.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
There exists a complex relationship between steatotic liver disease (SLD) and atherosclerotic cardiovascular disease (CVD). CVD is a leading cause of morbidity and mortality among individuals with SLD, particularly those with metabolic dysfunction-associated SLD (MASLD), a significant proportion of whom also exhibit features of insulin resistance. Recent evidence supports an expanded role of very low-density lipoprotein (VLDL) in the pathogenesis of CVD in patients, both with and without associated metabolic dysfunction. VLDL represents the major vehicle for exporting neutral lipid from hepatocytes, with each particle containing one molecule of apolipoproteinB100 (APOB100). VLDL production becomes dysregulated under conditions characteristic of MASLD including steatosis and insulin resistance. Insulin resistance not only affects VLDL production but also mediates the pathogenesis of atherosclerotic CVD. VLDL assembly and secretion therefore represents an important pathway in the setting of cardiometabolic disease and offers several candidates for therapeutic targeting, particularly in metabolically complex patients with MASLD at increased risk of atherosclerotic CVD. Here we review the clinical significance as well as the translational and therapeutic potential of key regulatory steps impacting VLDL initiation, maturation, secretion, catabolism, and clearance.
Collapse
Affiliation(s)
- Kendall H Burks
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, Missouri
| | - Nathan O Stitziel
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
3
|
Sun B, Ding X, Tan J, Zhang J, Chu X, Zhang S, Liu S, Zhao Z, Xuan S, Xin Y, Zhuang L. TM6SF2 E167K variant decreases PNPLA3-mediated PUFA transfer to promote hepatic steatosis and injury in MASLD. Clin Mol Hepatol 2024; 30:863-882. [PMID: 39054606 PMCID: PMC11540376 DOI: 10.3350/cmh.2024.0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUNDS/AIMS Transmembrane 6 superfamily member 2 (TM6SF2) E167K variant is closely associated with the occurrence and development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the role and mechanism of TM6SF2 E167K variant during MASLD progression are not yet fully understood. METHODS The Tm6sf2167K knock-in (KI) mice were subjected to high-fat diet (HFD). Hepatic lipid levels of Tm6sf2167K KI mice were detected by lipidomics analysis. Thin-layer chromatography (TLC) was used to measure the newly synthesized triglyceride (TG) and phosphatidylcholine (PC). RESULTS The TM6SF2 E167K variant significantly aggravated hepatic steatosis and injury in HFD-induced mice. Decreased polyunsaturated PC level and increased polyunsaturated TG level were found in liver tissue of HFD-induced Tm6sf2167K KI mice. Mechanistic studies demonstrated that the TM6SF2 E167K variant increased the interaction between TM6SF2 and PNPLA3, and impaired PNPLA3-mediated transfer of polyunsaturated fatty acids (PUFAs) from TG to PC. The TM6SF2 E167K variant increased the level of fatty acid-induced malondialdehyde and reactive oxygen species, and decreased fatty acid-downregulated cell membrane fluidity. Additionally, the TM6SF2 E167K variant decreased the level of hepatic PC containing C18:3, and dietary supplementation of PC containing C18:3 significantly attenuated the TM6SF2 E167K-induced hepatic steatosis and injury in HFD-fed mice. CONCLUSION The TM6SF2 E167K variant could promote its interaction with PNPLA3 and inhibit PNPLA3-mediated transfer of PUFAs from TG to PC, resulting in the hepatic steatosis and injury during MASLD progression. PC containing C18:3 could act as a potential therapeutic supplement for MASLD patients carrying the TM6SF2 E167K variant.
Collapse
Affiliation(s)
- Baokai Sun
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiaoqian Ding
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie Tan
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie Zhang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xueru Chu
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shuimi Zhang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhenzhen Zhao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shiying Xuan
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yongning Xin
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Likun Zhuang
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Koyama S, Yu Z, Choi SH, Jurgens SJ, Selvaraj MS, Klarin D, Huffman JE, Clarke SL, Trinh MN, Ravi A, Dron JS, Spinks C, Surakka I, Bhatnagar A, Lannery K, Hornsby W, Damrauer SM, Chang KM, Lynch JA, Assimes TL, Tsao PS, Rader DJ, Cho K, Peloso GM, Ellinor PT, Sun YV, Wilson PWF, Program MV, Natarajan P. Exome wide association study for blood lipids in 1,158,017 individuals from diverse populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.17.24313718. [PMID: 39371182 PMCID: PMC11451673 DOI: 10.1101/2024.09.17.24313718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Rare coding alleles play crucial roles in the molecular diagnosis of genetic diseases. However, the systemic identification of these alleles has been challenging due to their scarcity in the general population. Here, we discovered and characterized rare coding alleles contributing to genetic dyslipidemia, a principal risk for coronary artery disease, among over a million individuals combining three large contemporary genetic datasets (the Million Veteran Program, n = 634,535, UK Biobank, n = 431,178, and the All of Us Research Program, n = 92,304) totaling 1,158,017 multi-ancestral individuals. Unlike previous rare variant studies in lipids, this study included 238,243 individuals (20.6%) from non-European-like populations. Testing 2,997,401 rare coding variants from diverse backgrounds, we identified 800 exome-wide significant associations across 209 genes including 176 predicted loss of function and 624 missense variants. Among these exome-wide associations, 130 associations were driven by non-European-like populations. Associated alleles are highly enriched in functional variant classes, showed significant additive and recessive associations, exhibited similar effects across populations, and resolved pathogenicity for variants enriched in African or South-Asian populations. Furthermore, we identified 5 lipid-related genes associated with coronary artery disease (RORC, CFAP65, GTF2E2, PLCB3, and ZNF117). Among them, RORC is a potentially novel therapeutic target through the down regulation of LDLC by its silencing. This study provides resources and insights for understanding causal mechanisms, quantifying the expressivity of rare coding alleles, and identifying novel drug targets across diverse populations.
Collapse
Affiliation(s)
- Satoshi Koyama
- VA Boston Healthcare System, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Zhi Yu
- VA Boston Healthcare System, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Seung Hoan Choi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sean J. Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Department of Experimental Cardiology, Heart Center, Heart Failure and Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Margaret Sunitha Selvaraj
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Derek Klarin
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | | | - Shoa L. Clarke
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Michael N. Trinh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Akshaya Ravi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Jacqueline S. Dron
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Catherine Spinks
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Ida Surakka
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Aarushi Bhatnagar
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Kim Lannery
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Whitney Hornsby
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania, Philadelphia, PA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania, Philadelphia, PA
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT
- College of Nursing and Health Sciences, University of Massachusetts, Boston, MA
| | - Themistocles L. Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Philip S. Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Kelly Cho
- VA Boston Healthcare System, Boston, MA
- Massachusetts General Brigham, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Gina M. Peloso
- VA Boston Healthcare System, Boston, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Yan V. Sun
- VA Atlanta Healthcare System, Decatur, GA
- Department of Epidemiology and Global Health, Emory University Rollins School of Public Health, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Peter WF. Wilson
- VA Atlanta Healthcare System, Decatur, GA
- Emory University School of Medicine, Atlanta, GA
| | | | - Pradeep Natarajan
- VA Boston Healthcare System, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Faccioli LA, Sun Y, Animasahun O, Motomura T, Liu Z, Kurihara T, Hu Z, Yang B, Cetin Z, Baratta AM, Shankaran A, Nenwani M, Altay LN, Huang L, Meurs N, Franks J, Stolz D, Gavlock DC, Miedel MT, Ostrowska A, Florentino RM, Fox IJ, Nagrath D, Soto-Gutierrez A. Human-induced pluripotent stem cell-based hepatic modeling of lipid metabolism-associated TM6SF2-E167K variant. Hepatology 2024:01515467-990000000-01008. [PMID: 39190693 PMCID: PMC11865362 DOI: 10.1097/hep.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND AND AIMS TM6SF2 rs58542926 (E167K) is related to an increased prevalence of metabolic dysfunction-associated steatotic liver disease. Conflicting mouse study results highlight the need for a human model to understand this mutation's impact. This study aims to create and characterize a reliable human in vitro model to mimic the effects of the TM6SF2-E167K mutation for future studies. APPROACH AND RESULTS We used gene editing on human-induced pluripotent stem cells from a healthy individual to create cells with the TM6SF2-E167K mutation. After hepatocyte-directed differentiation, we observed decreased TM6SF2 protein expression, increased intracellular lipid droplets, and total cholesterol, in addition to reduced VLDL secretion. Transcriptomics revealed the upregulation of genes involved in lipid, fatty acid, and cholesterol transport, flux, and oxidation. Global lipidomics showed increased lipid classes associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, apoptosis, and lipid metabolism. In addition, the TM6SF2-E167K mutation conferred a proinflammatory phenotype with signs of mitochondria and ER stress. Importantly, by facilitating protein folding within the ER of hepatocytes carrying TM6SF2-E167K mutation, VLDL secretion and ER stress markers improved. CONCLUSIONS Our findings indicate that induced hepatocytes generated from human-induced pluripotent stem cells carrying the TM6SF2-E167K recapitulate the effects observed in human hepatocytes from individuals with the TM6SF2 mutation. This study characterizes an in vitro model that can be used as a platform to identify potential clinical targets and highlights the therapeutic potential of targeting protein misfolding to alleviate ER stress and mitigate the detrimental effects of the TM6SF2-E167K mutation on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lanuza A.P. Faccioli
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yiyue Sun
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, PRC
| | - Olamide Animasahun
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhenghao Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Takeshi Kurihara
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bo Yang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annalisa M. Baratta
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ajay Shankaran
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Minal Nenwani
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Leyla Nurcihan Altay
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Linqi Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah Meurs
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Franks
- Department of Cell Biology and Physiology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna Stolz
- Department of Cell Biology and Physiology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dillon C. Gavlock
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark T. Miedel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ira J. Fox
- Department of Surgery, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deepak Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Liu J, Ginsberg HN, Reyes-Soffer G. Basic and translational evidence supporting the role of TM6SF2 in VLDL metabolism. Curr Opin Lipidol 2024; 35:157-161. [PMID: 38465912 PMCID: PMC11168781 DOI: 10.1097/mol.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PURPOSE OF REVIEW Transmembrane 6 superfamily member 2 ( TM6SF2 ) gene was identified through exome-wide studies in 2014. A genetic variant from glutamic acid to lysine substitution at amino acid position 167 (NM_001001524.3:c.499G> A) (p.Gln167Lys/p.E167K, rs58542926) was discovered (p.E167K) to be highly associated with increased hepatic fat content and reduced levels of plasma triglycerides and LDL cholesterol. In this review, we focus on the discovery of TM6SF2 and its role in VLDL secretion pathways. Human data suggest TM6SF2 is linked to hepatic steatosis and cardiovascular disease (CVD), hence understanding its metabolic pathways is of high scientific interest. RECENT FINDINGS Since its discovery, completed research studies in cell, rodent and human models have defined the role of TM6SF2 and its links to human disease. TM6SF2 resides in the endoplasmic reticulum (ER) and the ER-Golgi interface and helps with the lipidation of nascent VLDL, the main carrier of triglycerides from the liver to the periphery. Consistent results from cells and rodents indicated that the secretion of triglycerides is reduced in carriers of the p.E167K variant or when hepatic TM6SF2 is deleted. However, data for secretion of APOB, the main protein of VLDL particles responsible for triglycerides transport, are inconsistent. SUMMARY The identification of genetic variants that are highly associated with human disease presentation should be followed by the validation and investigation into the pathways that regulate disease mechanisms. In this review, we highlight the role of TM6SF2 and its role in processing of liver triglycerides.
