1
|
Gao B, Sun Q. Post-translational assembly of multi-functional antibody. Biotechnol Adv 2025; 80:108533. [PMID: 39929326 DOI: 10.1016/j.biotechadv.2025.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/27/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
The advent of multi-specific antibodies has introduced a significant advantage over traditional monoclonal antibody therapeutics by engaging multiple targets and pathways. This review delves into the post-translational assembly techniques for multi-specific antibodies, highlighting the innovations and challenges associated with approaches of chemical conjugation, oligonucleotide-mediated assembly, and protein-protein interactions. Chemical conjugation methods have evolved to enhance the assembly process's specificity and flexibility, enabling transient engagement and versatile antibody formats. Meanwhile, oligonucleotide-mediated assembly leverages the precision of Watson-Crick base pairing, granting unmatched control over the antibody's structure and functional orientation. Additionally, protein-protein interaction strategies, notably through SpyTag/SpyCatcher systems, present a direct assembly approach without necessitating ancillary modifications, streamlining the production process. This review summarizes the significance of these methodologies in generating antibodies with diverse structures and multi-target engagement capabilities, underscoring their potential in improving therapeutic efficacy and reducing production complexity.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Interdisciplinary Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States.
| |
Collapse
|
2
|
Gao B, Sabnis R, Kotnis S, Feliciano S, Poling K, Mei T, Feng M, Das JK, Song J, Sun Q. Modular Platform for Efficient Assembly of Multifunctional Antibodies Using Orthogonal Protein-Protein Interactions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20685-20692. [PMID: 40159649 PMCID: PMC11986891 DOI: 10.1021/acsami.4c21958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Multifunctional antibodies, capable of simultaneously engaging multiple targets, are a unique class of antibodies that have sparked growing interest. Current approaches for making multifunctional antibodies, including chemical conjugation or genetic modifications, suffer from low product yield, complex structure design, and complicated manufacturing processes. In this study, we report a modular post-translational platform with highly specific protein-protein interactions for multifunctional antibody assembly and an elastin-like polypeptide (ELP) for easy purification. We generated and purified multifunctional antibodies with over 90% assembled scaffold and overall product purity. Additionally, we assembled antibodies with diverse applications, including detecting cancer, inhibiting cancer cell growth, and directing T cells to cancer cells for enhanced therapeutic efficacy. This platform offers high assembly efficiency, easy purification, and modularity for the redesign of antibody functions.
Collapse
Affiliation(s)
- Baizhen Gao
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Rushant Sabnis
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Siddhi Kotnis
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Sofia Feliciano
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Kyge Poling
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Tracy Mei
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Min Feng
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Jugal Kishore Das
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas 77807, United States
| | - Jianxun Song
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas 77807, United States
| | - Qing Sun
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Huang M, Park J, Seo J, Ko S, Yang YH, Lee Y, Kim HJ, Lee BS, Lee YS, Ko BJ, Jung ST, Park D, Yoo TH, Kim CH. An epidermal growth factor receptor-targeting immunotoxin based on IgG shows potent antitumor activity against head and neck cancer. FASEB J 2024; 38:e23759. [PMID: 38949635 DOI: 10.1096/fj.202301968r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
The epidermal growth factor receptor (EGFR) is an important target for cancer therapies. Many head and neck cancer (HNC) cells have been reported to overexpress EGFR; therefore, anti-EGFR therapies have been attempted in patients with HNC. However, its clinical efficacy is limited owing to the development of drug resistance. In this study, we developed an EGFR-targeting immunotoxin consisting of a clinically proven anti-EGFR IgG (cetuximab; CTX) and a toxin fragment (LR-LO10) derived from Pseudomonas exotoxin A (PE) using a novel site-specific conjugation technology (peptide-directed photo-crosslinking reaction), as an alternative option. The immunotoxin (CTX-LR-LO10) showed specific binding to EGFR and properties of a typical IgG, such as stability, interactions with receptors of immune cells, and pharmacokinetics, and inhibited protein synthesis via modification of elongation factor-2. Treatment of EGFR-positive HNC cells with the immunotoxin resulted in apoptotic cell death and the inhibition of cell migration and invasion. The efficacy of CTX-LR-LO10 was evaluated in xenograft mouse models, and the immunotoxin exhibited much stronger tumor suppression than CTX or LR-LO10. Transcriptome analyses revealed that the immunotoxins elicited immune responses and altered the expression of genes related to its mechanisms of action. These results support the notion that CTX-LR-LO10 may serve as a new therapeutic agent targeting EGFR-positive cancers.
