1
|
Fatani A, Wu X, Gbotsyo Y, MacRae TH, Song X, Tan J. ArHsp90 is important in stress tolerance and embryo development of the brine shrimp, Artemia franciscana. Cell Stress Chaperones 2024; 29:285-299. [PMID: 38428516 PMCID: PMC10972811 DOI: 10.1016/j.cstres.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.
Collapse
Affiliation(s)
- Afnan Fatani
- Infection Prevention and Control Department, East Jeddah Hospital, Ministry of Health, Al Sulaymaniyah, Jeddah, Saudi Arabia
| | - Xiangyang Wu
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yayra Gbotsyo
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Xiaojun Song
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiabo Tan
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Functional and Conformational Plasticity of an Animal Group 1 LEA Protein. Biomolecules 2022; 12:biom12030425. [PMID: 35327618 PMCID: PMC8946055 DOI: 10.3390/biom12030425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Group 1 (Dur-19, PF00477, LEA_5) Late Embryogenesis Abundant (LEA) proteins are present in organisms from all three domains of life, Archaea, Bacteria, and Eukarya. Surprisingly, Artemia is the only genus known to include animals that express group 1 LEA proteins in their desiccation-tolerant life-history stages. Bioinformatics analysis of circular dichroism data indicates that the group 1 LEA protein AfLEA1 is surprisingly ordered in the hydrated state and undergoes during desiccation one of the most pronounced disorder-to-order transitions described for LEA proteins from A. franciscana. The secondary structure in the hydrated state is dominated by random coils (42%) and β-sheets (35%) but converts to predominately α-helices (85%) when desiccated. Interestingly, AfLEA1 interacts with other proteins and nucleic acids, and RNA promotes liquid–liquid phase separation (LLPS) of the protein from the solvent during dehydration in vitro. Furthermore, AfLEA1 protects the enzyme lactate dehydrogenase (LDH) during desiccation but does not aid in restoring LDH activity after desiccation-induced inactivation. Ectopically expressed in D. melanogaster Kc167 cells, AfLEA1 localizes predominantly to the cytosol and increases the cytosolic viscosity during desiccation compared to untransfected control cells. Furthermore, the protein formed small biomolecular condensates in the cytoplasm of about 38% of Kc167 cells. These findings provide additional evidence for the hypothesis that the formation of biomolecular condensates to promote water stress tolerance during anhydrobiosis may be a shared feature across several groups of LEA proteins that display LLPS behaviors.
Collapse
|
3
|
Li L, Zhou X, Chen Z, Cao Y, Zhao G. The group 3 LEA protein of Artemia franciscana for cryopreservation. Cryobiology 2022; 106:1-12. [DOI: 10.1016/j.cryobiol.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
|
4
|
He C, Liu X, Teixeira da Silva JA, Wang H, Peng T, Zhang M, Si C, Yu Z, Tan J, Zhang J, Luo J, Duan J. Characterization of LEA genes in Dendrobium officinale and one Gene in induction of callus. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153356. [PMID: 33423816 DOI: 10.1016/j.jplph.2020.153356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are widely involved in plant stress responsive, while their involvement in callus formation is largest unknown. In this study, we identified and conducted expression analysis of the LEA genes from Phalaenopsis equestris and Dendrobium officinale, and characterized a LEA gene from D. officinale. A total 57 and 59 LEA genes were identified in P. equestris and D. officinale, respectively. A phylogenetic analysis showed that AtM, LEA_5 and Dehydrin groups were absent in both orchids. LEA_1 group genes were strongly expressed in seeds, significantly down-regulated in flowers, and absent in vegetative organs (leaves, stems and roots) in both orchids. Moreover, LEA_1 and LEA_4 group genes from D. officinale were abundant in the protocorm-like body stage and were dramatically up-regulated in response to abscisic acid and salinity stress. A LEA_1 gene (DoLEA43) was selected for further functional analysis. DoLEA43 protein was localized in the cytoplasm and nucleus, and its promoter contained a WUN-motif that was modulated by wounding. Overexpression of DoLEA43 in Arabidopsis enhanced callus induction, causing changes to callus formation-related genes such as WIND1. Our results indicate the involvement of LEA genes in the induction of callus, which provide insights into plant regeneration.
Collapse
Affiliation(s)
- Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jaime A Teixeira da Silva
- Independent researcher, P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan
| | - Haobin Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Peng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jianwen Tan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxia Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianping Luo
- School of Food Engineering and Biotechnology, Hefei University of Technology, Hefei, 230009, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
5
|
LeBlanc BM, Hand SC. Target enzymes are stabilized by AfrLEA6 and a gain of α-helix coincides with protection by a group 3 LEA protein during incremental drying. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140642. [PMID: 33647452 DOI: 10.1016/j.bbapap.2021.140642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Anhydrobiotic organisms accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered proteins (IDPs) reported to improve cellular tolerance to water stress. Here we show that AfrLEA6, a Group 6 LEA protein only recently discovered in animals, protects lactate dehydrogenase (LDH), citrate synthase (CS) and phosphofructokinase (PFK) against damage during desiccation. In some cases, protection is enhanced by trehalose, a naturally-occurring protective solute. An open question is whether gain of secondary structure by LEA proteins during drying is a prerequisite for this stabilizing function. We used incremental drying (equilibration to a series of relative humidities, RH) to test the ability of AfrLEA2, a Group 3 LEA protein, to protect desiccation-sensitive PFK. AfrLEA2 was chosen due to its exceptional ability to protect PFK. In parallel, circular dichroism (CD) spectra were obtained for AfrLEA2 across the identical range of relative water contents. Protection of PFK by AfrLEA2, above that observed with trehalose and BSA, coincides with simultaneous gain of α-helix in AfrLEA2. At 100% RH, the CD spectrum for AfrLEA2 is typical of random coil, while at decreasing RH, the spectrum shows higher ellipticity at 191 nm and minima at 208 and 220 nm, diagnostic of α-helix. This study provides experimental evidence linking the gain of α-helix with stabilization of a target protein across a graded series of hydration states. Mechanistically, it is intriguing that certain other functions of these IDPs, like preventing aggregation of target proteins, can occur in fully hydrated cells and apparently do not require gain of α-helix.
