1
|
Ma X, Chen W, Hu Z, Xie L, Li Z, Liu H, Li Z, Jiang Z, Huang J, Jiang C, Huang K, Xiao S. Trim65 mitigates doxorubicin-induced myocardial injury by reducing ferroptosis. Exp Cell Res 2025; 450:114613. [PMID: 40447212 DOI: 10.1016/j.yexcr.2025.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/18/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025]
Abstract
BACKGROUND AND AIMS The anthracycline chemotherapeutic agent doxorubicin (DOX) is widely used to treat cancer. However, DOX carries a high risk of adverse effects such as cardiovascular events. The aim of this study was to explore the role of Trim65 in DOX-induced cardiotoxicity (DIC) and its underlying mechanisms. METHODS AND RESULTS Cellular studies were performed by exposing H9c2 cells (rat cardiomyocytes) to DOX. H9c2 cells were infected with lentivirus encoding negative control (LV-NC) or Trim65 (LV-Trim65). C57BL/6J mice were exposed to adeno-associated virus 9 (AAV9) containing cTnT promoter-encoded Trim65 sequence (AAV-Trim65) or AAV9 negative control sequence (AAV-NC) via tail vein injection. Furthermore, the following analysis were performed: cell viability, intracellular ROS production and lipid peroxidation. Echocardiography was used to measure the heart function of the mice. qPCR and western blotting were used to assess the expression of Trim65, p53, SLC7A11, and GPX4. According to our study, Trim65 expression was significantly downregulated in DIC. Overexpression of Trim65 exhibited considerable protection against to DIC, confirmed by both in vitro and in vivo experiments. In DOX-treated mice, mitochondria deformation was observed in the heart, as well as a high level of lipid peroxidation (signs of ferroptosis) and iron content, which were mitigated by overexpression of Trim65. Mechanistically, our study confirmed that DOX reduced the Trim65-mediated ubiquitination of p53, ultimately inhibiting the degration of p53. We also found that Trim65 mitigated DOX-induced ferroptosis via p53. CONCLUSION Collectively, our data demonstrated that Trim65 inhibits ferroptosis by degrading p53, thereby alleviating DIC. Therefore, Trim65 could be a promising target for the treatment of DIC.
Collapse
Affiliation(s)
- Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wang Chen
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhihao Hu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Like Xie
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhaobing Li
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huan Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zili Li
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhentao Jiang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jiangwei Huang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Changrong Jiang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ke Huang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Chen T, Zhang Y, Ding L, Xiong C, Mei C, Wei S, Jiang M, Huang Y, Chen J, Xie T, Zhu Q, Zhang Q, Huang X, Chen S, Li Y. Tripartite Motif Containing 65 Deficiency Confers Protection Against Acute Kidney Injury via Alleviating Voltage-Dependent Anion Channel 1-Mediated Mitochondrial Dysfunction. MedComm (Beijing) 2025; 6:e70149. [PMID: 40264575 PMCID: PMC12013732 DOI: 10.1002/mco2.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/02/2025] [Accepted: 02/17/2025] [Indexed: 04/24/2025] Open
Abstract
Acute kidney injury (AKI) is a prevalent and serious clinical disease with a high incidence rate and significant health burden. The limited understanding of the complex pathological mechanisms has hindered the development of efficacious therapeutics. Tripartite motif containing 65 (TRIM65) has recently been identified as a key regulator of acute inflammation. However, its role in AKI remains unclear. The present study observed that TRIM65 expression was upregulated in AKI. Moreover, the knockout of the Trim65 gene in mice exhibited a substantial protective impact against rhabdomyolysis, ischemia-reperfusion (I/R), and cisplatin-induced AKI. Mechanistically, TRIM65 directly binds and mediates K48/K63-linked polyubiquitination modifications of voltage-dependent anion channel 1 (VDAC1) at its K161 and K200 amino acid sites. TRIM65 plays a role in maintaining the stability of VDAC1 and preventing its degradation by the autophagy pathway. TRIM65 deficiency attenuates mitochondrial dysfunction in renal tubular epithelial cells during AKI. Conversely, the overexpression of VDAC1 in renal tissues has been demonstrated to negate the protective effect of TRIM65 deficiency on AKI. These findings suggest that TRIM65 may play a role regulating of AKI through the targeting of VDAC1-dependent mitochondrial function, offering potential avenues for the development of new drug targets and strategies for the treatment of AKI.