Collapse
Affiliation(s)
- Mei Huang
- Department of Medical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Jisoo Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jina Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sanghwan Ko
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Yoon Hee Yang
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Yeaji Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, Republic of Korea
| | - Sang Teak Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Deachan Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Advanced College of Bio-convergence Engineering, Ajou University, Suwon, Republic of Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Advanced College of Bio-convergence Engineering, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
4
|
Lehmann T, Schneider H, Tonillo J, Schanz J, Schwarz D, Schröter C, Jäger S, Kolmar H, Hecht S, Anderl J, Rasche N, Rieker M, Dickgiesser S. Welding PROxAb Shuttles: A Modular Approach for Generating Bispecific Antibodies via Site-Specific Protein-Protein Conjugation. Bioconjug Chem 2024; 35:780-789. [PMID: 38809610 DOI: 10.1021/acs.bioconjchem.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Targeted protein degradation is an innovative therapeutic strategy to selectively eliminate disease-causing proteins. Exemplified by proteolysis-targeting chimeras (PROTACs), they have shown promise in overcoming drug resistance and targeting previously undruggable proteins. However, PROTACs face challenges, such as low oral bioavailability and limited selectivity. The recently published PROxAb Shuttle technology offers a solution enabling the targeted delivery of PROTACs using antibodies fused with PROTAC-binding domains derived from camelid single-domain antibodies (VHHs). Here, a modular approach to quickly generate PROxAb Shuttles by enzymatically coupling PROTAC-binding VHHs to off-the-shelf antibodies was developed. The resulting conjugates retained their target binding and internalization properties, and incubation with BRD4-targeting PROTACs resulted in formation of defined PROxAb-PROTAC complexes. These complexes selectively induced degradation of the BRD4 protein, resulting in cytotoxicity specifically to cells expressing the antibody's target. The chemoenzymatic approach described herein provides a versatile and efficient solution for generating antibody-VHH conjugates for targeted protein degradation applications, but it could also be used to combine antibodies and VHH binders to generate bispecific antibodies for further applications.
Collapse
Affiliation(s)
- Tanja Lehmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- ADCs & Targeted NBE Therapeutics, Merck KGaA, 64293 Darmstadt , Germany
| | - Hendrik Schneider
- ADCs & Targeted NBE Therapeutics, Merck KGaA, 64293 Darmstadt , Germany
| | - Jason Tonillo
- ADCs & Targeted NBE Therapeutics, Merck KGaA, 64293 Darmstadt , Germany
| | - Jennifer Schanz
- ADCs & Targeted NBE Therapeutics, Merck KGaA, 64293 Darmstadt , Germany
| | - Daniel Schwarz
- Discovery Pharmacology, Merck KGaA, 64293 Darmstadt, Germany
| | | | - Sebastian Jäger
- ADCs & Targeted NBE Therapeutics, Merck KGaA, 64293 Darmstadt , Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Stefan Hecht
- ADCs & Targeted NBE Therapeutics, Merck KGaA, 64293 Darmstadt , Germany
| | - Jan Anderl
- ADCs & Targeted NBE Therapeutics, Merck KGaA, 64293 Darmstadt , Germany
| | - Nicolas Rasche
- ADCs & Targeted NBE Therapeutics, Merck KGaA, 64293 Darmstadt , Germany
| | - Marcel Rieker
- ADCs & Targeted NBE Therapeutics, Merck KGaA, 64293 Darmstadt , Germany
| | | |
Collapse
|
5
|
Asano R, Takeuchi M, Nakakido M, Ito S, Aikawa C, Yokoyama T, Senoo A, Ueno G, Nagatoishi S, Tanaka Y, Nakagawa I, Tsumoto K. Characterization of a novel format scFv×VHH single-chain biparatopic antibody against metal binding protein MtsA. Protein Sci 2024; 33:e5017. [PMID: 38747382 PMCID: PMC11094767 DOI: 10.1002/pro.5017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Biparatopic antibodies (bpAbs) are engineered antibodies that bind to multiple different epitopes within the same antigens. bpAbs comprise diverse formats, including fragment-based formats, and choosing the appropriate molecular format for a desired function against a target molecule is a challenging task. Moreover, optimizing the design of constructs requires selecting appropriate antibody modalities and adjusting linker length for individual bpAbs. Therefore, it is crucial to understand the characteristics of bpAbs at the molecular level. In this study, we first obtained single-chain variable fragments and camelid heavy-chain variable domains targeting distinct epitopes of the metal binding protein MtsA and then developed a novel format single-chain bpAb connecting these fragment antibodies with various linkers. The physicochemical properties, binding activities, complex formation states with antigen, and functions of the bpAb were analyzed using multiple approaches. Notably, we found that the assembly state of the complexes was controlled by a linker and that longer linkers tended to form more compact complexes. These observations provide detailed molecular information that should be considered in the design of bpAbs.
