1
|
Li S, Lu Q, Lu J, Song X, Gu Y, Duan X, Jiang W, Gu G, Zheng M, Xie L, Fang M. IRF1-RIG-I signaling defects in the aged alveolar epithelial cells may contribute to decreased pulmonary antiviral immune responses. Mech Ageing Dev 2025; 224:112037. [PMID: 39874992 DOI: 10.1016/j.mad.2025.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Alveolar epithelial cells (AECs) are the primary targets of many pathogens and play an important role in sensing viruses and regulating immunity. Yet, little is known about the antiviral responses in the aged AECs. METHODS The responses of young or aged AECs after viral infection were analyzed using methods such as flow cytometry, quantitative real-time PCR, Western blot detection, and transwell chemotaxis assay. Deep sequencing and KEGG analysis were used to identify key pathways and genes associated with aged AECs, followed by functional analysis. RESULTS The retinoic acid-inducible gene I (RIG-I) signaling is defective in aged AECs after influenza A virus (IAV) infection. The interferon regulatory factor 1 (IRF1) binds the promoter of RIG-I gene Ddx58 to activate its expression. The regulation of IRF1 is also defective in AECs from aged mice. Fewer NK cells, monocytes, and T cells are recruited by the cell supernatant from PR8-infected aged AECs. Importantly, IRF1-RIG-I signaling is also impaired in the AECs of elderly people after IAV infection. CONCLUSION Ageing impairs IRF1-RIG-I signaling in AECs, and the defective responses in AECs may contribute to reduced immune cell recruitment and activation in aged individuals after pulmonary viral infection.
Collapse
Affiliation(s)
- Shan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Lu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China
| | - Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Song
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China
| | - Yang Gu
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanglei Gu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China
| | - Mengli Zheng
- College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China.
| |
Collapse
|
2
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
3
|
Dossett JP, Clavell CI, Ghorayeb G. Ocular manifestations of West Nile virus. Curr Opin Ophthalmol 2024; 35:521-525. [PMID: 39259651 DOI: 10.1097/icu.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW Over the past two decades, the ophthalmic manifestations of West Nile virus have been more clearly established in the literature. This review aims to summarize its diagnosis and pathogenesis, with a focus on its clinical appearance, characteristic imaging features, and management. RECENT FINDINGS Ocular manifestations of West Nile virus present early in the disease course and are more common in cases with severe neurological involvement. The use of optical coherence tomography (OCT), optical coherence tomography angiography (OCT-A), fundus autofluorescence (FAF), fluorescein angiogram (FA), and indocyanine green angiography (ICGA) can aid in its diagnosis and management. SUMMARY West Nile virus infection may present with ocular findings that include anterior uveitis, vitritis, retinitis, chorioretinitis, and optic neuropathy; visual prognosis can range from excellent to poor depending on severity of involvement and the presence of secondary complications, such as occlusive vasculitis and macular ischemia. Diagnosis may be aided by multimodal imaging assessment. The ophthalmologist should have a high clinical suspicion for ocular involvement in cases of severe systemic disease.
Collapse
Affiliation(s)
- James P Dossett
- West Virginia University, Department of Ophthalmology, Morgantown, West Virginia
| | | | - Ghassan Ghorayeb
- West Virginia University, Department of Ophthalmology, Morgantown, West Virginia
| |
Collapse
|
4
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
5
|
Smith CL, Richardson B, Rubsamen M, Cameron MJ, Cameron CM, Canaday DH. Adjuvant AS01 activates human monocytes for costimulation and systemic inflammation. Vaccine 2024; 42:229-238. [PMID: 38065772 DOI: 10.1016/j.vaccine.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND The adjuvanted recombinant zoster vaccine (RZV) is highly effective even in adults over 80 years old. The high efficacy of RZV is attributed to its highly reactogenic adjuvant, AS01, but limited studies have been done on AS01's activation of human immune cells. METHODS We stimulated peripheral blood mononuclear cells (PBMC) with AS01 and used flow cytometry and RNA Sequencing (RNAseq) to analyze the impacts on human primary cells. RESULTS We found that incubation of PBMC with AS01 activated monocytes to a greater extent than any other cell population, including dendritic cells. Both classical and non-classical monocytes demonstrated this activation. RNASeq showed that TNF-ɑ and IL1R pathways were highly upregulated in response to AS01 exposure, even in older adults. CONCLUSIONS In a PBMC co-culture, AS01 strongly activates human monocytes to upregulate costimulation markers and induce cytokines that mediate systemic inflammation. Understanding AS01's impacts on human cells opens possibilities to further address the reduced vaccine response associated with aging.
Collapse
Affiliation(s)
- Carson L Smith
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Rubsamen
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Cheryl M Cameron
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Geriatric Research, Education, and Clinical Center, Louis Stokes VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
| |
Collapse
|
6
|
Lee HJ, Zhao Y, Fleming I, Mehta S, Wang X, Wyk BV, Ronca SE, Kang H, Chou CH, Fatou B, Smolen KK, Levy O, Clish CB, Xavier RJ, Steen H, Hafler DA, Love JC, Shalek AK, Guan L, Murray KO, Kleinstein SH, Montgomery RR. Early cellular and molecular signatures correlate with severity of West Nile virus infection. iScience 2023; 26:108387. [PMID: 38047068 PMCID: PMC10692672 DOI: 10.1016/j.isci.2023.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ira Fleming
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sameet Mehta
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shannon E. Ronca
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Kang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kinga K. Smolen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Department of Infectious Disease, Precision Vaccines Program, Boston Children’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hanno Steen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - J. Christopher Love
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Kristy O. Murray
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Camarão AAR, Gern OL, Stegmann F, Mulenge F, Costa B, Saremi B, Jung K, Lepenies B, Kalinke U, Steffen I. Secreted NS1 proteins of tick-borne encephalitis virus and West Nile virus block dendritic cell activation and effector functions. Microbiol Spectr 2023; 11:e0219223. [PMID: 37707204 PMCID: PMC10581055 DOI: 10.1128/spectrum.02192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 09/15/2023] Open
Abstract
The flavivirus non-structural protein 1 (NS1) is secreted from infected cells into the circulation and the serum levels correlate with disease severity. The effect of secreted NS1 (sNS1) on non-infected mammalian immune cells is largely unknown. Here, we expressed recombinant sNS1 proteins of tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) and investigated their effects on dendritic cell (DC) effector functions. Murine bone marrow-derived DCs (BMDCs) showed reduced surface expression of co-stimulatory molecules and decreased release of pro-inflammatory cytokines when treated with sNS1 of TBEV or WNV prior to poly(I:C) stimulation. Transcriptional profiles of BMDCs that were sNS1-exposed prior to poly(I:C) stimulation showed two gene clusters that were downregulated by TBEV or WNV sNS1 and that were associated with innate and adaptive immune responses. Functionally, both sNS1 proteins modulated the capacity for BMDCs to induce specific T-cell responses as indicated by reduced IFN-γ levels in both CD4+ and CD8+ T cells after BMDC co-cultivation. In human monocyte-derived DCs, poly(I:C)-induced upregulation of co-stimulatory molecules and cytokine responses were even more strongly impaired by TBEV sNS1 or WNV sNS1 pretreatment than in the murine system. Our findings indicate that exogenous flaviviral sNS1 proteins interfere with DC-mediated stimulation of T cells, which is crucial for the initiation of cell-mediated adaptive immune responses in human flavivirus infections. Collectively, our data determine soluble flaviviral NS1 as a virulence factor responsible for a dampened immune response to flavivirus infections. IMPORTANCE The effective initiation of protective host immune responses controls the outcome of infection, and dysfunctional T-cell responses have previously been associated with symptomatic human flavivirus infections. We demonstrate that secreted flavivirus NS1 proteins modulate innate immune responses of uninfected bystander cells. In particular, sNS1 markedly reduced the capacity of dendritic cells to stimulate T-cell responses upon activation. Hence, by modulating cellular host responses that are required for effective antigen presentation and initiation of adaptive immunity, sNS1 proteins may contribute to severe outcomes of flavivirus disease.