Collapse
Affiliation(s)
- Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Liting Ding
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Chenlu Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Chao Mei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Sisi Wei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ming Jiang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jianrong Chen
- Department of Endocrinology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Shibiao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
3
|
Fahl K, Mauad T, de Brito JM, Costa NSX, Dantas DAS, de Souza HP, Sampaio RO, Sennes LU, Cahali MB. Upper airway microcirculation remodeling in obstructive sleep apnea is not driven by endothelial activation. Sci Rep 2025; 15:13355. [PMID: 40247075 PMCID: PMC12006345 DOI: 10.1038/s41598-025-98190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Microcirculation contributes significantly to blood flow resistance, with upper airway microcirculation in obstructive sleep apnea (OSA) affected by endothelial activation, perturbed blood flow shear stress, and snoring-induced tissue vibration. The relevance of these mechanisms on microcirculation response and remodeling remains largely unknown but may influence management decisions in OSA. This study analyzed pharyngeal muscle tissue from non-obese, young adult patients with OSA and chronic heavy snoring. We assessed arteriole morphometry and quantified the expression of endothelial activation markers: 8-isoprostane, vascular cell adhesion molecule-1, E-selectin, vascular endothelial growth factor, endothelin-1, and endothelial cell specific molecule-1. Morphometric analysis of 319 arterioles (mean of 8 vessels per patient) revealed thicker walls in severe OSA compared to mild OSA without lumen reduction, indicating outward hypertrophy, and a positive correlation between the apnea-hypopnea index (a measure of OSA severity) and arteriole wall thickness. However, analysis of 1872 arterioles showed no increase in endothelial activation markers with disease severity, either in the arteriole walls or muscle tissue. This suggests that, in young non-obese adults, severe OSA likely leads to adaptive, mechanically driven microcirculation outward hypertrophy, potentially due to perturbed shear stress, with potential implications for OSA management.
Collapse
Affiliation(s)
- Kristine Fahl
- Department of Otolaryngology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 255, 6° Andar, Sala 6167, Sao Paulo, SP, CEP 05403-000, Brazil
| | - Thais Mauad
- Department of Pathology (LIM 05), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jôse M de Brito
- Department of Pathology (LIM 05), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Natalia S X Costa
- Department of Pathology (LIM 05), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Danielle A S Dantas
- Department of Otolaryngology, Faculdade de Medicina, Universidade Federal de Pernambuco, Recife, Brazil
| | - Heraldo Possolo de Souza
- Emergency Medicine Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Roney O Sampaio
- Instituto Do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Luiz U Sennes
- Department of Otolaryngology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 255, 6° Andar, Sala 6167, Sao Paulo, SP, CEP 05403-000, Brazil
| | - Michel B Cahali
- Department of Otolaryngology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 255, 6° Andar, Sala 6167, Sao Paulo, SP, CEP 05403-000, Brazil.
| |
Collapse
|
4
|
Takano EA, Jana MK, Lara Gonzalez LE, Pang JMB, Salgado R, Loi S, Fox SB. Preliminary characterisation of the spatial immune and vascular environment in triple negative basal breast carcinomas using multiplex fluorescent immunohistochemistry. PLoS One 2025; 20:e0317331. [PMID: 39792888 PMCID: PMC11723538 DOI: 10.1371/journal.pone.0317331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population. We characterised the spatial immune environment in 10 basal breast cancers showing a range of tumour-infiltrating lymphocytes using multiplex fluorescent immunohistochemistry and quantitative digital analysis of CD3+ T cells. We examined their relationship to blood vessels and their activation status as defined by VCAM-1, ICAM-1 and PD-L1. Confirmation of the relationship between tumour-infiltrating lymphocytes and endothelial activation was performed through in silico analysis on TCGA BRCA RNA-seq data (N = 808). Significantly higher CD3+ T cell densities were observed in the stromal compartment compared with the neoplastic cell compartment (P = 0.003). ICAM-1 activated blood vessels were spatially associated with higher CD3+ T cell densities only within 30 microns of blood vessels compared with more distal activated and non-activated blood vessels (P = 0.041). In silico analysis confirmed higher numbers of tumour-infiltrating lymphocytes in basal breast cancers and that higher numbers were significantly associated with endothelial cell activation molecules, co-clustering with upregulated ICAM-1 and VCAM-1 amongst others. PD-L1 was also identified in a subset of blood vessels, suggesting an additional immune regulatory mechanism in endothelial cells. Regulating the activation status of tumour-associated vascular endothelial cells may improve T cell trafficking into basal breast tumours and enhance immunotherapeutic response.