Collapse
Affiliation(s)
- Blase M LeBlanc
- Division of Cellular Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Steven C Hand
- Division of Cellular Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
6
|
Anderson JM, Hand SC. Transgenic expression of late embryogenesis abundant proteins improves tolerance to water stress in Drosophila melanogaster. J Exp Biol 2021; 224:jeb.238204. [PMID: 33431592 DOI: 10.1242/jeb.238204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022]
Abstract
Four lines of Drosophila melanogaster were created that expressed transgenes encoding selected late embryogenesis abundant (LEA) proteins originally identified in embryos of the anhydrobiote Artemia franciscana The overall aim was to extend our understanding of the protective properties of LEA proteins documented with isolated cells to a desiccation-sensitive organism during exposure to drying and hyperosmotic stress. Embryos of D. melanogaster were dried at 57% relative humidity to promote a loss of 80% tissue water and then rehydrated. Embryos that expressed AfrLEA2 or AfrLEA3m eclosed 2 days earlier than wild-type embryos or embryos expressing green fluorescent protein (Gal4GFP control). For the third instar larval stage, all Afrlea lines and Gal4GFP controls experienced substantial drops in survivorship as desiccation proceeded. When results for all Afrlea lines were combined, Kaplan-Meier survival curves indicated a significant improvement in survivorship in fly lines expressing AfrLEA proteins compared with Gal4GFP controls. The percent water lost at the LT50 (lethal time for 50% mortality) for the AfrLEA lines was 78% versus 52% for Gal4GFP controls. Finally, offspring of fly lines that expressed AfrLEA2, AfrLEA3m or AfrLEA6 exhibited significantly greater success in reaching pupation, compared with wild-type flies, when adults were challenged with hyperosmotic stress (NaCl-fortified medium) and progeny forced to develop under these conditions. In conclusion, the gain of function studies reported here show that LEA proteins can improve tolerance to water stress in a desiccation-sensitive species that normally lacks these proteins, and, simultaneously, underscore the complexity of desiccation tolerance across multiple life stages in multicellular organisms.
Collapse
Affiliation(s)
- John M Anderson
- Division of Cellular Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Steven C Hand
- Division of Cellular Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Abstract
Proteinaceous liquid-liquid phase separation (LLPS) occurs when a polypeptide coalesces into a dense phase to form a liquid droplet (i.e., condensate) in aqueous solution. In vivo, functional protein-based condensates are often referred to as membraneless organelles (MLOs), which have roles in cellular processes ranging from stress responses to regulation of gene expression. Late embryogenesis abundant (LEA) proteins containing seed maturation protein domains (SMP; PF04927) have been linked to storage tolerance of orthodox seeds. The mechanism by which anhydrobiotic longevity is improved is unknown. Interestingly, the brine shrimp Artemia franciscana is the only animal known to express such a protein (AfrLEA6) in its anhydrobiotic embryos. Ectopic expression of AfrLEA6 (AWM11684) in insect cells improves their desiccation tolerance and a fraction of the protein is sequestered into MLOs, while aqueous AfrLEA6 raises the viscosity of the cytoplasm. LLPS of AfrLEA6 is driven by the SMP domain, while the size of formed MLOs is regulated by a domain predicted to engage in protein binding. AfrLEA6 condensates formed in vitro selectively incorporate target proteins based on their surface charge, while cytoplasmic MLOs formed in AfrLEA6-transfected insect cells behave like stress granules. We suggest that AfrLEA6 promotes desiccation tolerance by engaging in two distinct molecular mechanisms: by raising cytoplasmic viscosity at even modest levels of water loss to promote cell integrity during drying and by forming condensates that may act as protective compartments for desiccation-sensitive proteins. Identifying and understanding the molecular mechanisms that govern anhydrobiosis will lead to significant advancements in preserving biological samples.
Collapse
|
9
|
Khodajou-Masouleh H, Shahangian SS, Attar F, H Sajedi R, Rasti B. Characteristics, dynamics and mechanisms of actions of some major stress-induced biomacromolecules; addressing Artemia as an excellent biological model. J Biomol Struct Dyn 2020; 39:5619-5637. [PMID: 32734830 DOI: 10.1080/07391102.2020.1796793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Stress tolerance is one of the most prominent and interesting topics in biology since many macro- and micro-adaptations have evolved in resistant organisms that are worth studying. When it comes to confronting various environmental stressors, the extremophile Artemia is unrivaled in the animal kingdom. In the present review, the evolved molecular and cellular basis of stress tolerance in resistant biological systems are described, focusing on Artemia cyst as an excellent biological model. The main purpose of the review is to discuss how the structure and physicochemical characteristics of protective factors such as late embryogenesis abundant proteins (LEAPs), small heat shock proteins (sHSPs) and trehalose are related to their functions and by which mechanisms, they exert their functions. In addition, some metabolic depressors in Artemia encysted embryos are also mentioned, indirectly playing important roles in stress tolerance. Importantly, a great deal of attention is given to the LEAPs, exhibiting distinctive folding behaviors and mechanisms of actions. For instance, molecular shield function, chaperone-like activity, moonlighting property, sponging and snorkeling capabilities of the LEAPs are delineated here. Moreover, the molecular interplay between some of these factors is mentioned, leading to their synergistic effects. Interestingly, Artemia life cycle adapts to environmental conditions. Diapause is the defense mode of this life cycle, safeguarding Artemia encysted embryos against various environmental stressors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| |
Collapse
|
10
|
Xu M, Tong Q, Wang Y, Wang Z, Xu G, Elias GK, Li S, Liang Z. Transcriptomic Analysis of the Grapevine LEA Gene Family in Response to Osmotic and Cold Stress Reveals a Key Role for VamDHN3. PLANT & CELL PHYSIOLOGY 2020; 61:775-786. [PMID: 31967299 DOI: 10.1093/pcp/pcaa004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/09/2020] [Indexed: 05/14/2023]
Abstract
Late embryogenesis abundant (LEA) proteins comprise a large family that plays important roles in the regulation of abiotic stress, however, no in-depth analysis of LEA genes has been performed in grapevine to date. In this study, we analyzed a total of 52 putative LEA genes in grapevine at the genomic and transcriptomic level, compiled expression profiles of four selected (V. amurensis) VamLEA genes under cold and osmotic stresses, and studied the potential function of the V. amurensis DEHYDRIN3 (VamDHN3) gene in grapevine callus. The 52 LEA proteins were classified into seven phylogenetic groups. RNA-seq and quantitative real-time PCR results demonstrated that a total of 16 and 23 VamLEA genes were upregulated under cold and osmotic stresses, respectively. In addition, overexpression of VamDHN3 enhanced the stability of the cell membrane in grapevine callus, suggesting that VamDHN3 is involved in osmotic regulation. These results provide fundamental knowledge for the further analysis of the biological roles of grapevine LEA genes in adaption to abiotic stress.