Collapse
Affiliation(s)
- Jing Liu
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | | |
Collapse
|
7
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Faccioli LA, Sun Y, Motomura T, Liu Z, Kurihara T, Hu Z, Cetin Z, Franks J, Stolz D, Ostrowska A, Florentino RM, Fox IJ, Soto-Gutierrez A. Human Induced Pluripotent Stem Cell based Hepatic-Modeling of Lipid metabolism associated TM6SF2 E167K variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572248. [PMID: 38187603 PMCID: PMC10769275 DOI: 10.1101/2023.12.18.572248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND AIMS TM6SF2 rs58542926 (E167K) is associated with an increase in the prevalence of Metabolic Disfunction-Associated Steatotic Liver Disease (MASLD). Despite all the investigation related to the role of this variant in lipid metabolism, conflicting results in mouse studies underscore the importance of creating a human model for understanding the TM6SF2 mechanism. Therefore, the aim of this study is to generate a reliable human in vitro model that mimic the effects of the TM6SF2 E167K mutation and can be used for future mechanism studies. APPROACH AND RESULTS We performed gene editing on human-induced pluripotent stem cells (iPSC) derived from a healthy individual to obtain the cells carrying the TM6SF2 E167K mutation. After hepatic differentiation, a decrease in TM6SF2 protein expression was observed in the mutated-induced hepatocyte. An increase in intracellular lipid droplets and a decrease in the efflux of cholesterol and ApoB100 were also observed. Transcriptomics analysis showed up-regulation of genes related to the transport, flux, and oxidation of lipids, fatty acids, and cholesterol in TM6SF2 E167K cells. Additionally, signs of cellular stress were observed in the ER and mitochondria. CONCLUSIONS Our findings indicate that induced hepatocytes generated from iPSC carrying the TM6SF2 E167K recapitulate the effects observed in human hepatocytes from individuals with the TM6SF2 mutation. This study characterizes an in vitro model that can be used as a platform to help in the identification of potential clinical targets and therapies and to understand the mechanism by which the TM6SF2 E167K variant leads to vulnerability to MASLD.
Collapse
|
9
|
Pourteymour S, Drevon CA, Dalen KT, Norheim FA. Mechanisms Behind NAFLD: a System Genetics Perspective. Curr Atheroscler Rep 2023; 25:869-878. [PMID: 37812367 DOI: 10.1007/s11883-023-01158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW To summarize the key factors contributing to the onset and progress of nonalcoholic fatty liver disease (NAFLD) and put them in a system genetics context. We particularly focus on how genetic regulation of hepatic lipids contributes to NAFLD. RECENT FINDINGS NAFLD is characterized by excessive accumulation of fat in the liver. This can progress to steatohepatitis (inflammation and hepatocyte injury) and eventually, cirrhosis. The severity of NAFLD is determined by a combination of factors including obesity, insulin resistance, and lipotoxic lipids, along with genetic susceptibility. Numerous studies have been conducted on large human cohorts and mouse panels, to identify key determinants in the genome, transcriptome, proteome, lipidome, microbiome and different environmental conditions contributing to NAFLD. We review common factors contributing to NAFLD and put them in a systems genetics context. In particular, we describe how genetic regulation of liver lipids contributes to NAFLD. The combination of an unhealthy lifestyle and genetic predisposition increases the likelihood of accumulating lipotoxic specie lipids that may be one of the driving forces behind developing severe forms of NAFLD.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway
- Vitas Ltd. Oslo Science Park, Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway.
| |
Collapse
|
10
|
Reyes-Soffer G, Liu J, Thomas T, Matveyenko A, Seid H, Ramakrishnan R, Holleran S, Zaghloul N, Sztalryd-Woodle C, Pollin T, Ginsberg HN. TM6SF2 Determines Both the Degree of Lipidation and the Number of VLDL Particles Secreted by the Liver. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.23.23291823. [PMID: 37425717 PMCID: PMC10327233 DOI: 10.1101/2023.06.23.23291823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In 2014, exome-wide studies identified a glutamine176lysine (p.E167K) substitution in a protein of unknown function named transmembrane 6 superfamily member 2 (TM6SF2). The p.E167K variant was associated with increased hepatic fat content and reduced levels of plasma TG and LDL cholesterol. Over the next several years, additional studies defined the role of TM6SF2, which resides in the ER and the ER-Golgi interface, in the lipidation of nascent VLDL to generate mature, more TG-rich VLDL. Consistent results from cells and rodents indicated that the secretion of TG was reduced in the p.E167K variant or when hepatic TM6SF2 was deleted. However, data for secretion of APOB was inconsistent, either reduced or increased secretion was observed. A recent study of people homozygous for the variant demonstrated reduced in vivo secretion of large, TG-rich VLDL1 into plasma; both TG and APOB secretion were reduced. Here we present new results demonstrating increased secretion of VLDL APOB with no change in TG secretion in p.E167K homozygous individuals from the Lancaster Amish community compared to their wild-type siblings. Our in vivo kinetic tracer results are supported by in vitro experiments in HepG2 and McA cells with knock-down or Crispr-deletions of TM6SF2, respectively. We offer a model to potentially explain all of the prior data and our new results.
Collapse
|
11
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Li TT, Cui YT, Li TH, Xiang Q, Chen YY, Zheng XL, Peng J, Tang ZH. TM6SF2 reduces lipid accumulation in vascular smooth muscle cells by inhibiting LOX-1 and CD36 expression. Exp Cell Res 2023:113666. [PMID: 37271250 DOI: 10.1016/j.yexcr.2023.113666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
TM6SF2, predominantly expressed in the liver and intestine, is closely associated with lipid metabolism. We have demonstrated the presence of TM6SF2 in VSMCs within human atherosclerotic plaques. Subsequent functional studies were conducted to investigate its role in lipid uptake and accumulation in human vascular smooth muscle cells (HAVSMCs) using siRNA knockdown and overexpression techniques. Our results showed that TM6SF2 reduced lipid accumulation in oxLDL-stimulated VSMCs, likely through the regulation of lectin-like oxLDL receptor 1 (LOX-1) and scavenger receptor cluster of differentiation 36 (CD36) expression. We concluded that TM6SF2 plays a role in HAVSMC lipid metabolism with opposing effects on cellular lipid droplet content by downregulation of LOX-1 and CD36 expression.
Collapse
Affiliation(s)
- Ting-Ting Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Yu-Ting Cui
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Tao-Hua Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Department of Pathology, Hengyang Central Hospital, Hengyang, 421001, Hunan, PR China
| | - Qiong Xiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Yan-Yu Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China.