Collapse
Affiliation(s)
- António A. R. Camarão
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Felix Stegmann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Babak Saremi
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernd Lepenies
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence—Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Imke Steffen
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
8
|
Marušić M, Kopitar AN, Korva M, Knap N, Bogovič P, Strle F, Ihan A, Avšič-Županc T. Dendritic cell activation and cytokine response in vaccine breakthrough TBE patients after in vitro stimulation with TBEV. Front Immunol 2023; 14:1190803. [PMID: 37261350 PMCID: PMC10228714 DOI: 10.3389/fimmu.2023.1190803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral infection of the human central nervous system caused by the TBE virus (TBEV). The most effective protective measure against TBE is vaccination. Despite the highly immunogenic vaccine, cases of vaccine breakthroughs (VBTs) occur. One of the first targets of infection is dendritic cells (DC), which represent a fundamental bridge between innate and adaptive immunity through antigen presentation, costimulation, and cytokine production. Therefore, we investigated the activation and maturation of DCs and cytokine production after in vitro TBEV stimulation of peripheral blood mononuclear cells (PBMCs) obtained from VBT and unvaccinated TBE patients. Our results showed that the expression of HLA-DR and CD86 on DCs, was upregulated to a similar extent in both vaccinated and unvaccinated TBE patients but differed in cytokine production after stimulation with TBEV. PBMCs from patients with VBT TBE responded with lower levels of IFN-α and the proinflammatory cytokines IL-12 (p70) and IL-15 after 24- and 48-hour in vitro stimulation with TBEV, possibly facilitating viral replication and influencing the development of cell-mediated immunity. On the other hand, significantly higher levels of IL-6 in addition to an observed trend of higher expression of TNF-α measured after 6 days of in vitro stimulation of PBMC could support disruption of the blood-brain barrier and promote viral and immune cell influx into the CNS, leading to more severe disease in VBT TBE patients.
Collapse
Affiliation(s)
- Miša Marušić
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andreja Nataša Kopitar
- Laboratory for Cellular Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Laboratory for Cellular Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Lauretani F, Salvi M, Zucchini I, Testa C, Cattabiani C, Arisi A, Maggio M. Relationship between Vitamin D and Immunity in Older People with COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085432. [PMID: 37107714 PMCID: PMC10138672 DOI: 10.3390/ijerph20085432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/11/2023]
Abstract
Vitamin D is a group of lipophilic hormones with pleiotropic actions. It has been traditionally related to bone metabolism, although several studies in the last decade have suggested its role in sarcopenia, cardiovascular and neurological diseases, insulin-resistance and diabetes, malignancies, and autoimmune diseases and infections. In the pandemic era, by considering the response of the different branches of the immune system to SARS-CoV-2 infection, our aims are both to analyse, among the pleiotropic effects of vitamin D, how its strong multimodal modulatory effect on the immune system is able to affect the pathophysiology of COVID-19 disease and to emphasise a possible relationship between the well-known circannual fluctuations in blood levels of this hormone and the epidemiological trend of this infection, particularly in the elderly population. The biologically active form of vitamin D, or calcitriol, can influence both the innate and the adaptive arm of the immune response. Calcifediol levels have been found to be inversely correlated with upper respiratory tract infections in several studies, and this activity seems to be related to its role in the innate immunity. Cathelicidin is one of the main underlying mechanisms since this peptide increases the phagocytic and germicidal activity acting as chemoattractant for neutrophils and monocytes, and representing the first barrier in the respiratory epithelium to pathogenic invasion. Furthermore, vitamin D exerts a predominantly inhibitory action on the adaptive immune response, and it influences either cell-mediated or humoral immunity through suppression of B cells proliferation, immunoglobulins production or plasma cells differentiation. This role is played by promoting the shift from a type 1 to a type 2 immune response. In particular, the suppression of Th1 response is due to the inhibition of T cells proliferation, pro-inflammatory cytokines production (e.g., INF-γ, TNF-α, IL-2, IL-17) and macrophage activation. Finally, T cells also play a fundamental role in viral infectious diseases. CD4 T cells provide support to B cells antibodies production and coordinate the activity of the other immunological cells; moreover, CD8 T lymphocytes remove infected cells and reduce viral load. For all these reasons, calcifediol could have a protective role in the lung damage produced by COVID-19 by both modulating the sensitivity of tissue to angiotensin II and promoting overexpression of ACE-2. Promising results for the potential effectiveness of vitamin D supplementation in reducing the severity of COVID-19 disease was demonstrated in a pilot clinical trial of 76 hospitalised patients with SARS-CoV-2 infection where oral calcifediol administration reduced the need for ICU treatment. These interesting results need to be confirmed in larger studies with available information on vitamin D serum levels.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703325
| | - Marco Salvi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Irene Zucchini
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Crescenzo Testa
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Chiara Cattabiani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Arianna Arisi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
10
|
Enichen E, Harvey C, Demmig-Adams B. COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. Am J Lifestyle Med 2023; 17:231-257. [PMID: 36883129 PMCID: PMC9445631 DOI: 10.1177/15598276221123005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans' physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats' low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Caitlyn Harvey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| |
Collapse
|
11
|
Jurisic L, Malatesta D, Zaccaria G, Di Teodoro G, Bonfini B, Valleriani F, Teodori L, Bencivenga F, Leone A, Ripà P, D'Innocenzo V, Rossi E, Lorusso A. Immunization with Usutu virus and with a chimeric West Nile virus (WNV) harboring Usutu-E protein protects immunocompetent adult mice against lethal challenges with different WNV lineage 1 and 2 strains. Vet Microbiol 2023; 277:109636. [PMID: 36580873 DOI: 10.1016/j.vetmic.2022.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV), two antigenically related flaviviruses co-circulating in Europe, can cause severe neurological disease in animals and humans. The immune response against USUV and WNV and their immunopathogenesis are still poorly investigated. Here we present results upon sequential infections of adult immunocompetent CD-1 and BALB/c mice primed with two different doses (high dose, HD or low dose, LD) of an USUV isolate and challenged with HD or LD of three different WNV isolates. CD-1 and BALB/c LD USUV-primed mice, regardless of the dose, are largely protected from lethal WNV challenges despite showing no detectable neutralizing antibodies. Furthermore, mice immunized with a chimeric virus harboring the E protein of USUV within the WNV backbone (WNVE-USUV) are protected against a lethal challenge with WNV. We believe these findings could contribute to understanding the dynamics of the interaction during sequential infection of these two flaviviruses.
Collapse
Affiliation(s)
- Lucija Jurisic
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Guendalina Zaccaria
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Barbara Bonfini
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | | | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Paola Ripà
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Vincenzo D'Innocenzo
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy.
| |
Collapse
|
12
|
Almendro-Vázquez P, Laguna-Goya R, Paz-Artal E. Defending against SARS-CoV-2: The T cell perspective. Front Immunol 2023; 14:1107803. [PMID: 36776863 PMCID: PMC9911802 DOI: 10.3389/fimmu.2023.1107803] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
SARS-CoV-2-specific T cell response has been proven essential for viral clearance, COVID-19 outcome and long-term memory. Impaired early T cell-driven immunity leads to a severe form of the disease associated with lymphopenia, hyperinflammation and imbalanced humoral response. Analyses of acute SARS-CoV-2 infection have revealed that mild COVID-19 course is characterized by an early induction of specific T cells within the first 7 days of symptoms, coordinately followed by antibody production for an effective control of viral infection. In contrast, patients who do not develop an early specific cellular response and initiate a humoral immune response with subsequent production of high levels of antibodies, develop severe symptoms. Yet, delayed and persistent bystander CD8+ T cell activation has been also reported in hospitalized patients and could be a driver of lung pathology. Literature supports that long-term maintenance of T cell response appears more stable than antibody titters. Up to date, virus-specific T cell memory has been detected 22 months post-symptom onset, with a predominant IL-2 memory response compared to IFN-γ. Furthermore, T cell responses are conserved against the emerging variants of concern (VoCs) while these variants are mostly able to evade humoral responses. This could be partly explained by the high HLA polymorphism whereby the viral epitope repertoire recognized could differ among individuals, greatly decreasing the likelihood of immune escape. Current COVID-19-vaccination has been shown to elicit Th1-driven spike-specific T cell response, as does natural infection, which provides substantial protection against severe COVID-19 and death. In addition, mucosal vaccination has been reported to induce strong adaptive responses both locally and systemically and to protect against VoCs in animal models. The optimization of vaccine formulations by including a variety of viral regions, innovative adjuvants or diverse administration routes could result in a desirable enhanced cellular response and memory, and help to prevent breakthrough infections. In summary, the increasing evidence highlights the relevance of monitoring SARS-CoV-2-specific cellular immune response, and not only antibody levels, as a correlate for protection after infection and/or vaccination. Moreover, it may help to better identify target populations that could benefit most from booster doses and to personalize vaccination strategies.