Collapse
Affiliation(s)
- Elena A. Takano
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Metta K. Jana
- Centre for Advanced Histology and Microscopy, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Luis E. Lara Gonzalez
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jia-Min B. Pang
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Roberto Salgado
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- GZA-ZNA-Hospitals, Antwerp, Belgium
| | - Sherene Loi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Fonseca D, Pisanelli G, Seoane R, Miorin L, García-Sastre A. TRIM65 regulates innate immune signaling by enhancing K6-linked ubiquitination of IRF3 and its chromatin recruitment. Cell Rep 2024; 43:114960. [PMID: 39580801 DOI: 10.1016/j.celrep.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Viral infection triggers a rapid and effective cellular response primarily mediated by interferon β (IFNβ), which induces an antiviral state through complex signaling cascades. To maintain a robust antiviral response while preventing excessive activation, the induction of IFNβ and downstream signaling are tightly regulated. Members of the tripartite-motif (TRIM) family of E3 ubiquitin (Ub) ligases play crucial roles in modulating these processes. In this study, we demonstrate that TRIM65 interacts with interferon regulatory factor 3 (IRF3), a key transcription factor downstream of multiple innate immune signaling pathways, to regulate type-I IFN production. Specifically, TRIM65 activation enables interaction of TRIM65 BBCC domain with the IAD domain of IRF3. This interaction increases K6-linked ubiquitination of IRF3, enhancing IRF3 recruitment to chromatin and subsequent binding to the IFNβ promoter. This process boosts the expression of IFNβ and interferon-stimulated genes (ISGs), thereby strengthening the control of viral infection.
Collapse
Affiliation(s)
- Danae Fonseca
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via F. Delpino 1, 80137 Naples, Italy
| | - Rocío Seoane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
Wei S, Huang X, Zhu Q, Chen T, Zhang Y, Tian J, Pan T, Zhang L, Xie T, Zhang Q, Kuang X, Lei E, Li Y. TRIM65 deficiency alleviates renal fibrosis through NUDT21-mediated alternative polyadenylation. Cell Death Differ 2024; 31:1422-1438. [PMID: 38951701 PMCID: PMC11519343 DOI: 10.1038/s41418-024-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern and the third leading cause of premature death. Renal fibrosis is the primary process driving the progression of CKD, but the mechanisms behind it are not fully understood, making treatment options limited. Here, we find that the E3 ligase TRIM65 is a positive regulator of renal fibrosis. Deletion of TRIM65 results in a reduction of pathological lesions and renal fibrosis in mouse models of kidney fibrosis induced by unilateral ureteral obstruction (UUO)- and folic acid. Through screening with a yeast-hybrid system, we identify a new interactor of TRIM65, the mammalian cleavage factor I subunit CFIm25 (NUDT21), which plays a crucial role in fibrosis through alternative polyadenylation (APA). TRIM65 interacts with NUDT21 to induce K48-linked polyubiquitination of lysine 56 and proteasomal degradation, leading to the inhibition of TGF-β1-mediated SMAD and ERK1/2 signaling pathways. The degradation of NUDT21 subsequently altered the length and sequence content of the 3'UTR (3'UTR-APA) of several pro-fibrotic genes including Col1a1, Fn-1, Tgfbr1, Wnt5a, and Fzd2. Furthermore, reducing NUDT21 expression via hydrodynamic renal pelvis injection of adeno-associated virus 9 (AAV9) exacerbated UUO-induced renal fibrosis in the normal mouse kidneys and blocked the protective effect of TRIM65 deletion. These findings suggest that TRIM65 promotes renal fibrosis by regulating NUDT21-mediated APA and highlight TRIM65 as a potential target for reducing renal fibrosis in CKD patients.