| |
Collapse
|
13
|
Govaere O, Anstee QM. Non-Alcoholic Fatty Liver Disease and Steatohepatitis. ENCYCLOPEDIA OF CELL BIOLOGY 2023:610-621. [DOI: 10.1016/b978-0-12-821618-7.00265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA, Loukola A, Lahtela E, Mattsson H, Laiho P, Della Briotta Parolo P, Lehisto AA, Kanai M, Mars N, Rämö J, Kiiskinen T, Heyne HO, Veerapen K, Rüeger S, Lemmelä S, Zhou W, Ruotsalainen S, Pärn K, Hiekkalinna T, Koskelainen S, Paajanen T, Llorens V, Gracia-Tabuenca J, Siirtola H, Reis K, Elnahas AG, Sun B, Foley CN, Aalto-Setälä K, Alasoo K, Arvas M, Auro K, Biswas S, Bizaki-Vallaskangas A, Carpen O, Chen CY, Dada OA, Ding Z, Ehm MG, Eklund K, Färkkilä M, Finucane H, Ganna A, Ghazal A, Graham RR, Green EM, Hakanen A, Hautalahti M, Hedman ÅK, Hiltunen M, Hinttala R, Hovatta I, Hu X, Huertas-Vazquez A, Huilaja L, Hunkapiller J, Jacob H, Jensen JN, Joensuu H, John S, Julkunen V, Jung M, Junttila J, Kaarniranta K, Kähönen M, Kajanne R, Kallio L, Kälviäinen R, Kaprio J, Kerimov N, Kettunen J, Kilpeläinen E, Kilpi T, Klinger K, Kosma VM, Kuopio T, Kurra V, Laisk T, Laukkanen J, Lawless N, Liu A, Longerich S, Mägi R, Mäkelä J, Mäkitie A, Malarstig A, Mannermaa A, Maranville J, Matakidou A, Meretoja T, Mozaffari SV, et alKurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA, Loukola A, Lahtela E, Mattsson H, Laiho P, Della Briotta Parolo P, Lehisto AA, Kanai M, Mars N, Rämö J, Kiiskinen T, Heyne HO, Veerapen K, Rüeger S, Lemmelä S, Zhou W, Ruotsalainen S, Pärn K, Hiekkalinna T, Koskelainen S, Paajanen T, Llorens V, Gracia-Tabuenca J, Siirtola H, Reis K, Elnahas AG, Sun B, Foley CN, Aalto-Setälä K, Alasoo K, Arvas M, Auro K, Biswas S, Bizaki-Vallaskangas A, Carpen O, Chen CY, Dada OA, Ding Z, Ehm MG, Eklund K, Färkkilä M, Finucane H, Ganna A, Ghazal A, Graham RR, Green EM, Hakanen A, Hautalahti M, Hedman ÅK, Hiltunen M, Hinttala R, Hovatta I, Hu X, Huertas-Vazquez A, Huilaja L, Hunkapiller J, Jacob H, Jensen JN, Joensuu H, John S, Julkunen V, Jung M, Junttila J, Kaarniranta K, Kähönen M, Kajanne R, Kallio L, Kälviäinen R, Kaprio J, Kerimov N, Kettunen J, Kilpeläinen E, Kilpi T, Klinger K, Kosma VM, Kuopio T, Kurra V, Laisk T, Laukkanen J, Lawless N, Liu A, Longerich S, Mägi R, Mäkelä J, Mäkitie A, Malarstig A, Mannermaa A, Maranville J, Matakidou A, Meretoja T, Mozaffari SV, Niemi MEK, Niemi M, Niiranen T, O Donnell CJ, Obeidat ME, Okafo G, Ollila HM, Palomäki A, Palotie T, Partanen J, Paul DS, Pelkonen M, Pendergrass RK, Petrovski S, Pitkäranta A, Platt A, Pulford D, Punkka E, Pussinen P, Raghavan N, Rahimov F, Rajpal D, Renaud NA, Riley-Gillis B, Rodosthenous R, Saarentaus E, Salminen A, Salminen E, Salomaa V, Schleutker J, Serpi R, Shen HY, Siegel R, Silander K, Siltanen S, Soini S, Soininen H, Sul JH, Tachmazidou I, Tasanen K, Tienari P, Toppila-Salmi S, Tukiainen T, Tuomi T, Turunen JA, Ulirsch JC, Vaura F, Virolainen P, Waring J, Waterworth D, Yang R, Nelis M, Reigo A, Metspalu A, Milani L, Esko T, Fox C, Havulinna AS, Perola M, Ripatti S, Jalanko A, Laitinen T, Mäkelä TP, Plenge R, McCarthy M, Runz H, Daly MJ, Palotie A. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023; 613:508-518. [PMID: 36653562 PMCID: PMC9849126 DOI: 10.1038/s41586-022-05473-8] [Show More Authors] [Citation(s) in RCA: 1800] [Impact Index Per Article: 900.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/21/2022] [Indexed: 01/20/2023]
Abstract
Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10-11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.
Collapse
Affiliation(s)
- Mitja I Kurki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Timo P Sipilä
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | - Kati M Donner
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Mary P Reeve
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent and Maternal Health, University of Tampere, Tampere, Finland
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Anu Loukola
- Helsinki Biobank, University of Helsinki and Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Elisa Lahtela
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Hannele Mattsson
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Päivi Laiho
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Pietro Della Briotta Parolo
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Arto A Lehisto
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Masahiro Kanai
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Joel Rämö
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Henrike O Heyne
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Digital Health Center, Hasso Plattner Institute for Digital Engineering, University of Potsdam Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kumar Veerapen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sina Rüeger
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Susanna Lemmelä
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Kalle Pärn
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tero Hiekkalinna
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Sami Koskelainen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Teemu Paajanen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Vincent Llorens
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Javier Gracia-Tabuenca
- TAUCHI Research Center, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Harri Siirtola
- TAUCHI Research Center, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Kadri Reis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Benjamin Sun
- Translational Biology, Research and Development, Biogen, Cambridge, MA, USA
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Christopher N Foley
- Optima Partners, Edinburgh, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Mikko Arvas
- Finnish Red Cross Blood Service, Helsinki, Finland
| | | | | | | | - Olli Carpen
- Helsinki Biobank, University of Helsinki and Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | | | - Oluwaseun A Dada
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Zhihao Ding
- Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | | | - Kari Eklund
- Division of Rheumatology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Orton Orthopedic Hospital, Helsinki, Finland
| | - Martti Färkkilä
- Abdominal Center, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| | - Hilary Finucane
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Awaisa Ghazal
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | | | - Antti Hakanen
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Åsa K Hedman
- Pfizer, New York, NY, USA
- Department of Medicine, Karolinska Institute, Solna, Sweden
| | - Mikko Hiltunen
- Clinical Biobank Tampere, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Reetta Hinttala
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | - Iiris Hovatta
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | - Laura Huilaja
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | | | | | | | - Heikki Joensuu
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Valtteri Julkunen
- Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | - Marc Jung
- Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Juhani Junttila
- Northern Finland Biobank Borealis, University of Oulu, Northern Ostrobothnia Hospital District, Oulu, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mika Kähönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Risto Kajanne
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Lila Kallio
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | - Reetta Kälviäinen
- Epilepsy Center, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Nurlan Kerimov
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Johannes Kettunen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Computational Medicine, Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Elina Kilpeläinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Terhi Kilpi
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | | | - Veli-Matti Kosma
- Biobank of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | - Teijo Kuopio
- Central Finland Biobank, Central Finland Health Care District, Jyväskylä, Finland
| | - Venla Kurra
- Department of Clinical Genetics, Tampere University Hospital, Tampere, Finland
- Department of Clinical Genetics, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jari Laukkanen
- Central Finland Biobank, Central Finland Health Care District, Jyväskylä, Finland
- Department of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Aoxing Liu
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Anders Malarstig
- Pfizer, Cambridge, MA, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden
| | - Arto Mannermaa
- Biobank of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | | | - Athena Matakidou
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tuomo Meretoja
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Mari E K Niemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Marianna Niemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- TAUCHI Research Center & Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Teemu Niiranen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Turku University Hospital and University of Turku, Turku, Finland
| | | | - Ma En Obeidat
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - George Okafo
- Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Antti Palomäki
- Turku University Hospital and University of Turku, Turku, Finland
| | - Tuula Palotie
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Helsinki, Finland
- Finnish Hematological Biobank, Helsinki, Finland
| | - Dirk S Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Margit Pelkonen
- Department of Pulmonary Diseases, Kuopio University Hospital, Kuopio, Finland
| | | | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Anne Pitkäranta
- Department of Otorhinolaryngology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Adam Platt
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Eero Punkka
- Helsinki Biobank, University of Helsinki and Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Pirkko Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | | | | | - Deepak Rajpal
- Translational Sciences, Sanofi R&D, Framingham, MA, USA
| | - Nicole A Renaud
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Rodosthenis Rodosthenous
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Aino Salminen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Eveliina Salminen
- Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Genetics, HUSLAB, HUS Diagnostic Center, University of Helsinki, Helsinki, Finland
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Johanna Schleutker
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | - Raisa Serpi
- Northern Finland Biobank Borealis, University of Oulu, Northern Ostrobothnia Hospital District, Oulu, Finland
| | - Huei-Yi Shen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Richard Siegel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kaisa Silander
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Sanna Siltanen
- Finnish Clinical Biobank Tampere, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Sirpa Soini
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Ioanna Tachmazidou
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kaisa Tasanen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Pentti Tienari
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Sanna Toppila-Salmi
- Department of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Abdominal Center, Endocrinology, Helsinki University Hospital, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Joni A Turunen
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
| | - Jacob C Ulirsch
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Felix Vaura
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- University of Turku, Turku, Finland
| | - Petri Virolainen
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | | | - Mari Nelis
- Genomics Core Facility, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Reigo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Markus Perola
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Anu Jalanko
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tarja Laitinen
- Finnish Clinical Biobank Tampere, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tomi P Mäkelä
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | | | | | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Prieto Ortíz JE, Sánchez Luque CB, Ortega Quiróz RJ. Hígado graso (parte 1): aspectos generales, epidemiología, fisiopatología e historia natural. REVISTA COLOMBIANA DE GASTROENTEROLOGÍA 2022; 37:420-433. [DOI: 10.22516/25007440.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
El hígado graso no alcohólico (NAFLD) se define por la presencia de grasa o esteatosis en los hepatocitos y abarca un espectro que va desde la esteatosis simple, pasa por la esteatohepatitis no alcohólica (NASH) con inflamación y fibrosis, y finaliza en la cirrosis. Se considera una prevalencia mundial global cercana al 25% en la población general y se diagnóstica entre los 40 y 50 años, con variaciones respecto al sexo predominante y con diferencias étnicas (la población hispana es la más afectada). El hígado graso está asociado al síndrome metabólico (SM), y la obesidad se considera el principal factor de riesgo con su presencia y con su progresión.
El hígado graso es un trastorno complejo y muy heterogéneo en su fisiopatología, que resulta de la interacción de múltiples elementos: factores genéticos, epigenéticos, ambientales, culturales, entre otros. Todo ello en conjunto lleva a incremento paulatino de grasa hepática, resistencia a la insulina y alteraciones hormonales y de la microbiota intestinal, lo que genera un daño hepatocelular a través de la formación de radicales libres de oxígeno y activación de la fibrogénesis hepática.
La historia natural del hígado graso es dinámica: los pacientes con esteatosis simple tienen bajo riesgo de progresión a cirrosis, mientras que en los pacientes con NASH este riesgo se aumenta; sin embargo, el proceso puede ser reversible y algunas personas tendrán una mejoría espontánea. La fibrosis parece ser el determinante de la mortalidad global y de los desenlaces asociados a la enfermedad hepática; se considera que en todos los pacientes la fibrosis empeora una etapa cada 14 años y en NASH empeora en una etapa cada 7 años. Estudios previos concluyen que aproximadamente 20% de los casos de esteatosis simple progresan a NASH y que, de ellos, aproximadamente el 20% progresan a cirrosis, con presencia de hepatocarcinoma (HCC) en el 5% a 10% de ellos.