Collapse
Affiliation(s)
- Risa Asano
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
| | - Miyu Takeuchi
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
- Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoTokyoJapan
| | - Sho Ito
- Rigaku Corporation ROD Single Crystal Analysis Group Application LaboratoriesTokyoJapan
| | - Chihiro Aikawa
- Section of Applied Veterinary Sciences, Division of Veterinary Sciences, Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineHokkaidoJapan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku UniversityMiyagiJapan
- The advanced center for innovations in next‐generation medicine (INGEM)Tohoku UniversityMiyagiJapan
| | - Akinobu Senoo
- Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoTokyoJapan
| | - Go Ueno
- RIKEN SPring‐8 CenterHyogoJapan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research CenterSchool of Engineering, The University of TokyoTokyoJapan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku UniversityMiyagiJapan
- The advanced center for innovations in next‐generation medicine (INGEM)Tohoku UniversityMiyagiJapan
| | - Ichiro Nakagawa
- Department of MicrobiologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Kouhei Tsumoto
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
- Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoTokyoJapan
- Medical Device Development and Regulation Research CenterSchool of Engineering, The University of TokyoTokyoJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
6
|
Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins. Molecules 2023; 28:molecules28030917. [PMID: 36770585 PMCID: PMC9921355 DOI: 10.3390/molecules28030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
As antibody-drug conjugates have become a very important modality for cancer therapy, many site-specific conjugation approaches have been developed for generating homogenous molecules. The selective antibody coupling is achieved through antibody engineering by introducing specific amino acid or unnatural amino acid residues, peptides, and glycans. In addition to the use of synthetic cytotoxins, these novel methods have been applied for the conjugation of other payloads, including non-cytotoxic compounds, proteins/peptides, glycans, lipids, and nucleic acids. The non-cytotoxic compounds include polyethylene glycol, antibiotics, protein degraders (PROTAC and LYTAC), immunomodulating agents, enzyme inhibitors and protein ligands. Different small proteins or peptides have been selectively conjugated through unnatural amino acid using click chemistry, engineered C-terminal formylglycine for oxime or click chemistry, or specific ligation or transpeptidation with or without enzymes. Although the antibody protamine peptide fusions have been extensively used for siRNA coupling during early studies, direct conjugations through engineered cysteine or lysine residues have been demonstrated later. These site-specific antibody conjugates containing these payloads other than cytotoxic compounds can be used in proof-of-concept studies and in developing new therapeutics for unmet medical needs.
Collapse
|
7
|
Taylor RJ, Geeson MB, Journeaux T, Bernardes GJL. Chemical and Enzymatic Methods for Post-Translational Protein-Protein Conjugation. J Am Chem Soc 2022; 144:14404-14419. [PMID: 35912579 PMCID: PMC9389620 DOI: 10.1021/jacs.2c00129] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Fusion proteins play an essential role in the biosciences but suffer from several key limitations, including the requirement for N-to-C terminal ligation, incompatibility of constituent domains, incorrect folding, and loss of biological activity. This perspective focuses on chemical and enzymatic approaches for the post-translational generation of well-defined protein-protein conjugates, which overcome some of the limitations faced by traditional fusion techniques. Methods discussed range from chemical modification of nucleophilic canonical amino acid residues to incorporation of unnatural amino acid residues and a range of enzymatic methods, including sortase-mediated ligation. Through summarizing the progress in this rapidly growing field, the key successes and challenges associated with using chemical and enzymatic approaches are highlighted and areas requiring further development are discussed.
