1
|
Pisani LF, Albertini Petroni G, Crespi G, Mola S, Annunziata ML, Caprioli FA, Porta C, Pastorelli L. Lower Expression of SARS-CoV-2 Host Cell Entry Genes in the Intestinal Mucosa of IBD Patients With Quiescent or Mildly Active Disease. Inflamm Bowel Dis 2025:izaf079. [PMID: 40279370 DOI: 10.1093/ibd/izaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Indexed: 04/27/2025]
Abstract
BACKGROUND Long-term immunosuppressive therapy typically increases the risk of viral infection, yet during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, inflammatory bowel disease (IBD) patients showed reduced severe coronavirus disease 2019 (COVID-19) susceptibility. This suggests potential overlapping molecular mechanisms between IBD and COVID-19 that warrant investigation. METHODS From April 2020 to April 2022, we enrolled 363 IBD patients and 146 healthy donors. Serum samples were analyzed by enzyme-linked immunoadsorption assay to determine the presence of anti-SARS-CoV-2 antibodies and to measure concentrations of the host-soluble factors sACE2 and mannose-binding lectin (MBL), which have SARS-CoV-2 neutralizing activity. Furthermore, colonic mucosa biopsies were analyzed by real-time PCR to confirm the upregulation of MBL2 as well as to assess the expression of genes encoding SARS-CoV-2 entry molecules (ie, ACE2, TMPRSS2, TMPRSS4, ADAM17, AGTR1). RESULTS Intestinal mucosa expression of ACE2, TMPRSS2, and TMPRSS4 genes was significantly lower in IBD than in healthy individuals, regardless of the type of medication, while ADAM17 and AGT1R were similar across groups. Serum sACE2 levels changed minimally, whereas circulating MBL levels were significantly higher in CD and somewhat elevated in UC patients versus controls. Parallel trends in MBL2 gene expression were observed in IBD patients' intestinal mucosa. CONCLUSIONS Overall, our study indicates that the presence of higher basal circulating levels of MBL in CD patients and the decreased intestinal mucosa expression of the SARS-CoV-2 receptor ACE2 and the host cell priming proteases TMPRSS2 and TMPRSS4 in both CD and UC patients may reduce COVID-19 risk, underscoring the potential protective role of these biomarkers in IBD populations against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Laura Francesca Pisani
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Giorgia Crespi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Silvia Mola
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Maria Laura Annunziata
- Gastroenterology and Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Flavio Andrea Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Luca Pastorelli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Liver and Gastroenterology Unit, ASST Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
2
|
Gabaev I, Rowland A, Jovanovic E, Gawden-Bone CM, Crozier TWM, Teixeira-Silva A, Greenwood EJD, Gerber PP, Wit N, Nathan JA, Matheson NJ, Lehner PJ. CRISPR-Cas9 genetic screens reveal regulation of TMPRSS2 by the Elongin BC-VHL complex. Sci Rep 2025; 15:11907. [PMID: 40195420 PMCID: PMC11976923 DOI: 10.1038/s41598-025-95644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The TMPRSS2 cell surface protease is used by a broad range of respiratory viruses to facilitate entry into target cells. Together with ACE2, TMPRSS2 represents a key factor for SARS-CoV-2 infection, as TMPRSS2 mediates cleavage of viral spike protein, enabling direct fusion of the viral envelope with the host cell membrane. Since the start of the COVID-19 pandemic, TMPRSS2 has gained attention as a therapeutic target for protease inhibitors which would inhibit SARS-CoV-2 infection, but little is known about TMPRSS2 regulation, particularly in cell types physiologically relevant for SARS-CoV-2 infection. Here, we performed an unbiased genome-wide CRISPR-Cas9 library screen, together with a library targeted at epigenetic modifiers and transcriptional regulators, to identify cellular factors that modulate cell surface expression of TMPRSS2 in human colon epithelial cells. We find that endogenous TMPRSS2 is regulated by the Elongin BC-VHL complex and HIF transcription factors. Depletion of Elongin B or treatment of cells with PHD inhibitors resulted in downregulation of TMPRSS2 and inhibition of SARS-CoV-2 infection. We show that TMPRSS2 is still utilised by SARS-CoV-2 Omicron variants for entry into colonic epithelial cells. Our study enhances our understanding of the regulation of endogenous surface TMPRSS2 in cells physiologically relevant to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexandra Rowland
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Emilija Jovanovic
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christian M Gawden-Bone
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thomas W M Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ana Teixeira-Silva
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward J D Greenwood
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Niek Wit
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
3
|
Chen Q, Gao Y, Li F, Yuan L. The role of gut-islet axis in pancreatic islet function and glucose homeostasis. Diabetes Obes Metab 2025; 27:1676-1692. [PMID: 39916498 PMCID: PMC11885102 DOI: 10.1111/dom.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/08/2025]
Abstract
The gastrointestinal tract plays a vital role in the occurrence and treatment of metabolic diseases. Recent studies have convincingly demonstrated a bidirectional axis of communication between the gut and islets, enabling the gut to influence glucose metabolism and energy homeostasis in animals strongly. The 'gut-islet axis' is an essential endocrine signal axis that regulates islet function through the dialogue between intestinal microecology and endocrine metabolism. The discovery of glucagon-like peptide-1 (GLP-1), gastric inhibitory peptide (GIP) and other gut hormones has initially set up a bridge between gut and islet cells. However, the influence of other factors remains largely unknown, such as the homeostasis of the gut microbiota and the integrity of the gut barrier. Although gut microbiota primarily resides and affect intestinal function, they also affect extra-intestinal organs by absorbing and transferring metabolites derived from microorganisms. As a result of this transfer, islets may be continuously exposed to gut-derived metabolites and components. Changes in the composition of gut microbiota can damage the intestinal barrier function to varying degrees, resulting in increased intestinal permeability to bacteria and their derivatives. All these changes contribute to the severe disturbance of critical metabolic pathways in peripheral tissues and organs. In this review, we have outlined the different gut-islet axis signalling mechanisms associated with metabolism and summarized the latest progress in the complex signalling molecules of the gut and gut microbiota. In addition, we will discuss the impact of the gut renin-angiotensin system (RAS) on the various components of the gut-islet axis that regulate energy and glucose homeostasis. This work also indicates that therapeutic approaches aiming to restore gut microbial homeostasis, such as probiotics and faecal microbiota transplantation (FMT), have shown great potential in improving treatment outcomes, enhancing patient prognosis and slowing down disease progression. Future research should further uncover the molecular links between the gut-islet axis and the gut microbiota and explore individualized microbial treatment strategies, which will provide an innovative perspective and approach for the diagnosis and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fangyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
van der Mescht MA, Steel HC, Anderson R, Rossouw TM. Vascular endothelial growth factor A: friend or foe in the pathogenesis of HIV and SARS-CoV-2 infections? Front Cell Infect Microbiol 2025; 14:1458195. [PMID: 40008234 PMCID: PMC11850333 DOI: 10.3389/fcimb.2024.1458195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/28/2024] [Indexed: 02/27/2025] Open
Abstract
This review article discusses the role of vascular endothelial growth factor A (VEGF-A) in the pathogenesis of SARS-CoV-2 and HIV infection, both conditions being renowned for their impact on the vascular endothelium. The processes involved in vascular homeostasis and angiogenesis are reviewed briefly before exploring the interplay between hypoxia, VEGF-A, neuropilin-1 (NRP-1), and inflammatory pathways. We then focus on SARS-CoV-2 infection and show how the binding of the viral pathogen to the angiotensin-converting enzyme 2 receptor, as well as to NRP-1, leads to elevated levels of VEGF-A and consequences such as coagulation, vascular dysfunction, and inflammation. HIV infection augments angiogenesis via several mechanisms, most prominently, by the trans-activator of transcription (tat) protein mimicking VEGF-A by binding to its receptor, VEGFR-2, as well as upregulation of NRP-1, which enhances the interaction between VEGF-A and VEGFR-2. We propose that the elevated levels of VEGF-A observed during HIV/SARS-CoV-2 co-infection originate predominantly from activated immune cells due to the upregulation of HIF-1α by damaged endothelial cells. In this context, a few clinical trials have described a diminished requirement for oxygen therapy during anti-VEGF treatment of SARS-CoV-2 infection. The currently available anti-VEGF therapy strategies target the binding of VEGF-A to both VEGFR-1 and VEGFR-2. The blocking of both receptors could, however, lead to a negative outcome, inhibiting not only pathological, but also physiological angiogenesis. Based on the examination of published studies, this review suggests that treatment targeting selective inhibition of VEGFR-1 may be beneficial in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of
Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Iqbal NT, Khan H, Khalid A, Mahmood SF, Nasir N, Khanum I, de Siqueira I, Van Voorhis W. Chronic inflammation in post-acute sequelae of COVID-19 modulates gut microbiome: a review of literature on COVID-19 sequelae and gut dysbiosis. Mol Med 2025; 31:22. [PMID: 39849406 PMCID: PMC11756069 DOI: 10.1186/s10020-024-00986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Long COVID or Post-acute sequelae of COVID-19 is an emerging syndrome, recognized in COVID-19 patients who suffer from mild to severe illness and do not recover completely. Most studies define Long COVID, through symptoms like fatigue, brain fog, joint pain, and headache prevailing four or more weeks post-initial infection. Global variations in Long COVID presentation and symptoms make it challenging to standardize features of Long COVID. Long COVID appears to be accompanied by an auto-immune multi-faceted syndrome where the virus or viral antigen persistence causes continuous stimulation of the immune response, resulting in multi-organ immune dysregulation. MAIN TEXT This review is focused on understanding the risk factors of Long COVID with a special emphasis on the dysregulation of the gut-brain axis. Two proposed mechanisms are discussed here. The first mechanism is related to the dysfunction of angiotensin-converting enzyme 2 receptor due to Severe Acute Respiratory Syndrome Corona Virus 2 infection, leading to impaired mTOR pathway activation, reduced AMP secretion, and causing dysbiotic changes in the gut. Secondly, gut-brain axis dysregulation accompanied by decreased production of short-chain fatty acids, impaired enteroendocrine cell function, and increased leakiness of the gut, which favors translocation of pathogens or lipopolysaccharide in circulation causing the release of pro-inflammatory cytokines. The altered Hypothalamic-Pituitary-Adrenal axis is accompanied by the reduced level of neurotransmitter, and decreased stimulation of the vagus nerve, which may cause neuroinflammation and dysregulation of serum cortisol levels. The dysbiotic microbiome in Long COVID patients is characterized by a decrease in beneficial short chain fatty acid-producing bacteria (Faecalibacterium, Ruminococcus, Dorea, and Bifidobacterium) and an increase in opportunistic bacteria (Corynebacterium, Streptococcus, Enterococcus). This dysbiosis is transient and may be impacted by interventions including probiotics, and dietary supplements. CONCLUSIONS Further studies are required to understand the geographic variation, racial and ethnic differences in phenotypes of Long COVID, the influence of viral strains on existing and emerging phenotypes, to explore long-term effects of gut dysbiosis, and gut-brain axis dysregulation, as well as the potential role of diet and probiotics in alleviating those symptoms.
Collapse
Affiliation(s)
- Najeeha Talat Iqbal
- Department of Biological and Biomedical Sciences, Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, P. O Box 3500, Karachi, 74800, Pakistan.