Collapse
|
16
|
Park J, MacLean MT, Lucas AM, Torigian DA, Schneider CV, Cherlin T, Xiao B, Miller JE, Bradford Y, Judy RL, Verma A, Damrauer SM, Ritchie MD, Witschey WR, Rader DJ. Exome-wide association analysis of CT imaging-derived hepatic fat in a medical biobank. Cell Rep Med 2022; 3:100855. [PMID: 36513072 PMCID: PMC9798024 DOI: 10.1016/j.xcrm.2022.100855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease is common and highly heritable. Genetic studies of hepatic fat have not sufficiently addressed non-European and rare variants. In a medical biobank, we quantitate hepatic fat from clinical computed tomography (CT) scans via deep learning in 10,283 participants with whole-exome sequences available. We conduct exome-wide associations of single variants and rare predicted loss-of-function (pLOF) variants with CT-based hepatic fat and perform cross-modality replication in the UK Biobank (UKB) by linking whole-exome sequences to MRI-based hepatic fat. We confirm single variants previously associated with hepatic fat and identify several additional variants, including two (FGD5 H600Y and CITED2 S198_G199del) that replicated in UKB. A burden of rare pLOF variants in LMF2 is associated with increased hepatic fat and replicates in UKB. Quantitative phenotypes generated from clinical imaging studies and intersected with genomic data in medical biobanks have the potential to identify molecular pathways associated with human traits and disease.
Collapse
Affiliation(s)
- Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew T MacLean
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia M Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew A Torigian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolin V Schneider
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tess Cherlin
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brenda Xiao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason E Miller
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renae L Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Damrauer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Zhu W, Liang W, Lu H, Chang L, Zhang J, Chen YE, Guo Y. Myeloid TM6SF2 Deficiency Inhibits Atherosclerosis. Cells 2022; 11:2877. [PMID: 36139452 PMCID: PMC9497156 DOI: 10.3390/cells11182877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic variants in transmembrane 6 superfamily member 2 (TM6SF2), such as E167K, are associated with atherosclerotic cardiovascular disease (ASCVD). Chronic inflammation and lipid-laden macrophage foam cell formation are the central pathogeneses in the development of atherosclerosis. This study was undertaken to illustrate the biological function of TM6SF2 in macrophages and its role during atherosclerosis development. We generated myeloid cell-specific Tm6sf2 knockout mice on ApoE-deficient background (LysM Cre+/Tm6sf2fl/fl/ApoE-/-, TM6 mKO) with littermate LysM Cre-/Tm6sf2fl/fl/ApoE-/- (Control) mice as controls. Mice were fed a Western diet for 12 weeks to induce atherosclerosis. Myeloid Tm6sf2 deficiency inhibited atherosclerosis and decreased foam cells in the plaques without changing the plasma lipid profile. RNA sequencing of bone marrow-derived macrophages (BMDMs) from TM6 mKO mice demonstrated the downregulation of genes associated with inflammation, cholesterol uptake, and endoplasmic reticulum (ER) stress. TM6SF2 was upregulated by oxidized low-density lipoprotein (oxLDL) in macrophages. Silencing TM6SF2 in THP-1-derived macrophages and Tm6sf2 deficiency in BMDMs reduced inflammatory responses and ER stress and attenuated cholesterol uptake and foam cell formation, while the overexpression of TM6SF2 showed opposite effects. In conclusion, myeloid TM6SF2 deficiency inhibits atherosclerosis development and is a potential therapeutic target for the treatment of atherogenesis.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Chang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Li ZY, Wu G, Qiu C, Zhou ZJ, Wang YP, Song GH, Xiao C, Zhang X, Deng GL, Wang RT, Yang YL, Wang XL. Mechanism and therapeutic strategy of hepatic TM6SF2-deficient non-alcoholic fatty liver diseases via in vivo and in vitro experiments. World J Gastroenterol 2022; 28:2937-2954. [PMID: 35978872 PMCID: PMC9280743 DOI: 10.3748/wjg.v28.i25.2937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The lack of effective pharmacotherapies for nonalcoholic fatty liver disease (NAFLD) is mainly attributed to insufficient research on its pathogenesis. The pathogenesis of TM6SF2-efficient NAFLD remains unclear, resulting in a lack of therapeutic strategies for TM6SF2-deficient patients.
AIM To investigate the role of TM6SF2 in fatty acid metabolism in the context of fatty liver and propose possible therapeutic strategies for NAFLD caused by TM6SF2 deficiency.
METHODS Liver samples collected from both NAFLD mouse models and human participants (80 cases) were used to evaluate the expression of TM6SF2 by using western blotting, immunohistochemistry, and quantitative polymerase chain reaction. RNA-seq data retrieved from the Gene Expression Omnibus database were used to confirm the over-expression of TM6SF2. Knockdown and overexpression of TM6SF2 were performed to clarify the mechanistic basis of hepatic lipid accumulation in NAFLD. MK-4074 administration was used as a therapeutic intervention to evaluate its effect on NAFLD caused by TM6SF2 deficiency.
RESULTS Hepatic TM6SF2 levels were elevated in patients with NAFLD and NAFLD mouse models. TM6SF2 overexpression can reduce hepatic lipid accumulation, suggesting a protective role for TM6SF2 in a high-fat diet (HFD). Downregulation of TM6SF2, simulating the TM6SF2 E167K mutation condition, increases intracellular lipid deposition due to dysregulated fatty acid metabolism and is characterized by enhanced fatty acid uptake and synthesis, accompanied by impaired fatty acid oxidation. Owing to the potential effect of TM6SF2 deficiency on lipid metabolism, the application of an acetyl-CoA carboxylase inhibitor (MK-4074) could reverse the NAFLD phenotypes caused by TM6SF2 deficiency.
CONCLUSION TM6SF2 plays a protective role in the HFD condition; its deficiency enhanced hepatic lipid accumulation through dysregulated fatty acid metabolism, and MK-4074 treatment could alleviate the NAFLD phenotypes caused by TM6SF2 deficiency.
Collapse
Affiliation(s)
- Zu-Yin Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing 100034, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| | - Chen Qiu
- Institute of Gallstone Disease, Shanghai East Hospital, Shanghai 200120, China
| | - Zhi-Jie Zhou
- Department of General Surgery, Huashan Hospital North, Shanghai 201907, China
| | - Yu-Peng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guo-He Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chao Xiao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200041, China
| | - Xin Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Gui-Long Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai 201600, China
| | - Rui-Tao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai 201600, China
| | - Yu-Long Yang
- Institute of Gallstone Disease, Center of Gallbladder Disease, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Liang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
19
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
20
|
Luo F, Oldoni F, Das A. TM6SF2: A Novel Genetic Player in Nonalcoholic Fatty Liver and Cardiovascular Disease. Hepatol Commun 2022; 6:448-460. [PMID: 34532996 PMCID: PMC8870032 DOI: 10.1002/hep4.1822] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Transmembrane 6 superfamily member 2 (TM6SF2) is located on chromosome 19 (19p12) and encodes for a protein of undetermined function. Genetic studies have reported the association between a nonsynonymous variant in TM6SF2 (E167K, rs58542926) with hepatic triglyceride content and its impact on the cardiovascular system. Clinical and epidemiological studies have confirmed the role of TM6SF2 in the development of nonalcoholic fatty liver disease (NAFLD). Recently, TM6SF2 was also shown to play an important role in promoting hepatic fibrosis and hepatocellular cancer in mouse models. This review aims to capture the physiological role of TM6SF2 in the regulation of lipid metabolism and its involvement in cardiometabolic diseases.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular MedicineThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Federico Oldoni
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Avash Das
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
21
|
Uehara K, Sostre-Colón J, Gavin M, Santoleri D, Leonard KA, Jacobs RL, Titchenell PM. Activation of Liver mTORC1 Protects Against NASH via Dual Regulation of VLDL-TAG Secretion and De Novo Lipogenesis. Cell Mol Gastroenterol Hepatol 2022; 13:1625-1647. [PMID: 35240344 PMCID: PMC9046248 DOI: 10.1016/j.jcmgh.2022.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Dysregulation of liver lipid metabolism is associated with the development and progression of nonalcoholic fatty liver disease, a spectrum of liver diseases including nonalcoholic steatohepatitis (NASH). In the liver, insulin controls lipid homeostasis by increasing triglyceride (TAG) synthesis, suppressing fatty acid oxidation, and enhancing TAG export via very low-density lipoproteins. Downstream of insulin signaling, the mechanistic target of rapamycin complex 1 (mTORC1), is a key regulator of lipid metabolism. Here, we define the role of hepatic mTORC1 activity in mouse models of NASH and investigate the mTORC1-dependent mechanisms responsible for protection against liver damage in NASH. METHODS Utilizing 2 rodent NASH-promoting diets, we demonstrate that hepatic mTORC1 activity was reduced in mice with NASH, whereas under conditions of insulin resistance and benign fatty liver, mTORC1 activity was elevated. To test the beneficial effects of hepatic mTORC1 activation in mouse models of NASH, we employed an acute, liver-specific knockout model of TSC1 (L-TSC-KO), a negative regulator of mTORC1. RESULTS L-TSC-KO mice are protected from and have improved markers of NASH including reduced steatosis, decreased circulating transaminases, and reduced expression of inflammation and fibrosis genes. Mechanistically, protection from hepatic inflammation and fibrosis by constitutive mTORC1 activity occurred via promotion of the phosphatidylcholine synthesizing enzyme, CCTα, and enhanced very low-density lipoprotein-triglyceride export. Additionally, activation of mTORC1 protected from hepatic steatosis via negative feedback of the mTORC2-AKT-FOXO-SREBP1c lipogenesis axis. CONCLUSIONS Collectively, this study identifies a protective role for liver mTORC1 signaling in the initiation and progression of NASH in mice via dual control of lipid export and synthesis.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly-Ann Leonard
- Department of Agricultural, Food and Nutritional Science Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
22
|
Li XY, Liu Z, Li L, Wang HJ, Wang H. TM6SF2 rs58542926 is related to hepatic steatosis, fibrosis and serum lipids both in adults and children: A meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1026901. [PMID: 36353245 PMCID: PMC9637980 DOI: 10.3389/fendo.2022.1026901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIMS Findings about the associations between transmembrane 6 superfamily member 2 (TM6SF2) rs58542926 and nonalcoholic fatty liver disease have not been consistently replicated, particularly in steatosis and fibrosis. The present study aimed to investigate the associations between the rs58542926T allele and the spectrum of NAFLD and its related metabolic phenotypes. METHODS Systematic literature research was performed to analyse the associations between rs58542926 and the spectrum of NAFLD and its related metabolic phenotypes. A random effects meta-analysis with a dominant genetic model was applied. RESULTS Data from 123,800 individuals across 44 studies were included in the current meta-analysis.rs58542926 T allele was associated with an increased risk of NAFLD in both adults (OR=1.62; 95% CI: 1.40, 1.86) and children (OR=2.87; 95% CI: 1.85, 4.46). Children had a stronger association with NAFLD (P=0.01). rs58542926 T allele was also positively associated with steatosis progression (mean difference=0.22; 95% CI: 0.05, 0.39) and fibrosis stage (OR=1.50; 95% CI: 1.20, 1.88) in adults. The TM6SF2 rs58542926 T allele was positively associated with ALT in both adults and children (both P<0.01) and only with higher AST in adults (P<0.01). The rs58542926 T allele was negatively associated with serum total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TGs) in both adults and children (all P<0.01).The serum level of TG was much lower in adults than in children (P<0.01). CONCLUSION TM6SF2 rs58542926 is involved in the entire spectrum of NAFLD and its related metabolic phenotype, and differences in serum lipid levels were observed between adults and children. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42021288163.