Collapse
Affiliation(s)
- Ross J. Taylor
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Michael B. Geeson
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Toby Journeaux
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
8
|
Watanabe Y, Tanabe A, Hamakubo T, Nagatoishi S, Tsumoto K. Development of biparatopic bispecific antibody possessing tetravalent scFv-Fc capable of binding to ROBO1 expressed in hepatocellular carcinoma cells. J Biochem 2021; 170:307-315. [PMID: 33844018 DOI: 10.1093/jb/mvab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
There is no standard structural format of the biparatopic bispecific antibody (bbsAb) which is used against the target molecule because of the diversity of biophysical features of bispecific antibodies (bsAbs). It is therefore essential that the interaction between the antibody and antigen is quantitatively analyzed to design antibodies that possess the desired properties. Here, we generated bsAbs, namely, a tandem scFv-Fc, a diabody-Fc, and an immunofusion-scFv-Fc-scFv, that possessed four scFv arms at different positions and were capable of recognizing the extracellular domains of ROBO1. We examined the interactions between these bsAbs and ROBO1 at the biophysical and cellular levels. Of these, immunofusion-B2212A scFv-Fc-B5209B scFv was stably expressed with the highest relative yield. The kinetic and thermodynamic features of the interactions of each bsAb with soluble ROBO1 (sROBO1) were validated using surface plasmon resonance and isothermal titration calorimetry. In all bsAbs, the immunofusion-scFv-Fc-scFv format showed homogeneous interaction with the antigen with higher affinity compared with that of monospecific antibodies. In conclusion, our study presents constructive information to design druggable bbsAbs in drug applications.
Collapse
Affiliation(s)
- Yuji Watanabe
- Departmant of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Aki Tanabe
- Departmant of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takao Hamakubo
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugimachi, Nakahara-ku, Kawasaki 211-8533, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Departmant of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
9
|
Production of IgG1-based bispecific antibody without extra cysteine residue via intein-mediated protein trans-splicing. Sci Rep 2021; 11:19411. [PMID: 34593913 PMCID: PMC8484483 DOI: 10.1038/s41598-021-98855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
A major class of bispecific antibodies (BsAbs) utilizes heterodimeric Fc to produce the native immunoglobulin G (IgG) structure. Because appropriate pairing of heavy and light chains is required, the design of BsAbs produced through recombination or reassembly of two separately-expressed antigen-binding fragments is advantageous. One such method uses intein-mediated protein trans-splicing (IMPTS) to produce an IgG1-based structure. An extra Cys residue is incorporated as a consensus sequence for IMPTS in successful examples, but this may lead to potential destabilization or disturbance of the assay system. In this study, we designed a BsAb linked by IMPTS, without the extra Cys residue. A BsAb binding to both TNFR2 and CD30 was successfully produced. Cleaved side product formation was inevitable, but it was minimized under the optimized conditions. The fine-tuned design is suitable for the production of IgG-like BsAb with high symmetry between the two antigen-binding fragments that is advantageous for screening BsAbs.
Collapse
|
10
|
Oo HZ, Lohinai Z, Khazamipour N, Lo J, Kumar G, Pihl J, Adomat H, Nabavi N, Behmanesh H, Zhai B, Dagil R, Choudhary S, Gustavsson T, Clausen TM, Esko JD, Allen JW, Thompson MA, Tran NL, Moldvay J, Dome B, Salanti A, Al-Nakouzi N, Weiss GJ, Daugaard M. Oncofetal Chondroitin Sulfate Is a Highly Expressed Therapeutic Target in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:4489. [PMID: 34503301 PMCID: PMC8430715 DOI: 10.3390/cancers13174489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022] Open
Abstract
Broad-spectrum therapeutics in non-small cell lung cancer (NSCLC) are in demand. Most human solid tumors express proteoglycans modified with distinct oncofetal chondroitin sulfate (CS) chains that can be detected and targeted with recombinant VAR2CSA (rVAR2) proteins and rVAR2-derived therapeutics. Here, we investigated expression and targetability of oncofetal CS expression in human NSCLC. High oncofetal CS expression is associated with shorter disease-free survival and poor overall survival of clinically annotated stage I and II NSCLC patients (n = 493). Oncofetal CS qualifies as an independent prognosticator of NSCLC in males and smokers, and high oncofetal CS levels are more prevalent in EGFR/KRAS wild-type cases, as compared to mutation cases. NSCLC cell lines express oncofetal CS-modified proteoglycans that can be specifically detected and targeted by rVAR2 proteins in a CSA-dependent manner. Importantly, a novel VAR2-drug conjugate (VDC-MMAE) efficiently eliminates NSCLC cells in vitro and in vivo. In summary, oncofetal CS is a prognostic biomarker and an actionable glycosaminoglycan target in NSCLC.