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan.
| | - Hana Khan
- Undergraduate Medical Education (UGME), Year II, Aga Khan University, Karachi, Pakistan
| | - Aqsa Khalid
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Nosheen Nasir
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Iffat Khanum
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Wes Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, USA
| |
Collapse
|
6
|
Spalinger MR, Sanati G, Chatterjee P, Hai R, Li J, Santos AN, Nordgren TM, Tremblay ML, Eckmann L, Hanson E, Scharl M, Wu X, Boland BS, McCole DF. Tofacitinib Mitigates the Increased SARS-CoV-2 Infection Susceptibility Caused by an IBD Risk Variant in the PTPN2 Gene. Cell Mol Gastroenterol Hepatol 2025; 19:101447. [PMID: 39756517 PMCID: PMC11953972 DOI: 10.1016/j.jcmgh.2024.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND & AIMS Coronavirus disease (COVID-19), caused by severe acquired respiratory syndrome-Coronavirus-2 (SARS-CoV-2), triggered a global pandemic with severe medical and socioeconomic consequences. Although fatality rates are higher among the elderly and those with underlying comorbidities, host factors that promote susceptibility to SARS-CoV-2 infection and severe disease are poorly understood. Although individuals with certain autoimmune/inflammatory disorders show increased susceptibility to viral infections, there is incomplete knowledge of SARS-CoV-2 susceptibility in these diseases. The aim of our study was to investigate whether the autoimmunity risk gene, PTPN2, which also confers elevated risk to develop inflammatory bowel disease, affects susceptibility to SARS-CoV-2 viral uptake. METHODS Using samples from PTPN2 genotyped patients with inflammatory bowel disease, PTPN2-deficient mice, and human intestinal and lung epithelial cell lines, we investigated how PTPN2 affects expression of the SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2), and uptake of virus-like particles expressing the SARS-CoV2 spike protein and live SARS-CoV-2 virus. RESULTS We report that the autoimmune PTPN2 loss-of-function risk variant rs1893217 promotes expression of the SARS-CoV-2 receptor, ACE2, and increases cellular entry of SARS-CoV-2 spike protein and live virus. Elevated ACE2 expression and viral entry were mediated by increased Janus kinase-signal transducers and activators of transcription signaling and were reversed by the Janus kinase inhibitor, tofacitinib. CONCLUSION Collectively, our findings uncover a novel risk biomarker for increased expression of the SARS-CoV-2 receptor and viral entry, and identify a clinically approved therapeutic agent to mitigate this risk.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Golshid Sanati
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Pritha Chatterjee
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Alina N Santos
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Current position: College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Michel L Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Lars Eckmann
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Elaine Hanson
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, California
| | - Brigid S Boland
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California.
| |
Collapse
|
7
|
Sáez-Leyva J, Lennol MP, Avilés-Granados C, García-Ayllón MS, Gutiérrez A, Francés R, Sáez-Valero J. Altered plasma levels of the SARS-CoV-2-related proteins ACE2 and TMPRSS2 in patients with Crohn's disease. Sci Rep 2024; 14:30346. [PMID: 39638806 PMCID: PMC11621418 DOI: 10.1038/s41598-024-81810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The SARS-CoV-2 coronavirus infects cells through the cellular receptor angiotensin-converting enzyme 2 (ACE2), and the protease TMPRSS2 for the priming of viral spike protein. Thus, changes in these key proteins due to chronic conditions can increase risk for SARS-CoV2 infection; but significance of changes may differ is these changes correspond to full-length species or proteolytic fragments. Here, we determined that full-length ACE2 decreased in the plasma of uninfected Crohn's disease (CD) patients before treatment onset compared to controls. TMPRSS2 is mostly presented in plasma as full-length species and as an active peptidase fragment, but also as a prodomain fragment, which is the unique species remarkably decreased in plasma from CD patients. Patients treated with the anti-TNFα adalimumab showed recovery in ACE2 levels, while those treated with infliximab, or with the anti-IL-12/23 ustekinumab, still displayed a decrease in full-length species, as well as in cleaved fragments. Patients treated with azathioprine displayed similar ACE2 levels to that of controls, except a decrease in one of the ACE2 fragments. Uniquely, patients treated with azathioprine or with ustekinumab showed partial recovery in the reduction of the TMPRSS2-prodomain fragment characterized in treatment-naïve patients. Our data suggest that CD and common therapies are not related to increased susceptibility for SARS-CoV-2.
Collapse
Affiliation(s)
- Jorge Sáez-Leyva
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Matthew P Lennol
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Institute of Neurophysiopathology (INP UMR7051), CNRS, Aix-Marseille Université, Marseille, 13005, France
| | - Carlos Avilés-Granados
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain
| | - Ana Gutiérrez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Francés
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
- Hepatic and Intestinal Immunology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Spain.
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
8
|
Sakr A, Hesham Y, Elfeki H, Shalaby M, Hossam Elfallal A, Sameer A. Anal fissures in COVID-19 survivors: Incidence, risk factors, and outcomes. Turk J Surg 2024; 40:336-342. [PMID: 39980638 PMCID: PMC11831989 DOI: 10.47717/turkjsurg.2024.6494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/19/2024] [Indexed: 02/22/2025]
Abstract
Objectives In spite of COVID-19's typical presentation in the form of fever, cough, myalgia, and pneumonia, other gastrointestinal manifestations have been reported. Among the COVID-19 survivors, anal fissure has been documented. The aim of this study was to report the incidence of anal fissure among those patients, its possible risk factors and outcome. Material and Methods This is a retrospective cross-sectional study which was conducted on COVID-19 patients' who were diagnosed with anal fissure. Those who survived and were discharged home safely were contacted to pick up whether they suffered from any symptoms suggesting anal fissure, to identify the risk factors of anal fissure and their outcomes. Results A total of 176 COVID-19 patients were enrolled in this study. The incidence of anal fissure among all patients was 36.9%. Patients were categorized into two groups; fissure and non-fissure groups. No significant difference was noted in the demographic data apart from age, which was younger in the fissure group. The majority of anal fissures resolved spontaneously after patients recovered from the COVID-19 symptoms with no specific treatment (43.1%). Conclusion Anal fissure is quite a common problem in COVID-19 patients. Young and middle-aged patients are more vulnerable to develop anal fissure after COVID-19 infection.
Collapse
Affiliation(s)
- Ahmad Sakr
- Colorectal Surgery Unit, Department of Surgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Yousef Hesham
- Colorectal Surgery Unit, Department of Surgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Hossam Elfeki
- Colorectal Surgery Unit, Department of Surgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Mostafa Shalaby
- Colorectal Surgery Unit, Department of Surgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Ahmed Hossam Elfallal
- Colorectal Surgery Unit, Department of Surgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Amr Sameer
- Colorectal Surgery Unit, Department of Surgery, Mansoura University Hospitals, Mansoura, Egypt
| |
Collapse
|
9
|
Gonzalez-Horta EE, Burgueno JF, Leiva MJ, Villavicencio C, Kawaguchi FI, Hazime H, Reyes F, Manrique-Suárez V, Parra NC, Abreu MT, Toledo JR. Oxidized Low-Density Lipoprotein Induces Reactive Oxygen Species-Dependent Proliferation of Intestinal Epithelial Cells. Pharmaceuticals (Basel) 2024; 17:1466. [PMID: 39598378 PMCID: PMC11597178 DOI: 10.3390/ph17111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Oxidized low-density lipoprotein (ox-LDL) is a proinflammatory particle associated with various diseases and affects cell proliferation and viability in multiple cell types. However, its impact on intestinal epithelial cells remains underexplored. This study investigates the effect of ox-LDL on colonic epithelial cell proliferation and viability, as well as the underlying mechanisms involved. Methods: The expression levels of ox-LDL receptors in human colonoids were analyzed at baseline and in response to proinflammatory signals by qRT-PCR. The effect of ox-LDL on organoid proliferation was analyzed using morphometric measurements, viability assays, and the incorporation of a thymidine analog into DNA. The generation of reactive oxygen species (ROS) was determined by Amplex Red assays. Additionally, ox-LDL-induced ROS-dependent organoid proliferation was studied by exposing colonoids to an antioxidant or ROS inhibitors. Results: Colonic epithelial cells express ox-LDL receptors. Ox-LDL significantly induces the proliferation of colonic epithelial cells, which are dependent on ROS generation. Notably, ROS scavengers and NADPH inhibitors reduced ox-LDL-induced proliferation, highlighting the crucial role of oxidative stress in this process. Conclusions: This study demonstrates for the first time that ox-LDL stimulates CEC proliferation mediated by ROS production and validates that the colonic organoid model enables the analysis of potential pharmacological strategies for intestinal diseases characterized by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Eddy E. Gonzalez-Horta
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (E.E.G.-H.); (M.J.L.); (C.V.); (F.R.); (V.M.-S.); (N.C.P.)
- Division of Gastroenterology, Department of Medicine, University of Miami–Miller School of Medicine, Miami, FL 33136, USA; (J.F.B.); (H.H.); (M.T.A.)
| | - Juan F. Burgueno
- Division of Gastroenterology, Department of Medicine, University of Miami–Miller School of Medicine, Miami, FL 33136, USA; (J.F.B.); (H.H.); (M.T.A.)
| | - María J. Leiva
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (E.E.G.-H.); (M.J.L.); (C.V.); (F.R.); (V.M.-S.); (N.C.P.)
| | - Carla Villavicencio
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (E.E.G.-H.); (M.J.L.); (C.V.); (F.R.); (V.M.-S.); (N.C.P.)
| | | | - Hajar Hazime
- Division of Gastroenterology, Department of Medicine, University of Miami–Miller School of Medicine, Miami, FL 33136, USA; (J.F.B.); (H.H.); (M.T.A.)
| | - Fátima Reyes
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (E.E.G.-H.); (M.J.L.); (C.V.); (F.R.); (V.M.-S.); (N.C.P.)
| | - Viana Manrique-Suárez
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (E.E.G.-H.); (M.J.L.); (C.V.); (F.R.); (V.M.-S.); (N.C.P.)
| | - Natalie C. Parra
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (E.E.G.-H.); (M.J.L.); (C.V.); (F.R.); (V.M.-S.); (N.C.P.)
| | - Maria T. Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami–Miller School of Medicine, Miami, FL 33136, USA; (J.F.B.); (H.H.); (M.T.A.)
| | - Jorge R. Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (E.E.G.-H.); (M.J.L.); (C.V.); (F.R.); (V.M.-S.); (N.C.P.)
| |
Collapse
|
10
|
Ferreira-Duarte M, Oliveira LCG, Quintas C, Dias-Pereira P, Sousa T, Magro F, Casarini DE, Duarte-Araújo M, Morato M. Angiotensin-converting enzymes 1 and 2 in the feces: presence and catalytic activity in the rat 2,4,6-trinitrobenzene sulfonic acid-induced model of colitis. J Gastroenterol Hepatol 2024; 39:1885-1894. [PMID: 38967213 DOI: 10.1111/jgh.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIM Inflammatory bowel disease is challenging to diagnose. Fecal biomarkers offer noninvasive solutions. The renin-angiotensin-aldosterone system is implicated in intestinal inflammation. Angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) regulate its activity, but conflicting findings on these enzymes in colitis require further investigation. We aimed to assess ACE and ACE2 presence and activities in the feces, serum, and colon of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rats. METHODS Colitis was induced in male rats by rectal instillation of a 21% ethanolic TNBS solution. After rats' sacrifice, colonic portions, serum, and feces were collected. ACE and ACE2 presence in the feces was analyzed by western Blot, and colonic and serum enzymes' concentrations were quantified using ELISA kits. ACE activity was assessed using Hippuryl-His-Leu and Z-Phe-His-Leu as substrates. ACE2 activity was assessed using Mca-APK (Dnp) as a substrate in the presence and absence of DX600 (ACE2 inhibitor). RESULTS An ACE isoform of ~70 kDa was found only in the feces of TNBS-induced rats. ACE concentration was higher than that of ACE2 in the serum and the inflamed colon. ACE N-domain activity was higher than that of the C-domain in all matrices. ACE2 activity was higher in the feces of TNBS-induced animals compared to controls. CONCLUSION A 70 kDa ACE isoform only detected in the feces of TNBS-induced rats may have translational relevance. ACE N-domain seems to play a significant role in regulating colonic lesions. Further research using human samples is necessary to validate these findings.
Collapse
Affiliation(s)
- Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| | - Lilian Caroline Gonçalves Oliveira
- Department of Medicine, Discipline of Nephrology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
- UCIBIO@REQUIMTE, University of Porto, Porto, Portugal
| | - Patricia Dias-Pereira
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Teresa Sousa
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, University of Porto (MedInUP), Porto, Portugal
| | - Fernando Magro
- CINTESIS@RISE, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Dulce Elena Casarini
- Department of Medicine, Discipline of Nephrology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Margarida Duarte-Araújo
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Tsai TY, Wu JF, Weng MT, Chuang CH, Huang TY, Tai WC, Tai CM, Chung CS, Chen CC, Lin CP, Tsai YY, Wei SC. Exacerbated gastrointestinal symptoms and long COVID in IBD patients with SARS-CoV-2 infection: A multi-center study from taiwan. J Formos Med Assoc 2024; 123:866-874. [PMID: 38553294 DOI: 10.1016/j.jfma.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND/PURPOSE Limited studies have addressed the exacerbation of symptoms and long COVID in inflammatory bowel disease (IBD) patients following non-severe COVID-19 infection, particularly with post-COVID-19 vaccination. We aim to investigate factors associated with exacerbated gastrointestinal symptoms (EGS) and long COVID in IBD patients with non-severe COVID-19, which is most common situation in daily practice. METHODS This is an observational study by multiple centers in Taiwan from May 2020 to March 2023. We collected clinical manifestation, data, and medication information from IBD patients with non-severe COVID-19. EGS was defined as increased frequency of diarrhea, bloody stool, and abdomen pain within 14 days after SARS-COV-2 infection. Long COVID was defined following the guidelines of the World Health Organization. RESULTS Out of 90 patients, most of them (88.9%) received at least standard two doses of COVID-19 vaccination and the majority (87.8%) were mild diseases of COVID-19.30% of patients experienced EGS during COVID-19 with higher ESR levels serving as a predictive factor (Odds ratio: 3.6, 95% confidence interval: 1.2-10.5, P = 0.02). 38.1% of those patients developed long COVID. The patients who experienced EGS during COVID-19 and with a history of longer IBD duration showed a significant association with long COVID (p = 0.03 and p = 0.02). CONCLUSION Our study revealed that EGS and long COVID occurred in one third of IBD patients with non-severe COVID-19, even though most of them had received the standard plus booster vaccination. We identified associated factors for EGS and long COVID, emphasizing the importance of post-COVID-19 follow-up in IBD patients.