Collapse
Affiliation(s)
- Xue-Ying Li
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Zheng Liu
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Hui Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
- *Correspondence: Hui Wang,
| |
Collapse
|
23
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|
24
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
25
|
Pant A, Chen Y, Kuppa A, Du X, Halligan BD, Speliotes EK. Perturbation of TM6SF2 Expression Alters Lipid Metabolism in a Human Liver Cell Line. Int J Mol Sci 2021; 22:9758. [PMID: 34575933 PMCID: PMC8471112 DOI: 10.3390/ijms22189758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is caused by excess lipid accumulation in hepatocytes. Genome-wide association studies have identified a strong association of NAFLD with non-synonymous E167K amino acid mutation in the transmembrane 6 superfamily member 2 (TM6SF2) protein. The E167K mutation reduces TM6SF2 stability, and its carriers display increased hepatic lipids and lower serum triglycerides. However, the effects of TM6SF2 on hepatic lipid metabolism are not completely understood. We overexpressed wild-type or E167K variant of TM6SF2 or knocked down TM6SF2 expression in lipid-treated Huh-7 cells and used untargeted lipidomic analysis, RNAseq transcriptome analysis, and fluorescent imaging to determine changes in hepatic lipid metabolism. Both TM6SF2 knockdown and E167K overexpression increased hepatic lipid accumulation, while wild-type overexpression decreased acylglyceride levels. We also observed lipid chain remodeling for acylglycerides by TM6SF2 knockdown, leading to a relative increase in species with shorter, more saturated side chains. RNA-sequencing revealed differential expression of several lipid metabolizing genes, including genes belonging to AKR1 family and lipases, primarily in cells with TM6SF2 knockdown. Taken together, our data show that overexpression of TM6SF2 gene or its loss-of-function changes hepatic lipid species composition and expression of lipid metabolizing genes. Additionally, our data further confirms a loss-of-function effect for the E167K variant.
Collapse
Affiliation(s)
- Asmita Pant
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Yue Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Xiaomeng Du
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Brian D. Halligan
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; (A.P.); (Y.C.); (A.K.); (X.D.); (B.D.H.)
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Jiang X, Qian H, Ding WX. New Glance at the Role of TM6SF2 in Lipid Metabolism and Liver Cancer. Hepatology 2021; 74:1141-1144. [PMID: 33826777 DOI: 10.1002/hep.31851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoxiao Jiang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Hui Qian
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
27
|
Feofanova EV, Lim E, Chen H, Lee M, Liu CT, Cupples LA, Boerwinkle E. Exome sequence association study of levels and longitudinal change of cardiovascular risk factor phenotypes in European Americans and African Americans from the Atherosclerosis Risk in Communities Study. Genet Epidemiol 2021; 45:651-663. [PMID: 34167169 PMCID: PMC9047057 DOI: 10.1002/gepi.22390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is responsible for 31% of all deaths worldwide. Among CVD risk factors are age, race, increased systolic blood pressure (BP), and dyslipidemia. Both BP and blood lipids levels change with age, with a dose-dependent relationship between the cumulative exposure to hyperlipidemia and the risk of CVD. We performed an exome sequence association study using longitudinal data with up to 7805 European Americans (EAs) and 3171 African Americans (AAs) from the Atherosclerosis Risk in Communities (ARIC) study. We assessed associations of common (minor allele frequency > 5%) nonsynonymous and splice-site variants and gene-based sets of rare variants with levels and with longitudinal change of seven CVD risk factor phenotypes (BP traits: systolic BP, diastolic BP, pulse pressure; lipids traits: triglycerides, total cholesterol, high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C]). Furthermore, we investigated the relationship of the identified variants and genes with select CVD endpoints. We identified two novel genes: DCLK3 associated with the change of HDL-C levels in AAs and RAB7L1 associated with the change of LDL-C levels in EAs. RAB7L1 is further associated with an increased risk of heart failure in ARIC EAs. Investigation of the contribution of genetic factors to the longitudinal change of CVD risk factor phenotypes promotes our understanding of the etiology of CVD outcomes, stressing the importance of incorporating the longitudinal structure of the cohort data in future analyses.
Collapse
Affiliation(s)
- Elena V. Feofanova
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - MinJae Lee
- Division of Biostatistics, Department of Population & Data Sciences, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Newberry EP, Hall Z, Xie Y, Molitor EA, Bayguinov PO, Strout GW, Fitzpatrick JA, Brunt EM, Griffin JL, Davidson NO. Liver-Specific Deletion of Mouse Tm6sf2 Promotes Steatosis, Fibrosis, and Hepatocellular Cancer. Hepatology 2021; 74:1203-1219. [PMID: 33638902 PMCID: PMC8390580 DOI: 10.1002/hep.31771] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Human transmembrane 6 superfamily 2 (TM6SF2) variant rs58542926 is associated with NAFLD and HCC. However, conflicting reports in germline Tm6sf2 knockout mice suggest no change or decreased very low density lipoprotein (VLDL) secretion and either unchanged or increased hepatic steatosis, with no increased fibrosis. We generated liver-specific Tm6Sf2 knockout mice (Tm6 LKO) to study VLDL secretion and the impact on development and progression of NAFLD. APPROACH AND RESULTS Two independent lines of Tm6 LKO mice exhibited spontaneous hepatic steatosis. Targeted lipidomic analyses showed increased triglyceride species whose distribution and abundance phenocopied findings in mice with liver-specific deletion of microsomal triglyceride transfer protein. The VLDL triglyceride secretion was reduced with small, underlipidated particles and unchanged or increased apolipoprotein B. Liver-specific adeno-associated viral, serotype 8 (AAV8) rescue using either wild-type or mutant E167K-Tm6 reduced hepatic steatosis and improved VLDL secretion. The Tm6 LKO mice fed a high milk-fat diet for 3 weeks exhibited increased steatosis and fibrosis, and those phenotypes were further exacerbated when mice were fed fibrogenic, high fat/fructose diets for 20 weeks. In two models of HCC, either neonatal mice injected with streptozotocin (NASH/STAM) and high-fat fed or with diethylnitrosamine injection plus fibrogenic diet feeding, Tm6 LKO mice exhibited increased steatosis, greater tumor burden, and increased tumor area versus Tm6 flox controls. Additionally, diethylnitrosamine-injected and fibrogenic diet-fed Tm6 LKO mice administered wild-type Tm6 or E167K-mutant Tm6 AAV8 revealed significant tumor attenuation, with tumor burden inversely correlated with Tm6 protein levels. CONCLUSIONS Liver-specific Tm6sf2 deletion impairs VLDL secretion, promoting hepatic steatosis, fibrosis, and accelerated development of HCC, which was mitigated with AAV8- mediated rescue.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Elizabeth A. Molitor
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter O. Bayguinov
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
| | - Gregory W. Strout
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
| | - James A.J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
- Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, Louis, St. Louis, MO 63130
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Elizabeth M. Brunt
- Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
29
|
Li Z, Shen W, Wu G, Qin C, Zhang Y, Wang Y, Song G, Xiao C, Zhang X, Deng G, Wang R, Wang X. The role of SAMM50 in non-alcoholic fatty liver disease: from genetics to mechanisms. FEBS Open Bio 2021; 11:1893-1906. [PMID: 33728819 PMCID: PMC8255833 DOI: 10.1002/2211-5463.13146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. SAMM50 encodes Sam50, a mitochondrial outer membrane protein involved in the removal of reactive oxygen species, mitochondrial morphology and regulation of mitophagy. Certain single nucleotide polymorphisms of SAMM50 have been reported to be correlated with NAFLD. However, the contribution of SAMM50 polymorphisms to the occurrence and severity of fatty liver in the Chinese Han cohort has rarely been reported. Here, we investigated the association between SAMM50 polymorphisms (rs738491 and rs2073082) and NAFLD in a Chinese Han cohort, as well as the mechanistic basis of this association. Clinical information and blood samples were collected from 380 NAFLD cases and 380 normal subjects for the detection of genotypes and biochemical parameters. Carriers of the rs738491 T allele or rs2073082 G allele of SAMM50 exhibit increased susceptibility to NAFLD [odds ratio (OR) = 1.39; 95% confidence interval (CI) = 1.14–1.71, P = 0.001; OR = 1.31; 95% CI = 1.05–1.62, P = 0.016, respectively] and are correlated with elevated serum triglyceride, alanine aminotransferase and aspartate aminotransferase levels. The presence of the T allele (TT + CT) of rs738491 (P < 0.01) or G allele (AG + GG) of rs2073082 (P = 0.03) is correlated with the severity of fatty liver in the NAFLD cohort. In vitro studies indicated that SAMM50 gene polymorphisms decrease its expression and SAMM50 deficiency results in increased lipid accumulation as a result of a decrease in fatty acid oxidation. Overexpression of SAMM50 enhances fatty acid oxidation and mitigates intracellular lipid accumulation. Our results confirm the association between the SAMM50 rs738491 and rs2073082 polymorphisms and the risk of fatty liver in a Chinese cohort. The underlying mechanism may be related to decreased fatty acid oxidation caused by SAMM50 deficiency.