Collapse
Affiliation(s)
- Sisi Wei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan Zhang
- Department of Biological Sciences, College of Sciences and Arts, Michigan Technological University, Houghton, MI, 49931-1295, USA
| | - Juan Tian
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tingyu Pan
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lv Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xian Kuang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Enjun Lei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
7
|
Jiang L, Chen S, Li S, Wang J, Chen W, Shi Y, Xiong W, Miao C. Exploring biomarkers for diagnosing and predicting organ dysfunction in patients with perioperative sepsis: a preliminary investigation. Perioper Med (Lond) 2024; 13:81. [PMID: 39049003 PMCID: PMC11267738 DOI: 10.1186/s13741-024-00438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE Early diagnosis and prediction of organ dysfunction are critical for intervening and improving the outcomes of septic patients. The study aimed to find novel diagnostic and predictive biomarkers of organ dysfunction for perioperative septic patients. METHOD This is a prospective, controlled, preliminary, and single-center study of emergency surgery patients. Mass spectrometry, Gene Ontology (GO) functional analysis, and the protein-protein interaction (PPI) network were performed to identify the differentially expressed proteins (DEPs) from sepsis patients, which were selected for further verification via enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was used to estimate the relative correlation of selected serum protein levels and clinical outcomes of septic patients. Calibration curves were plotted to assess the calibration of the models. RESULTS Five randomized serum samples per group were analyzed via mass spectrometry, and 146 DEPs were identified. GO functional analysis and the PPI network were performed to evaluate the molecular mechanisms of the DEPs. Six DEPs were selected for further verification via ELISA. Cathepsin B (CatB), vascular cell adhesion protein 1 (VCAM-1), neutrophil gelatinase-associated lipocalin (NGAL), protein S100-A9, prosaposin, and thrombospondin-1 levels were significantly increased in the patients with sepsis compared with those of the controls (p < 0.001). Logistic regression analysis showed that CatB, S100-A9, VCAM-1, prosaposin, and NGAL could be used for preoperative diagnosis and postoperative prediction of organ dysfunction. CatB and S100-A9 were possible predictive factors for preoperative diagnosis of renal failure in septic patients. Internal validation was assessed using the bootstrapping validation. The preoperative diagnosis of renal failure model displayed good discrimination with a C-index of 0.898 (95% confidence interval 0.843-0.954) and good calibration. CONCLUSION Serum CatB, S100-A9, VCAM-1, prosaposin, and NGAL may be novel markers for preoperative diagnosis and postoperative prediction of organ dysfunction. Specifically, S100-A9 and CatB were indicators of preoperative renal dysfunction in septic patients. Combining these two biomarkers may improve the accuracy of predicting preoperative septic renal dysfunction. TRIAL REGISTRATION The study was registered at the Chinese Clinical Trials Registry (ChiCTR2200060418) on June 1, 2022.
Collapse
Affiliation(s)
- Linghui Jiang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shiyu Chen
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shichao Li
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiaxing Wang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wannan Chen
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuncen Shi
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wanxia Xiong
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Changhong Miao
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Nenasheva VV, Stepanenko EA, Tarantul VZ. Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1283-1299. [PMID: 39218025 DOI: 10.1134/s0006297924070101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
The multigene TRIM family is an important component of the innate immune system. For a long time, the main function of the genes belonging to this family was believed to be an antiviral defense of the host organism. The issue of their participation in the immune system response to bacterial invasion has been less studied. This review is the first comprehensive analysis of the mechanisms of functioning of the TRIM family genes in response to bacterial infections, which expands our knowledge about the role of TRIM in the innate immune system. When infected with different types of bacteria, individual TRIM proteins regulate inflammatory, interferon, and other responses of the immune system in the cells, and also affect autophagy and apoptosis. Functioning of TRIM proteins in response to bacterial infection, as well as viral infection, often includes ubiquitination and various protein-protein interactions with both bacterial proteins and host cell proteins. At the same time, some TRIM proteins, on the contrary, contribute to the infection development. Different members of the TRIM family possess similar mechanisms of response to viral and bacterial infection, and the final impact of these proteins could vary significantly. New data on the effect of TRIM proteins on bacterial infections make an important contribution to a more detailed understanding of the innate immune system functioning in animals and humans when interacting with pathogens. This data could also be used for the search of new targets for antibacterial defense.