Collapse
Affiliation(s)
- Patricia Almendro-Vázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
13
|
Karim SU, Bai F. Introduction to West Nile Virus. Methods Mol Biol 2023; 2585:1-7. [PMID: 36331759 DOI: 10.1007/978-1-0716-2760-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne, single-stranded, positive-sense RNA virus belonging to the Flaviviridae family. After WNV gains entry through an infected mosquito bite, it replicates in a variety of human cell types and produces a viremia. Although the majority of infected individuals remain asymptomatic, the manifested symptoms in some people range from a mild fever to severe neurological disorder with high morbidity and mortality. In addition, many who recover from WNV neuroinvasive infection present with long-term deficits, including weakness, fatigue, and cognitive problems. Since entering the USA in 1999, WNV has become the most common mosquito-borne virus in North America. Despite the intensive research over 20 years, there are still no approved vaccines or specific treatments for humans, and it remains an urgent need to understand the pathogenesis of WNV and develop specific therapeutics and vaccines.
Collapse
Affiliation(s)
- Shazeed-Ul Karim
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
14
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
15
|
Kelley WJ, Wragg KM, Chen J, Murthy T, Xu Q, Boyne MT, Podojil JR, Elhofy A, Goldstein DR. Nanoparticles reduce monocytes within the lungs to improve outcomes after influenza virus infection in aged mice. JCI Insight 2022; 7:156320. [PMID: 35737459 PMCID: PMC9462478 DOI: 10.1172/jci.insight.156320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/21/2022] [Indexed: 01/26/2023] Open
Abstract
Older people exhibit dysregulated innate immunity to respiratory viral infections, including influenza and SARS-CoV-2, and show an increase in morbidity and mortality. Nanoparticles are a potential practical therapeutic that could reduce exaggerated innate immune responses within the lungs during viral infection. However, such therapeutics have not been examined for effectiveness during respiratory viral infection, particular in aged hosts. Here, we employed a lethal model of influenza viral infection in vulnerable aged mice to examine the ability of biodegradable, cargo-free nanoparticles, designated ONP-302, to resolve innate immune dysfunction and improve outcomes during infection. We administered ONP-302 via i.v. injection to aged mice at day 3 after infection, when the hyperinflammatory innate immune response was already established. During infection, we found that ONP-302 treatment reduced the numbers of inflammatory monocytes within the lungs and increased their number in both the liver and spleen, without impacting viral clearance. Importantly, cargo-free nanoparticles reduced lung damage, reduced histological lung inflammation, and improved gas exchange and, ultimately, the clinical outcomes in influenza-infected aged mice. In conclusion, ONP-302 improves outcomes in influenza-infected aged mice. Thus, our study provides information concerning a practical therapeutic, which, if translated clinically, could improve disease outcomes for vulnerable older patients suffering from respiratory viral infections.
Collapse
Affiliation(s)
| | | | - Judy Chen
- Department of Internal Medicine and,Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tushar Murthy
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Qichen Xu
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Michael T. Boyne
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Joseph R. Podojil
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Adam Elhofy
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine and,Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Microbiology and Immunology, University of Michigan, Michigan, USA
| |
Collapse
|
16
|
Lázničková P, Bendíčková K, Kepák T, Frič J. Immunosenescence in Childhood Cancer Survivors and in Elderly: A Comparison and Implication for Risk Stratification. FRONTIERS IN AGING 2022; 2:708788. [PMID: 35822014 PMCID: PMC9261368 DOI: 10.3389/fragi.2021.708788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The population of childhood cancer survivors (CCS) has grown rapidly in recent decades. Although cured of their original malignancy, these individuals are at increased risk of serious late effects, including age-associated complications. An impaired immune system has been linked to the emergence of these conditions in the elderly and CCS, likely due to senescent immune cell phenotypes accompanied by low-grade inflammation, which in the elderly is known as "inflammaging." Whether these observations in the elderly and CCS are underpinned by similar mechanisms is unclear. If so, existing knowledge on immunosenescent phenotypes and inflammaging might potentially serve to benefit CCS. We summarize recent findings on the immune changes in CCS and the elderly, and highlight the similarities and identify areas for future research. Improving our understanding of the underlying mechanisms and immunosenescent markers of accelerated immune aging might help us to identify individuals at increased risk of serious health complications.
Collapse
Affiliation(s)
- Petra Lázničková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomáš Kepák
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Pediatric Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
17
|
Kumar M, James MM, Kumawat M, Nabi B, Sharma P, Pal N, Shubham S, Tiwari RR, Sarma DK, Nagpal R. Aging and Microbiome in the Modulation of Vaccine Efficacy. Biomedicines 2022; 10:biomedicines10071545. [PMID: 35884849 PMCID: PMC9313064 DOI: 10.3390/biomedicines10071545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
From infancy through to old age, the microbiome plays an important role in modulating the host-immune system. As we age, our immune system and our gut microbiota change significantly in composition and function, which is linked to an increased vulnerability to infectious diseases and a decrease in vaccine responses. Our microbiome remains largely stable throughout adulthood; however, aging causes a major shift in the composition and function of the gut microbiome, as well as a decrease in diversity. Considering the critical role of the gut microbiome in the host-immune system, it is important to address, prevent, and ameliorate age-related dysbiosis, which could be an effective strategy for preventing/restoring functional deficits in immune responses as we grow older. Several factors, such as the host’s genetics and nutritional state, along with the gut microbiome, can influence vaccine efficacy or reaction. Emerging evidence suggests that the microbiome could be a significant determinant of vaccine immunity. Physiological mechanisms such as senescence, or the steady loss of cellular functions, which affect the aging process and vaccination responses, have yet to be comprehended. Recent studies on several COVID-19 vaccines worldwide have provided a considerable amount of data to support the hypothesis that aging plays a crucial role in modulating COVID-19 vaccination efficacy across different populations.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Meenu Mariya James
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Bilkees Nabi
- Department of Biochemistry and Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India;
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
- Correspondence: (D.K.S.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (D.K.S.); (R.N.)
| |
Collapse
|
18
|
Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2022; 119:2122090119. [PMID: 35217624 PMCID: PMC8892496 DOI: 10.1073/pnas.2122090119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
An increased incidence of chilblains has been observed during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and attributed to viral infection. Direct evidence of this relationship has been limited, however, as most cases do not have molecular evidence of prior SARS-CoV-2 infection with PCR or antibodies. We enrolled a cohort of 23 patients who were diagnosed and managed as having SARS-CoV-2-associated skin eruptions (including 21 pandemic chilblains [PC]) during the first wave of the pandemic in Connecticut. Antibody responses were determined through endpoint titration enzyme-linked immunosorbent assay and serum epitope repertoire analysis. T cell responses to SARS-CoV-2 were assessed by T cell receptor sequencing and in vitro SARS-CoV-2 antigen-specific peptide stimulation assays. Immunohistochemical and PCR studies of PC biopsies and tissue microarrays for evidence of SARS-CoV-2 were performed. Among patients diagnosed and managed as "covid toes" during the pandemic, we find a percentage of prior SARS-CoV-2 infection (9.5%) that approximates background seroprevalence (8.5%) at the time. Immunohistochemistry studies suggest that SARS-CoV-2 staining in PC biopsies may not be from SARS-CoV-2. Our results do not support SARS-CoV-2 as the causative agent of pandemic chilblains; however, our study does not exclude the possibility of SARS-CoV-2 seronegative abortive infections.
Collapse
|
19
|
Lyu N, Yi JZ, Zhao M. Immunotherapy in older patients with hepatocellular carcinoma. Eur J Cancer 2021; 162:76-98. [PMID: 34954439 DOI: 10.1016/j.ejca.2021.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/31/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer globally and is currently the third leading cause of cancer-related deaths. Recently, immunotherapy using immune checkpoint inhibitors (ICIs) has been shown with encouraging anticancer activity and safety in clinical trials. To reverse the phenomenon of tumours evading immune response, ICIs can be used to stimulate the natural antitumour potential of cancer cells by blocking the relevant checkpoints to activate T cells. However, the components and functions of the immune system may undergo a series of changes with ageing, known as 'immunosenescence,' potentially affecting the antitumour effect and safety of immunotherapy. In the current phase III clinical trials of ICIs including nivolumab, pembrolizumab and atezolizumab, the proportion of patients with HCC older than 65 years in CheckMate 459, KEYNOTE-240 and IMbrave150 is 51%, 58% and 50%, respectively, which is less than 70%-73% of epidemiological investigation. Therefore, the elderly population recruited in clinical trials may not accurately represent the real-world elderly patients with HCC, which affects the extrapolation of the efficacy and safety profile obtained in clinical trials to the elderly population in the real world. This review provides the latest advances in ICIs immuno-treatment available for HCC and relevant information about their therapeutic effects and safety on elderly patients. We discuss the benefits of ICIs for older HCC patients, and relevant recommendations about conducting further clinical trials are proposed for more complete answers to this clinical issue.