Collapse
Affiliation(s)
- Tsung-Yu Tsai
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Tzu Weng
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; Division of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Hsiung Chuang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tien-Yu Huang
- Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chen Tai
- Division of Gastroenterology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chi-Ming Tai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chen-Shuan Chung
- Division for Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chih-Cheng Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Division of Gastroenterology and Hepatology, Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan; The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Ching-Pin Lin
- Division of Gastroenterology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yuan-Yao Tsai
- Department of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shu-Chen Wei
- Division of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Kopera K, Gromowski T, Wydmański W, Skonieczna-Żydecka K, Muszyńska A, Zielińska K, Wierzbicka-Woś A, Kaczmarczyk M, Kadaj-Lipka R, Cembrowska-Lech D, Januszkiewicz K, Kotfis K, Witkiewicz W, Nalewajska M, Feret W, Marlicz W, Łoniewski I, Łabaj PP, Rydzewska G, Kosciolek T. Gut microbiome dynamics and predictive value in hospitalized COVID-19 patients: a comparative analysis of shallow and deep shotgun sequencing. Front Microbiol 2024; 15:1342749. [PMID: 38962119 PMCID: PMC11219902 DOI: 10.3389/fmicb.2024.1342749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has led to a wide range of clinical presentations, with respiratory symptoms being common. However, emerging evidence suggests that the gastrointestinal (GI) tract is also affected, with angiotensin-converting enzyme 2, a key receptor for SARS-CoV-2, abundantly expressed in the ileum and colon. The virus has been detected in GI tissues and fecal samples, even in cases with negative results of the reverse transcription polymerase chain reaction in the respiratory tract. GI symptoms have been associated with an increased risk of ICU admission and mortality. The gut microbiome, a complex ecosystem of around 40 trillion bacteria, plays a crucial role in immunological and metabolic pathways. Dysbiosis of the gut microbiota, characterized by a loss of beneficial microbes and decreased microbial diversity, has been observed in COVID-19 patients, potentially contributing to disease severity. We conducted a comprehensive gut microbiome study in 204 hospitalized COVID-19 patients using both shallow and deep shotgun sequencing methods. We aimed to track microbiota composition changes induced by hospitalization, link these alterations to clinical procedures (antibiotics administration) and outcomes (ICU referral, survival), and assess the predictive potential of the gut microbiome for COVID-19 prognosis. Shallow shotgun sequencing was evaluated as a cost-effective diagnostic alternative for clinical settings. Our study demonstrated the diverse effects of various combinations of clinical parameters, microbiome profiles, and patient metadata on the precision of outcome prognostication in patients. It indicates that microbiological data possesses greater reliability in forecasting patient outcomes when contrasted with clinical data or metadata. Furthermore, we established that shallow shotgun sequencing presents a viable and cost-effective diagnostic alternative to deep sequencing within clinical environments.
Collapse
Affiliation(s)
- Katarzyna Kopera
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tomasz Gromowski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Witold Wydmański
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | | | - Agata Muszyńska
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kinga Zielińska
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Mariusz Kaczmarczyk
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Roland Kadaj-Lipka
- Department of Internal Medicine and Gastroenterology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Danuta Cembrowska-Lech
- Department of Biochemical Science, Pomeranian Medical University, Szczecin, Poland
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
| | | | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Care and Pain Management, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Wiktoria Feret
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Marlicz
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Igor Łoniewski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Biochemical Science, Pomeranian Medical University, Szczecin, Poland
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
| | - Paweł P. Łabaj
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grażyna Rydzewska
- Department of Internal Medicine and Gastroenterology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Tomasz Kosciolek
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
13
|
Yang K, Wang Y. Dandelion root extracts and taraxasterol inhibit LPS‑induced colorectal cancer cell viability by blocking TLR4‑NFκB‑driven ACE2 and TMPRSS2 pathways. Exp Ther Med 2024; 27:256. [PMID: 38766306 PMCID: PMC11099608 DOI: 10.3892/etm.2024.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/14/2024] [Indexed: 05/22/2024] Open
Abstract
Colorectal cancer is the fourth leading cause of cancer-related death worldwide. Notably, abnormalities in intestinal bacteria may contribute to the initiation or progression of colorectal cancer. Lipopolysaccharide (LPS), a bacterial endotoxin, is elevated in patients with colorectal cancer. The present study investigated the protective effects of dandelion root extracts and taraxasterol (TS; a major pharmacologically active compound in dandelion root extracts) on LPS-induced colorectal cancer cell viability, as well as the underlying mechanisms. Cell viability was assessed by MTT assay, and protein and gene expression levels were determined by western blotting and quantitative PCR. It was revealed that LPS at a low dose (0.5 µg/ml) significantly promoted the viability of human colorectal cancer cells but did not affect normal colon epithelial cells. The addition of dandelion root extracts (0.1-1 mg/ml) or TS (0.05-1 µg/ml) was able to reverse the LPS-induced increase in colorectal cancer cell viability and colony formation. Mechanistically, dandelion root extracts or TS may inhibit the LPS-promoted toll-like receptor 4 (TLR4)/NFκB-p65 pathway and transcription levels of pro-inflammatory genes (TNFα, IL4 and IL6). Compared with normal colon epithelial cells, human colorectal cancer cells had higher expression levels of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), which could be further enhanced by LPS treatment but this was reversed by co-incubation with dandelion root extracts or TS. In addition, suppression of the TLR4/NFκB-p65 pathway with CLI095 significantly reversed the stimulatory effect of LPS on the expression levels of ACE2 and TMPRSS2, whereas TNFα (10 ng/ml) markedly induced the expression levels of ACE2 and TMPRSS2. In conclusion, the present study suggested that dandelion root extracts and TS could be used as prevention strategies for reversing bacteria-driven colorectal cancer cell viability.
Collapse
Affiliation(s)
- Kerry Yang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Yuehong Wang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
- State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
14
|
Kaygısız Yiğit M, Akyol R, Yalvaç B, Etöz M. Dental radiographic changes in individuals with COVID-19: a controlled retrospective study. Oral Radiol 2024; 40:148-157. [PMID: 37733163 DOI: 10.1007/s11282-023-00713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The aim of this study is to compare the pre-COVID-19 and post-COVID-19 dental radiological findings of individuals with positive rRT-PCR test results and with healthy controls using the apical periodontitis grade scale (APGS), radiographic-based periodontal bone loss (R-PBL), and radiographic DMFT indices, and to investigate the relatively long-term dental effects of COVID-19. METHODS This study included people who had two panoramic radiographs taken between 2018 and 2022. There are 52 patients with positive rRT-PCR tests in the study group. The control group included 50 individuals. Study and control groups were compared using the apical periodontitis grade scale (APGS), radiographic-based periodontal bone loss (R-PBL), and radiographic DMFT indices. RESULTS Although results showed a significant difference in percentage R-PBL value and R-PBL types in the study group, there was no significant difference in percentage R-PBL value and R-PBL types in the control group. Also, both groups showed a significant difference in the DMFT index. CONCLUSIONS According to the results of this study, it can be said that COVID-19 increases the incidence of periodontitis, and it can be interpreted that the pandemic may adversely affect the general oral health of all people.
Collapse
Affiliation(s)
- Meryem Kaygısız Yiğit
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Erciyes University, 38039, Kayseri, Turkey.
| | - Rıdvan Akyol
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Beyza Yalvaç
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Erciyes University, 38039, Kayseri, Turkey
| | - Meryem Etöz
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
15
|
Hamamoto Y, Kawamura M, Uchida H, Hiramatsu K, Katori C, Asai H, Egawa S, Yoshida K. Increased ACE2 and TMPRSS2 expression in ulcerative colitis. Pathol Res Pract 2024; 254:155108. [PMID: 38246035 DOI: 10.1016/j.prp.2024.155108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Ulcerative colitis (UC) is a cryptogenic inflammatory bowel disease, and there is an urgent need to elucidate its pathogenesis. ACE2 and TMPRSS2, the entry molecules of SARS-CoV-2, are reportedly associated with the disease; however, no consensus has been reached yet. In this study, we examined the expression of ACE2 and TMPRSS2 in colon and rectal specimens of UC. We collected colorectal specimens from 60 patients (30 patients with UC and 30 controls from 2018 to 2021) and analyzed the proportion and intensity of ACE2 and TMPRSS2 using immunohistochemistry. The results revealed a significant increase in the proportion of ACE2 expression and the intensity of TMPRSS2 expression in patients with UC. ACE2 and TMPRSS2 expression in UC remained unaffected by the COVID-19 pandemic. We demonstrated that ACE2 and TMPRSS2 are likely involved in the pathogenesis of UC.
Collapse
Affiliation(s)
- Yuichiro Hamamoto
- Department of Diagnostic Pathology, Kinki Central Hospital, Itami, Hyogo, Japan; Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Michihiro Kawamura
- Department of Clinical Laboratory, Kinki Central Hospital, Itami, Hyogo, Japan
| | - Hiroki Uchida
- Department of Clinical Laboratory, Kinki Central Hospital, Itami, Hyogo, Japan
| | - Kazuhiro Hiramatsu
- Department of Clinical Laboratory, Kinki Central Hospital, Itami, Hyogo, Japan
| | - Chiaki Katori
- Department of Clinical Laboratory, Kinki Central Hospital, Itami, Hyogo, Japan
| | - Hinako Asai
- Department of Clinical Laboratory, Kinki Central Hospital, Itami, Hyogo, Japan
| | - Satoshi Egawa
- Department of Gastroenterology, Kinki Central Hospital, Itami, Hyogo, Japan
| | - Kyotaro Yoshida
- Department of Clinical Laboratory, Kinki Central Hospital, Itami, Hyogo, Japan
| |
Collapse
|
16
|
Marzoog BA. Gastrointestinal Tract and Kidney Injury Pathogenesis in Post-COVID-19 Syndrome. Curr Diabetes Rev 2024; 20:e051023221787. [PMID: 37815187 DOI: 10.2174/0115733998250889230919185305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 10/11/2023]
Abstract
COVID-19 is a global health emergency that requires worldwide collaboration to control its spread. The scientific community is working to understand the different aspects of the post-COVID-19 syndrome and potential treatment strategies. Interestingly, there have been reports of gastrointestinal tract (GIT) involvement in the post-COVID-19 syndrome, suggesting the presence of both severe and mild GIT disorders. The development of the post-COVID-19- GIT syndrome involves various factors, such as impaired GIT mucosa cells, disruptions in the feeling of satiety, reduced blood supply due to the formation of small blood clots, and increased prostaglandin secretion caused by an excessive immune response. GIT symptoms have been observed in around 16% of COVID-19 patients. Other complications include kidney damage and prolonged impairment in the filtration and excretion functions of the glomeruli and tubules. The pathogenesis of post-COVID-19 renal syndrome involves factors, like an overactive immune response, reduced lung perfusion and oxygenation, viral infection in kidney tissues, endothelial dysfunction, and decreased blood volume. Roughly 20% of hospitalized patients experience renal manifestations after recovering from COVID-19.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
17
|
Yang J, Ke J, Jiang X, Wang L. The association between ulcerative colitis and COVID-19 severity: a systematic review and meta-analysis systematic review. Int J Colorectal Dis 2023; 39:5. [PMID: 38108846 DOI: 10.1007/s00384-023-04568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE After the COVID-19 pandemic, many challenges arose regarding the impact of this disease on people with ulcerative colitis. The aims of this study were to estimate the prevalence, severity, and death consequences of COVID-19 in patients with ulcerative colitis using a systematic review and meta-analysis. METHODS This study was conducted using a systematic review and meta-analysis method in the field of prevalence, severity, and clinical consequences of COVID-19 in people with ulcerative colitis worldwide. The search was conducted in international scientific databases, such as Web of Science, PubMed, Scopus, Cochrane Library, and Google Scholar, from the beginning of 2020 to October 2023. The quality of the eligible studies was assessed using the Strobe and Newcastle Ottawa checklists. The data were analyzed using a fixed-effects model in the meta-analysis. Subgroup analysis and meta-regression were performed using STATA version 17. RESULTS Nineteen studies with a sample size of 224,520 patients were included in this meta-analysis. The results showed that, in COVID-19 patients with ulcerative colitis, the prevalence of hospitalization, death, COVID-19 severity, and mortality rate in severe patients was 54% (95% CI, 27-80%), 10% (95% CI, 4-16%), 20% (95% CI, 8-34%), 63% (95% CI, 46-80%), respectively. In comparison with the general population, the odds ratio (OR) of hospitalization in patients due to COVID-19 was OR = 1.28 (95% CI, 1.19-1.38, P < 0.001), and the chance of severe COVID-19 was OR = 1.30 (95% CI, 1.22-1.53, P < 0.001). CONCLUSION The probability of contracting the severe type of COVID-19 and hospitalization in patients with ulcerative colitis was higher than in the general population.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Occupational Disease, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1, Jingba Road, Jinan, 250000, China
| | - Jianlin Ke
- Department of Special Inspection, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1, Jingba Road, Jinan, 250000, China
| | - Xueliang Jiang
- Department of Digestive Center, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1, Jingba Road, Jinan, 250000, China.