Collapse
Affiliation(s)
- Zuyin Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Gang Wu
- Department of General Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yijie Zhang
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yupeng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Chao Xiao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Guilong Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Ruitao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoliang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
30
|
Xia M, Chandrasekaran P, Rong S, Fu X, Mitsche MA. Hepatic deletion of Mboat7 (LPIAT1) causes activation of SREBP-1c and fatty liver. J Lipid Res 2021; 62:100031. [PMID: 32859645 PMCID: PMC8022244 DOI: 10.1194/jlr.ra120000856] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic variants that increase the risk of fatty liver disease and cirrhosis have recently been identified in the proximity of membrane-bound O-acyltransferase domain-containing 7 (MBOAT7). To elucidate the link between these variants and fatty liver disease, we characterized Mboat7 liver-specific KO mice (Mboat7 LSKO). Chow-fed Mboat7 LSKO mice developed fatty livers and associated liver injury. Lipidomic analysis of liver using MS revealed a pronounced reduction in 20-carbon PUFA content in phosphatidylinositols (PIs) but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis because of activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage-activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap-only hepatic KO, showing that increased SREBP-1c processing is required for Mboat7-induced steatosis. This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis.
Collapse
Affiliation(s)
- Mingfeng Xia
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Preethi Chandrasekaran
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shunxing Rong
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew A Mitsche
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Borén J, Adiels M, Björnson E, Matikainen N, Söderlund S, Rämö J, Ståhlman M, Ripatti P, Ripatti S, Palotie A, Mancina RM, Hakkarainen A, Romeo S, Packard CJ, Taskinen MR. Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans. JCI Insight 2020; 5:144079. [PMID: 33170809 PMCID: PMC7819740 DOI: 10.1172/jci.insight.144079] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. The transmembrane 6 superfamily member 2 (TM6SF2) E167K genetic variant associates with NAFLD and with reduced plasma triglyceride levels in humans. However, the molecular mechanisms underlying these associations remain unclear. We hypothesized that TM6SF2 E167K affects hepatic very low-density lipoprotein (VLDL) secretion and studied the kinetics of apolipoprotein B100 (apoB100) and triglyceride metabolism in VLDL in homozygous subjects. In 10 homozygote TM6SF2 E167K carriers and 10 matched controls, we employed stable-isotope tracer and compartmental modeling techniques to determine apoB100 and triglyceride kinetics in the 2 major VLDL subfractions: large triglyceride-rich VLDL1 and smaller, less triglyceride-rich VLDL2. VLDL1-apoB100 production was markedly reduced in homozygote TM6SF2 E167K carriers compared with controls. Likewise, VLDL1-triglyceride production was 35% lower in the TM6SF2 E167K carriers. In contrast, the direct production rates for VLDL2-apoB100 and triglyceride were not different between carriers and controls. In conclusion, the TM6SF2 E167K genetic variant was linked to a specific reduction in hepatic secretion of large triglyceride-rich VLDL1. The impaired secretion of VLDL1 explains the reduced plasma triglyceride concentration and provides a basis for understanding the lower risk of cardiovascular disease associated with the TM6SF2 E167K genetic variant.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Niina Matikainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Sanni Söderlund
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Joel Rämö
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Pietari Ripatti
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Antti Hakkarainen
- Helsinki and Uusimaa Hospital District Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Finland
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Abulizi A, Vatner DF, Ye Z, Wang Y, Camporez JP, Zhang D, Kahn M, Lyu K, Sirwi A, Cline GW, Hussain MM, Aspichueta P, Samuel VT, Shulman GI. Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice. J Lipid Res 2020; 61:1565-1576. [PMID: 32907986 PMCID: PMC7707176 DOI: 10.1194/jlr.ra119000586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp-/-) mice and age-weight matched wild-type control mice. Young (10-12-week-old) L-Mttp-/- mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp-/- mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp-/- mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp-/- mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp-/- mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp-/- mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp-/- mice.
Collapse
Affiliation(s)
- Abudukadier Abulizi
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zhang Ye
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yongliang Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Joao-Paulo Camporez
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Alaa Sirwi
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Mineola, NY, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Mineola, NY, USA; Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biocruces Research Institute, Barakaldo, Spain
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Medical Center, West Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
33
|
Lei Y, Hoogerland JA, Bloks VW, Bos T, Bleeker A, Wolters H, Wolters JC, Hijmans BS, van Dijk TH, Thomas R, van Weeghel M, Mithieux G, Houtkooper RH, de Bruin A, Rajas F, Kuipers F, Oosterveer MH. Hepatic Carbohydrate Response Element Binding Protein Activation Limits Nonalcoholic Fatty Liver Disease Development in a Mouse Model for Glycogen Storage Disease Type 1a. Hepatology 2020; 72:1638-1653. [PMID: 32083759 PMCID: PMC7702155 DOI: 10.1002/hep.31198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Glycogen storage disease (GSD) type 1a is an inborn error of metabolism caused by defective glucose-6-phosphatase catalytic subunit (G6PC) activity. Patients with GSD 1a exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have shown that the activity of carbohydrate response element binding protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD 1a. In the current study, we assessed the contribution of ChREBP to nonalcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD 1a. APPROACH AND RESULTS Liver-specific G6pc-knockout (L-G6pc-/- ) mice were treated with adeno-associated viruses (AAVs) 2 or 8 directed against short hairpin ChREBP to normalize hepatic ChREBP activity to levels observed in wild-type mice receiving AAV8-scrambled short hairpin RNA (shSCR). Hepatic ChREBP knockdown markedly increased liver weight and hepatocyte size in L-G6pc-/- mice. This was associated with hepatic accumulation of G6P, glycogen, and lipids, whereas the expression of glycolytic and lipogenic genes was reduced. Enzyme activities, flux measurements, hepatic metabolite analysis and very low density lipoprotein (VLDL)-TG secretion assays revealed that hepatic ChREBP knockdown reduced downstream glycolysis and de novo lipogenesis but also strongly suppressed hepatic VLDL lipidation, hence promoting the storage of "old fat." Interestingly, enhanced VLDL-TG secretion in shSCR-treated L-G6pc-/- mice associated with a ChREBP-dependent induction of the VLDL lipidation proteins microsomal TG transfer protein and transmembrane 6 superfamily member 2 (TM6SF2), the latter being confirmed by ChIP-qPCR. CONCLUSIONS Attenuation of hepatic ChREBP induction in GSD 1a liver aggravates hepatomegaly because of further accumulation of glycogen and lipids as a result of reduced glycolysis and suppressed VLDL-TG secretion. TM6SF2, critical for VLDL formation, was identified as a ChREBP target in mouse liver. Altogether, our data show that enhanced ChREBP activity limits NAFLD development in GSD 1a by balancing hepatic TG production and secretion.
Collapse
Affiliation(s)
- Yu Lei
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Joanne A. Hoogerland
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Vincent W. Bloks
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Trijnie Bos
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Aycha Bleeker
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Henk Wolters
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Justina C. Wolters
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Brenda S. Hijmans
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Theo H. van Dijk
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Rachel Thomas
- Dutch Molecular Pathology CenterFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology and MetabolismAmsterdam Cardiovascular SciencesAmsterdamthe Netherlands
- Core Facility of MetabolomicsAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Gilles Mithieux
- National Institute of Health and Medical Research, U1213LyonFrance
- University of LyonLyonFrance
- University of Lyon 1VilleurbanneFrance
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology and MetabolismAmsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Alain de Bruin
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Dutch Molecular Pathology CenterFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Fabienne Rajas
- National Institute of Health and Medical Research, U1213LyonFrance
- University of LyonLyonFrance
- University of Lyon 1VilleurbanneFrance
| | - Folkert Kuipers
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Maaike H. Oosterveer
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
34
|
Li BT, Sun M, Li YF, Wang JQ, Zhou ZM, Song BL, Luo J. Disruption of the ERLIN-TM6SF2-APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease. PLoS Genet 2020; 16:e1008955. [PMID: 32776921 PMCID: PMC7462549 DOI: 10.1371/journal.pgen.1008955] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/01/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by excess lipid accumulation in the liver without significant consumption of alcohol. The transmembrane 6 superfamily member 2 (TM6SF2) E167K missense variant strongly associates with NAFLD in humans. The E167K mutation destabilizes TM6SF2, resulting in hepatic lipid accumulation and low serum lipid levels. However, the molecular mechanism by which TM6SF2 regulates lipid metabolism remains unclear. By using tandem affinity purification in combination with mass spectrometry, we found that apolipoprotein B (APOB), ER lipid raft protein (ERLIN) 1 and 2 were TM6SF2-interacting proteins. ERLINs and TM6SF2 mutually bound and stabilized each other. TM6SF2 bound and stabilized APOB via two luminal loops. ERLINs did not interact with APOB directly but still increased APOB stability through stabilizing TM6SF2. This APOB stabilization was hampered by the E167K mutation that reduced the protein expression of TM6SF2. In mice, knockout of Tm6sf2 and knockdown of Tm6sf2 or Erlins decreased hepatic APOB protein level, causing lipid accumulation in the liver and lowering lipid levels in the serum. We conclude that defective APOB stabilization, as a result of ERLINs or TM6SF2 deficiency or E167K mutation, is a key factor contributing to NAFLD. Non-alcoholic fatty liver disease (NAFLD) is a very common liver disorder that occurs in people who do not drink too much alcohol. It initiates from extra fat storage in the liver and can advance to hepatitis, fibrosis, liver failure and liver cancer. NAFLD is often associated with other health problems such as obesity, diabetes, and hyperlipidemia. The TM6SF2 gene variant is a strong risk factor for NAFLD in humans. However, the mechanism by which loss of TM6SF2 protein causes NAFLD is unclear. Here, we demonstrate that TM6SF2 forms a complex with ERLINs and APOB. ERLINs and TM6SF2 stabilize each other, and TM6SF2 stabilizes APOB. In mice, ablating the expression of ERLINs or TM6SF2 lowers APOB protein level, causing lipid accumulation in the liver while decreasing lipid levels in the blood. These phenotypes resemble the symptoms of NAFLD patients carrying TM6SF2 mutations. We conclude that TM6SF2 promotes APOB stability via complex formation and that defective APOB stabilization is one of the underlying causes of NAFLD.