Collapse
Affiliation(s)
- Ning Lyu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jun-Zhe Yi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ming Zhao
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
20
|
Kim M, Ladomersky E, Mozny A, Kocherginsky M, O'Shea K, Reinstein ZZ, Zhai L, Bell A, Lauing KL, Bollu L, Rabin E, Dixit K, Kumthekar P, Platanias LC, Hou L, Zheng Y, Wu J, Zhang B, Hrachova M, Merrill SA, Mrugala MM, Prabhu VC, Horbinski C, James CD, Yamini B, Ostrom QT, Johnson MO, Reardon DA, Lukas RV, Wainwright DA. Glioblastoma as an age-related neurological disorder in adults. Neurooncol Adv 2021; 3:vdab125. [PMID: 34647022 PMCID: PMC8500689 DOI: 10.1093/noajnl/vdab125] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Advanced age is a major risk factor for the development of many diseases including those affecting the central nervous system. Wild-type isocitrate dehydrogenase glioblastoma (IDHwt GBM) is the most common primary malignant brain cancer and accounts for ≥90% of all adult GBM diagnoses. Patients with IDHwt GBM have a median age of diagnosis at 68–70 years of age, and increasing age is associated with an increasingly worse prognosis for patients with this type of GBM. Methods The Surveillance, Epidemiology, and End Results, The Cancer Genome Atlas, and the Chinese Glioma Genome Atlas databases were analyzed for mortality indices. Meta-analysis of 80 clinical trials was evaluated for log hazard ratio for aging to tumor survivorship. Results Despite significant advances in the understanding of intratumoral genetic alterations, molecular characteristics of tumor microenvironments, and relationships between tumor molecular characteristics and the use of targeted therapeutics, life expectancy for older adults with GBM has yet to improve. Conclusions Based upon the results of our analysis, we propose that age-dependent factors that are yet to be fully elucidated, contribute to IDHwt GBM patient outcomes.
Collapse
Affiliation(s)
- Miri Kim
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, Illinois, USA.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erik Ladomersky
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andreas Mozny
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kaitlyn O'Shea
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zachary Z Reinstein
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lijie Zhai
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - April Bell
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristen L Lauing
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lakshmi Bollu
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erik Rabin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karan Dixit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Priya Kumthekar
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leonidas C Platanias
- Department of Medicine, Division of Hematology-Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jennifer Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Zhang
- Department of Medicine, Division of Hematology-Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maya Hrachova
- Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Sarah A Merrill
- Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Maciej M Mrugala
- Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Vikram C Prabhu
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, Illinois, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Charles David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bakhtiar Yamini
- Department of Neurological Surgery, University of Chicago Medical Center & Biological Sciences, Chicago, Illinois, USA
| | - Quinn T Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Margaret O Johnson
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - David A Reardon
- Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Medicine, Division of Hematology-Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
21
|
Stephens LM, Varga SM. Considerations for a Respiratory Syncytial Virus Vaccine Targeting an Elderly Population. Vaccines (Basel) 2021; 9:vaccines9060624. [PMID: 34207770 PMCID: PMC8228432 DOI: 10.3390/vaccines9060624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is most commonly associated with acute lower respiratory tract infections in infants and children. However, RSV also causes a high disease burden in the elderly that is often under recognized. Adults >65 years of age account for an estimated 80,000 RSV-associated hospitalizations and 14,000 deaths in the United States annually. RSV infection in aged individuals can result in more severe disease symptoms including pneumonia and bronchiolitis. Given the large disease burden caused by RSV in the aged, this population remains an important target for vaccine development. Aging results in lowered immune responsiveness characterized by impairments in both innate and adaptive immunity. This immune senescence poses a challenge when developing a vaccine targeting elderly individuals. An RSV vaccine tailored towards an elderly population will need to maximize the immune response elicited in order to overcome age-related defects in the immune system. In this article, we review the hurdles that must be overcome to successfully develop an RSV vaccine for use in the elderly, and discuss the vaccine candidates currently being tested in this highly susceptible population.
Collapse
Affiliation(s)
- Laura M. Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
22
|
Wu D, Yang XO. Dysregulation of Pulmonary Responses in Severe COVID-19. Viruses 2021; 13:957. [PMID: 34064104 PMCID: PMC8224314 DOI: 10.3390/v13060957] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) predominantly have a respiratory tract infection with various symptoms and high mortality is associated with respiratory failure second to severe disease. The risk factors leading to severe disease remain unclear. Here, we reanalyzed a published single-cell RNA-Seq (scRNA-Seq) dataset and found that bronchoalveolar lavage fluid (BALF) of patients with severe disease compared to those with mild disease contained decreased TH17-type cells, decreased IFNA1-expressing cells with lower expression of toll-like receptor 7 (TLR7) and TLR8, increased IgA-expressing B cells, and increased hyperactive epithelial cells (and/or macrophages) expressing matrix metalloproteinases (MMPs), hyaluronan synthase 2 (HAS2), and plasminogen activator inhibitor-1 (PAI-1), which may together contribute to the pulmonary pathology in severe COVID-19. We propose IFN-I (and TLR7/TLR8) and PAI-1 as potential biomarkers to predict the susceptibility to severe COVID-19.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
- Department of Crop Genetics and Breeding, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| |
Collapse
|
23
|
Gilroy DW, De Maeyer RPH, Tepper M, O'Brien A, Uddin M, Chen J, Goldstein DR, Akbar AN. Treating exuberant, non-resolving inflammation in the lung; Implications for acute respiratory distress syndrome and COVID-19. Pharmacol Ther 2021; 221:107745. [PMID: 33188794 PMCID: PMC7657264 DOI: 10.1016/j.pharmthera.2020.107745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
While COVID-19, the disease driven by SARS-CoV-2 has ignited interest in the host immune response to this infection, it has also highlighted the lack of treatment options for the damaging inflammatory responses driven by pathogens that precipitate the acute respiratory distress syndrome (ARDS). With the global prevalence of SARS-CoV-2 and the likelihood of a second winter spike alongside seasonal flu, the need for effective and targeted anti-inflammatory agents is even more pressing. Here we discuss the aetiology of COVID-19 and the common signalling pathways driven by SARS-CoV-2, namely p38 MAP kinase. We highlight that p38 MAP kinase becomes elevated with increasing age, thereby driving many of the inflammatory pathways that precipitate death in old people with the added drawback of impairing vaccine efficacy in this susceptible age group. Finally, we review drugs available to inhibit p38 MAP kinase, their risks-versus-benefits as well as suggested dosing regimen to combat over-exuberant innate immune responses and potentially reverse vaccine inefficacy in older patients.
Collapse
Affiliation(s)
- Derek W Gilroy
- Division of Medicine, University College London, London, UK.
| | | | - Mark Tepper
- Senex Therapeutics Inc., Newton, Center, MA, USA
| | | | - Mohib Uddin
- Late Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Sweden
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK
| |
Collapse
|
24
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
25
|
Feng E, Balint E, Poznanski SM, Ashkar AA, Loeb M. Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. Cells 2021; 10:708. [PMID: 33806810 PMCID: PMC8004738 DOI: 10.3390/cells10030708] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022] Open
Abstract
As highlighted by the COVID-19 global pandemic, elderly individuals comprise the majority of cases of severe viral infection outcomes and death. A combined inability to control viral replication and exacerbated inflammatory immune activation in elderly patients causes irreparable immune-mediated tissue pathology in response to infection. Key to these responses are type I, II, and III interferons (IFNs), which are involved in inducing an antiviral response, as well as controlling and suppressing inflammation and immunopathology. IFNs support monocyte/macrophage-stimulated immune responses that clear infection and promote their immunosuppressive functions that prevent excess inflammation and immune-mediated pathology. The timing and magnitude of IFN responses to infection are critical towards their immunoregulatory functions and ability to prevent immunopathology. Aging is associated with multiple defects in the ability of macrophages and dendritic cells to produce IFNs in response to viral infection, leading to a dysregulation of inflammatory immune responses. Understanding the implications of aging on IFN-regulated inflammation will give critical insights on how to treat and prevent severe infection in vulnerable individuals. In this review, we describe the causes of impaired IFN production in aging, and the evidence to suggest that these impairments impact the regulation of the innate and adaptive immune response to infection, thereby causing disease pathology.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (E.F.); (E.B.); (S.M.P.); (M.L.)