Collapse
Affiliation(s)
- Meilong Xu
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of the Seedling Bioengineering, Yinchuan 750004, China
| | - Qian Tong
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zemin Wang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhao Xu
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gathunga Kirabi Elias
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
11
|
LeBlanc BM, Le MT, Janis B, Menze MA, Hand SC. Structural properties and cellular expression of AfrLEA6, a group 6 late embryogenesis abundant protein from embryos of Artemia franciscana. Cell Stress Chaperones 2019; 24:979-990. [PMID: 31363993 PMCID: PMC6717223 DOI: 10.1007/s12192-019-01025-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are intrinsically disordered proteins (IDPs) commonly found in anhydrobiotic organisms and are frequently correlated with desiccation tolerance. Herein we report new findings on AfrLEA6, a novel group 6 LEA protein from embryos of Artemia franciscana. Assessment of secondary structure in aqueous and dried states with circular dichroism (CD) reveals 89% random coil in the aqueous state, thus supporting classification of AfrLEA6 as an IDP. Removal of water from the protein by drying or exposure to trifluoroethanol (a chemical de-solvating agent) promotes a large gain in secondary structure of AfrLEA6, predominated by α-helix and exhibiting minimal β-sheet structure. We evaluated the impact of physiological concentrations (up to 400 mM) of the disaccharide trehalose on the folding of LEA proteins in solution. CD spectra for AfrLEA2, AfrLEA3m, and AfrLEA6 are unaffected by this organic solute noted for its ability to drive protein folding. AfrLEA6 exhibits its highest concentration in vivo during embryonic diapause, drops acutely at diapause termination, and then declines during development to undetectable values at the larval stage. Maximum cellular titer of AfrLEA6 was 10-fold lower than for AfrLEA2 or AfrLEA3, both group 3 LEA proteins. Acute termination of diapause with H2O2 (a far more effective terminator than desiccation in this Great Salt Lake, UT, population) fostered a rapid 38% decrease in AfrLEA6 content of embryos. While the ultimate mechanism of diapause termination is unknown, disruption of key macromolecules could initiate physiological signaling events necessary for resumption of development and metabolism.
Collapse
Affiliation(s)
- Blase M. LeBlanc
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Mike T. Le
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292 USA
| | - Michael A. Menze
- Department of Biology, University of Louisville, Louisville, KY 40292 USA
| | - Steven C. Hand
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
12
|
Tan J, MacRae TH. The synthesis of diapause-specific molecular chaperones in embryos of Artemia franciscana is determined by the quantity and location of heat shock factor 1 (Hsf1). Cell Stress Chaperones 2019; 24:385-392. [PMID: 30701477 PMCID: PMC6439115 DOI: 10.1007/s12192-019-00971-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023] Open
Abstract
The crustacean, Artemia franciscana, displays a complex life history in which embryos either arrest development and undertake diapause as cysts or they develop into swimming nauplii. Diapause entry is preceded during embryogenesis by the synthesis of specific molecular chaperones, namely the small heat shock proteins p26, ArHsp21, and ArHsp22, and the ferritin homolog, artemin. Maximal synthesis of diapause-specific molecular chaperones is dependent on the transcription factor, heat shock factor 1 (Hsf1), found in similar amounts in cysts and nauplii newly released from females. This investigation was performed to determine why, if cysts and nauplii contain comparable amounts of Hsf1, only cyst-destined embryos synthesize diapause-specific molecular chaperones. Quantification by qPCR and immunoprobing of Western blots, respectively, demonstrated that hsf1 mRNA and Hsf1 peaked by day 2 post-fertilization in embryos that were developing into cysts and then declined. hsf1 mRNA and Hsf1 were present in nauplii-destined embryos on day 2 post-fertilization, but in much smaller amounts than in cyst-destined embryos, and they increased in quantity until release of nauplii from females. Immunofluorescent staining revealed that the amount of Hsf1 in nuclei was greatest on day 4 post-fertilization in cyst-destined embryos but could not be detected in nuclei of nauplius-destined embryos at this time. The differences in quantity and location of Hsf1 explain why embryos fated to become cysts and eventually enter diapause synthesize p26, ArHsp21, ArHsp22, and artemin, whereas nauplius-destined embryos do not produce these molecular chaperones.
Collapse
Affiliation(s)
- Jiabo Tan
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
13
|
Hand SC, Moore DS, Patil Y. Challenges during diapause and anhydrobiosis: Mitochondrial bioenergetics and desiccation tolerance. IUBMB Life 2018; 70:1251-1259. [PMID: 30369011 DOI: 10.1002/iub.1953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/11/2022]
Abstract
In preparation for the onset of environmental challenges like overwintering, food limitation, anoxia, or water stress, many invertebrates and certain killifish enter diapause. Diapause is a developmentally-programed dormancy characterized by suppression of development and metabolism. For embryos of Artemia franciscana (brine shrimp), the metabolic arrest is profound. These gastrula-stage embryos depress oxidative metabolism by ~99% during diapause and survive years of severe desiccation in a state termed anhydrobiosis. Trehalose is the sole fuel source for this developmental stage. Mitochondrial function during diapause is downregulated primarily by restricting substrate supply, as a result of inhibiting key enzymes of carbohydrate metabolism. Because proton conductance across the inner membrane is not decreased during diapause, the inference is that membrane potential must be compromised. In the absence of any intervention, the possibility exists that the F1 Fo ATP synthase and the adenine nucleotide translocator may reverse, leading to wholesale hydrolysis of cellular ATP. Studies with anhydrobiotes like A. franciscana are revealing multiple traits useful for improving desiccation tolerance that include the expression and accumulation late embryogenesis abundant (LEA) proteins and trehalose. LEA proteins are intrinsically disordered in aqueous solution but gain secondary structure (predominantly α-helix) as water is removed. These protective agents stabilize biological structures including lipid bilayers and mitochondria during severe water stress. © 2018 IUBMB Life, 70(12):1251-1259, 2018.