Collapse
Affiliation(s)
- Bo-Tao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ming Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yun-Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ju-Qiong Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zi-Mu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
35
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
36
|
Liu Z, Zhang Y, Graham S, Wang X, Cai D, Huang M, Pique-Regi R, Dong XC, Chen YE, Willer C, Liu W. Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping. J Hepatol 2020; 73:263-276. [PMID: 32165250 PMCID: PMC7371536 DOI: 10.1016/j.jhep.2020.03.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D) and obesity are epidemiologically correlated with each other but the causal inter-relationships between them remain incompletely understood. We aimed to explore the causal relationships between the 3 diseases. METHODS Using both UK Biobank and publicly available genome-wide association study data, we performed a 2-sample bidirectional Mendelian randomization analysis to test the causal inter-relationships between NAFLD, T2D, and obesity. Transgenic mice expressing the human PNPLA3-I148M isoforms (TghPNPLA3-I148M) were used as an example to validate causal effects and explore underlying mechanisms. RESULTS Genetically driven NAFLD significantly increased the risk of T2D and central obesity but not insulin resistance or generalized obesity, while genetically driven T2D, body mass index and WHRadjBMI causally increased NAFLD risk. The animal study focusing on PNPLA3 corroborated these causal effects: compared to the TghPNPLA3-I148I controls, the TghPNPLA3-I148M mice developed glucose intolerance and increased visceral fat, but maintained normal insulin sensitivity, reduced body weight, and decreased circulating total cholesterol. Mechanistically, the TghPNPLA3-I148M mice demonstrated decreased pancreatic insulin but increased glucagon secretion, which was associated with increased pancreatic inflammation. In addition, transcription of hepatic cholesterol biosynthesis pathway genes was significantly suppressed, while transcription of thermogenic pathway genes was activated in subcutaneous and brown adipose tissues but not in visceral fat in TghPNPLA3-I148M mice. CONCLUSIONS Our study suggests that lifelong, genetically driven NAFLD causally promotes T2D with a late-onset type 1-like diabetic subphenotype and central obesity; while genetically driven T2D, obesity, and central obesity all causally increase the risk of NAFLD. This causal relationship revealed new insights into how nature and nurture drive these diseases, providing novel hypotheses for disease subphenotyping. LAY SUMMARY Non-alcoholic fatty liver disease, type 2 diabetes and obesity are epidemiologically correlated with each other, but their causal relationships were incompletely understood. Herein, we identified causal relationships between these conditions, which suggest that each of these closely related diseases should be further stratified into subtypes. This is important for accurate diagnosis, prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Yang Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sarah Graham
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaokun Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Defeng Cai
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; The Affiliated Shenzhen Children's Hospital Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Medical Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Y Eugene Chen
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristen Willer
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wanqing Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
37
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Sookoian S, Pirola CJ, Valenti L, Davidson NO. Genetic Pathways in Nonalcoholic Fatty Liver Disease: Insights From Systems Biology. Hepatology 2020; 72:330-346. [PMID: 32170962 PMCID: PMC7363530 DOI: 10.1002/hep.31229] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a burgeoning worldwide epidemic whose etiology reflects multiple interactions between environmental and genetic factors. Here, we review the major pathways and dominant genetic modifiers known to be relevant players in human NAFLD and which may determine key components of the heritability of distinctive disease traits including steatosis and fibrosis. In addition, we have employed general assumptions which are based on known genetic factors in NAFLD to build a systems biology prediction model that includes functional enrichment. This prediction model highlights additional complementary pathways that represent plausible intersecting signaling networks that we define here as an NAFLD-Reactome. We review the evidence connecting variants in each of the major known genetic modifiers (variants in patatin-like phospholipase domain containing 3, transmembrane 6 superfamily member 2, membrane-bound O-acyltransferase domain containing 7, glucokinase regulator, and hydroxysteroid 17-beta dehydrogenase 13) to NAFLD and expand the associated underlying mechanisms using functional enrichment predictions, based on both preclinical and cell-based experimental findings. These major candidate gene variants function in distinct pathways, including substrate delivery for de novo lipogenesis; mitochondrial energy use; lipid droplet assembly, lipolytic catabolism, and fatty acid compartmentalization; and very low-density lipoprotein assembly and secretion. The NAFLD-Reactome model expands these pathways and allows for hypothesis testing, as well as serving as a discovery platform for druggable targets across multiple pathways that promote NAFLD development and influence several progressive outcomes. In conclusion, we summarize the strengths and weaknesses of studies implicating selected variants in the pathophysiology of NAFLD and highlight opportunities for future clinical research and pharmacologic intervention, as well as the implications for clinical practice.
Collapse
Affiliation(s)
- Silvia Sookoian
- University of Buenos Aires, School of Medicine, Institute of Medical Research ALanari, Ciudad Autónoma de Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET)−University of Buenos Aires, Institute of Medical Research (IDIM), Department of Clinical and Molecular Hepatology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos J. Pirola
- University of Buenos Aires, School of Medicine, Institute of Medical Research ALanari, Ciudad Autónoma de Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET)−University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luca Valenti
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca Granda OspedalePoliclinico Milano, Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
| | - Nicholas O. Davidson
- Departments of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
Du J, Ji Y, Qiao L, Liu Y, Lin J. Cellular endo-lysosomal dysfunction in the pathogenesis of non-alcoholic fatty liver disease. Liver Int 2020; 40:271-280. [PMID: 31765080 DOI: 10.1111/liv.14311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), an increasingly devastating human disorder, is characterized by intrahepatic fat accumulation. Although important progress has been made in understanding NAFLD, the fundamental mechanisms involved in the pathogenesis of NAFLD have not been fully explained. The endo-lysosomal trafficking network is central to lipid metabolism, protein degradation and signal transduction, which are involved in a variety of diseases. In recent years, many genes and pathways in the endo-lysosomal trafficking network and involved in lysosomal biogenesis have been associated with the development and progression of NAFLD. Mutations of these genes and impaired signalling lead to dysfunction in multiple steps of the endo-lysosomal network (endocytic trafficking, membrane fusion and lysosomal degradation), resulting in the accumulation of pathogenic proteins. In this review, we will focus on how alterations in these genes and pathways affect endo-lysosomal trafficking as well as the pathophysiology of NAFLD.
Collapse
Affiliation(s)
- Jiang Du
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yu Ji
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Liang Qiao
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
40
|
Lin YC, Wu CC, Ni YH. New Perspectives on Genetic Prediction for Pediatric Metabolic Associated Fatty Liver Disease. Front Pediatr 2020; 8:603654. [PMID: 33363067 PMCID: PMC7755886 DOI: 10.3389/fped.2020.603654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic or recently re-defined metabolic associated fatty liver disease (MAFLD), a spectrum of progressive hepatic disease, has become a public health issue in obese children and adolescents. MAFLD is a complex metabolic disease strongly associated with obesity and insulin resistance. It is not known why not every obese subject will develop MAFLD. Different ethnic/racial groups display differences in MAFLD prevalence, indicating genetic factor plays a role. In the past two decades, sequence variations in genetic loci, including PNPLA3, TM6SF2, GCKR, MBOAT7, HSD17B13, etc. have been shown to confer susceptibility to MAFLD in children and adults. This review article provides an updated viewpoint of genetic predictors related to pediatric MAFLD. We discuss whether these susceptible genes can be clinically used for risk stratification and personalized care. Understanding human genetics and molecular mechanisms can give important information not only for prediction of risk but also on how to design drugs. In view of current epidemic of MAFLD worldwide, it is necessary to identify which children with MAFLD progress rapidly and need earlier intervention. In the future, a comprehensive analysis of individualized genetic and environmental factors may help assess the risk of children with MAFLD and personalize their treatment.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Healthcare Administration, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Chi-Chien Wu
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Hsuan Ni
- Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Dong XC. PNPLA3-A Potential Therapeutic Target for Personalized Treatment of Chronic Liver Disease. Front Med (Lausanne) 2019; 6:304. [PMID: 31921875 PMCID: PMC6927947 DOI: 10.3389/fmed.2019.00304] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023] Open
Abstract
Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipid droplet-associated protein that has been shown to have hydrolase activity toward triglycerides and retinyl esters. The first evidence of PNPLA3 being associated with fatty liver disease was revealed by a genome-wide association study (GWAS) of Hispanic, African American, and European American individuals in the Dallas Heart Study back in 2008. Since then, numerous GWAS reports have shown that PNPLA3 rs738409[G] (148M) variant is associated with hepatic triglyceride accumulation (steatosis), inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma regardless of etiologies including alcohol- or obesity-related and others. The frequency of PNPLA3(148M) variant ranges from 17% in African Americans, 23% in European Americans, to 49% in Hispanics in the Dallas Heart Study. Due to high prevalence of obesity and alcohol consumption in modern societies, the PNPLA3(148M) gene variant and environment interaction poses a serious concern for public health, especially chronic liver diseases including alcohol-related liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Therefore, PNPLA3(148M) variant is a potential therapeutic target for chronic liver disease in the rs738409 allele carriers. Currently, there is no approved drug specifically targeting the PNPLA3(148M) variant yet. With additional mechanistic studies, novel therapeutic strategies are expected to be developed for the treatment of the PNPLA3(148M) variant-associated chronic liver diseases in the near future.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Center for Diabetes and Metabolic Diseases, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
42
|
Non-alcoholic fatty liver disease in lean individuals. JHEP Rep 2019; 1:329-341. [PMID: 32039383 PMCID: PMC7001558 DOI: 10.1016/j.jhepr.2019.08.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease, encompassing a spectrum from non-alcoholic fatty liver to non-alcoholic steatohepatitis, which can progress to cirrhosis. It has recently been recognised that NAFLD also occurs in individuals who are not obese, especially in Asian populations. In these patients, NAFLD manifests at lower overall body mass index thresholds in the presence of increased visceral adipose tissue. Currently, the principles of clinical management are similar to those in obese individuals, although, in specific regions and clinical situations, unique aetiologies of NAFLD must be treated specifically.