Collapse
|
9
|
Jackeline Pérez-Vega M, Manuel Corral-Ruiz G, Galán-Salinas A, Silva-García R, Mancilla-Herrera I, Barrios-Payán J, Fabila-Castillo L, Hernández-Pando R, Enid Sánchez-Torres L. Acute lung injury is prevented by monocyte locomotion inhibitory factor in an experimental severe malaria mouse model. Immunobiology 2024; 229:152823. [PMID: 38861873 DOI: 10.1016/j.imbio.2024.152823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Acute lung injury caused by severe malaria (SM) is triggered by a dysregulated immune response towards the infection with Plasmodium parasites. Postmortem analysis of human lungs shows diffuse alveolar damage (DAD), the presence of CD8 lymphocytes, neutrophils, and increased expression of Intercellular Adhesion Molecule 1 (ICAM-1). P. berghei ANKA (PbA) infection in C57BL/6 mice reproduces many SM features, including acute lung injury characterized by DAD, CD8+ T lymphocytes and neutrophils in the lung parenchyma, and tissular expression of proinflammatory cytokines and adhesion molecules, such as IFNγ, TNFα, ICAM, and VCAM. Since this is related to a dysregulated immune response, immunomodulatory agents are proposed to reduce the complications of SM. The monocyte locomotion inhibitory factor (MLIF) is an immunomodulatory pentapeptide isolated from axenic cultures of Entamoeba hystolitica. Thus, we evaluated if the MLIF intraperitoneal (i.p.) treatment prevented SM-induced acute lung injury. The peptide prevented SM without a parasiticidal effect, indicating that its protective effect was related to modifications in the immune response. Furthermore, peripheral CD8+ leukocytes and neutrophil proportions were higher in infected treated mice. However, the treatment prevented DAD, CD8+ cell infiltration into the pulmonary tissue and downregulated IFNγ. Moreover, VCAM-1 expression was abrogated. These results indicate that the MLIF treatment downregulated adhesion molecule expression, impeding cell migration and proinflammatory cytokine tissular production, preventing acute lung injury induced by SM. Our findings represent a potential novel strategy to avoid this complication in various events where a dysregulated immune response triggers lung injury.
Collapse
Affiliation(s)
- Martha Jackeline Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gerardo Manuel Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Adrian Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Raúl Silva-García
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, CMN-Siglo XXI, IMSS, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | | | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Shen S, Yan R, Xie Z, Yu X, Liang H, You Q, Zhang H, Hou J, Zhang X, Liu Y, Sun J, Guo H. Tripartite Motif-Containing Protein 65 (TRIM65) Inhibits Hepatitis B Virus Transcription. Viruses 2024; 16:890. [PMID: 38932182 PMCID: PMC11209081 DOI: 10.3390/v16060890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Tripartite motif (TRIM) proteins, comprising a family of over 100 members with conserved motifs, exhibit diverse biological functions. Several TRIM proteins influence viral infections through direct antiviral mechanisms or by regulating host antiviral innate immune responses. To identify TRIM proteins modulating hepatitis B virus (HBV) replication, we assessed 45 human TRIMs in HBV-transfected HepG2 cells. Our study revealed that ectopic expression of 12 TRIM proteins significantly reduced HBV RNA and subsequent capsid-associated DNA levels. Notably, TRIM65 uniquely downregulated viral pregenomic (pg) RNA in an HBV-promoter-specific manner, suggesting a targeted antiviral effect. Mechanistically, TRIM65 inhibited HBV replication primarily at the transcriptional level via its E3 ubiquitin ligase activity and intact B-box domain. Though HNF4α emerged as a potential TRIM65 substrate, disrupting its binding site on the HBV genome did not completely abolish TRIM65's antiviral effect. In addition, neither HBx expression nor cellular MAVS signaling was essential to TRIM65-mediated regulation of HBV transcription. Furthermore, CRISPR-mediated knock-out of TRIM65 in the HepG2-NTCP cells boosted HBV infection, validating its endogenous role. These findings underscore TRIM proteins' capacity to inhibit HBV transcription and highlight TRIM65's pivotal role in this process.