| | | |
Collapse
|
26
|
Cugini C, Ramasubbu N, Tsiagbe VK, Fine DH. Dysbiosis From a Microbial and Host Perspective Relative to Oral Health and Disease. Front Microbiol 2021; 12:617485. [PMID: 33763040 PMCID: PMC7982844 DOI: 10.3389/fmicb.2021.617485] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The significance of microbiology and immunology with regard to caries and periodontal disease gained substantial clinical or research consideration in the mid 1960's. This enhanced emphasis related to several simple but elegant experiments illustrating the relevance of bacteria to oral infections. Since that point, the understanding of oral diseases has become increasingly sophisticated and many of the original hypotheses related to disease causality have either been abandoned or amplified. The COVID pandemic has reminded us of the importance of history relative to infectious diseases and in the words of Churchill "those who fail to learn from history are condemned to repeat it." This review is designed to present an overview of broad general directions of research over the last 60 years in oral microbiology and immunology, reviewing significant contributions, indicating emerging foci of interest, and proposing future directions based on technical advances and new understandings. Our goal is to review this rich history (standard microbiology and immunology) and point to potential directions in the future (omics) that can lead to a better understanding of disease. Over the years, research scientists have moved from a position of downplaying the role of bacteria in oral disease to one implicating bacteria as true pathogens that cause disease. More recently it has been proposed that bacteria form the ecological first line of defense against "foreign" invaders and also serve to train the immune system as an acquired host defensive stimulus. While early immunological research was focused on immunological exposure as a modulator of disease, the "hygiene hypothesis," and now the "old friends hypothesis" suggest that the immune response could be trained by bacteria for long-term health. Advanced "omics" technologies are currently being used to address changes that occur in the host and the microbiome in oral disease. The "omics" methodologies have shaped the detection of quantifiable biomarkers to define human physiology and pathologies. In summary, this review will emphasize the role that commensals and pathobionts play in their interaction with the immune status of the host, with a prediction that current "omic" technologies will allow researchers to better understand disease in the future.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | | | | | | |
Collapse
|
27
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
28
|
King C, Sprent J. Dual Nature of Type I Interferons in SARS-CoV-2-Induced Inflammation. Trends Immunol 2021; 42:312-322. [PMID: 33622601 PMCID: PMC7879020 DOI: 10.1016/j.it.2021.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ability of our cells to secrete type I interferons (IFN-Is) is essential for the control of virus replication and for effective antiviral immune responses; for this reason, viruses have evolved the means to antagonize IFN-I. Inhibition of IFN-I production is pronounced in SARS-CoV-2 infection, which can impair the adaptive immune response and exacerbate inflammatory disease at late stages of infection. However, therapeutic boosting of IFN-I offers a narrow time window for efficacy and safety. Here, we discuss how limits placed on IFN-I by SARS-CoV-2 shape the immune response and whether this might be countered with therapeutic approaches and vaccine design.
Collapse
Affiliation(s)
- Cecile King
- Department of Immunology, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, UNSW, Sydney, NSW 2010, Australia.
| | - Jonathan Sprent
- Department of Immunology, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, UNSW, Sydney, NSW 2010, Australia
| |
Collapse
|
29
|
The impact of immuno-aging on SARS-CoV-2 vaccine development. GeroScience 2021; 43:31-51. [PMID: 33569701 PMCID: PMC7875765 DOI: 10.1007/s11357-021-00323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The SARS-CoV-2 pandemic has almost 56 million confirmed cases resulting in over 1.3 million deaths as of November 2020. This infection has proved more deadly to older adults (those >65 years of age) and those with immunocompromising conditions. The worldwide population aged 65 years and older is increasing, and the total number of aged individuals will outnumber those younger than 65 years by the year 2050. Aging is associated with a decline in immune function and chronic activation of inflammation that contributes to enhanced viral susceptibility and reduced responses to vaccination. Here we briefly review the pathogenicity of the virus, epidemiology and clinical response, and the underlying mechanisms of human aging in improving vaccination. We review current methods to improve vaccination in the older adults using novel vaccine platforms and adjuvant systems. We conclude by summarizing the existing clinical trials for a SARS-CoV-2 vaccine and discussing how to address the unique challenges for vaccine development presented with an aging immune system.
Collapse
|
30
|
Borges RC, Hohmann MS, Borghi SM. Dendritic cells in COVID-19 immunopathogenesis: insights for a possible role in determining disease outcome. Int Rev Immunol 2020; 40:108-125. [PMID: 33191813 DOI: 10.1080/08830185.2020.1844195] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This novel coronavirus emerged in China, quickly spreading to more than 200 countries worldwide. Although most patients are only mildly ill or even asymptomatic, some develop severe pneumonia and become critically ill. One of the biggest unanswered questions is why some develop severe disease, whilst others do not. Insight on the interaction between SARS-CoV-2 and the immune system and the contribution of dysfunctional immune responses to disease progression will be instrumental to the understanding of COVID-19 pathogenesis, risk factors for worst outcome, and rational design of effective therapies and vaccines. In this review we have gathered the knowledge available thus far on the epidemiology of SARS-COV-2 infection, focusing on the susceptibility of older individuals, SARS-CoV-2-host cell interaction during infection and the immune response directed at SARS-CoV-2. Dendritic cells act as crucial messengers linking innate and adaptative immunity against viral infections. Thus, this review also brings a focused discussion on the role of dendritic cells and their immune functions during SARS-CoV-2 infection and how immune evasion strategies of SARS-CoV-2 and advancing age mediate dendritic cell dysfunctions that contribute to COVID-19 pathogenesis and increased susceptibility to worst outcomes. This review brings to light the hypothesis that concomitant occurrence of dendritic cell dysfunction/cytopathic effects induced by SARS-CoV-2 and/or aging may influence disease outcome in the elderly. Lastly, a detailed discussion on the effects and mechanisms of action of drugs currently being tested for COVID-19 on the function of dendritic cells is also provided.
Collapse
Affiliation(s)
- Rodrigo Cerqueira Borges
- Avenida Professor Lineu Prestes, University Hospital, University of São Paulo, São Paulo, Brazil
| | - Miriam Sayuri Hohmann
- Departament of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio Marques Borghi
- Departament of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná, Brazil.,Center for Research in Health Sciences, University of Northern Paraná - Unopar, Londrina, Paraná, Brazil
| |
Collapse
|
31
|
Nikolich-Žugich J, Bradshaw CM, Uhrlaub JL, Watanabe M. Immunity to acute virus infections with advanced age. Curr Opin Virol 2020; 46:45-58. [PMID: 33160186 DOI: 10.1016/j.coviro.2020.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
New infections in general, and new viral infections amongst them, represent a serious challenge to an older organism. This review discusses the age-related alterations in responsiveness to infection from the standpoint of virus:host relationship and the host physiological whole-organism and specific immune response to the virus. Changes with age in the innate and adaptive immune system homeostasis and function are reviewed briefly. This is followed by a review of specific alterations and defects in the response of older organisms (chiefly mice and humans) to acute (particularly emerging and re-emerging) viral infections, with a very brief summary of the response to latent persistent infections. Finally, we provide a brief summary of the perspectives for possible interventions to enhance antiviral immunity.
Collapse
Affiliation(s)
- Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| | - Christine M Bradshaw
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Makiko Watanabe
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| |
Collapse
|
32
|
Hazeldine J, Lord JM. Immunesenescence: A Predisposing Risk Factor for the Development of COVID-19? Front Immunol 2020; 11:573662. [PMID: 33123152 PMCID: PMC7573102 DOI: 10.3389/fimmu.2020.573662] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
Bearing a strong resemblance to the phenotypic and functional remodeling of the immune system that occurs during aging (termed immunesenescence), the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), is characterized by an expansion of inflammatory monocytes, functional exhaustion of lymphocytes, dysregulated myeloid responses and the presence of highly activated senescent T cells. Alongside advanced age, male gender and pre-existing co-morbidities [e.g., obesity and type 2 diabetes (T2D)] are emerging as significant risk factors for COVID-19. Interestingly, immunesenescence is more profound in males when compared to females, whilst accelerated aging of the immune system, termed premature immunesenescence, has been described in obese subjects and T2D patients. Thus, as three distinct demographic groups with an increased susceptibility to COVID-19 share a common immune profile, could immunesenescence be a generic contributory factor in the development of severe COVID-19? Here, by focussing on three key aspects of an immune response, namely pathogen recognition, elimination and resolution, we address this question by discussing how immunesenescence may weaken or exacerbate the immune response to SARS-CoV-2. We also highlight how aspects of immunesenescence could render potential COVID-19 treatments less effective in older adults and draw attention to certain therapeutic options, which by reversing or circumventing certain features of immunesenescence may prove to be beneficial for the treatment of groups at high risk of severe COVID-19.