| | - Lei Wang
- Department of Special Inspection, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1, Jingba Road, Jinan, 250000, China
| |
Collapse
|
18
|
Wu S, Zhang Q, Cong G, Xiao Y, Shen Y, Zhang S, Zhao W, Shi S. Probiotic Escherichia coli Nissle 1917 protect chicks from damage caused by Salmonella enterica serovar Enteritidis colonization. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:450-460. [PMID: 37649679 PMCID: PMC10463197 DOI: 10.1016/j.aninu.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 09/01/2023]
Abstract
As a foodborne pathogen of global importance, Salmonella enterica serovar Enteritidis (S. Enteritidis) is a threat to public health that is mainly spread by poultry products. Intestinal Enterobacteriaceae can inhibit the colonization of S. Enteritidis and are regarded as a potential antibiotic substitute. We investigated, in chicks, the anti-S. Enteritidis effects of Escherichia coli (E. coli) Nissle 1917, the most well-known probiotic member of Enterobacteriaceae. Eighty 1-d-old healthy female AA broilers were randomly divided into 4 groups, with 20 in each group, namely the negative control (group P), the E. coli Nissle 1917-treated group (group N), the S. Enteritidis-infected group (group S) and the E. coli Nissle 1917-treated and S. Enteritidis-infected group (group NS). From d 5 to 7, chicks in groups N and NS were orally gavaged once a day with E. coli Nissle 1917 and in groups P and S were administered the same volume of sterile PBS. At d 8, the chicks in groups S and NS were orally gavaged with S. Enteritidis and in groups P and N were administered the same volume of sterile PBS. Sampling was conducted 24 h after challenge. Results showed that gavage of E. coli Nissle 1917 reduced the spleen index, Salmonella loads, and inflammation (P < 0.05). It improved intestinal morphology and intestinal barrier function (P < 0.05). S. Enteritidis infection significantly reduced mRNA expression of angiotensin-converting enzyme 2 (ACE2) and solute carrier family 6-member 19 (SLC6A19) in the cecum and the content of Gly, Ser, Gln, and Trp in the serum (P < 0.05). Pretreatment with E. coli Nissle 1917 yielded mRNA expression of ACE2 and SLC6A19 in the cecum and levels of Gly, Ser, Gln, and Trp in the serum similar to that of uninfected chicks (P < 0.05). Additionally, E. coli Nissle 1917 altered cecum microbiota composition and enriched the abundance of E. coli, Lactobacillales, and Lachnospiraceae. These findings reveal that the probiotic E. coli Nissle 1917 reduced S. Enteritidis infection and shows enormous potential as an alternative to antibiotics.
Collapse
Affiliation(s)
| | | | - Guanglei Cong
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Yunqi Xiao
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Yiru Shen
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Shan Zhang
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Wenchang Zhao
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Shourong Shi
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| |
Collapse
|
19
|
Neri B, D'Agostini G, Salvatori S, Mossa M, Bettin F, Mancone R, Marafini I, Lolli E, Calabrese E, Monteleone G, Biancone L. Severe acute respiratory syndrome coronavirus 2 infection does not worsen the course of inflammatory bowel disease in the long term. Eur J Gastroenterol Hepatol 2023; 35:948-954. [PMID: 37505974 DOI: 10.1097/meg.0000000000002554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
BACKGROUND The long-term outcome of inflammatory bowel disease (IBD) patients after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is under investigation. AIM To assess, in a prospective study, whether a recent SARS-CoV-2 infection increases the risk of IBD relapse within 12 months. METHODS From March to April 2021, all IBD patients with recent (<2 months) SARS-CoV-2 infection (Cases) were enrolled. For each enrolled Case, four IBD Controls with no history of infection were considered. Clinical course of IBD was recorded for 12 months. Inclusion criteria: well defined diagnosis of IBD; age ≥18 and ≤85 years; 12-month follow-up; consent. Exclusion criteria: incomplete data; SARS-CoV-2 infection after enrollment. Additional inclusion criteria: recent SARS-CoV-2 infection for Cases; no history of SARS-CoV-2 infection for Controls. Data expressed as median [range]. Statistical analysis: Student-t-Test, Mann-Whitney U-test, χ2 test, multivariate logistic regression model [odds ratio (95% confidence interval)], Kaplan-Meier curves. RESULTS One hundred forty-three IBD patients were enrolled. The analysis included 118 patients (22 met the exclusion criteria, three lost at follow-up): 29 (24.6%) Cases and 89 (75.4%) Controls. Demographic and clinical characteristics were comparable between groups. During the 12-month study, the frequency of IBD relapse was comparable between Cases and Controls [8 (27%) vs 19 (21%); P = 0.65]. At univariate analysis, SARS-CoV-2 infection was not a risk factor for IBD relapse within 12 months [1.5 (0.6-3.9); P = 0.34]. At multivariate analysis, IBD activity at baseline was the only risk factor for relapse [3.2 (1.1-9.1); P = 0.03]. Kaplan-Meier curves showed that survival from IBD relapse was comparable between Cases and Controls (P = 0.33). CONCLUSION In a prospective 12-month study, a recent SARS-CoV-2 infection did not increase the risk of clinical relapse of IBD in the long term.
Collapse
Affiliation(s)
- Benedetto Neri
- Department of Systems Medicine, Gastroenterology Unit, University 'Tor Vergata' of Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yu X, Kong Q. Potential value of neuroimmunotherapy for COVID-19: efficacies and mechanisms of vagus nerve stimulation, electroacupuncture, and cholinergic drugs. Front Immunol 2023; 14:1197467. [PMID: 37475861 PMCID: PMC10355152 DOI: 10.3389/fimmu.2023.1197467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/23/2023] [Indexed: 07/22/2023] Open
Abstract
COVID-19 is an inflammatory disease with multiple organs involved, mainly respiratory symptoms. Although the majority of patients with COVID-19 present with a mild to moderate self-limited course of illness, about 5-10% of patients with inflammatory disorders in severe COVID-19 have life-threatening progression. With the exception of a few drugs that have shown outstanding anti-COVID-19 effects, the efficacy of most drugs remains controversial. An increasing number of animal and clinical studies have shown that neuromodulation has a significant effect on reducing inflammatory markers of COVID-19, thus exerting an effective neuroimmunotherapeutic value. Currently, the main neuroimmunomodulatory measures effective against COVID-19 include vagus nerve stimulation, electroacupuncture, and cholinergic drugs. In this review, we will summarize the research progress of potential value of this neuroimmunotherapy measures for COVID-19 and elaborate its efficacies and mechanisms, in order to provide reliable evidence for clinical intervention.
Collapse
Affiliation(s)
- Xianqiang Yu
- Women and Children's Hospital Affiliated to Qingdao University, Heart center, Qingdao, China
- University of California, Los Angeles, Department of Cardiology, Los Angeles, CA, United States
| | - Qingming Kong
- School of Laboratory Medicine and Bioengineering, Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
21
|
Song Y, Huang T, Pan H, Du A, Wu T, Lan J, Zhou X, Lv Y, Xue S, Yuan K. The influence of COVID-19 on colorectal cancer was investigated using bioinformatics and systems biology techniques. Front Med (Lausanne) 2023; 10:1169562. [PMID: 37457582 PMCID: PMC10348756 DOI: 10.3389/fmed.2023.1169562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Coronavirus disease 2019 (COVID-19) is a global pandemic and highly contagious, posing a serious threat to human health. Colorectal cancer (CRC) is a risk factor for COVID-19 infection. Therefore, it is vital to investigate the intrinsic link between these two diseases. Methods In this work, bioinformatics and systems biology techniques were used to detect the mutual pathways, molecular biomarkers, and potential drugs between COVID-19 and CRC. Results A total of 161 common differentially expressed genes (DEGs) were identified based on the RNA sequencing datasets of the two diseases. Functional analysis was performed using ontology keywords, and pathway analysis was also performed. The common DEGs were further utilized to create a protein-protein interaction (PPI) network and to identify hub genes and key modules. The datasets revealed transcription factors-gene interactions, co-regulatory networks with DEGs-miRNAs of common DEGs, and predicted possible drugs as well. The ten predicted drugs include troglitazone, estradiol, progesterone, calcitriol, genistein, dexamethasone, lucanthone, resveratrol, retinoic acid, phorbol 12-myristate 13-acetate, some of which have been investigated as potential CRC and COVID-19 therapies. Discussion By clarifying the relationship between COVID-19 and CRC, we hope to provide novel clues and promising therapeutic drugs to treat these two illnesses.
Collapse
Affiliation(s)
- Yujia Song
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyuan Pan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ao Du
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Wu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiang Lan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Lv
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Xue
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Moon Y. Gut distress and intervention via communications of SARS-CoV-2 with mucosal exposome. Front Public Health 2023; 11:1098774. [PMID: 37139365 PMCID: PMC10150023 DOI: 10.3389/fpubh.2023.1098774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Acute coronavirus disease 2019 (COVID-19) has been associated with prevalent gastrointestinal distress, characterized by fecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA or persistent antigen presence in the gut. Using a meta-analysis, the present review addressed gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, and diarrhea. Despite limited data on the gut-lung axis, viral transmission to the gut and its influence on gut mucosa and microbial community were found to be associated by means of various biochemical mechanisms. Notably, the prolonged presence of viral antigens and disrupted mucosal immunity may increase gut microbial and inflammatory risks, leading to acute pathological outcomes or post-acute COVID-19 symptoms. Patients with COVID-19 exhibit lower bacterial diversity and a higher relative abundance of opportunistic pathogens in their gut microbiota than healthy controls. Considering the dysbiotic changes during infection, remodeling or supplementation with beneficial microbial communities may counteract adverse outcomes in the gut and other organs in patients with COVID-19. Moreover, nutritional status, such as vitamin D deficiency, has been associated with disease severity in patients with COVID-19 via the regulation of the gut microbial community and host immunity. The nutritional and microbiological interventions improve the gut exposome including the host immunity, gut microbiota, and nutritional status, contributing to defense against acute or post-acute COVID-19 in the gut-lung axis.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan-si, Republic of Korea
- Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan-si, Republic of Korea
| |
Collapse
|
23
|
Saviano A, Brigida M, Petruzziello C, Zanza C, Candelli M, Morabito Loprete MR, Saleem F, Ojetti V. Intestinal Damage, Inflammation and Microbiota Alteration during COVID-19 Infection. Biomedicines 2023; 11:1014. [PMID: 37189632 PMCID: PMC10135602 DOI: 10.3390/biomedicines11041014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND The virus SARS-CoV-2 is responsible for respiratory disorders due to the fact that it mainly infects the respiratory tract using the Angiotensin-converting enzyme 2 (ACE2) receptors. ACE2 receptors are also highly expressed on intestinal cells, representing an important site of entry for the virus in the gut. Literature studies underlined that the virus infects and replicates in the gut epithelial cells, causing gastrointestinal symptoms such as diarrhea, abdominal pain, nausea/vomiting and anorexia. Moreover, the SARS-CoV-2 virus settles into the bloodstream, hyperactivating the platelets and cytokine storms and causing gut-blood barrier damage with an alteration of the gut microbiota, intestinal cell injury, intestinal vessel thrombosis leading to malabsorption, malnutrition, an increasing disease severity and mortality with short and long-period sequelae. CONCLUSION This review summarizes the data on how SARS-CoV-2 effects on the gastrointestinal systems, including the mechanisms of inflammation, relationship with the gut microbiota, endoscopic patterns, and the role of fecal calprotectin, confirming the importance of the digestive system in clinical practice for the diagnosis and follow-up of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Angela Saviano
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, 00168 Roma, Italy; (A.S.)
| | - Mattia Brigida
- Department of Gastroenterology, Policlinico Tor Vergata, 00133 Roma, Italy
| | - Carmine Petruzziello
- Emergency Department and Internal Medicine, San Carlo di Nancy Hospital, 00165 Roma, Italy
| | - Christian Zanza
- Foundation “Ospedale Alba-Bra” and Department of Anesthesia, Critical Care and Emergency Medicine, Michele and Pietro Ferrero Hospital, 12060 Verduno, Italy
| | - Marcello Candelli
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, 00168 Roma, Italy; (A.S.)
| | | | - Faiz Saleem
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, 00168 Roma, Italy; (A.S.)
| | - Veronica Ojetti
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, 00168 Roma, Italy; (A.S.)