Collapse
Affiliation(s)
- Steven C Hand
- Department of Biological Sciences, Division of Cellular Developmental and Integrative Biology, Louisiana State University, LA, USA
| | - Daniel S Moore
- Department of Biological Sciences, Division of Cellular Developmental and Integrative Biology, Louisiana State University, LA, USA
| | - Yuvraj Patil
- Department of Biological Sciences, Division of Cellular Developmental and Integrative Biology, Louisiana State University, LA, USA
| |
Collapse
|
14
|
Tan J, MacRae TH. Stress tolerance in diapausing embryos of Artemia franciscana is dependent on heat shock factor 1 (Hsf1). PLoS One 2018; 13:e0200153. [PMID: 29979776 PMCID: PMC6034868 DOI: 10.1371/journal.pone.0200153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
Embryos of the crustacean, Artemia franciscana, may undergo oviparous development, forming encysted embryos (cysts) that are released from females and enter diapause, a state of suppressed metabolism and greatly enhanced stress tolerance. Diapause-destined embryos of A. franciscana synthesize three small heat shock proteins (sHsps), p26, ArHsp21 and ArHsp22, as well as artemin, a ferritin homologue, all lacking in embryos that develop directly into nauplii. Of these diapause-specific molecular chaperones, p26 and artemin are important contributors to the extraordinary stress tolerance of A. franciscana cysts, but how their synthesis is regulated is unknown. To address this issue, a cDNA for heat shock factor 1 (Hsf1), shown to encode a protein similar to Hsf1 from other organisms, was cloned from A. franciscana. Hsf1 was knocked down by RNA interference (RNAi) in nauplii and cysts of A. franciscana. Nauplii lacking Hsf1 died prematurely upon release from females, showing that this transcription factor is essential to the survival of nauplii. Diapause cysts with diminished amounts of Hsf1 were significantly less stress tolerant than cysts containing normal levels of Hsf1. Moreover, cysts deficient in Hsf1 possessed reduced amounts of p26, ArHsp21, ArHsp22 and artemin, revealing dependence on Hsf1 for expression of their genes and maximum stress tolerance. The results demonstrate an important role for Hsf1, likely in concert with other transcription factors, in the survival and growth of A. franciscana and in the developmentally regulated synthesis of proteins responsible for the stress tolerance of diapausing A. franciscana cysts.
Collapse
Affiliation(s)
- Jiabo Tan
- Department of Biology, Dalhousie University, Halifax, N. S., Canada
| | - Thomas H. MacRae
- Department of Biology, Dalhousie University, Halifax, N. S., Canada
| |
Collapse
|
15
|
Janis B, Uversky VN, Menze MA. Potential functions of LEA proteins from the brine shrimp Artemia franciscana - anhydrobiosis meets bioinformatics. J Biomol Struct Dyn 2017; 36:3291-3309. [PMID: 28971739 DOI: 10.1080/07391102.2017.1387177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a large group of anhydrobiosis-associated intrinsically disordered proteins, which are commonly found in plants and some animals. The brine shrimp Artemia franciscana is the only known animal that expresses LEA proteins from three, and not only one, different groups in its anhydrobiotic life stage. The reason for the higher complexity in the A. franciscana LEA proteome (LEAome), compared with other anhydrobiotic animals, remains mostly unknown. To address this issue, we have employed a suite of bioinformatics tools to evaluate the disorder status of the Artemia LEAome and to analyze the roles of intrinsic disorder in functioning of brine shrimp LEA proteins. We show here that A. franciscana LEA proteins from different groups are more similar to each other than one originally expected, while functional differences among members of group three are possibly larger than commonly anticipated. Our data show that although these proteins are characterized by a large variety of forms and possible functions, as a general strategy, A. franciscana utilizes glassy matrix forming LEAs concurrently with proteins that more readily interact with binding partners. It is likely that the function(s) of both types, the matrix-forming and partner-binding LEA proteins, are regulated by changing water availability during desiccation.
Collapse
Affiliation(s)
- Brett Janis
- a Department of Biology , University of Louisville , Louisville 40292 , KY , USA
| | - Vladimir N Uversky
- b Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa 33612 , FL , USA.,c Institute for Biological Instrumentation , Russian Academy of Sciences , Moscow Region, Pushchino 142290 , Russia
| | - Michael A Menze
- a Department of Biology , University of Louisville , Louisville 40292 , KY , USA
| |
Collapse
|
16
|
Jiang G, Rowarth NM, Panchakshari S, MacRae TH. ArHsp40, a type 1 J-domain protein, is developmentally regulated and stress inducible in post-diapause Artemia franciscana. Cell Stress Chaperones 2016; 21:1077-1088. [PMID: 27581971 PMCID: PMC5083676 DOI: 10.1007/s12192-016-0732-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 01/01/2023] Open
Abstract
Upon diapause termination and exposure to favorable environmental conditions, cysts of the crustacean Artemia franciscana reinitiate development, a process dependent on the resumption of metabolic activity and the maintenance of protein homeostasis. The objective of the work described herein was to characterize molecular chaperones during post-diapause growth of A. franciscana. An Hsp40 complementary DNA (cDNA) termed ArHsp40 was cloned and shown to encode a protein with an amino-terminal J-domain containing a conserved histidine, proline, and aspartic acid (HPD) motif. Following the J-domain was a Gly/Phe (G/F) rich domain, a zinc-binding domain which contained a modified CXXCXGXG motif, and the carboxyl-terminal substrate binding region, all characteristics of type I Hsp40. Multiple alignment and protein modeling showed that ArHsp40 is comparable to Hsp40s from other eukaryotes and likely to be functionally similar. qRT-PCR revealed that during post-diapause development, ArHsp40 messenger RNA (mRNA) varied slightly until the E2/E3 stage and decreased significantly upon hatching. The immunoprobing of Western blots demonstrated that ArHsp40 was also relatively constant until E2/E3 and then declined dramatically. The drop in ArHsp40 when metabolism and protein synthesis were increasing was unexpected and demonstrated developmental regulation. The reduction in ArHsp40 at such an active life history stage indicates, as one possibility, that A. franciscana possesses additional Hsp40s, one or more of which replaces ArHsp40 as development progresses. Increased synthesis upon heat shock established that in addition to being developmentally regulated, ArHsp40 is stress inducible and, because it is found in mature cysts, ArHsp40 has the potential to contribute to stress tolerance during diapause.
Collapse
Affiliation(s)
- Guojian Jiang
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- College of Marine Life Sciences, Ocean University of China, No. 5, Yushan, RD, Qingdao, 266003, China
| | - Nathan M Rowarth
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | | | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
17
|
Cryopreservation of lipid bilayers by LEA proteins from Artemia franciscana and trehalose. Cryobiology 2016; 73:240-7. [DOI: 10.1016/j.cryobiol.2016.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/04/2016] [Indexed: 12/23/2022]
|
18
|
Hand SC, Denlinger DL, Podrabsky JE, Roy R. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1193-211. [PMID: 27053646 PMCID: PMC4935499 DOI: 10.1152/ajpregu.00250.2015] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 03/11/2016] [Indexed: 01/22/2023]
Abstract
Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in post-dauer animals have been documented in Caenorhabditis elegans It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages.