Collapse
Affiliation(s)
- Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | - Zoltan Lohinai
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1122 Budapest, Hungary; (Z.L.); (J.M.); (B.D.)
| | - Nastaran Khazamipour
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | - Joey Lo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | - Gunjan Kumar
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | - Jessica Pihl
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA 92093, USA; (J.P.); (T.M.C.); (J.D.E.)
| | - Hans Adomat
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | - Hakhamanesh Behmanesh
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | - Beibei Zhai
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | - Robert Dagil
- Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.D.); (S.C.); (T.G.); (A.S.)
| | - Swati Choudhary
- Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.D.); (S.C.); (T.G.); (A.S.)
| | - Tobias Gustavsson
- Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.D.); (S.C.); (T.G.); (A.S.)
| | - Thomas M. Clausen
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA 92093, USA; (J.P.); (T.M.C.); (J.D.E.)
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA 92093, USA; (J.P.); (T.M.C.); (J.D.E.)
| | | | | | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Judit Moldvay
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1122 Budapest, Hungary; (Z.L.); (J.M.); (B.D.)
- MTA-SE NAP, Brain Metastasis Research Group, Department of Pathology, Hungarian Academy of Sciences, 1085 Budapest, Hungary
| | - Balazs Dome
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1122 Budapest, Hungary; (Z.L.); (J.M.); (B.D.)
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, 1122 Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Ali Salanti
- Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.D.); (S.C.); (T.G.); (A.S.)
| | - Nader Al-Nakouzi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| | | | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (H.Z.O.); (N.K.); (J.L.); (G.K.); (H.A.); (N.N.); (H.B.); (B.Z.); (N.A.-N.)
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
11
|
Nordmaj MA, Roberts ME, Sachse ES, Dagil R, Andersen AP, Skeltved N, Grunddal KV, Erdoğan SM, Choudhary S, Gustsavsson T, Ørum-Madsen MS, Moskalev I, Tian W, Yang Z, Clausen TM, Theander TG, Daugaard M, Nielsen MA, Salanti A. Development of a bispecific immune engager using a recombinant malaria protein. Cell Death Dis 2021; 12:353. [PMID: 33824272 PMCID: PMC8024270 DOI: 10.1038/s41419-021-03611-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 11/20/2022]
Abstract
As an immune evasion and survival strategy, the Plasmodium falciparum malaria parasite has evolved a protein named VAR2CSA. This protein mediates sequestration of infected red blood cells in the placenta through the interaction with a unique carbohydrate abundantly and exclusively present in the placenta. Cancer cells were found to share the same expression of this distinct carbohydrate, termed oncofetal chondroitin sulfate on their surface. In this study we have used a protein conjugation system to produce a bispecific immune engager, V-aCD3, based on recombinant VAR2CSA as the cancer targeting moiety and an anti-CD3 single-chain variable fragment linked to a single-chain Fc as the immune engager. Conjugation of these two proteins resulted in a single functional moiety that induced immune mediated killing of a broad range of cancer cells in vitro and facilitated tumor arrest in an orthotopic bladder cancer xenograft model.
Collapse
Affiliation(s)
- Mie A Nordmaj
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morgan E Roberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emilie S Sachse
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Poder Andersen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nanna Skeltved
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kaare V Grunddal
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sayit Mahmut Erdoğan
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tobias Gustsavsson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maj Sofie Ørum-Madsen
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Igor Moskalev
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Weihua Tian
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas M Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mads Daugaard
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
12
|
Hofmann T, Schmidt J, Ciesielski E, Becker S, Rysiok T, Schütte M, Toleikis L, Kolmar H, Doerner A. Intein mediated high throughput screening for bispecific antibodies. MAbs 2021; 12:1731938. [PMID: 32151188 PMCID: PMC7153837 DOI: 10.1080/19420862.2020.1731938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies comprise extremely diverse architectures enabling complex modes of action, such as effector cell recruitment or conditional target modulation via dual targeting, not conveyed by monospecific antibodies. In recent years, research on bispecific therapeutics has substantially grown. However, evaluation of binding moiety combinations often leads to undesired prolonged development times. While high throughput screening for small molecules and classical antibodies has evolved into a mature discipline in the pharmaceutical industry, dual-targeting antibody screening methodologies lack the ability to fully evaluate the tremendous number of possible combinations and cover only a limited portion of the combinatorial screening space. Here, we propose a novel combinatorial screening approach for bispecific IgG-like antibodies to extenuate screening limitations in industrial scale, expanding the limiting screening space. Harnessing the ability of a protein trans-splicing reaction by the split intein Npu DnaE, antibody fragments were reconstituted within the hinge region in vitro. This method allows for fully automated, rapid one-pot antibody reconstitution, providing biological activity in several biochemical and functional assays. The technology presented here is suitable for automated functional and combinatorial high throughput screening of bispecific antibodies.