Collapse
Affiliation(s)
- Jon Hazeldine
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospital Birmingham National Health Service Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
33
|
Beacon TH, Su RC, Lakowski TM, Delcuve GP, Davie JR. SARS-CoV-2 multifaceted interaction with the human host. Part II: Innate immunity response, immunopathology, and epigenetics. IUBMB Life 2020; 72:2331-2354. [PMID: 32936531 DOI: 10.1002/iub.2379] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 makes its way into the cell via the ACE2 receptor and the proteolytic action of TMPRSS2. In response to the SARS-CoV-2 infection, the innate immune response is the first line of defense, triggering multiple signaling pathways to produce interferons, pro-inflammatory cytokines and chemokines, and initiating the adaptive immune response against the virus. Unsurprisingly, the virus has developed strategies to evade detection, which can result in delayed, excessive activation of the innate immune system. The response elicited by the host depends on multiple factors, including health status, age, and sex. An overactive innate immune response can lead to a cytokine storm, inflammation, and vascular disruption, leading to the vast array of symptoms exhibited by COVID-19 patients. What is known about the expression and epigenetic regulation of the ACE2 gene and the various players in the host response are explored in this review.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada
| | - Ted M Lakowski
- College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
34
|
Tavenier J, Rasmussen LJH, Houlind MB, Andersen AL, Panum I, Andersen O, Petersen J, Langkilde A, Nehlin JO. Alterations of monocyte NF-κB p65/RelA signaling in a cohort of older medical patients, age-matched controls, and healthy young adults. Immun Ageing 2020; 17:25. [PMID: 33685482 PMCID: PMC7938715 DOI: 10.1186/s12979-020-00197-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Altered monocyte NF-κB signaling is a possible cause of inflammaging and driver of aging, however, evidence from human aging studies is sparse. We assessed monocyte NF-κB signaling across different aging trajectories by comparing healthy older adults to older adults with a recent emergency department (ED) admission and to young adults. METHODS We used data from: 52 older (≥65 years) Patients collected upon ED admission and at follow-up 30-days after discharge; 52 age- and sex-matched Older Controls without recent hospitalization; and 60 healthy Young Controls (20-35 years). Using flow cytometry, we assessed basal NF-κB phosphorylation (pNF-κB p65/RelA; Ser529) and induction of pNF-κB following stimulation with LPS or TNF-α in monocytes. We assessed frailty (FI-OutRef), physical and cognitive function, and plasma levels of IL-6, IL-18, TNF-α, and soluble urokinase plasminogen activator receptor. RESULTS Patients at follow-up were frailer, had higher levels of inflammatory markers and decreased physical and cognitive function than Older Controls. Patients at follow-up had higher basal pNF-κB levels than Older Controls (median fluorescence intensity (MFI): 125, IQR: 105-153 vs. MFI: 80, IQR: 71-90, p < 0.0001), and reduced pNF-κB induction in response to LPS (mean pNF-κB MFI fold change calculated as the log10 ratio of LPS-stimulation to the PBS-control: 0.10, 95% CI: 0.08 to 0.12 vs. 0.13, 95% CI: 0.10 to 0.15, p = 0.05) and TNF-α stimulation (0.02, 95% CI: - 0.00 to 0.05 vs. 0.10, 95% CI: 0.08 to 0.12, p < 0.0001). Older Controls had higher levels of inflammatory markers than Young Controls, but basal pNF-κB MFI did not differ between Older and Young Controls (MFI: 81, IQR: 70-86; p = 0.72). Older Controls had reduced pNF-κB induction in response to LPS and TNF-α compared to Young Controls (LPS: 0.40, 95% CI: 0.35 to 0.44, p < 0.0001; and TNF-α: 0.33, 95% CI: 0.27 to 0.40, p < 0.0001). In Older Controls, basal pNF-κB MFI was associated with FI-OutRef (p = 0.02). CONCLUSIONS Increased basal pNF-κB activity in monocytes could be involved in the processes of frailty and accelerated aging. Furthermore, we show that monocyte NF-κB activation upon stimulation was impaired in frail older adults, which could result in reduced immune responses and vaccine effectiveness.
Collapse
Affiliation(s)
- Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark.
| | - Line Jee Hartmann Rasmussen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
- The Capital Region Pharmacy, 2730, Herlev, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Aino Leegaard Andersen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
| | - Inge Panum
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark.
- Emergency Department, Copenhagen University Hospital Amager and Hvidovre, 2650, Hvidovre, Denmark.
- Department of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Janne Petersen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
- Center for Clinical Research and Prevention, Copenhagen University Hospital, 2000, Frederiksberg, Denmark
- Section of Biostatistics, Department of Public Health, University of Copenhagen, 1014, Copenhagen, Denmark
| | - Anne Langkilde
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
| | - Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
| |
Collapse
|
35
|
Taghizadeh-Hesary F, Akbari H. The powerful immune system against powerful COVID-19: A hypothesis. Med Hypotheses 2020; 140:109762. [PMID: 32388390 PMCID: PMC7175888 DOI: 10.1016/j.mehy.2020.109762] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023]
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus outbreak a pandemic. Since December 2019, the world has experienced an outbreak of coronavirus disease 2019 (COVID-19). Epidemiology, risk factors, and clinical characteristics of patients with COVID-19 have been reported but the factors affecting the immune system against COVID-19 have not been well described. In this article, we provide a novel hypothesis to describe how an increase in cellular adenosine triphosphate (c-ATP) can potentially improve the efficiency of innate and adaptive immune systems to either prevent or fight off COVID-19.
Collapse
Affiliation(s)
| | - Hassan Akbari
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Traditional Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Taghizadeh-Hesary F, Akbari H. The powerful immune system against powerful COVID-19: A hypothesis. Med Hypotheses 2020; 140:109762. [PMID: 32388390 DOI: 10.20944/preprints202004.0101.v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 05/19/2023]
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus outbreak a pandemic. Since December 2019, the world has experienced an outbreak of coronavirus disease 2019 (COVID-19). Epidemiology, risk factors, and clinical characteristics of patients with COVID-19 have been reported but the factors affecting the immune system against COVID-19 have not been well described. In this article, we provide a novel hypothesis to describe how an increase in cellular adenosine triphosphate (c-ATP) can potentially improve the efficiency of innate and adaptive immune systems to either prevent or fight off COVID-19.
Collapse
Affiliation(s)
| | - Hassan Akbari
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Traditional Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Lega S, Naviglio S, Volpi S, Tommasini A. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19. Vaccines (Basel) 2020; 8:224. [PMID: 32423059 PMCID: PMC7349555 DOI: 10.3390/vaccines8020224] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
As the outbreak of the new coronavirus (SARS-CoV-2) infection is spreading globally, great effort is being made to understand the disease pathogenesis and host factors that predispose to disease progression in an attempt to find a window of opportunity for intervention. In addition to the direct cytopathic effect of the virus, the host hyper-inflammatory response has emerged as a key factor in determining disease severity and mortality. Accumulating clinical observations raised hypotheses to explain why some patients develop more severe disease while others only manifest mild or no symptoms. So far, Covid-19 management remains mainly supportive. However, many researches are underway to clarify the role of antiviral and immunomodulating drugs in changing morbidity and mortality in patients who become severely ill. This review summarizes the current state of knowledge on the interaction between SARS-CoV-2 and the host immune system and discusses recent findings on proposed pharmacologic treatments.
Collapse
Affiliation(s)
- Sara Lega
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (A.T.)
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (A.T.)