Collapse
Affiliation(s)
- Steven C Hand
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana;
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio
| | - Jason E Podrabsky
- Department of Biology, Portland State University, Portland, Oregon; and
| | - Richard Roy
- Department of Biology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
19
|
Moore DS, Hansen R, Hand SC. Liposomes with diverse compositions are protected during desiccation by LEA proteins from Artemia franciscana and trehalose. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:104-15. [DOI: 10.1016/j.bbamem.2015.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023]
|
20
|
Warner AH, Guo ZH, Moshi S, Hudson JW, Kozarova A. Study of model systems to test the potential function of Artemia group 1 late embryogenesis abundant (LEA) proteins. Cell Stress Chaperones 2016; 21:139-154. [PMID: 26462928 PMCID: PMC4679747 DOI: 10.1007/s12192-015-0647-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/23/2022] Open
Abstract
Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally stressful conditions.
Collapse
Affiliation(s)
- Alden H Warner
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.
| | - Zhi-Hao Guo
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Sandra Moshi
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - John W Hudson
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Anna Kozarova
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
21
|
MacRae TH. Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress Chaperones 2016; 21:9-18. [PMID: 26334984 PMCID: PMC4679736 DOI: 10.1007/s12192-015-0635-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023] Open
Abstract
Oviparously developing embryos of the brine shrimp, Artemia, arrest at gastrulation and are released from females as cysts before entering diapause, a state of dormancy and stress tolerance. Diapause is terminated by an external signal, and growth resumes if conditions are permissible. However, if circumstances are unfavorable, cysts enter quiescence, a dormant stage that continues as long as adverse conditions persist. Artemia embryos in diapause and quiescence are remarkably resistant to environmental and physiological stressors, withstanding desiccation, cold, heat, oxidation, ultraviolet radiation, and years of anoxia at ambient temperature when fully hydrated. Cysts have adapted to stress in several ways; they are surrounded by a rigid cell wall impermeable to most chemical compounds and which functions as a shield against ultraviolet radiation. Artemia cysts contain large amounts of trehalose, a non-reducing sugar thought to preserve membranes and proteins during desiccation by replacing water molecules and/or contributing to vitrification. Late embryogenesis abundant proteins similar to those in seeds and other anhydrobiotic organisms are found in cysts, and they safeguard cell organelles and proteins during desiccation. Artemia cysts contain abundant amounts of p26, a small heat shock protein, and artemin, a ferritin homologue, both ATP-independent molecular chaperones important in stress tolerance. The evidence provided in this review supports the conclusion that it is the interplay of these protective elements that make Artemia one of the most stress tolerant of all metazoan organisms.
Collapse
Affiliation(s)
- Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, N.S., B3H 4R2, Canada.
| |
Collapse
|
22
|
Hand SC, Menze MA. Molecular approaches for improving desiccation tolerance: insights from the brine shrimp Artemia franciscana. PLANTA 2015; 242:379-88. [PMID: 25809151 PMCID: PMC4498972 DOI: 10.1007/s00425-015-2281-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 05/06/2023]
Abstract
We have evaluated the endogenous expression and molecular properties of selected Group 3 LEA proteins from Artemia franciscana , and the capacity of selected Groups 1 and 3 proteins transfected into various desiccation-sensitive cell lines to improve tolerance to drying. Organisms inhabiting both aquatic and terrestrial ecosystems frequently are confronted with the problem of water loss for multiple reasons--exposure to hypersalinity, evaporative water loss, and restriction of intracellular water due to freezing of extracellular fluids. Seasonal desiccation can become severe and lead to the production of tolerant propagules and entry into the state of anhydrobiosis at various stages of the life cycle. Such is the case for gastrula-stage embryos of the brine shrimp, Artemia franciscana. Physiological and biochemical responses to desiccation are central for survival and are multifaceted. This review will evaluate the impact of multiple late embryogenesis abundant proteins originating from A. franciscana, together with the non-reducing sugar trehalose, on prevention of desiccation damage at multiple levels of biological organization. Survivorship of desiccation-sensitive cells during water stress can be improved by use of the above protective agents, coupled to metabolic preconditioning and rapid cell drying. However, obtaining long-term stability of cells in the dried state at room temperature has not been accomplished and will require continued efforts on both the physicochemical and biological fronts.
Collapse
Affiliation(s)
- Steven C Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | |
Collapse
|
23
|
Kim BY, Song HY, Kim MY, Lee BH, Kim KJ, Jo KJ, Kim SW, Lee SG, Lee BH. DISTINCTIVE LOCALIZATION OF GROUP 3 LATE EMBRYOGENESIS ABUNDANT SYNTHESIZING CELLS DURING BRINE SHRIMP DEVELOPMENT. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 89:169-180. [PMID: 25781424 DOI: 10.1002/arch.21234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite numerous studies on late embryogenesis abundant (LEA) proteins, their functions, roles, and localizations during developmental stages in arthropods remain unknown. LEA proteins protect crucial proteins against osmotic stress during the development and growth of various organisms. Thus, in this study, fluorescence in situ hybridization was used to determine the crucial regions protected against osmotic stress as well as the distinctive localization of group 3 (G3) LEA(+) cells during brine shrimp development. Several cell types were found to synthesize G3 LEA RNA, including neurons, muscular cells, APH-1(+) cells, and renal cells. The G3 LEA(+) neuronal cell bodies outside of the mushroom body projected their axonal bundles to the central body, but those inside the mushroom body projected their axonal bundles toward the deutocerebrum without innervating the central body. The cell bodies inside the mushroom body received axons of the G3 LEA(+) sensory cells at the medial ventral cup of the nauplius eye. Several glands were found to synthesize G3 LEA RNA during the nauplius stages of brine shrimp, including the sinus, antennal I and II, salt, and three ectodermal glands. This study provides the first demonstration of the formation of G3 LEA(+) sinus glands at the emergence stages of brine shrimp. These results suggest that G3 LEA protein is synthesized in several cell types. In particular, specific glands play crucial roles during the emergence and nauplius stages of brine shrimp.