Collapse
Affiliation(s)
- Tim Hofmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Johannes Schmidt
- Compound Logistic & Bioassay Automation, Merck KGaA, Darmstadt, Germany
| | - Elke Ciesielski
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Thomas Rysiok
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Mark Schütte
- Global Innovation and Alliance Management, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
13
|
Hentrich C, Kellmann SJ, Putyrski M, Cavada M, Hanuschka H, Knappik A, Ylera F. Periplasmic expression of SpyTagged antibody fragments enables rapid modular antibody assembly. Cell Chem Biol 2021; 28:813-824.e6. [PMID: 33529581 DOI: 10.1016/j.chembiol.2021.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Antibodies are essential tools in research and diagnostics. Although antibody fragments typically obtained from in vitro selection can be rapidly produced in bacteria, the generation of full-length antibodies or the modification of antibodies with probes is time and labor intensive. Protein ligation such as SpyTag technology could covalently attach domains and labels to antibody fragments equipped with a SpyTag. However, we found that the established periplasmic expression of antibody fragments in E. coli led to quantitative cleavage of the SpyTag by the proteases Tsp and OmpT. Here we report successful periplasmic expression of SpyTagged Fab fragments and demonstrate the coupling to separately prepared SpyCatcher modules. We used this modular toolbox of SpyCatcher proteins to generate reagents for a variety of immunoassays and measured their performance in comparison with traditional reagents. Furthermore, we demonstrate surface immobilization, high-throughput screening of antibody libraries, and rapid prototyping of antibodies based on modular antibody assembly.
Collapse
Affiliation(s)
| | | | - Mateusz Putyrski
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany
| | - Manuel Cavada
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany
| | - Hanh Hanuschka
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany
| | - Achim Knappik
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany
| | - Francisco Ylera
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany.
| |
Collapse
|
14
|
Park J, Lee S, Kim Y, Yoo TH. Methods to generate site-specific conjugates of antibody and protein. Bioorg Med Chem 2021; 30:115946. [DOI: 10.1016/j.bmc.2020.115946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
|
15
|
Lieser RM, Yur D, Sullivan MO, Chen W. Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. Bioconjug Chem 2020; 31:2272-2282. [DOI: 10.1021/acs.bioconjchem.0c00456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rachel M. Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| |
Collapse
|
16
|
Hofmann T, Krah S, Sellmann C, Zielonka S, Doerner A. Greatest Hits-Innovative Technologies for High Throughput Identification of Bispecific Antibodies. Int J Mol Sci 2020; 21:E6551. [PMID: 32911608 PMCID: PMC7554978 DOI: 10.3390/ijms21186551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Recent years have shown a tremendous increase and diversification in antibody-based therapeutics with advances in production techniques and formats. The plethora of currently investigated bi- to multi-specific antibody architectures can be harnessed to elicit a broad variety of specific modes of actions in oncology and immunology, spanning from enhanced selectivity to effector cell recruitment, all of which cannot be addressed by monospecific antibodies. Despite continuously growing efforts and methodologies, the identification of an optimal bispecific antibody as the best possible combination of two parental monospecific binders, however, remains challenging, due to tedious cloning and production, often resulting in undesired extended development times and increased expenses. Although automated high throughput screening approaches have matured for pharmaceutical small molecule development, it was only recently that protein bioconjugation technologies have been developed for the facile generation of bispecific antibodies in a 'plug and play' manner. In this review, we provide an overview of the most relevant methodologies for bispecific screening purposes-the DuoBody concept, paired light chain single cell production approaches, Sortase A and Transglutaminase, the SpyTag/SpyCatcher system, and inteins-and elaborate on the benefits as well as drawbacks of the different technologies.