Collapse
Affiliation(s)
- Sheng Shen
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (S.S.); (Z.X.); (H.L.); (Q.Y.); (J.H.); (X.Z.)
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (X.Y.); (H.Z.); (Y.L.)
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Ran Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Zhanglian Xie
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (S.S.); (Z.X.); (H.L.); (Q.Y.); (J.H.); (X.Z.)
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Xiaoyang Yu
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (X.Y.); (H.Z.); (Y.L.)
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Hongyan Liang
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (S.S.); (Z.X.); (H.L.); (Q.Y.); (J.H.); (X.Z.)
| | - Qiuhong You
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (S.S.); (Z.X.); (H.L.); (Q.Y.); (J.H.); (X.Z.)
| | - Hu Zhang
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (X.Y.); (H.Z.); (Y.L.)
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Jinlin Hou
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (S.S.); (Z.X.); (H.L.); (Q.Y.); (J.H.); (X.Z.)
| | - Xiaoyong Zhang
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (S.S.); (Z.X.); (H.L.); (Q.Y.); (J.H.); (X.Z.)
| | - Yuanjie Liu
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (X.Y.); (H.Z.); (Y.L.)
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Jian Sun
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (S.S.); (Z.X.); (H.L.); (Q.Y.); (J.H.); (X.Z.)
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (X.Y.); (H.Z.); (Y.L.)
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
11
|
Zhang Q, Li Y, Zhu Q, Xie T, Xiao Y, Zhang F, Li N, Deng K, Xin H, Huang X. TRIM65 promotes renal cell carcinoma through ubiquitination and degradation of BTG3. Cell Death Dis 2024; 15:355. [PMID: 38777825 PMCID: PMC11111765 DOI: 10.1038/s41419-024-06741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
As a typical E3 ligase, TRIM65 (tripartite motif containing 65) is involved in the regulation of antiviral innate immunity and the pathogenesis of certain tumors. However, the role of TRIM65 in renal cell carcinoma (RCC) and the underlying mechanism has not been determined yet. In this study, we identified TRIM65 as a novel oncogene in RCC, which enhanced the tumor cell proliferation and anchorage-independent growth abilities both in vitro and in vivo. Moreover, we found that TRIM65-regulated RCC proliferation mainly via direct interaction with BTG3 (BTG anti-proliferation factor 3), which in turn induced the K48-linked ubiquitination and subsequent degradation through K41 amino acid. Furthermore, TRIM65 relieved G2/M phase cell cycle arrest via degradation of BTG3 and regulated downstream factors. Further studies revealed that TRIM65 acts through TRIM65-BTG3-CyclinD1 axis and clinical sample IHC chip data indicated a negative correction between TRIM65 and BTG3. Taken together, our findings demonstrated that TRIM65 promotes RCC cell proliferation via regulation of the cell cycle through degradation of BTG3, suggesting that TRIM65 may be a promising target for RCC therapy.
Collapse
Affiliation(s)
- Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yue Xiao
- First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, 330031, China
| | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
12
|
Wei S, Ai M, Zhan Y, Yu J, Xie T, Hu Q, Fang Y, Huang X, Li Y. TRIM14 suppressed the progression of NSCLC via hexosamine biosynthesis pathway. Carcinogenesis 2024; 45:324-336. [PMID: 38267812 DOI: 10.1093/carcin/bgae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024] Open
Abstract
Tripartite Motif 14 (TRIM14) is an oncoprotein that belongs to the E3 ligase TRIM family, which is involved in the progression of various tumors except for non-small cell lung carcinoma (NSCLC). However, little is currently known regarding the function and related mechanisms of TRIM14 in NSCLC. Here, we found that the TRIM14 protein was downregulated in lung adenocarcinoma tissues compared with the adjacent tissues, which can suppress tumor cell proliferation and migration both in vitro and in vivo. Moreover, TRIM14 can directly bind to glutamine fructose-6-phosphate amidotransferase 1 (GFAT1), which in turn results in the degradation of GFAT1 and reduced O-glycosylation levels. GFAT1 is a key enzyme in the rate-limiting step of the hexosamine biosynthetic pathway (HBP). Replenishment of N-acetyl-d-glucosamine can successfully reverse the inhibitory effect of TRIM14 on the NSCLC cell growth and migration as expected. Collectively, our data revealed that TRIM14 suppressed NSCLC cell proliferation and migration through ubiquitination and degradation of GFAT1, providing a new regulatory role for TRIM14 on HBP.