Collapse
Affiliation(s)
- Bo Yong Kim
- School of Life Sciences and Biotechnology, Korea University, Korea
| | - Hwa Young Song
- School of Life Sciences and Biotechnology, Korea University, Korea
| | - Mi Young Kim
- School of Life Sciences and Biotechnology, Korea University, Korea
| | - Bong Hee Lee
- School of Life Sciences and Biotechnology, Korea University, Korea
| | - Kyung Joo Kim
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Korea
| | - Kyung Jin Jo
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Korea
| | - Suhng Wook Kim
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Korea
| | - Seung Gwan Lee
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Korea
| | | |
Collapse
|
24
|
Toxopeus J, Warner AH, MacRae TH. Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause. Cell Stress Chaperones 2014; 19:939-48. [PMID: 24846336 PMCID: PMC4389855 DOI: 10.1007/s12192-014-0518-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 11/26/2022] Open
Abstract
Water loss either by desiccation or freezing causes multiple forms of cellular damage. The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis-life without water-during diapause. To better understand how cysts survive reduced hydration, group 1 late embryogenesis abundant (LEA) proteins, hydrophilic unstructured proteins that accumulate in the stress-tolerant cysts of A. franciscana, were knocked down using RNA interference (RNAi). Embryos lacking group 1 LEA proteins showed significantly lower survival than control embryos after desiccation and freezing, or freezing alone, demonstrating a role for group 1 LEA proteins in A. franciscana tolerance of low water conditions. In contrast, regardless of group 1 LEA protein presence, cysts responded similarly to hydrogen peroxide (H2O2) exposure, indicating little to no function for these proteins in diapause termination. This is the first in vivo study of group 1 LEA proteins in an animal and it contributes to the fundamental understanding of these proteins. Knowing how LEA proteins protect A. franciscana cysts from desiccation and freezing may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications.
Collapse
Affiliation(s)
- Jantina Toxopeus
- />Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2 Canada
| | - Alden H. Warner
- />Department of Biological Sciences, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Thomas H. MacRae
- />Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2 Canada
| |
Collapse
|
25
|
Boswell LC, Hand SC. Intracellular localization of group 3 LEA proteins in embryos of Artemia franciscana. Tissue Cell 2014; 46:514-9. [PMID: 25311474 DOI: 10.1016/j.tice.2014.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/15/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are accumulated by anhydrobiotic organisms in response to desiccation and improve survivorship during water stress. In this study we provide the first direct evidence for the subcellular localizations of AfrLEA2 and AfrLEA3m (and its subforms) in anhydrobiotic embryos of Artemia franciscana. Immunohistochemistry shows AfrLEA2 to reside in the cytoplasm and nucleus, and the four AfrLEA3m proteins to be localized to the mitochondrion. Cellular locations are supported by Western blots of mitochondrial, nuclear and cytoplasmic fractions. The presence of LEA proteins in multiple subcellular compartments of A. franciscana embryos suggests the need to protect biological structures in many areas of a cell in order for an organism to survive desiccation stress, and may explain in part why a multitude of different LEA proteins are expressed by a single organism.
Collapse
Affiliation(s)
- Leaf C Boswell
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Steven C Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
26
|
Boswell LC, Moore DS, Hand SC. Quantification of cellular protein expression and molecular features of group 3 LEA proteins from embryos of Artemia franciscana. Cell Stress Chaperones 2014; 19:329-41. [PMID: 24061850 PMCID: PMC3982030 DOI: 10.1007/s12192-013-0458-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 11/28/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are highly hydrophilic, low complexity proteins whose expression has been correlated with desiccation tolerance in anhydrobiotic organisms. Here, we report the identification of three new mitochondrial LEA proteins in anhydrobiotic embryos of Artemia franciscana, AfrLEA3m_47, AfrLEA3m_43, and AfrLEA3m_29. These new isoforms are recognized by antibody raised against recombinant AfrLEA3m, the original mitochondrial-targeted LEA protein previously reported from these embryos; mass spectrometry confirms all four proteins share sequence similarity. The corresponding messenger RNA (mRNA) species for the four proteins are readily amplified from total complementary DNA (cDNA) prepared from embryos. cDNA sequences of the four mRNAs are quite similar, but each has a stretch of sequence that is absent in at least one of the others, plus multiple single base pair differences. We conclude that all four mitochondrial LEA proteins are products of independent genes. Each possesses a mitochondrial targeting sequence, and indeed Western blots performed on extracts of isolated mitochondria clearly detect all four isoforms. Based on mass spectrometry and sodium dodecyl sulfate polyacrylamide gel electrophoresis migration, the cytoplasmic-localized AfrLEA2 exists primarily as a homodimer in A. franciscana. Quantification of protein expression for AfrLEA2, AfrLEA3m, AfrLEA3m_43, and AfrLEA3m_29 as a function of development shows that cellular concentrations are highest in diapause embryos and decrease during development to low levels in desiccation-intolerant nauplius larvae. When adjustment is made for mitochondria matrix volume, the effective concentrations of cytoplasmic versus mitochondrial group 3 LEA proteins are similar in vivo, and the values provide guidance for the design of in vitro functional studies with these proteins.
Collapse
Affiliation(s)
- Leaf C Boswell
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | | | |
Collapse
|
27
|
JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana. PLoS One 2013; 8:e83056. [PMID: 24391737 PMCID: PMC3877014 DOI: 10.1371/journal.pone.0083056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/30/2013] [Indexed: 12/20/2022] Open
Abstract
Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA) protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA), dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification.
Collapse
|
28
|
King AM, Toxopeus J, MacRae TH. Functional differentiation of small heat shock proteins in diapause-destined Artemia embryos. FEBS J 2013; 280:4761-72. [PMID: 23879561 DOI: 10.1111/febs.12442] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/03/2013] [Accepted: 07/22/2013] [Indexed: 01/01/2023]
Abstract
Encysted embryos of Artemia franciscana cease development and enter diapause, a state of metabolic suppression and enhanced stress tolerance. The development of diapause-destined Artemia embryos is characterized by the coordinated synthesis of the small heat shock proteins (sHsps) p26, ArHsp21 and ArHsp22, with the latter being stress inducible in adults. The amounts of sHsp mRNA and protein varied in Artemia cysts, suggesting transcriptional and translational regulation. By contrast to p26, knockdown of ArHsp21 by RNA interference had no effect on embryo development. ArHsp21 provided limited protection against stressors such as desiccation and freezing but not heat. ArHsp21 may have a non-essential or unidentified role in cysts. Injection of Artemia adults with amounts of ArHsp22 double-stranded RNA less than those used for other sHsps killed females and males, curtailing the analysis of ArHsp22 function in developing embryos and cysts. The results indicate that diapause-destined Artemia embryos synthesize varying amounts of sHsps as a result of differential gene expression and mRNA translation and also suggest that these sHsps have distinctive functions.