Collapse
Affiliation(s)
- Tim Hofmann
- Advanced Cell Culture Technologies, Merck Life Sciences KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany;
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| |
Collapse
|
17
|
Modica JA, Iderzorig T, Mrksich M. Design and Synthesis of Megamolecule Mimics of a Therapeutic Antibody. J Am Chem Soc 2020; 142:13657-13661. [PMID: 32706963 DOI: 10.1021/jacs.0c05093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This communication describes the design, synthesis, and biological activity of a megamolecule mimic of an anti-HER2 antibody. The antibody mimic was prepared by linking two Fabs from the therapeutic antibody trastuzumab, which are fused through the heavy chain variable domain to either cutinase or SnapTag, with a linker terminated in an irreversible inhibitor for each enzyme. This mimic binds HER2 with comparable avidity to trastuzumab, has similar activity in a cell-based assay, and can arrest tumor growth in a mouse xenograft BT474 tumor model. A panel of 16 bivalent anti-HER2 antibodies were prepared wherein each varied in the orientation of the fusion domain on the Fabs. The analogs displayed a range of cytotoxic activity, and surprisingly, the most active mimic binds to cells with a 10-fold lower avidity than the least active variant suggesting that structure plays a large role in their efficacy. This work suggests that the megamolecule approach can be used to prepare antibody mimics having a broad structural diversity.
Collapse
Affiliation(s)
- Justin A Modica
- Northwestern University, Departments of Chemistry and Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tsatsral Iderzorig
- Northwestern University, Departments of Chemistry and Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Northwestern University, Departments of Chemistry and Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Akiba H, Takayanagi K, Kusano-Arai O, Iwanari H, Hamakubo T, Tsumoto K. Generation of biparatopic antibody through two-step targeting of fragment antibodies on antigen using SpyTag and SpyCatcher. ACTA ACUST UNITED AC 2020; 25:e00418. [PMID: 31993343 PMCID: PMC6976922 DOI: 10.1016/j.btre.2020.e00418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
Biparatopic fragment antibodies can overcome deficiencies in avidity of conventional antibody fragments. Here, we describe a technology for generating biparatopic antibodies through two-step targeting using a pair of polypeptides, SpyTag and SpyCatcher, that spontaneously react to form a covalent bond between antibody fragments. In this method, two antibody fragments, each targeting different epitopes of the antigen, are fused to SpyTag and to SpyCatcher. When the two polypeptides are serially added to the antigen, their proximity on the antigen results in covalent bond formation and generation of a biparatopic antibody. We validated the system with purified recombinant antigen. Results in antigen-overexpressing cells were promising although further optimization will be required. Because this strategy results in high-affinity targeting with a bipartite molecule that has considerably lower molecular weight than an antibody, this technology is potentially useful for diverse applications.
Collapse
Affiliation(s)
- Hiroki Akiba
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kensuke Takayanagi
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Osamu Kusano-Arai
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiroko Iwanari
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Takao Hamakubo
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Department of Protein-protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugimachi, Nakahara-ku, Kawasaki, 211-8533, Japan
| | - Kouhei Tsumoto
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
19
|
Matsuno Y, Yamashita T, Wagatsuma M, Yamakage H. Convergence in LINE-1 nucleotide variations can benefit redundantly forming triplexes with lncRNA in mammalian X-chromosome inactivation. Mob DNA 2019; 10:33. [PMID: 31384315 PMCID: PMC6664574 DOI: 10.1186/s13100-019-0173-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023] Open
Abstract
Background Associations between X-inactive transcript (Xist)–long noncoding RNA (lncRNA) and chromatin are critical intermolecular interactions in the X-chromosome inactivation (XCI) process. Despite high-resolution analyses of the Xist RNA-binding sites, specific interaction sequences are yet to be identified. Based on elusive features of the association between Xist RNA and chromatin and the possible existence of multiple low-affinity binding sites in Xist RNA, we defined short motifs (≥5 nucleotides), termed as redundant UC/TC (r-UC/TC) or AG (r-AG) motifs, which may help in the mediation of triplex formation between the lncRNAs and duplex DNA. Results The study showed that r-UC motifs are densely dispersed throughout mouse and human Xist/XIST RNAs, whereas r-AG motifs are even more densely dispersed along opossum RNA-on-the-silent X (Rsx) RNA, and also along both full-length and truncated long interspersed nuclear elements (LINE-1s, L1s) of the three species. Predicted secondary structures of the lncRNAs showed that the length range of these sequence motifs available for forming triplexes was even shorter, mainly 5- to 9-nucleotides long. Quartz crystal microbalance (QCM) measurements and Monte Carlo (MC) simulations indicated that minimum-length motifs can