- Internal Medicine, Catholic University of the Sacred Heart, 00168 Roma, Italy
| |
Collapse
|
24
|
Zheng L, Zhang L, Zheng Y, An J, Wen G, Jin H, Tuo B. Digestive system infection by SARS‑CoV‑2: Entry mechanism, clinical symptoms and expression of major receptors (Review). Int J Mol Med 2023; 51:19. [PMID: 36660939 PMCID: PMC9911086 DOI: 10.3892/ijmm.2023.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2022] [Indexed: 01/21/2023] Open
Abstract
Besides causing severe acute respiratory syndrome (SARS), SARS‑coronavirus 2 (SARS‑CoV‑2) also harms the digestive system. Given the appearance of numerous cases of SARS‑CoV‑2, it has been demonstrated that SARS‑CoV‑2 is able to harm target organs such as the gastrointestinal tract, liver and pancreas, and either worsen the condition of patients with basic digestive illnesses or make their prognosis poor. According to several previously published studies, angiotensin‑converting enzyme II (ACE2) and transmembrane serine protease II (TMPRSS2) are expressed either singly or in combination in the digestive system and in other regions of the human body. In order to change the viral conformation, create a fusion hole and release viral RNA into the host cell for replication and transcription, SARS‑CoV‑2 is capable of binding to these two proteins through the spike protein on its surface. As a result, the body experiences an immune reaction and an inflammatory reaction, which may lead to nausea, diarrhea, abdominal pain and even gastrointestinal bleeding, elevated levels of liver enzymes, acute liver injury, pancreatitis and other serious lesions. In order to provide possible strategies for the clinical diagnosis and treatment of digestive system diseases during the COVID‑19 pandemic, the molecular structure of SARS‑CoV‑2 and the mechanism via which SARS‑CoV‑2 enters the human body through ACE2 and TMPRSS2 were discussed in the present review, and the clinical manifestations of SARS‑CoV‑2 infection in the digestive system were also summarized. Finally, the expression characteristics of ACE2 and TMPRSS2 in the main target organs of the digestive system were described.
Collapse
Affiliation(s)
- Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yi Zheng
- Department of Gastroenterology, The Fifth People's Hospital of Zunyi, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
25
|
Lee MH, Li HJ, Wasuwanich P, Kim SE, Kim JY, Jeong GH, Park S, Yang JW, Kim MS, Yon DK, Lee SW, Koyanagi A, Jacob L, Kim EY, Cheon JH, Shin JI, Smith L. COVID-19 susceptibility and clinical outcomes in inflammatory bowel disease: An updated systematic review and meta-analysis. Rev Med Virol 2023; 33:e2414. [PMID: 36504172 PMCID: PMC9877653 DOI: 10.1002/rmv.2414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
The susceptibility, risk factors, and prognosis of COVID-19 in patients with inflammatory bowel disease (IBD) remain unknown. Thus, our study aims to assess the prevalence and clinical outcomes of COVID-19 in IBD. We searched PubMed, EMBASE, and medRxiv from 2019 to 1 June 2022 for cohort and case-control studies comparing the prevalence and clinical outcomes of COVID-19 in patients with IBD and in the general population. We also compared the outcomes of patients receiving and not receiving 5-aminosalicylates (ASA), tumour necrosis factor antagonists, biologics, systemic corticosteroids, or immunomodulators for IBD. Thirty five studies were eligible for our analysis. Pooled odds ratio of COVID-19-related hospitalisation, intensive care unit (ICU) admission, or death in IBD compared to in non-IBD were 0.58 (95% confidence interval (CI) = 0.28-1.18), 1.09 (95% CI = 0.27-4.47), and 0.67 (95% CI = 0.32-1.42), respectively. Inflammatory bowel disease was not associated with increased hospitalisation, ICU admission, or death. Susceptibility to COVID-19 did not increase with any drugs for IBD. Hospitalisation, ICU admission, and death were more likely with 5-ASA and corticosteroid use. COVID-19-related hospitalisation (Odds Ratio (OR): 0.53; 95% CI = 0.38-0.74) and death (OR: 0.13; 95% CI = 0.13-0.70) were less likely with Crohn's disease than ulcerative colitis (UC). In conclusion, IBD does not increase the mortality and morbidity of COVID-19. However, physicians should be aware that additional monitoring is needed in UC patients or in patients taking 5-ASA or systemic corticosteroids.
Collapse
Affiliation(s)
- Min Ho Lee
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han Jacob Li
- University of Florida College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Paul Wasuwanich
- University of Florida College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sung Eun Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Yeob Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gwang Hun Jeong
- Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Min Seo Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Dong Keon Yon
- Department of Pediatrics, Kyung Hee University College of Medicine, Seoul, Korea.,Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Barcelona, Spain.,Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Eun-Young Kim
- Department of Health, Social and Clinical Pharmacy, Evidence-Based and Clinical Research Laboratory, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
26
|
Lerner A, Benzvi C. SARS-CoV-2 induction and COVID-19 manifestations related to autoimmune gastrointestinal diseases. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:451-469. [DOI: 10.1016/b978-0-443-18566-3.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Tao S, Wang X, Yang X, Liu Y, Fu Z, Zhang L, Wang Z, Ni J, Shuai Z, Pan H. COVID-19 and inflammatory bowel disease crosstalk: From emerging association to clinical proposal. J Med Virol 2022; 94:5640-5652. [PMID: 35971954 PMCID: PMC9538900 DOI: 10.1002/jmv.28067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause coronavirus disease 2019 (COVID-19), an acute respiratory inflammation that has emerged worldwide since December 2019, and it quickly became a global epidemic. Inflammatory bowel disease (IBD) is a group of chronic nonspecific intestinal inflammatory diseases whose etiology has not been elucidated. The two have many overlapping symptoms in clinical presentation, such as abdominal pain, diarrhea, pneumonia, etc. Imbalance of the autoimmune system in IBD patients and long-term use of immunosuppressive drugs may increase the risk of infection; and systemic symptoms caused by COVID-19 may also induce or exacerbate intestinal inflammation. It has been found that the SARS-CoV-2 receptor angiotensin converting enzyme 2, which is highly expressed in the lung and intestine, is an inflammatory protective factor, and is downregulated and upregulated in COVID-19 and IBD, respectively, suggesting that there may be a coregulatory pathway. In addition, the immune activation pattern of COVID-19 and the cytokine storm in the inflammatory response have similar roles in IBD, indicating that the two diseases may influence each other. Therefore, this review aimed to address the following research questions: whether SARS-CoV-2 infection leads to the progression of IBD; whether IBD increases the risk of COVID-19 infection and poor prognosis; possible common mechanisms and genetic cross-linking between the two diseases; new treatment and care strategies for IBD patients, and the feasibility and risk of vaccination in the context of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Sha‐Sha Tao
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
| | - Xin‐Yi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, First Clinical Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Xiao‐Ke Yang
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yu‐Chen Liu
- Department of Otolaryngology, Head, and Neck SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Zi‐Yue Fu
- Department of Clinical Medicine, The Second School of Clinical MedicineAnhui Medical UniversityHefeiAnhuiChina
| | - Li‐Zhi Zhang
- Department of Clinical Medicine, The First School of Clinical MedicineAnhui Medical UniversityHefeiAnhuiChina
| | - Zhi‐Xin Wang
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
| | - Zong‐Wen Shuai
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Hai‐Feng Pan
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
28
|
An older patient with active ulcerative colitis and coronavirus disease 2019 (COVID-19) pneumonia successfully treated with the combination of anti-TNFα therapy and azathioprine. Clin J Gastroenterol 2022; 16:187-192. [PMID: 36417106 PMCID: PMC9684933 DOI: 10.1007/s12328-022-01737-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
AbstractA 77-year-old patient with ulcerative colitis (UC) was transferred to our department because of worsening bloody diarrhea and abdominal pain, which was consistent with a UC flare. Two days after admission, she complained of cough and high fever. The polymerase chain reaction (PCR) test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was positive, and a computed tomography showed pneumonia in the left lobe, consistent with coronavirus disease 2019 (COVID-19) pneumonia. However, frequent bloody diarrhea and abdominal pain due to the UC flare persisted; therefore, an additional immunosuppressive agent needed to be considered. We initiated infliximab biosimilar (IFX-BS), and her abdominal symptoms improved. However, they deteriorated after the second IFX-BS infusion. After confirming that the patient was negative for SARS-CoV-2 by PCR, we administered a combination of azathioprine and IFX-BS. The combination treatment improved her intestinal symptoms without worsening COVID-19 pneumonia. She has remained in remission for over a year since her discharge.
Collapse
|
29
|
Mekky RY, Elemam NM, Eltahtawy O, Zeinelabdeen Y, Youness RA. Evaluating Risk: Benefit Ratio of Fat-Soluble Vitamin Supplementation to SARS-CoV-2-Infected Autoimmune and Cancer Patients: Do Vitamin-Drug Interactions Exist? Life (Basel) 2022; 12:1654. [PMID: 36295089 PMCID: PMC9604733 DOI: 10.3390/life12101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 is a recent pandemic that mandated the scientific society to provide effective evidence-based therapeutic approaches for the prevention and treatment for such a global threat, especially to those patients who hold a higher risk of infection and complications, such as patients with autoimmune diseases and cancer. Recent research has examined the role of various fat-soluble vitamins (vitamins A, D, E, and K) in reducing the severity of COVID-19 infection. Studies showed that deficiency in fat-soluble vitamins abrogates the immune system, thus rendering individuals more susceptible to COVID-19 infection. Moreover, another line of evidence showed that supplementation of fat-soluble vitamins during the course of infection enhances the viral clearance episode by promoting an adequate immune response. However, more thorough research is needed to define the adequate use of vitamin supplements in cancer and autoimmune patients infected with COVID-19. Moreover, it is crucial to highlight the vitamin-drug interactions of the COVID-19 therapeutic modalities and fat-soluble vitamins. With an emphasis on cancer and autoimmune patients, the current review aims to clarify the role of fat-soluble vitamins in SARS-CoV-2 infection and to estimate the risk-to-benefit ratio of a fat-soluble supplement administered to patients taking FDA-approved COVID-19 medications such as antivirals, anti-inflammatory, receptor blockers, and monoclonal antibodies.
Collapse
Affiliation(s)
- Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Noha M. Elemam
- Sharjah Institute for Medical Research (SIMR), College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Omar Eltahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
| | - Yousra Zeinelabdeen
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
- Faculty of Medical Sciences, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 12622, Egypt
| |
Collapse
|
30
|
Health influence of SARS-CoV-2 (COVID-19) on cancer: a review. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1395-1405. [PMID: 36269132 PMCID: PMC9828497 DOI: 10.3724/abbs.2022147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The novel coronavirus, namely, SARS-CoV-2 (COVID-19), broke out two years ago and has caused major global health issues. Adequate treatment options are still lacking for the management of COVID-19 viral infections. Many patients afflicted with COVID-19 may range from asymptomatic to severe symptomatic, triggering poor clinical outcomes, morbidity, and mortality. Cancer is one of the leading causes of death worldwide. It is pertinent to re-examine cancer prevalence during the COVID-19 pandemic to prevent mortality and complications. Understanding the impact of SARS-CoV-2 on cancer is key to appropriate healthcare measures for the treatment and prevention of this vulnerable population. Data was acquired from PubMed using key search terms. Additional databases were utilized, such as the Centers for Disease Prevention and Control, American Cancer Society (ACS), and National Cancer Institute (NCI). Cancer patients are more prone to SARS-CoV-2 infection and exhibit poor health outcomes, possibly due to a chronic immunosuppressive state and anticancer therapies. Male sex, older age, and active cancer disease or previous cancer are risk factors for COVID-19 infection, leading to possible severe complications, including morbidity or mortality. The speculated mechanism for potentially higher mortality or COVID-19 complications is through reduced immune system function and inflammatory processes through cancer disease, anticancer therapy, and active COVID-19 infection. This review includes prostate, breast, ovarian, hematologic, lung, colorectal, esophageal, bladder, pancreatic, cervical, and head and neck cancers. This review should help better maintain the health of cancer patients and direct clinicians for COVID-19 prevention to improve the overall health outcomes.
Collapse
|
31
|
Jin S, Lu X, Xu C. COVID-19 induces gastrointestinal symptoms and affects patients' prognosis. J Int Med Res 2022; 50:3000605221129543. [PMID: 36238995 PMCID: PMC9575454 DOI: 10.1177/03000605221129543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the pandemic of coronavirus disease 2019 (COVID-19). Gastrointestinal (GI) involvement is common among patients with COVID-19, and GI symptoms can appear earlier than respiratory symptoms. Except for direct infectious effects, patients infected with SARS-CoV-2 are at risk of complications requiring gastroenterological management. Diarrhea is the most common GI symptom in patients with COVID-19 and occurs in up to half of them. Other GI symptoms, such as anorexia, discomfort, nausea, abdominal pain, loss of taste sensation, and vomiting, have been reported. GI symptoms are associated with a poor prognosis. Fecal viral excretion may have clinical significance because of the possible fecal-oral transmission of infection. In the present narrative review article, six different aspects of studies published to date are summarized as follows: GI manifestations of COVID-19, the roles of fecal-oral transmission, poor prognosis of GI symptoms; abnormal abdominal imaging findings, COVID-19 in patients with irritable bowel disease, and prevention and control of SARS-CoV-2 infection in the digestive endoscopy room. Timely understanding of the association between COVID-19 and the digestive system and effective preventive measures are critical to improve this disease and help clinicians take appropriate measures to mitigate further transmission.