Collapse
Affiliation(s)
- Sisi Wei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meiling Ai
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- Department of Pharmacy, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Yuan Zhan
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jieqing Yu
- Department of Otorhinolaryngology Head and Neck Surgery, Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qinghua Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yang Fang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
13
|
Gao P, Liu Y, Wang X, Feng X, Liu H, Liu S, Huang X, Wu X, Xiong F, Jia X, Hui H, Jiang J, Tian J. Adhesion molecule-targeted magnetic particle imaging nanoprobe for visualization of inflammation in acute lung injury. Eur J Nucl Med Mol Imaging 2024; 51:1233-1245. [PMID: 38095676 DOI: 10.1007/s00259-023-06550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/27/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Uncontrolled intra-alveolar inflammation is a central pathogenic feature, and its severity translates into a valid prognostic indicator of acute lung injury (ALI). Unfortunately, current clinical imaging approaches are unsuitable for visualizing and quantifying intra-alveolar inflammation. This study aimed to construct a small-sized vascular cell adhesion molecule-1 (VCAM-1)-targeted magnetic particle imaging (MPI) nanoprobe (ESPVPN) to visualize and accurately quantify intra-alveolar inflammation at the molecular level. METHODS ESPVPN was engineered by conjugating a peptide (VHPKQHRGGSK(Cy7)GC) onto a polydopamine-functionalized superparamagnetic iron oxide core. The MPI performance, targeting, and biosafety of the ESPVPN were characterized. VCAM-1 expression in HUVECs and mouse models was evaluated by western blot. The degree of inflammation and distribution of VCAM-1 in the lungs were assessed using histopathology. The expression of pro-inflammatory markers and VCAM-1 in lung tissue lysates was measured using ELISA. After intravenous administration of ESPVPN, MPI and CT imaging were used to analyze the distribution of ESPVPN in the lungs of the LPS-induced ALI models. RESULTS The small-sized (~10 nm) ESPVPN exhibited superior MPI performance compared to commercial MagImaging® and Vivotrax, and ESPVPN had effective targeting and biosafety. VCAM-1 was highly expressed in LPS-induced ALI mice. VCAM-1 expression was positively correlated with the LPS-induced dose (R = 0.9381). The in vivo MPI signal showed positive correlations with both VCAM-1 expression (R = 0.9186) and representative pro-inflammatory markers (MPO, TNF-α, IL-6, IL-8, and IL-1β, R > 0.7). CONCLUSION ESPVPN effectively targeted inflammatory lungs and combined the advantages of MPI quantitative imaging to visualize and evaluate the degree of ALI inflammation.