Collapse
|
43
|
Prill S, Caddeo A, Baselli G, Jamialahmadi O, Dongiovanni P, Rametta R, Kanebratt KP, Pujia A, Pingitore P, Mancina RM, Lindén D, Whatling C, Janefeldt A, Kozyra M, Ingelman-Sundberg M, Valenti L, Andersson TB, Romeo S. The TM6SF2 E167K genetic variant induces lipid biosynthesis and reduces apolipoprotein B secretion in human hepatic 3D spheroids. Sci Rep 2019; 9:11585. [PMID: 31406127 PMCID: PMC6690969 DOI: 10.1038/s41598-019-47737-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023] Open
Abstract
There is a high unmet need for developing treatments for nonalcoholic fatty liver disease (NAFLD), for which there are no approved drugs today. Here, we used a human in vitro disease model to understand mechanisms linked to genetic risk variants associated with NAFLD. The model is based on 3D spheroids from primary human hepatocytes from five different donors. Across these donors, we observed highly reproducible differences in the extent of steatosis induction, demonstrating that inter-donor variability is reflected in the in vitro model. Importantly, our data indicates that the genetic variant TM6SF2 E167K, previously associated with increased risk for NAFLD, induces increased hepatocyte fat content by reducing APOB particle secretion. Finally, differences in gene expression pathways involved in cholesterol, fatty acid and glucose metabolism between wild type and TM6SF2 E167K mutation carriers (N = 125) were confirmed in the in vitro model. Our data suggest that the 3D in vitro spheroids can be used to investigate the mechanisms underlying the association of human genetic variants associated with NAFLD. This model may also be suitable to discover new treatments against NAFLD.
Collapse
Affiliation(s)
- Sebastian Prill
- DMPK, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Andrea Caddeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Guido Baselli
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Paola Dongiovanni
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Raffaela Rametta
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Kajsa P Kanebratt
- DMPK, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Arturo Pujia
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Piero Pingitore
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Daniel Lindén
- Bioscience Diabetes, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl Whatling
- Translational Sciences, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Annika Janefeldt
- DMPK, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Mikael Kozyra
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Tommy B Andersson
- DMPK, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
- Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
44
|
Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 2019; 16:411-428. [PMID: 31028350 DOI: 10.1038/s41575-019-0145-7] [Citation(s) in RCA: 943] [Impact Index Per Article: 157.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caloric excess and sedentary lifestyle have led to a global epidemic of obesity and metabolic syndrome. The hepatic consequence of metabolic syndrome and obesity, nonalcoholic fatty liver disease (NAFLD), is estimated to affect up to one-third of the adult population in many developed and developing countries. This spectrum of liver disease ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Owing to the high prevalence of NAFLD, especially in industrialized countries but also worldwide, and the consequent burden of progressive liver disease, there is mounting epidemiological evidence that NAFLD has rapidly become a leading aetiology underlying many cases of hepatocellular carcinoma (HCC). In this Review, we discuss NAFLD-associated HCC, including its epidemiology, the key features of the hepatic NAFLD microenvironment (for instance, adaptive and innate immune responses) that promote hepatocarcinogenesis and the management of HCC in patients with obesity and associated metabolic comorbidities. The challenges and future directions of research will also be discussed, including clinically relevant biomarkers for early detection, treatment stratification and monitoring as well as approaches to therapies for both prevention and treatment in those at risk or presenting with NAFLD-associated HCC.
Collapse
Affiliation(s)
- Quentin M Anstee
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- The Liver Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK.
| | - Helen L Reeves
- The Liver Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Northern Institute for Cancer Research, Medical School, Newcastle upon Tyne, UK
- Hepatopancreatobiliary Multidisciplinary Team, Newcastle upon Tyne NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Elena Kotsiliti
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivier Govaere
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
45
|
Mazo DF, Malta FM, Stefano JT, Salles APM, Gomes-Gouvea MS, Nastri ACS, Almeida JR, Pinho JRR, Carrilho FJ, Oliveira CP. Validation of PNPLA3 polymorphisms as risk factor for NAFLD and liver fibrosis in an admixed population. Ann Hepatol 2019; 18:466-471. [PMID: 31054980 DOI: 10.1016/j.aohep.2018.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/12/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND AIM Studies have shown that two polymorphisms were associated with steatosis and progression of non-alcoholic fatty liver disease (NAFLD) in different populations: the Patatin-like Phospholipase Domain Containing 3 (PNPLA3) and Transmembrane 6 Superfamily Member 2 (TM6SF2). However, the frequency and significance of these polymorphisms in an admixed population, i.e., Brazilian, is unknown. Therefore, we aimed to evaluate them in healthy subjects in comparison to patients with NAFLD. MATERIAL AND METHODS This was a multicenter cross-sectional study in 248 patients with biopsy-proven NAFLD and in 134 healthy controls from two tertiary centers in Brazil. PNPLA3 (rs738409 c.444C>G) and TM6SF2 (rs58542926 c.449C>T) polymorphisms were evaluated. RESULTS In controls, the frequencies of PNPLA3 CC and CG+GG were 49.25% and 50.74%, respectively; in NAFLD patients, this was 31.05% and 68.88% (p=0.0044, 95% CI 1.037-2.977). PNPLA3 GG subjects had an increased risk (3.29-fold) of having NAFLD when compared to CC subjects (p=0.0044, 95% CI 1.504-7.225). In patients with nonalcoholic steatohepatitis (NASH), PNPLA3 GG compared to CC was associated with higher AST levels [38.4±25.3 versus 36.7±40.1IU/L, p=0.0395)] and with the presence of liver fibrosis (≥F2 fibrosis, p=0.0272). TM6SF2 polymorphisms were not in Hardy-Weinberg equilibrium in our NAFLD group precluding further analysis. CONCLUSION We demonstrated for the first time that PNPLA3 CG+GG increase the risk of NAFLD among Brazilian subjects. Moreover, PNPLA3 GG was associated with liver enzyme elevation and fibrosis in NASH patients.
Collapse
Affiliation(s)
- Daniel F Mazo
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Sao Paulo, Brazil; Division of Gastroenterology (Gastrocentro), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Fernanda M Malta
- Institute of Tropical Medicine, LIM 07, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose Tadeu Stefano
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Sao Paulo, Brazil
| | - Ana Paula M Salles
- Institute of Tropical Medicine, LIM 07, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Jazon R Almeida
- Division of Gastroenterology (Gastrocentro), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Joao Renato R Pinho
- Institute of Tropical Medicine, LIM 07, University of Sao Paulo, Sao Paulo, Brazil
| | - Flair J Carrilho
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Sao Paulo, Brazil
| | - Claudia P Oliveira
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, University of São Paulo School of Medicine (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The liver is the central hub of lipoprotein metabolism. A complex relationship exists between dyslipidemia and chronic liver diseases (CLDs). Recent advances in the genetics of nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) exemplify the pivotal role of lipoprotein metabolism in the pathogenesis of CLD. We review these relationships in four quintessential forms of CLD: NAFLD, ALD, cholestatic liver disease and cirrhosis, with a focus on recent discoveries. RECENT FINDINGS An I148 M variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3) and an E167K variant in transmembrane 6 superfamily 2 (TM6SF2) are major genetic risk factors for the development and progression of NAFLD. These genetic variants also increase the risk of ALD. Both PNPLA3 and TM6SF2 are involved in the hepatic assembly of very low-density lipoprotein. The discovery of these two genetic variants highlights the risk of CLD when environmental factors are combined with functional modifications in the lipoprotein metabolism pathway. SUMMARY The relationship between CLD and lipoprotein metabolism is reciprocal. On the one hand, the progression of CLD impairs lipoprotein metabolism; on the other hand, modifications in lipoprotein metabolism can substantially increase the risk of CLD. These relationships are at play among the most common forms of CLD affecting a significant proportion of the population.
Collapse
Affiliation(s)
- Maria Camila Perez-Matos
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Bynvant Sandhu
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alan Bonder
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenghui Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J Gastroenterol 2018; 24:2974-2983. [PMID: 30038464 PMCID: PMC6054950 DOI: 10.3748/wjg.v24.i27.2974] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/26/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the dominant form of chronic liver disease in children and adolescents with the increasing prevalence of obesity worldwide. NAFLD represents a wide spectrum of conditions, ranging from fatty liver - which generally follows a benign, non-progressive clinical course - to non-alcoholic steatohepatitis, a subset of NAFLD that may progress to cirrhosis and end-stage liver disease or liver carcinoma. The underlying pathophysiological mechanism of “pediatric” NAFLD remains unclear, although it is strongly associated with obesity and insulin resistance. In this review we provide a general overview on the current understanding of NAFLD in children and adolescents, which underpins practice, enabling early diagnosis and appropriate therapeutic intervention for this life-threatening liver disease.
Collapse
Affiliation(s)
- Yan-Lan Fang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hong Chen
- College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chun-Lin Wang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
48
|
Li TT, Li TH, Peng J, He B, Liu LS, Wei DH, Jiang ZS, Zheng XL, Tang ZH. TM6SF2: A novel target for plasma lipid regulation. Atherosclerosis 2018; 268:170-176. [PMID: 29232562 DOI: 10.1016/j.atherosclerosis.2017.11.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/07/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023]
|