Collapse
Affiliation(s)
- Shuxun Jin
- Department of Breast and Thyroid Surgery, Affiliated Jinhua
Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang
Province, China,Department of Breast and Thyroid Surgery, Shaoxing People's
Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Xiaofeng Lu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua
Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang
Province, China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua
Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang
Province, China,Department of Breast and Thyroid Surgery, Shaoxing People's
Hospital, Shaoxing 312000, Zhejiang Province, China,Chaoyang Xu, Department of Breast and
Thyroid Surgery, Jinhua Central Hospital, Building 365 Renmin East Road, Jinhua
City, Zhejiang 321000, China.
| |
Collapse
|
32
|
Lo SW, Segal JP, Lubel JS, Garg M. What do we know about the renin angiotensin system and inflammatory bowel disease? Expert Opin Ther Targets 2022; 26:897-909. [PMID: 36484415 DOI: 10.1080/14728222.2022.2157261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) is an important homeostatic pathway, with emerging evidence for the impact of its components on inflammation and fibrosis in gastrointestinal tissues. This review aims to review current knowledge of the physiological mechanism of RAS in inflammatory bowel disease (IBD), and potential therapeutic implications. AREAS COVERED An extensive online literature review including Pubmed, Medline, and Google Scholar was undertaken. Discussion on the components of the RAS, localization, and physiological functions in the gastrointestinal tract, preclinical, and clinical data in IBD, and the relation with SARS-Cov-2 are covered in this review. EXPERT OPINION RAS inhibition may have a role as anti-fibrotic adjunct therapy. Targeting the local gastrointestinal RAS with novel modes of delivery may be a target for future therapeutics for IBD, given the widespread availability and safety of current options as utilized in other diseases. Further insight into the mechanism and downstream effects of gastrointestinal ACE2 may lead to a better understanding of the pathogenesis of IBD.
Collapse
Affiliation(s)
- Sheng Wei Lo
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia
| | - Jonathan P Segal
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - John S Lubel
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, Monash University
| | - Mayur Garg
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| |
Collapse
|
33
|
Veisman I, Lederer NB, Ukashi O, Kopylov U, Klang E. Top 25 cited articles on Covid-19 and IBD: A bibliometric analysis. Clin Res Hepatol Gastroenterol 2022; 46:101959. [PMID: 35609820 PMCID: PMC9123818 DOI: 10.1016/j.clinre.2022.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The use of citation analysis to identify the most cited Covid-19 and inflammatory bowel disease (IBD) manuscripts to provide an insight into the advances and knowledge accumulated regarding the pandemic in this subgroup of patients. METHODS We've used a public application programming interface (API) U.S. National Center for Biotechnology Information (NCBI) to access the PubMed database. Data lock was performed on April 19, 2022. The API was used to retrieve all available IBD AND Covid-19 -related entries. For each retrieved entry, we've also obtained its citation count. RESULTS The top 25 manuscripts were published between 2020 and 2021. The total citation count is 2051. The citation count of articles ranged from 41 to 313. The top 25 manuscripts were published in eight journals, while 16 were published in Gastroenterology and Gut. 36% of the most cited manuscripts reported clinical characteristics and patient outcomes, and 32% dealt with patient management. The most impactful manuscripts provided evidence that IBD patients are not at increased risk for severe morbidity or mortality from Covid-19 and that it is not advisable to discontinue the anti-inflammatory treatment for IBD during the pandemic. Two basic science studies demonstrated mechanistic insights for these observations. Studies that examined the immunogenic response of IBD patients treated with biologics were also part of the top-cited list. CONCLUSIONS Impactful scientific publications on Covid-19 in IBD patients provided reassurance and directed treatment at the time of this newly recognized severe disease.
Collapse
Affiliation(s)
- Ido Veisman
- Department of Gastroenterology, Sheba medical center, Tel Hashomer, Israel,Faculty of Medicine, Tel-Aviv University, Israel,Corresponding author
| | - Noam Brakin Lederer
- Faculty of Medicine, Tel-Aviv University, Israel,Department of Internal medicine A, Sheba medical center, Tel Hashomer, Israel
| | - Offir Ukashi
- Department of Gastroenterology, Sheba medical center, Tel Hashomer, Israel,Faculty of Medicine, Tel-Aviv University, Israel,Department of Internal medicine A, Sheba medical center, Tel Hashomer, Israel
| | - Uri Kopylov
- Department of Gastroenterology, Sheba medical center, Tel Hashomer, Israel,Faculty of Medicine, Tel-Aviv University, Israel
| | - Eyal Klang
- Faculty of Medicine, Tel-Aviv University, Israel,Sami Sagol AI Hub, ARC, Sheba Medical Center, Israel
| |
Collapse
|
34
|
Santos ES, Silva PC, Sousa PSA, Aquino CC, Pacheco G, Teixeira LFLS, Araujo AR, Sousa FBM, Barros RO, Ramos RM, Rocha JA, Nicolau LAD, Medeiros JVR. Antiviral potential of diminazene aceturate against SARS-CoV-2 proteases using computational and in vitro approaches. Chem Biol Interact 2022; 367:110161. [PMID: 36116513 PMCID: PMC9476334 DOI: 10.1016/j.cbi.2022.110161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Diminazene aceturate (DIZE), an antiparasitic, is an ACE2 activator, and studies show that activators of this enzyme may be beneficial for COVID-19, disease caused by SARS-CoV-2. Thus, the objective was to evaluate the in silico and in vitro affinity of diminazene aceturate against molecular targets of SARS-CoV-2. 3D structures from DIZE and the proteases from SARS-CoV-2, obtained through the Protein Data Bank and Drug Database (Drubank), and processed in computer programs like AutodockTools, LigPlot, Pymol for molecular docking and visualization and GROMACS was used to perform molecular dynamics. The results demonstrate that DIZE could interact with all tested targets, and the best binding energies were obtained from the interaction of Protein S (closed conformation −7.87 kcal/mol) and Mpro (−6.23 kcal/mol), indicating that it can act both by preventing entry and viral replication. The results of molecular dynamics demonstrate that DIZE was able to promote a change in stability at the cleavage sites between S1 and S2, which could prevent binding to ACE2 and fusion with the membrane. In addition, in vitro tests confirm the in silico results showing that DIZE could inhibit the binding between the spike receptor-binding domain protein and ACE2, which could promote a reduction in the virus infection. However, tests in other experimental models with in vivo approaches are needed.
Collapse
Affiliation(s)
- Esley S Santos
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Medicinal Plants Research Center (NPPM), Federal University of Piauí, Teresina, Brazil
| | - Priscila C Silva
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Paulo S A Sousa
- Laboratory of Medicinal Chemistry and Biotechnology, QUIMEBIO, Federal University of Maranhão, São Bernardo, MA, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Cristhyane C Aquino
- Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Medicinal Plants Research Center (NPPM), Federal University of Piauí, Teresina, Brazil
| | - Luiz F L S Teixeira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Alyne R Araujo
- Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Romulo O Barros
- Research Laboratory in Information Systems, Department of Information, Environment, Health and Food Production, Federal Institute of Piauí, LaPeSI/IFPI, Teresina, Piauí, Brazil
| | - Ricardo M Ramos
- Research Laboratory in Information Systems, Department of Information, Environment, Health and Food Production, Federal Institute of Piauí, LaPeSI/IFPI, Teresina, Piauí, Brazil
| | - Jefferson A Rocha
- Laboratory of Medicinal Chemistry and Biotechnology, QUIMEBIO, Federal University of Maranhão, São Bernardo, MA, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Lucas A D Nicolau
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Medicinal Plants Research Center (NPPM), Federal University of Piauí, Teresina, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil.
| |
Collapse
|
35
|
Travis BJ, Elste J, Gao F, Joo BY, Cuevas‐Nunez M, Kohlmeir E, Tiwari V, Mitchell JC. Significance of chlorine-dioxide-based oral rinses in preventing SARS-CoV-2 cell entry. Oral Dis 2022; 28 Suppl 2:2481-2491. [PMID: 35841377 PMCID: PMC9349900 DOI: 10.1111/odi.14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/08/2022] [Accepted: 07/01/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This work aims to determine the efficacy of preprocedural oral rinsing with chlorine dioxide solutions to minimize the risk of coronavirus disease 2019 (COVID-19) transmission during high-risk dental procedures. METHODS The antiviral activity of chlorine-dioxide-based oral rinse (OR) solutions was tested by pre-incubating with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus in a dosage-dependent manner before transducing to human embryonic kidney epithelial (HEK293T-ACE2) cells, which stably expresses ACE-2 receptor. Viral entry was determined by measuring luciferase activity using a luminescence microplate reader. In the cell-to-cell fusion assay, effector Chinese hamster ovary (CHO-K1) cells co-expressing spike glycoprotein of SARS-CoV-2 and T7 RNA polymerase were pre-incubated with the ORs before co-culturing with the target CHO-K1 cells co-expressing human ACE2 receptor and luciferase gene. The luciferase signal was quantified 24 h after mixing the cells. Surface expression of SARS-CoV-2 spike glycoprotein and ACE-2 receptor was confirmed using direct fluorescent imaging and quantitative cell-ELISA. Finally, dosage-dependent cytotoxic effects of ORs were evaluated at two different time points. RESULTS A dosage-dependent antiviral effect of the ORs was observed against SARS-CoV-2 cell entry and spike glycoprotein mediated cell-to-cell fusion. This demonstrates that ORs can be useful as a preprocedural step to reduce viral infectivity. CONCLUSIONS Chlorine-dioxide-based ORs have a potential benefit for reducing SARS-CoV-2 entry and spread.
Collapse
Affiliation(s)
- Briana Joy Travis
- College of Dental MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - James Elste
- Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveIllinoisUSA
| | - Feng Gao
- College of Dental MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Bo Young Joo
- Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveIllinoisUSA
| | | | - Ellen Kohlmeir
- Core FacilityMidwestern University, IllinoisDowners GroveIllinoisUSA
| | - Vaibhav Tiwari
- Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveIllinoisUSA
| | - John C. Mitchell
- College of Dental MedicineMidwestern UniversityDowners GroveIllinoisUSA
| |
Collapse
|
36
|
Murugesan M, Govindarajan R, Prakash L, Murugan CK, Jasmine JJ, Krishnasamy N. In COVID-19 Patients, the Identified Gastrointestinal Symptoms in Tertiary Care Center of India. Euroasian J Hepatogastroenterol 2022; 12:24-30. [PMID: 35990860 PMCID: PMC9357525 DOI: 10.5005/jp-journals-10018-1371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim Materials and methods Results Conclusion How to cite this article
Collapse
Affiliation(s)
- Malarvizhi Murugesan
- Department of Medical Gastroenterology, KAP Viswanatham Government Medical College, Trichy, Tamil Nadu, India
| | - Ramkumar Govindarajan
- Department of Gastroenterology, Thanjavur Medical College, Thanjavur, Tamil Nadu, India
| | - Lakshmi Prakash
- Department of Anesthesiology, Government Kilpauk Medical College, Chennai, Tamil Nadu, India
| | - Chandra Kumar Murugan
- Department of Medicine, Government Kilpauk Medical College, Chennai, Tamil Nadu, India
| | - J Janifer Jasmine
- Department of Hepatology, Government General Hospital, Chennai, Tamil Nadu, India
| | - Narayanasamy Krishnasamy
- Department of Hepatology, Government Corona Hospital, Chennai, Tamil Nadu, India
- Narayanasamy Krishnasamy, Department of Hepatology, Government Corona Hospital, Chennai, Tamil Nadu, India, Phone: +91 9840415073, e-mail:
| |
Collapse
|
37
|
Bestion E, Halfon P, Mezouar S, Mège JL. Cell and Animal Models for SARS-CoV-2 Research. Viruses 2022; 14:1507. [PMID: 35891487 PMCID: PMC9319816 DOI: 10.3390/v14071507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
During the last two years following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, development of potent antiviral drugs and vaccines has been a global health priority. In this context, the understanding of virus pathophysiology, the identification of associated therapeutic targets, and the screening of potential effective compounds have been indispensable advancements. It was therefore of primary importance to develop experimental models that recapitulate the aspects of the human disease in the best way possible. This article reviews the information concerning available SARS-CoV-2 preclinical models during that time, including cell-based approaches and animal models. We discuss their evolution, their advantages, and drawbacks, as well as their relevance to drug effectiveness evaluation.