Collapse
Affiliation(s)
- Allison M King
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
29
|
Campos F, Cuevas-Velazquez C, Fares MA, Reyes JL, Covarrubias AA. Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Mol Genet Genomics 2013; 288:503-17. [PMID: 23861025 DOI: 10.1007/s00438-013-0768-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/26/2013] [Indexed: 11/24/2022]
Abstract
Water is an essential element for living organisms, such that various responses have evolved to withstand water deficit in all living species. The study of these responses in plants has had particular relevance given the negative impact of water scarcity on agriculture. Among the molecules highly associated with plant responses to water limitation are the so-called late embryogenesis abundant (LEA) proteins. These proteins are ubiquitous in the plant kingdom and accumulate during the late phase of embryogenesis and in vegetative tissues in response to water deficit. To know about the evolution of these proteins, we have studied the distribution of group 1 LEA proteins, a set that has also been found beyond the plant kingdom, in Bacillus subtilis and Artemia franciscana. Here, we report the presence of group 1 LEA proteins in green algae (Chlorophyita and Streptophyta), suggesting that these group of proteins emerged before plant land colonization. By sequence analysis of public genomic databases, we also show that 34 prokaryote genomes encode group 1 LEA-like proteins; two of them belong to Archaea domain and 32 to bacterial phyla. Most of these microbes live in soil-associated habitats suggesting horizontal transfer from plants to bacteria; however, our phylogenetic analysis points to convergent evolution. Furthermore, we present data showing that bacterial group 1 LEA proteins are able to prevent enzyme inactivation upon freeze-thaw treatments in vitro, suggesting that they have analogous functions to plant LEA proteins. Overall, data in this work indicate that LEA1 proteins' properties might be relevant to cope with water deficit in different organisms.
Collapse
Affiliation(s)
- F Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico,
| | | | | | | | | |
Collapse
|
30
|
Hanson SJ, Stelzer CP, Welch DBM, Logsdon JM. Comparative transcriptome analysis of obligately asexual and cyclically sexual rotifers reveals genes with putative functions in sexual reproduction, dormancy, and asexual egg production. BMC Genomics 2013; 14:412. [PMID: 23782598 PMCID: PMC3701536 DOI: 10.1186/1471-2164-14-412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/31/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sexual reproduction is a widely studied biological process because it is critically important to the genetics, evolution, and ecology of eukaryotes. Despite decades of study on this topic, no comprehensive explanation has been accepted that explains the evolutionary forces underlying its prevalence and persistence in nature. Monogonont rotifers offer a useful system for experimental studies relating to the evolution of sexual reproduction due to their rapid reproductive rate and close relationship to the putatively ancient asexual bdelloid rotifers. However, little is known about the molecular underpinnings of sex in any rotifer species. RESULTS We generated mRNA-seq libraries for obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of the monogonont rotifer, Brachionus calyciflorus, to identify genes specific to both modes of reproduction. Our differential expression analysis identified receptors with putative roles in signaling pathways responsible for the transition from asexual to sexual reproduction. Differential expression of a specific copy of the duplicated cell cycle regulatory gene CDC20 and specific copies of histone H2A suggest that such duplications may underlie the phenotypic plasticity required for reproductive mode switch in monogononts. We further identified differential expression of genes involved in the formation of resting eggs, a process linked exclusively to sex in this species. Finally, we identified transcripts from the bdelloid rotifer Adineta ricciae that have significant sequence similarity to genes with higher expression in CP strains of B. calyciflorus. CONCLUSIONS Our analysis of global gene expression differences between facultatively sexual and exclusively asexual populations of B. calyciflorus provides insights into the molecular nature of sexual reproduction in rotifers. Furthermore, our results offer insight into the evolution of obligate asexuality in bdelloid rotifers and provide indicators important for the use of monogononts as a model system for investigating the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sara J Hanson
- Department of Biology and Interdisciplinary Program in Genetics, University of Iowa, 301 Biology Building, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
31
|
Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand SC. Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Natl Acad Sci U S A 2012; 109:20859-64. [PMID: 23185012 PMCID: PMC3529014 DOI: 10.1073/pnas.1214893109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of late embryogenesis abundant (LEA) proteins is highly correlated with desiccation tolerance in anhydrobiotic animals, selected land plants, and bacteria. Genes encoding two LEA proteins, one localized to the cytoplasm/nucleus (AfrLEA2) and one targeted to mitochondria (AfrLEA3m), were stably transfected into human HepG2 cells. A trehalose transporter was used for intracellular loading of this disaccharide. Cells were rapidly and uniformly desiccated to low water content (<0.12 g H(2)O/g dry weight) with a recently developed spin-drying technique. Immediately on rehydration, control cells without LEA proteins or trehalose exhibited 0% membrane integrity, compared with 98% in cells loaded with trehalose and expressing AfrLEA2 or AfrLEA3m; surprisingly, AfrLEA3m without trehalose conferred 94% protection. Cell proliferation across 7 d showed an 18-fold increase for cells dried with AfrLEA3m and trehalose, compared with 27-fold for nondried controls. LEA proteins dramatically enhance desiccation tolerance in mammalian cells and offer the opportunity for engineering biostability in the dried state.
Collapse
Affiliation(s)
- Shumin Li
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Nilay Chakraborty
- Center for Engineering in Medicine and Surgical Services, Shriners Hospitals for Children and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; and
| | - Apurva Borcar
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Michael A. Menze
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL 61920
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgical Services, Shriners Hospitals for Children and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; and
| | - Steven C. Hand
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
32
|
Du D, Zhang Q, Cheng T, Pan H, Yang W, Sun L. Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 2012. [PMID: 23086279 DOI: 10.1007/s11033‐012‐2250‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Late embryogenesis abundant (LEA) proteins play important roles in plant desiccation tolerance. In this study, 30 LEA genes were identified from Chinese plum (Prunus mume) through genome-wide analysis. The PmLEA genes are distributed on all Chinese plum chromosomes except chromosome 3. Twelve (40 %) and five PmLEA genes are arranged in tandem and segmental duplications, respectively. The PmLEA genes could be divided into eight groups (LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, PvLEA18, dehydrin and seed maturation protein). Ten gene conversion events were observed and most of them (70 %) were identified in dehydrin group. Most PmLEA genes were highly expressed in flower (22/30) and up-regulated by ABA treatment (19/30).