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini and Università degli Studi di Genova, 16147 Genova, Italy;
| | - Alberto Tommasini
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (A.T.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137 Trieste, Italy
| |
Collapse
|
38
|
Goldberg EL, Shaw AC, Montgomery RR. How Inflammation Blunts Innate Immunity in Aging. Interdiscip Top Gerontol Geriatr 2020; 43:1-17. [PMID: 32294641 PMCID: PMC8063508 DOI: 10.1159/000504480] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
The collective loss of immune protection during aging leads to poor vaccine responses and an increased severity of infection for the elderly. Here, we review our current understanding of effects of aging on the cellular and molecular dysregulation of innate immune cells as well as the relevant tissue milieu which influences their functions. The innate immune system is composed of multiple cell types which provide distinct and essential roles in tissue surveillance and antigen presentation as well as early responses to infection or injury. Functional defects that arise during aging lead to a reduced dynamic range of responsiveness, altered cytokine dynamics, and impaired tissue repair. Heightened inflammation influences both the dysregulation of innate immune responses as well as surrounding tissue microenvironments which have a critical role in development of a functional immune response. In particular, age-related physical and inflammatory changes in the skin, lung, lymph nodes, and adipose tissue reflect disrupted architecture and spatial organization contributing to diminished immune responsiveness. Underlying mechanisms include altered transcriptional programming and dysregulation of critical innate immune signaling cascades. Further, we identify signaling functions of bioactive lipid mediators which address chronic inflammation and may contribute to the resolution of inflammation to improve innate immunity during aging.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert C Shaw
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
39
|
Sofra X. The Importance of Systemic Balance in Safeguarding Health: A Randomized Double-Blind Clinical Trial on VLDL, Triglycerides, Free T3, Leptin, Ghrelin, Cortisol and Visceral Adipose Tissue. Health (London) 2020. [DOI: 10.4236/health.2020.128078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
van Splunter M, Perdijk O, Fick-Brinkhof H, Floris-Vollenbroek EG, Meijer B, Brugman S, Savelkoul HFJ, van Hoffen E, Joost van Neerven RJ. Plasmacytoid dendritic cell and myeloid dendritic cell function in ageing: A comparison between elderly and young adult women. PLoS One 2019; 14:e0225825. [PMID: 31830086 PMCID: PMC6907850 DOI: 10.1371/journal.pone.0225825] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Ageing is associated with a changing immune system, leading to inflammageing (increased levels of inflammation markers in serum) and immunosenescence (reduced immune cells and reduced responses towards pathogens). This results in reduced vaccination responses and increased infections in elderly. Much is known about the adaptive immune system upon ageing, but less is known about the innate immune system. Therefore, the aim of this study was to compare innate immune function of Toll like receptor (TLR)-mediated responses between elderly and young adult women. To this end, elderly and young adult women were compared to study the effect of ageing on the relative prevalence and reactivity to TLR-mediated responses of myeloid- and plasmacytoid dendritic cells (mDC, pDC). In addition, TLR expression and inflammatory markers in serum were investigated. Elderly women had reduced numbers of circulating pDCs. In addition, pDCs and mDCs of elderly women responded differently towards TLR stimulation, especially TLR7/8 mediated stimulation was reduced, compared to young adults. In serum, markers involved in inflammation were generally increased in elderly. In conclusion, this study confirms and extends the knowledge about immunosenescence and inflammageing on innate immunity in elderly women.
Collapse
Affiliation(s)
| | - Olaf Perdijk
- Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Ben Meijer
- Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | | | | | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
- FrieslandCampina, Amersfoort, The Netherlands
- * E-mail:
| |
Collapse
|
41
|
McGowan DC. Latest Advances in Small Molecule TLR 7/8 Agonist Drug Research. Curr Top Med Chem 2019; 19:2228-2238. [DOI: 10.2174/1568026619666191009165418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Toll-like receptors (TLRs) 7 and 8 play an important role in the activation of innate immune
cells in mammals. These evolutionarily conserved receptors serve as important sentinels in response to
infection. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response. The
emergence of new structural and small molecule information generated in the last decade has contributed
enormously to our understanding of this highly sophisticated process of innate immunity signaling.
This review will focus on recent developments in the small molecule activation of TLR 7 and 8.
Collapse
Affiliation(s)
- David C. McGowan
- Janssen Pharmaceutica, N.V., Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
42
|
Bai F, Thompson EA, Vig PJS, Leis AA. Current Understanding of West Nile Virus Clinical Manifestations, Immune Responses, Neuroinvasion, and Immunotherapeutic Implications. Pathogens 2019; 8:pathogens8040193. [PMID: 31623175 PMCID: PMC6963678 DOI: 10.3390/pathogens8040193] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is the most common mosquito-borne virus in North America. WNV-associated neuroinvasive disease affects all ages, although elderly and immunocompromised individuals are particularly at risk. WNV neuroinvasive disease has killed over 2300 Americans since WNV entered into the United States in the New York City outbreak of 1999. Despite 20 years of intensive laboratory and clinical research, there are still no approved vaccines or antivirals available for human use. However, rapid progress has been made in both understanding the pathogenesis of WNV and treatment in clinical practices. This review summarizes our current understanding of WNV infection in terms of human clinical manifestations, host immune responses, neuroinvasion, and therapeutic interventions.
Collapse
Affiliation(s)
- Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - E Ashley Thompson
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Parminder J S Vig
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - A Arturo Leis
- Methodist Rehabilitation Center, Jackson, MS 39216, USA.
| |
Collapse
|
43
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. IMMUNITY & AGEING 2019; 16:25. [PMID: 31528180 PMCID: PMC6743147 DOI: 10.1186/s12979-019-0164-9] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
The age-related dysregulation and decline of the immune system-collectively termed "immunosenescence"-has been generally associated with an increased susceptibility to infectious pathogens and poor vaccine responses in older adults. While numerous studies have reported on the clinical outcomes of infected or vaccinated individuals, our understanding of the mechanisms governing the onset of immunosenescence and its effects on adaptive immunity remains incomplete. Age-dependent differences in T and B lymphocyte populations and functions have been well-defined, yet studies that demonstrate direct associations between immune cell function and clinical outcomes in older individuals are lacking. Despite these knowledge gaps, research has progressed in the development of vaccine and adjuvant formulations tailored for older adults in order to boost protective immunity and overcome immunosenescence. In this review, we will discuss the development of vaccines for older adults in light of our current understanding-or lack thereof-of the aging immune system. We highlight the functional changes that are known to occur in the adaptive immune system with age, followed by a discussion of current, clinically relevant pathogens that disproportionately affect older adults and are the central focus of vaccine research efforts for the aging population. We conclude with an outlook on personalized vaccine development for older adults and areas in need of further study in order to improve our fundamental understanding of adaptive immunosenescence.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
44
|
Chesnut M, Muñoz LS, Harris G, Freeman D, Gama L, Pardo CA, Pamies D. In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. Front Cell Infect Microbiol 2019; 9:223. [PMID: 31338335 PMCID: PMC6629778 DOI: 10.3389/fcimb.2019.00223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023] Open
Abstract
Mosquito-borne flaviviruses can cause disease in the nervous system, resulting in a significant burden of morbidity and mortality. Disease models are necessary to understand neuropathogenesis and identify potential therapeutics and vaccines. Non-human primates have been used extensively but present major challenges. Advances have also been made toward the development of humanized mouse models, but these models still do not fully represent human pathophysiology. Recent developments in stem cell technology and cell culture techniques have allowed the development of more physiologically relevant human cell-based models. In silico modeling has also allowed researchers to identify and predict transmission patterns and discover potential vaccine and therapeutic candidates. This review summarizes the research on in vitro and in silico models used to study three mosquito-borne flaviviruses that cause neurological disease in humans: West Nile, Dengue, and Zika. We also propose a roadmap for 21st century research on mosquito-borne flavivirus neuropathogenesis, prevention, and treatment.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura S. Muñoz
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dana Freeman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Carlos A. Pardo
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
McGuire PJ. Mitochondrial Dysfunction and the Aging Immune System. BIOLOGY 2019; 8:biology8020026. [PMID: 31083529 PMCID: PMC6627503 DOI: 10.3390/biology8020026] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 01/28/2023]
Abstract
Mitochondria are ancient organelles that have co-evolved with their cellular hosts, developing a mutually beneficial arrangement. In addition to making energy, mitochondria are multifaceted, being involved in heat production, calcium storage, apoptosis, cell signaling, biosynthesis, and aging. Many of these mitochondrial functions decline with age, and are the basis for many diseases of aging. Despite the vast amount of research dedicated to this subject, the relationship between aging mitochondria and immune function is largely absent from the literature. In this review, three main issues facing the aging immune system are discussed: (1) inflamm-aging; (2) susceptibility to infection and (3) declining T-cell function. These issues are re-evaluated using the lens of mitochondrial dysfunction with aging. With the recent expansion of numerous profiling technologies, there has been a resurgence of interest in the role of metabolism in immunity, with mitochondria taking center stage. Building upon this recent accumulation of knowledge in immunometabolism, this review will advance the hypothesis that the decline in immunity and associated pathologies are partially related to the natural progression of mitochondrial dysfunction with aging.