Collapse
Affiliation(s)
- Eloïne Bestion
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Philippe Halfon
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Soraya Mezouar
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Jean-Louis Mège
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
| |
Collapse
|
38
|
Lin S, Lau LH, Chanchlani N, Kennedy NA, Ng SC. Recent advances in clinical practice: management of inflammatory bowel disease during the COVID-19 pandemic. Gut 2022; 71:1426-1439. [PMID: 35477864 PMCID: PMC9185820 DOI: 10.1136/gutjnl-2021-326784] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 01/28/2023]
Abstract
The COVID-19 pandemic has raised considerable concerns that patients with inflammatory bowel disease (IBD), particularly those treated with immunosuppressive therapies, may have an increased risk of SARS-CoV-2 acquisition, develop worse outcomes following COVID-19, and have suboptimal vaccine response compared with the general population. In this review, we summarise data on the risk of COVID-19 and associated outcomes, and latest guidance on SARS-CoV-2 vaccines in patients with IBD. Emerging evidence suggests that commonly used medications for IBD, such as corticosteroids but not biologicals, were associated with adverse outcomes to COVID-19. There has been no increased risk of de novo, or delayed, IBD diagnoses, however, an overall decrease in endoscopy procedures has led to a rise in the number of missed endoscopic-detected cancers during the pandemic. The impact of IBD medication on vaccine response has been a research priority recently. Data suggest that patients with IBD treated with antitumour necrosis factor (TNF) medications had attenuated humoral responses to SARS-CoV-2 vaccines, and more rapid antibody decay, compared with non-anti-TNF-treated patients. Reassuringly, rates of breakthrough infections and hospitalisations in all patients who received vaccines, irrespective of IBD treatment, remained low. International guidelines recommend that all patients with IBD treated with immunosuppressive therapies should receive, at any point during their treatment cycle, three primary doses of SARS-CoV-2 vaccines with a further booster dose as soon as possible. Future research should focus on our understanding of the rate of antibody decay in biological-treated patients, which patients require additional doses of SARS-CoV-2 vaccine, the long-term risks of COVID-19 on IBD disease course and activity, and the potential risk of long COVID-19 in patients with IBD.
Collapse
Affiliation(s)
- Simeng Lin
- Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Louis Hs Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Neil Chanchlani
- Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Nicholas A Kennedy
- Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Siew C Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
39
|
Schreiber S, Ben-Horin S, Alten R, Westhovens R, Peyrin-Biroulet L, Danese S, Hibi T, Takeuchi K, Magro F, An Y, Kim DH, Yoon S, Reinisch W. Perspectives on Subcutaneous Infliximab for Rheumatic Diseases and Inflammatory Bowel Disease: Before, During, and After the COVID-19 Era. Adv Ther 2022. [DOI: 10.1007/s12325-021-01990-6
expr 982114691 + 941296860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
40
|
Schreiber S, Ben-Horin S, Alten R, Westhovens R, Peyrin-Biroulet L, Danese S, Hibi T, Takeuchi K, Magro F, An Y, Kim DH, Yoon S, Reinisch W. Perspectives on Subcutaneous Infliximab for Rheumatic Diseases and Inflammatory Bowel Disease: Before, During, and After the COVID-19 Era. Adv Ther 2022; 39:2342-2364. [PMID: 34988877 PMCID: PMC8731678 DOI: 10.1007/s12325-021-01990-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has prompted significant changes in patient care in rheumatology and gastroenterology, with clinical guidance issued to manage ongoing therapy while minimising the risk of nosocomial infection for patients and healthcare professionals (HCPs). Subcutaneous (SC) formulations of biologics enable patients to self-administer treatments at home; however, switching between agents may be undesirable. CT-P13 SC is the first SC formulation of infliximab that received regulatory approval and may be termed a biobetter as it offers significant clinical advantages over intravenous (IV) infliximab, including improved pharmacokinetics and a convenient mode of delivery. Potential benefits in terms of reduced immunogenicity have also been suggested. With a new SC formulation, infliximab provides an additional option for dual formulation, which enables patients to transition from IV to SC administration route without changing agent. Before COVID-19, clinical trials supported the efficacy and safety of switching from IV to SC infliximab for patients with rheumatoid arthritis and inflammatory bowel disease (IBD), and SC infliximab may have been selected on the basis of patient and HCP preferences for SC agents. During the pandemic, patients with rheumatic diseases and IBD have successfully switched from IV to SC infliximab, with some clinical benefits and high levels of patient satisfaction. As patients switched to SC therapeutics, the reduction in resource requirements for IV infusion services may have been particularly welcome given the pandemic, facilitating reorganisation and redeployment in overstretched healthcare systems, alongside pharmacoeconomic benefits and a reduction in exposure to nosocomial infection. Telemedicine and contactless healthcare have been pushed to the forefront during the pandemic, and a lasting shift towards remote patient management and community/home-based drug administration is anticipated. SC infliximab supports the implementation of this paradigm for future improvements of healthcare value delivered. The accumulation of real-world data during the pandemic supports the high level of confidence, with patients, physicians, and healthcare systems benefitting from its uptake.
Collapse
Affiliation(s)
- Stefan Schreiber
- Department of Medicine I, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shomron Ben-Horin
- Gastroenterology Department, Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Rieke Alten
- Department of Internal Medicine II, Rheumatology, Clinical Immunology, Osteology, Schlosspark Klinik, University Medicine Berlin, Berlin, Germany
| | - René Westhovens
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Leuven, Belgium
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, Vandoeuvre-les-Nancy, France
- Inserm U1256 NGERE, Lorraine University, Vandoeuvre-les-Nancy, France
| | - Silvio Danese
- Gastroenterology and Endoscopy Unit, IRCCS Ospedale San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| | - Ken Takeuchi
- Department of Gastroenterology, IBD Center, Tsujinaka Hospital Kashiwanoha, Chiba, Japan
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
- MedInUP, Centre for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Yoorim An
- Celltrion Healthcare Co., Ltd, Incheon, Republic of Korea
| | - Dong-Hyeon Kim
- Celltrion Healthcare Co., Ltd, Incheon, Republic of Korea
| | - SangWook Yoon
- Celltrion Healthcare Co., Ltd, Incheon, Republic of Korea
| | - Walter Reinisch
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
41
|
Pokryszka J, Wagner A, Wiedermann U, Tobudic S, Herkner H, Winkler S, Brehovsky S, Reinisch W, Novacek G. Course of Fecal Calprotectin after mRNA SARS-CoV-2 Vaccination in Patients with Inflammatory Bowel Diseases. Vaccines (Basel) 2022; 10:vaccines10050759. [PMID: 35632515 PMCID: PMC9146449 DOI: 10.3390/vaccines10050759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Two years into the pandemic, vaccination remains the most effective option to prevent coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Preliminary studies suggest vaccination efficacy in patients with inflammatory bowel diseases (IBD), but little is known about its impact on chronic intestinal inflammation. Here we assessed the mucosal inflammatory activity in patients with IBD before and after immunization with the mRNA-1273 (Moderna) vaccine by measurement of fecal calprotectin (fCP). Methods: In 42 patients with IBD, the baseline fCP levels obtained prior to the first vaccine were compared with the highest levels measured during and after two doses of vaccination. Patients’ sera were collected after the second dose to evaluate anti-SARS-CoV-2 antibodies’ titers. Results: We observed a significant fCP elevation in 31% of patients after any dose. Vedolizumab was identified as the only agent associated with an fCP increase (OR 12.4, 95% CI [1.6; 120.2], p = 0.0171). Gastrointestinal adverse events were reported in 9.5% of all subjects and in 75% of cases accompanied by an fCP increase. Anti-SARS-CoV-2 antibodies associated only weakly with the fCP increase after the first dose (p = 0.04). Conclusions: Our findings support possible collinearity in pathways of SARS-CoV-2 antigen expression and the pathogenesis of IBD.
Collapse
Affiliation(s)
- Jagoda Pokryszka
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (J.P.); (S.B.); (G.N.)
| | - Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (U.W.)
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (U.W.)
| | - Selma Tobudic
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (S.T.); (S.W.)
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stefan Winkler
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (S.T.); (S.W.)
| | - Sonja Brehovsky
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (J.P.); (S.B.); (G.N.)
| | - Walter Reinisch
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (J.P.); (S.B.); (G.N.)
- Correspondence:
| | - Gottfried Novacek
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (J.P.); (S.B.); (G.N.)
| |
Collapse
|
42
|
Suria C, Bosca-Watts MM, Navarro P, Tosca J, Anton R, Sanahuja A, Revaliente M, Minguez M. Management of patients with Intestinal Bowel Disease and COVID-19: A review of current evidence and future perspectives. GASTROENTEROLOGÍA Y HEPATOLOGÍA (ENGLISH EDITION) 2022. [PMCID: PMC9133898 DOI: 10.1016/j.gastre.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Wang B, Zhang L, Wang Y, Dai T, Qin Z, Zhou F, Zhang L. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:143. [PMID: 35487886 PMCID: PMC9052735 DOI: 10.1038/s41392-022-00986-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic is currently ongoing. It is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A high proportion of COVID-19 patients exhibit gastrointestinal manifestations such as diarrhea, nausea, or vomiting. Moreover, the respiratory and gastrointestinal tracts are the primary habitats of human microbiota and targets for SARS-CoV-2 infection as they express angiotensin-converting enzyme-2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) at high levels. There is accumulating evidence that the microbiota are significantly altered in patients with COVID-19 and post-acute COVID-19 syndrome (PACS). Microbiota are powerful immunomodulatory factors in various human diseases, such as diabetes, obesity, cancers, ulcerative colitis, Crohn’s disease, and certain viral infections. In the present review, we explore the associations between host microbiota and COVID-19 in terms of their clinical relevance. Microbiota-derived metabolites or components are the main mediators of microbiota-host interactions that influence host immunity. Hence, we discuss the potential mechanisms by which microbiota-derived metabolites or components modulate the host immune responses to SARS-CoV-2 infection. Finally, we review and discuss a variety of possible microbiota-based prophylaxes and therapies for COVID-19 and PACS, including fecal microbiota transplantation (FMT), probiotics, prebiotics, microbiota-derived metabolites, and engineered symbiotic bacteria. This treatment strategy could modulate host microbiota and mitigate virus-induced inflammation.
Collapse
Affiliation(s)
- Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, PR China
| | - Lei Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Yongqiang Wang
- Institutes of Biology and Medical Science, Soochow University, 325200, Suzhou, PR China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, 325200, Suzhou, PR China
| | - Ziran Qin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, PR China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, 325200, Suzhou, PR China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, PR China.
| |
Collapse
|
44
|
Hormati A, Arezoumand A, Dokhanchi H, Pezeshgi Modarres M, Ahmadpour S. Inflammatory Bowel Disease Management during the COVID-19 Pandemic: A Literature Review. Middle East J Dig Dis 2022; 14:155-166. [PMID: 36619145 PMCID: PMC9489314 DOI: 10.34172/mejdd.2022.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/02/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND: Coronavirus disease 2019 (COVID-19) caused a global pandemic. Since its start, widespread safety measures have been adopted by nations worldwide. Crohn's disease (CD) and ulcerative colitis are two forms of inflammatory bowel disease (IBD). IBD is a common inflammatory illness with a high worldwide incidence. Its clinical symptoms include stomach discomfort, diarrhea, anorexia, and weight loss. Genetics, microbes, cigarette smoking, appendectomy, lack of personal hygiene, using anti-inflammatory agents, vitamin D deficiency, and stress are the main risk factors for IBD. COVID-19 pandemic raised concerns about the exacerbation of COVID clinical manifestations in patients with IBD and increasing the risk of mortality. During COVID-19 pandemic, intestinal inflammation, and promoting adherence need to be controlled using medications and vaccinations as a primary goal. In this review, we reviewed unique concerns about IBD risk in the population as well as management of the disease, and the effectiveness of vaccination during COVID-19 pandemic.