Collapse
Affiliation(s)
- Dongliang Du
- College of Landscape Architecture, China National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
33
|
Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 2012; 40:1937-46. [PMID: 23086279 DOI: 10.1007/s11033-012-2250-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Late embryogenesis abundant (LEA) proteins play important roles in plant desiccation tolerance. In this study, 30 LEA genes were identified from Chinese plum (Prunus mume) through genome-wide analysis. The PmLEA genes are distributed on all Chinese plum chromosomes except chromosome 3. Twelve (40 %) and five PmLEA genes are arranged in tandem and segmental duplications, respectively. The PmLEA genes could be divided into eight groups (LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, PvLEA18, dehydrin and seed maturation protein). Ten gene conversion events were observed and most of them (70 %) were identified in dehydrin group. Most PmLEA genes were highly expressed in flower (22/30) and up-regulated by ABA treatment (19/30).
Collapse
|
34
|
Warner AH, Chakrabortee S, Tunnacliffe A, Clegg JS. Complexity of the heat-soluble LEA proteome in Artemia species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:260-7. [DOI: 10.1016/j.cbd.2012.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/17/2012] [Accepted: 04/22/2012] [Indexed: 11/29/2022]
|
35
|
Amara I, Odena A, Oliveira E, Moreno A, Masmoudi K, Pagès M, Goday A. Insights into Maize LEA proteins: from proteomics to functional approaches. PLANT & CELL PHYSIOLOGY 2012; 53:312-29. [PMID: 22199372 DOI: 10.1093/pcp/pcr183] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
LEA (late embryogenesis abundant) proteins participate in plant stress tolerance responses, but the mechanisms by which protection occurs are not fully understood. In the present work the unfolded proteins from maize dry embryos were analyzed by mass spectrometry. Twenty embryo proteins were identified, and among them 13 corresponded to LEA-type proteins. We selected three major LEA proteins, Emb564, Rab17 and Mlg3, belonging to groups 1, 2 and 3, respectively, and we undertook a comparative study in order to highlight differences among them. The post-translational modifications of native proteins were analyzed and the anti-aggregation properties of recombinant Emb564, Rab17 and Mgl3 proteins were evaluated in vitro. In addition, the protective effects of the LEA proteins were assessed in living cells under stress in Escherichia coli cells and in Nicotiana bentamiana leaves agroinfiltrated with fluorescent LEA-green fluorescent protein (GFP) fusions. Protein visualization by confocal microscopy indicated that cells expressing Mg3-GFP showed reduced cell shrinkage effects during dehydration and that Rab17-GFP co-localized to leaf oil bodies after heat shock. Overall, the results highlight differences and suggest functional diversity among maize LEA groups.
Collapse
Affiliation(s)
- Imen Amara
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola Del Vallès), 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Hengherr S, Schill RO, Clegg J. Mechanisms associated with cellular desiccation tolerance of Artemia encysted embryos from locations around the world. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:137-42. [DOI: 10.1016/j.cbpa.2011.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 12/22/2022]
|
37
|
Diverse LEA (late embryogenesis abundant) and LEA-like genes and their responses to hypersaline stress in post-diapause embryonic development of Artemia franciscana. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:32-9. [DOI: 10.1016/j.cbpb.2011.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022]
|
38
|
Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM. Survival in extreme environments - on the current knowledge of adaptations in tardigrades. Acta Physiol (Oxf) 2011; 202:409-20. [PMID: 21251237 DOI: 10.1111/j.1748-1716.2011.02252.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation.
Collapse
Affiliation(s)
- N Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu G, Xu H, Zhang L, Zheng Y. Fe binding properties of two soybean (Glycine max L.) LEA4 proteins associated with antioxidant activity. PLANT & CELL PHYSIOLOGY 2011; 52:994-1002. [PMID: 21531760 DOI: 10.1093/pcp/pcr052] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Late embryogenesis abundant (LEA) group 4 (LEA4) proteins play an important role in the water stress tolerance of plants. Although they have been hypothesized to stabilize macromolecules in stressed cells, the protective functions and mechanisms of LEA4 proteins are still not clear. In this study, the metal binding properties of two related soybean LEA4 proteins, GmPM1 and GmPM9, were tested using immobilized metal ion affinity chromatography (IMAC). The metal ions Fe(3+), Ni(2+), Cu(2+) and Zn(2+) were observed to bind these two proteins, while Ca(2+), Mg(2+) or Mn(2+) did not. Results from isothermal titration calorimetry (ITC) indicated that the binding affinity of GmPM1 for Fe(3+) was stronger than that of GmPM9. Hydroxyl radicals generated by the Fe(3+)/H(2)O(2) system were scavenged by both GmPM1 and GmPM9 in the absence or the presence of high ionic conditions (100 mM NaCl), although the scavenging activity of GmPM1 was significantly greater than that of GmPM9. These results suggest that GmPM1 and GmPM9 are metal-binding proteins which may function in reducing oxidative damage induced by abiotic stress in plants.
Collapse
Affiliation(s)
- Guobao Liu
- Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, PR China
| | | | | | | |
Collapse
|
40
|
Dure L, Greenway SC, Galau GA. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 1981; 59:377-86. [PMID: 7284317 DOI: 10.1016/j.jinsphys.2013.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 05/08/2023]
Abstract
Changes in messenger ribonucleic acid (mRNA) populations during embryogenesis of cottonseed have been followed by cataloging (a) extant proteins, (b) proteins synthesized in vivo, and (c) proteins synthesized in vitro from extracted RNA, all at specific stages of embryogenesis. Evidence is presented for the existence of five mRNA subsets, all apparently under different regulatory regimes, that produce the abundant proteins of embryogenesis. One of these functions principally during the cell division phase of embryogenesis and encodes among its products the seed storage proteins whose mRNA is superabundant during this period. This subset has disappeared from the abundant group by the mature seed stage. Two other subsets appear in late embryogenesis, one of which may result from the removal of the embryo from the maternal environment, since it is inducible by excision of the young embryo from the seed. The other appears to be induced by the plant growth regulator abscisic acid, whose endogenous concentration increases at this stage. It can be induced by incubating excised young embryos in abscisic acid. The last two subsets exist throughout embryogenesis, but only one of them appears to function in germination.
Collapse
|