Collapse
Affiliation(s)
- Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Ebersole JL, Dawson DA, Emecen Huja P, Pandruvada S, Basu A, Nguyen L, Zhang Y, Gonzalez OA. Age and Periodontal Health - Immunological View. CURRENT ORAL HEALTH REPORTS 2018; 5:229-241. [PMID: 30555774 PMCID: PMC6291006 DOI: 10.1007/s40496-018-0202-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF THE REVIEW Aging clearly impacts a wide array of systems, in particular the breadth of the immune system leading to immunosenescence, altered immunoactivation, and coincident inflammaging processes. The net result of these changes leads to increased susceptibility to infections, increased neoplastic occurrences, and elevated frequency of autoimmune diseases with aging. However, as the bacteria in the oral microbiome that contribute to the chronic infection of periodontitis is acquired earlier in life, the characteristics of the innate and adaptive immune systems to regulate these members of the autochthonous microbiota across the lifespan remains ill defined. RECENT FINDINGS Clear data demonstrate that both cells and molecules of the innate and adaptive immune response are adversely impacted by aging, including in the oral cavity, yielding a reasonable tenet that the increased periodontitis noted in aging populations is reflective of the age-associated immune dysregulation. Additionally, this facet of host-microbe interactions and disease needs to accommodate the population variation in disease onset and progression, which may also reflect an accumulation of environmental stressors and/or decreased protective nutrients that could function at the gene level (ie. epigenetic) or translational level for production and secretion of immune system molecules. SUMMARY Finally, the majority of studies of aging and periodontitis have emphasized the increased prevalence/severity of disease with aging, all based upon chronological age. However, evolving areas of study focusing on "biological aging" to help account for population variation in disease expression, may suggest that chronic periodontitis represents a co-morbidity that contributes to "gerovulnerability" within the population.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - D A Dawson
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY
| | - P Emecen Huja
- Department of Periodontics, JBE College of Dental Medicine, Medical University of South Carolina, Charleston, SC
| | - S Pandruvada
- Department of Oral Health Sciences, JBE College of Dental Medicine, Medical University of South Carolina, Charleston, SC
| | - A Basu
- Department of Kinesiology and Nutrition, School of Allied Health Sciences, University of Nevada Las Vegas, Las Vegas, NV
| | - L Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Y Zhang
- Southern Nevada Health District, Las Vegas, NV
| | - O A Gonzalez
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
47
|
Abstract
Aging is a key aspect of neoplasia at the level of cells, individuals and populations. Unrestrained expression and production of inflammatory mediators is a key feature of aging at the cellular and organism level. Inflammatory cells and mediators are a key component of the tumor microenvironment and drive tumor progression. Non-resolving smoldering inflammation increases the risk of cancer (the extrinsic pathway connecting inflammation and cancer). In the intrinsic pathway, genetic events that cause neoplasia (oncogenes and oncosupressor genes) orchestrate the construction of cancer-related inflammation. We argue that uncontrolled smoldering inflammation drives carcinogenesis in aging and acts as a common denominator linking aging and cancer.
Collapse
|
48
|
Garcia M, Alout H, Diop F, Damour A, Bengue M, Weill M, Missé D, Lévêque N, Bodet C. Innate Immune Response of Primary Human Keratinocytes to West Nile Virus Infection and Its Modulation by Mosquito Saliva. Front Cell Infect Microbiol 2018; 8:387. [PMID: 30450338 PMCID: PMC6224356 DOI: 10.3389/fcimb.2018.00387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
West Nile Virus (WNV) is a flavivirus involved in many human infections worldwide. This arthropod-borne virus is directly co-inoculated with mosquito saliva through the epidermis and the dermis during blood meal. WNV starts replicating in the skin before migrating to the draining lymph node, leading to widespread viremia and in some cases to neurological symptoms. Skin is a complex organ composed of different cell types that together perform essential functions such as pathogen sensing, barrier maintenance and immunity. Keratinocytes, which represent 90% of the cells of the epidermis, are the organism's first line of defense, initiating innate immune response by recognizing pathogens through their pattern recognition receptors. Although WNV was previously known to replicate in human primary keratinocytes, the induced inflammatory response remains unknown. The aim of this study was first to characterize the inflammatory response of human primary keratinocytes to WNV infection and then, to assess the potential role of co-inoculated mosquito saliva on the keratinocyte immune response and viral replication. A type I and III interferon inflammatory response associated with an increase of IRF7 but not IRF3 mRNA expression, and dependent on infectious dose, was observed during keratinocyte infection with WNV. Expression of several interferon-stimulated gene mRNA was also increased at 24 h post-infection (p.i.); they included CXCL10 and interferon-induced proteins with tetratricopeptide repeats (IFIT)-2 sustained up until 48 h p.i. Moreover, WNV infection of keratinocyte resulted in a significant increase of pro-inflammatory cytokines (TNFα, IL-6) and various chemokines (CXCL1, CXCL2, CXCL8 and CCL20) expression. The addition of Aedes aegypti or Culex quinquefasciatus mosquito saliva, two vectors of WNV infection, to infected keratinocytes led to a decrease of inflammatory response at 24 h p.i. However, only Ae. Aegypti saliva adjunction induced modulation of viral replication. In conclusion, this work describes for the first time the inflammatory response of human primary keratinocytes to WNV infection and its modulation in presence of vector mosquito saliva. The effects of mosquito saliva assessed in this work could be involved in the early steps of WNV replication in skin promoting viral spread through the body.
Collapse
Affiliation(s)
- Magali Garcia
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Haoues Alout
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Fodé Diop
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Alexia Damour
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Michèle Bengue
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Dorothée Missé
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| |
Collapse
|
49
|
Elias R, Hartshorn K, Rahma O, Lin N, Snyder-Cappione JE. Aging, immune senescence, and immunotherapy: A comprehensive review. Semin Oncol 2018; 45:187-200. [PMID: 30539714 DOI: 10.1053/j.seminoncol.2018.08.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/07/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
The advent of immune checkpoint inhibitors (ICIs) has changed the landscape of cancer treatment. Older adults represent the majority of cancer patients; however, direct data evaluating ICIs in this patient population is lacking. Aging is associated with changes in the immune system known as "immunosenescence" that could impact the efficacy and safety profile of ICIs. In this paper, we review aging-associated changes in the immune system as they may relate to cancer and immunotherapy, with mention of the effect of chronic viral infections and frailty. Furthermore, we summarize the current clinical evidence of ICI effectiveness and toxicity among older adults with cancer.
Collapse
Affiliation(s)
- Rawad Elias
- Hartford HealthCare Cancer Institute, Hartford Hospital, Hartford, CT, USA.
| | - Kevan Hartshorn
- Section of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Osama Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nina Lin
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, MA, USA
| | - Jennifer E Snyder-Cappione
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
50
|
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The Confluence of Sex Hormones and Aging on Immunity. Front Immunol 2018; 9:1269. [PMID: 29915601 PMCID: PMC5994698 DOI: 10.3389/fimmu.2018.01269] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The immune systems of post-pubescent males and females differ significantly with profound consequences to health and disease. In many cases, sex-specific differences in the immune responses of young adults are also apparent in aged men and women. Moreover, as in young adults, aged women develop several late-adult onset autoimmune conditions more frequently than do men, while aged men continue to develop many cancers to a greater extent than aged women. However, sex differences in the immune systems of aged individuals have not been extensively investigated and data addressing the effectiveness of vaccinations and immunotherapies in aged men and women are scarce. In this review, we evaluate age- and sex hormone-related changes to innate and adaptive immunity, with consideration about how this impacts age- and sex-associated changes in the incidence and pathogenesis of autoimmunity and cancer as well as the efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical and clinical studies should consider age and sex to better understand the ways in which these characteristics intersect with immune function and the resulting consequences for autoimmunity, cancer, and therapeutic interventions.
Collapse
Affiliation(s)
| | - Tanvi Potluri
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|