Collapse
Affiliation(s)
- Ahmad Hormati
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran,Assistant Professor of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Gastrointestinal and Liver Diseases Research Center, Colorectal Research Center, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Arezoumand
- Student Research Committee, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hadi Dokhanchi
- Student Research Committee, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mehdi Pezeshgi Modarres
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Sajjad Ahmadpour
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran,Corresponding Author: Sajjad Ahmadpour, PhD Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran. Tel:+ 98 2538105062 Fax:+ 98 2538105062
| |
Collapse
|
45
|
McAllister MJ, Kirkwood K, Chuah SC, Thompson EJ, Cartwright JA, Russell CD, Dorward DA, Lucas CD, Ho GT. Intestinal Protein Characterisation of SARS-CoV-2 Entry Molecules ACE2 and TMPRSS2 in Inflammatory Bowel Disease (IBD) and Fatal COVID-19 Infection. Inflammation 2022; 45:567-572. [PMID: 34697723 PMCID: PMC8545358 DOI: 10.1007/s10753-021-01567-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/21/2021] [Accepted: 09/17/2021] [Indexed: 01/18/2023]
Abstract
The coronavirus SARS-CoV-2 contributes to morbidity and mortality mainly as a result of immune-pathology in the lungs. Recent data has shown multi-system involvement with widespread viral tropism. Here we present a detailed intestinal protein characterisation of SARS-Cov-2 entry molecules ACE2 and TMPRSS2 in patients with inflammatory bowel disease ([IBD]; ulcerative colitis [UC] and Crohn's disease [CD]) with age- and sex-matched non-IBD controls, and in those with fatal COVID-19 infection. In our dataset, ACE2 and TMPRSS2 displayed a membrane enterocyte staining in the ileum (due to presence of brush border/microvilli) in contrast to a cytoplasmic pattern in the colon. We also showed a high ACE2/low TMPRSS2 expression pattern in the ileum with a reverse trend in the colon. In UC, colonic ACE2 and TMPRSS2 are cytoplasmic in nature, with significantly higher ACE2 staining intensity compared to non-IBD controls. In inflamed and unaffected IBD mucosa, ileal and colonic enterocyte ACE2 and TMPRSS2 expressions are not modified in the histologic presence of inflammation. We observed immune cells within the lamina propria that expressed ACE2 and TMPRSS2, at higher frequencies in IBD when compared to non-IBD controls. These were identified as plasma cells with multiple myeloma oncogene 1/interferon regulatory factor 4 (MUM1/IRF4) expression. We further analysed the gut histology of six fatal COVID-19 cases, with no difference in colonic and ileal ACE2/TMRPSS2 staining (compared to non-IBD controls) and identified ACE2 + lamina propria plasma cells. Of interest, in this COVID-19 cohort, there was no histologic evidence gut inflammation despite known evidence of viral tropism within the enterocytes. Our data provides evidence for tissue expression of entry molecules ACE2 and TMPRSS2 including a close apposition to plasma cells - both pointing towards a role of the gut in the antecedent immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Milly J McAllister
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Kathryn Kirkwood
- Gastroenterology and Pathology Department, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Shaun C Chuah
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Emily J Thompson
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Jennifer A Cartwright
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Clark D Russell
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Regional Infectious Diseases Unit, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - David A Dorward
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Department of Pathology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Christopher D Lucas
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Gwo-Tzer Ho
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
46
|
Morozova OV, Novikova NA, Epifanova NV, Novikov DV, Mokhonov VV, Sashina TA, Zaytseva NN. [Detection SARS-CoV-2 ( Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus) in children with acute intestinal infection in Nizhny Novgorod during 2020-2021]. Vopr Virusol 2022; 67:69-76. [PMID: 35293190 DOI: 10.36233/0507-4088-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The novel coronavirus infection COVID-19 is a major public health problem worldwide. Several publications show the presence of gastrointestinal (GI) symptoms (nausea, vomiting, and diarrhea) in addition to respiratory disorders.The aim of this study was the monitoring of RNA of COVID-19 pathogen, coronavirus SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) in children hospitalized with acute intestinal infection (AII), with following molecular-genetic characterization of detected strains. MATERIAL AND METHODS Fecal samples of children with AII hospitalized in infectious hospital of Nizhny Novgorod (Russia) in the period from 01.07.2020 to 31.10.2021 were used as material for the study. Viral RNA detection was performed by real-time polymerase chain reaction (RT-PCR). The nucleotide sequence of S-protein gene fragment was determined by Sanger sequencing. RESULTS AND DISCUSSION SARS-CoV-2 genetic material was detected in 45 out of 2476 fecal samples. The maximum number of samples containing RNA of the virus occurred in November 2020 (detection rate of 12.2%). In 20.0% of cases, SARS-CoV-2 RNA was detected in combination with rota-, noro-, and adenoviruses. 28 nucleotide sequences of S-protein gene fragment complementary DNA (cDNA) were determined. Phylogenetic analysis showed that the studied SARS-CoV-2 strains belonged to two variants. Analysis of the S-protein amino acid sequence of the strains studied showed the absence of the N501Y mutation in the 2020 samples, which is a marker for variants with a high epidemic potential, called variants of concern (VOC) according to the World Health Organization (WHO) definition (lines Alpha B.1.1.7, Beta B.1.351, Gamma P.1). Delta line variant B.1.617.2 was identified in two samples isolated in September 2021. CONCLUSION The detection of SARS-CoV-2 RNA in the fecal samples of children with AII, suggesting that the fecal-oral mechanism of pathogen transmission may exist, determines the necessity to optimize its monitoring and to develop an algorithm of actions with patients with signs of AII under the conditions of a novel coronavirus infection pandemic.
Collapse
Affiliation(s)
- O V Morozova
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N A Novikova
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N V Epifanova
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - D V Novikov
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - V V Mokhonov
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - T A Sashina
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N N Zaytseva
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| |
Collapse
|
47
|
Boby N, Cao X, Williams K, Gadila SKG, Shroyer MN, Didier PJ, Srivastav SK, Das A, Baker K, Sha Q, Pahar B. Simian Immunodeficiency Virus Infection Mediated Changes in Jejunum and Peripheral SARS-CoV-2 Receptor ACE2 and Associated Proteins or Genes in Rhesus Macaques. Front Immunol 2022; 13:835686. [PMID: 35281029 PMCID: PMC8914048 DOI: 10.3389/fimmu.2022.835686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Angiotensin converting enzyme-2 (ACE2) and associated proteins play a pivotal role in various physiological and pathological events, such as immune activation, inflammation, gut barrier maintenance, intestinal stem cell proliferation, and apoptosis. Although many of these clinical events are quite significant in SIV/HIV infection, expression profiling of these proteins has not been well reported. Considering the different pathological consequences in the gut after HIV infection, we hypothesized that the expression of ACE2 and associated proteins of the Renin-angiotensin system (RAS) could be compromised after SIV/HIV infection. We quantified the gene expression of ACE2 as well as AGTR1/2, ADAM17, and TMPRSS2, and compared between SIV infected and uninfected rhesus macaques (Macaca mulatta; hereafter abbreviated RMs). The gene expression analysis revealed significant downregulation of ACE2 and upregulation of AGTR2 and inflammatory cytokine IL-6 in the gut of infected RMs. Protein expression profiling also revealed significant upregulation of AGTR2 after infection. The expression of ACE2 in protein level was also decreased, but not significantly, after infection. To understand the entirety of the process in newly regenerated epithelial cells, a global transcriptomic study of enteroids raised from intestinal stem cells was performed. Interestingly, most of the genes associated with the RAS, such as DPP4, MME, ANPEP, ACE2, ENPEP, were found to be downregulated in SIV infection. HNFA1 was found to be a key regulator of ACE2 and related protein expression. Jejunum CD4+ T cell depletion and increased IL-6 mRNA, MCP-1 and AGTR2 expression may signal inflammation, monocyte/macrophage accumulation and epithelial apoptosis in accelerating SIV pathogenesis. Overall, the findings in the study suggested a possible impact of SIV/HIV infection on expression of ACE2 and RAS-associated proteins resulting in the loss of gut homeostasis. In the context of the current COVID-19 pandemic, the outcome of SARS-CoV-2 and HIV co-infection remains uncertain and needs further investigation as the significance profile of ACE2, a viral entry receptor for SARS-CoV-2, and its expression in mRNA and protein varied in the current study. There is a concern of aggravated SARS-CoV-2 outcomes due to possible serious pathological events in the gut resulting from compromised expression of RAS- associated proteins in SIV/HIV infection.
Collapse
Affiliation(s)
- Nongthombam Boby
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Kelsey Williams
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Monica N. Shroyer
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Peter J. Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Sudesh K. Srivastav
- Department of Biostatistics, Tulane University, New Orleans, LA, United States
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Kate Baker
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
- *Correspondence: Bapi Pahar,
| |
Collapse
|
48
|
Ozkurt Z, Çınar Tanrıverdi E. COVID-19: Gastrointestinal manifestations, liver injury and recommendations. World J Clin Cases 2022; 10:1140-1163. [PMID: 35211548 PMCID: PMC8855202 DOI: 10.12998/wjcc.v10.i4.1140] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused a pandemic that affected all countries with nearly 270 million patients and 5 million deaths, as of as of December, 2021. The severe acute respiratory syndrome coronavirus 2 virus targets the receptor, angiotensin-converting enzyme 2, which is frequently found in human intestinal epithelial cells, bile duct epithelial cells, and liver cells, and all gastrointestinal system organs are affected by COVID-19 infection. The aim of this study is to review the gastrointestinal manifestations and liver damage of COVID-19 infection and investigate the severe COVID-19 infection risk in patients that have chronic gastrointestinal disease, along with current treatment guidelines. A literature search was conducted on electronic databases of PubMed, Scopus, and Cochran Library, consisting of COVID-19, liver injury, gastrointestinal system findings, and treatment. Liver and intestinal involvements are the most common manifestations. Diarrhea, anorexia, nausea/vomiting, abdominal pain are the most frequent symptoms seen in intestinal involvement. Mild hepatitis occurs with elevated levels of transaminases. Gastrointestinal involvement is associated with long hospital stay, severity of the disease, and intensive care unit necessity. Treatments and follow-up of patients with inflammatory bowel diseases, cirrhosis, hepatocellular carcinoma, or liver transplant have been negatively affected during the pandemic. Patients with cirrhosis, hepatocellular carcinoma, auto-immune diseases, or liver transplantation may have a greater risk for severe COVID-19. Diagnostic or therapeutic procedures should be restricted with specific conditions. Telemedicine should be used in non-urgent periodic patient follow up. COVID-19 treatment should not be delayed in patients at the risk group. COVID-19 vaccination should be prioritized in this group.
Collapse
Affiliation(s)
- Zulal Ozkurt
- Department of Infectious Disease, Atatürk University, School of Medicine, Erzurum 25100, Turkey
| | - Esra Çınar Tanrıverdi
- Department of Medical Education, Atatürk University, School of Medicine, Erzurum 25100, Turkey
| |
Collapse
|
49
|
Drozdzik A, Drozdzik M. Oral Pathology in COVID-19 and SARS-CoV-2 Infection-Molecular Aspects. Int J Mol Sci 2022; 23:1431. [PMID: 35163355 PMCID: PMC8836070 DOI: 10.3390/ijms23031431] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
This review article was designed to evaluate the existing evidence related to the molecular processes of SARS-CoV-2 infection in the oral cavity. The World Health Organization stated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission is produced by respiratory droplets and aerosols from the oral cavity of infected patients. The oral cavity structures, keratinized and non-keratinized mucosa, and salivary glands' epithelia express SARS-CoV-2 entry and transmission factors, especially angiotensin converting enzyme Type 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Replication of the virus in cells leads to local and systemic infection spread, and cellular damage is associated with clinical signs and symptoms of the disease in the oral cavity. Saliva, both the cellular and acellular fractions, holds the virus particles and contributes to COVID-19 transmission. The review also presents information about the factors modifying SARS-CoV-2 infection potential and possible local pharmacotherapeutic interventions, which may confine SARS-CoV-2 virus entry and transmission in the oral cavity. The PubMed and Scopus databases were used to search for suitable keywords such as: SARS-CoV-2, COVID-19, oral virus infection, saliva, crevicular fluid, salivary gland, tongue, oral mucosa, periodontium, gingiva, dental pulp, ACE2, TMPRSS2, Furin, diagnosis, topical treatment, vaccine and related words in relevant publications up to 28 December 2021. Data extraction and quality evaluation of the articles were performed by two reviewers, and 63 articles were included in the final review.
Collapse
Affiliation(s)
- Agnieszka Drozdzik
- Department of Integrated Dentistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72, 70-111 Szczecin, Poland;
| | - Marek Drozdzik
- Department of Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| |
Collapse
|
50
|
Lashgari NA, Momeni Roudsari N, Momtaz S, Abdolghaffari AH. Transmembrane serine protease 2 and angiotensin-converting enzyme 2 anti-inflammatory receptors for COVID-19/inflammatory bowel diseases treatment. World J Gastroenterol 2021; 27:7943-7955. [PMID: 35046622 PMCID: PMC8678820 DOI: 10.3748/wjg.v27.i46.7943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) refer to a subgroup of chronic, progressive, long-term, and relapsing inflammatory disorders. IBD may spontaneously grow in the colon, and in severe cases may result in tumor lesions such as invasive carcinoma in inflamed regions of the intestine. Recent epidemiological reports indicate that old age and underlying diseases such as IBD contribute to severity and mortality in patients with coronavirus disease 2019 (COVID-19). Currently, the ongoing COVID-19 pandemic caused serious morbidity and mortality worldwide. It has also been shown that the transmembrane serine protease 2 is an essential factor for viral activation and viral engulfment. Generally, viral entry causes a 'cytokine storm' that induces excessive generation of proinflammatory cytokines/chemokines including interleukin (IL)-6, IL-2, IL-7, tumor necrosis factor-α, and interferon-γ. Future research could concentrate on developing inflammatory immunological responses that are efficient to encounter COVID-19. Current analysis elucidates the role of inflammation and immune responses during IBD infection with COVID-19 and provides a list of possible targets for IBD-regulated therapies in particular. Data from clinical, in vitro, and in vivo studies were collected in English from PubMed, Google Scholar, Scopus, and the Cochrane library until May 2021.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 141554364, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran 1941933111, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 141554364, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran 1941933111, Iran
| |
Collapse
|