reinforce the binding state by increasing the copy number of the motifs in the same RNA or DNA molecule. Further, r-AG motifs in L1s had a similar length-distribution pattern, regardless of the similarities in the length or sequence of L1s across the three species; this also applies to high-frequency mutations in r-AG motifs, which suggests convergence in L1 sequence variations. Conclusions Multiple short motifs in both RNA and duplex DNA molecules could be brought together to form triplexes with either Hoogsteen or reverse Hoogsteen hydrogen bonding, by which their associations are cooperatively enhanced. This novel triplex interaction could be involved in associations between lncRNA and chromatin in XCI, particularly at the sites of L1s. Potential binding of Xist/XIST/Rsx RNAs specifically at L1s is most likely preserved through the r-AG motifs conserved in mammalian L1s through convergence in L1 nucleotide variations and by maintaining a particular r-UC/r-AG motif ratio in each of these lncRNAs, irrespective of their poorly conserved sequences. Electronic supplementary material The online version of this article (10.1186/s13100-019-0173-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoko Matsuno
- 1Division of Clinical Preventive Medicine, Niigata University, Niigata, Japan
| | - Takefumi Yamashita
- 2Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Alam MK, Brabant M, Viswas RS, Barreto K, Fonge H, Ronald Geyer C. A novel synthetic trivalent single chain variable fragment (tri-scFv) construction platform based on the SpyTag/SpyCatcher protein ligase system. BMC Biotechnol 2018; 18:55. [PMID: 30200951 PMCID: PMC6131909 DOI: 10.1186/s12896-018-0466-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/03/2018] [Indexed: 01/12/2023] Open
Abstract
Background Advances in antibody engineering provide strategies to construct recombinant antibody-like molecules with modified pharmacokinetic properties. Multermerization is one strategy that has been used to produce antibody-like molecules with two or more antigen binding sites. Multimerization enhances the functional affinity (avidity) and can be used to optimize size and pharmacokinetic properties. Most multimerization strategies involve genetically fusing or non-covalently linking antibody fragments using oligomerization domains. Recent studies have defined guidelines for producing antibody-like molecules with optimal tumor targeting properties, which require intermediates size (70–120 kDa) and bi- or tri-valency. Results We described a highly modular antibody-engineering platform for rapidly constructing synthetic, trivalent single chain variable fragments (Tri-scFv) using the SpyCatcher/SpyTag protein ligase system. We used this platform to construct an anti-human epidermal growth factor receptor 3 (HER3) Tri-scFv. We generated the anti-HER3 Tri-scFv by genetically fusing a SpyCatcher to the C-terminus of an anti-HER3 scFv and ligating it to a synthetic Tri-SpyTag peptide. The anti-HER3 Tri-scFv bound recombinant HER3 with an apparent KD of 2.67 nM, which is approximately 12 times lower than the KD of monomeric anti-HER3 scFv (31.2 nM). Anti-HER3 Tri-scFv also bound endogenous cell surface expressed HER3 stronger than the monomer anti-HER3 scFv. Conclusion We used the SpyTag/SpyCatcher protein ligase system to ligate anti-HER3 scFv fused to a SpyCatcher at its C-termini to a Tri-SpyTag to construct Tr-scFv. This system allowed the construction of a Tri-scFv with all the scFv antigen-binding sites pointed outwards. The anti-HER3 Tri-scFv bound recombinant and endogenously expressed HER3 with higher functional affinity (avidity) than the monomeric anti-HER3 scFv. The Tri-scFv had the size, valency, and functional affinity that are desired for therapeutic and imaging applications. Use of the SpyTag/SpyCatcher protein ligase system allows Tri-scFvs to be rapidly constructed in a simple, modular manner, which can be easily applied to scFvs or other antibody fragments targeting other antigens.
Collapse
Affiliation(s)
- Md Kausar Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, S7N 0W8, Canada
| | - Michelle Brabant
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | - Kris Barreto
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, S7N 0W8, Canada
| | - Humphrey Fonge
- Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, S7N 0W8, Canada.
| |
Collapse
|
21
|
Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol 2018; 45:599-614. [PMID: 29552703 PMCID: PMC6041164 DOI: 10.1007/s10295-018-2027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022]
Abstract
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.
Collapse
Affiliation(s)
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
22
|
Site-Specific Fluorescent Labeling of Antibodies and Diabodies Using SpyTag/SpyCatcher System for In Vivo Optical Imaging. Mol Imaging Biol 2018; 21:54-66. [DOI: 10.1007/s11307-018-1222-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Buldun CM, Jean JX, Bedford MR, Howarth M. SnoopLigase Catalyzes Peptide–Peptide Locking and Enables Solid-Phase Conjugate Isolation. J Am Chem Soc 2018; 140:3008-3018. [DOI: 10.1021/jacs.7b13237] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Can M. Buldun
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Jisoo X. Jean
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | | | - Mark Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| |
Collapse
|