Collapse
Affiliation(s)
- Pengli Gao
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Liu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, 261053, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, No. 16 Xinjiekou Outer Street, Beijing, 100088, China
| | - Songlu Liu
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiazi Huang
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangjun Wu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Xiong
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jingying Jiang
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
14
|
Luo J, Luo Y, Chen J, Gao Y, Tan J, Yang Y, Yang C, Jiang N, Luo Y. Intestinal metabolite UroB alleviates cerebral ischemia/reperfusion injury by promoting competition between TRIM65 and TXNIP for binding to NLRP3 inflammasome in response to neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167056. [PMID: 38360072 DOI: 10.1016/j.bbadis.2024.167056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Our previous research suggests that targeting NLRP3 inflammasomes holds promise for mitigating cerebral ischemia/reperfusion injury. The gut metabolite Urolithin B (UroB) has been shown to inhibit the neuroinflammation. However, the specific role of UroB in cerebral ischemia/reperfusion injury and its potential impact on NLRP3 inflammasome remain unclear. In this study, acute stroke was simulated using the MCAO model in male Sprague-Dawley rats. UroB was intraperitoneally administered after 1 h of reperfusion. The effects of UroB on brain tissue were evaluated, including infarct volume, brain edema, and neurobehavioral changes. Western blotting and immunofluorescence were performed to investigate the effect of UroB on inflammation-related proteins. Furthermore, TRIM65 knockdown and TXNIP overexpression experiments elucidated the role of UroB in NLRP3 inflammasome activation. The ( demonstrate the neuroprotective effect of UroB in acute stroke, reducing brain tissue damage and improving motor function. Mechanistically, UroB modulated neuroinflammation by influencing TXNIP and TRIM65 protein expression, as well as competitive binding to the NLRP3 inflammasome, attenuating cerebral ischemia/reperfusion injury. In conclusion, the potential of UroB as a protective agent against cerebral ischemia/reperfusion injury in acute stroke stands out as it regulates TRIM65 and TXNIP competitive binding to the NLRP3 inflammasome. These findings suggest that UroB is a promising drug candidate for the treatment of acute stroke.
Collapse
Affiliation(s)
- Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujia Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jialei Chen
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China; Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Tan
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongkang Yang
- Department of Clinical Medicine, Clinical Medical College of Chengdu University, Chengdu, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Zhou ZX, Ma XF, Xiong WH, Ren Z, Jiang M, Deng NH, Zhou BB, Liu HT, Zhou K, Hu HJ, Tang HF, Zheng H, Jiang ZS. TRIM65 promotes vascular smooth muscle cell phenotypic transformation by activating PI3K/Akt/mTOR signaling during atherogenesis. Atherosclerosis 2024; 390:117430. [PMID: 38301602 DOI: 10.1016/j.atherosclerosis.2023.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND AND AIMS Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.
Collapse
Affiliation(s)
- Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Miao Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Nian-Hua Deng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Bo-Bin Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Heng-Jing Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hui-Fang Tang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - He Zheng
- Department of Hepatobiliary Surgery, The Central Hospital of Shaoyang City and The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang City, 422000, PR China.
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China.
| |
Collapse
|
16
|
Jiang M, Wang D, Su N, Lou W, Chen Y, Yang H, Chen C, Xi F, Chen Y, Deng L, Tang X. TRIM65 knockout inhibits the development of HCC by polarization tumor-associated macrophages towards M1 phenotype via JAK1/STAT1 signaling pathway. Int Immunopharmacol 2024; 128:111494. [PMID: 38218012 DOI: 10.1016/j.intimp.2024.111494] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND & AIMS Tumor-associated macrophages (TAMs) are main components of immune cells in tumor microenvironment (TME), and play a crucial role in tumor progression. Tripartite motif-containing protein 65 (TRIM65) has been associated with tumor progression. However, whether TRIM65 regulate the interaction of tumor cell and TAMs in HCC and the underlying mechanisms remain unknown. In this study, we investigated the role of TRIM65 in TME of HCC and explored its underlying mechanisms. METHODS The relation of TRIM65 expression level with tumor grades, TNM stages, and worse prognosis of HCC patients was evaluated by bioinformatics analysis, as well as immune infiltration level of macrophages. TRIM65 shRNA was transfected into HepG2 cells, and TRIM65 overexpression plasmid was transfected into Huh7 cells, and the effect of TRIM65 on cell growth was examined by EdU assay. The mouse subcutaneous Hep1-6 tumor-bearing model with WT and TRIM65-/- mice was established to study the role of TRIM65 in HCC. Immunohistochemistry staining, Immunofluorescence staining, qRT-PCR and western blot were performed to evaluate the effect of TRIM65 on TAM infiltration, TAM polarization and JAK1/STAT1 signaling pathway. RESULTS Bioinformatics analysis revealed that TRIM65 was upregulated in 16 types of cancer especially in HCC, and high level of TRIM65 was strongly correlated with higher tumor grades, TNM stages, and worse prognosis of patients with HCC as well as immune infiltration level of macrophages (M0, M1, and M2). Moreover, we observed that TRIM65 shRNA-mediated TRIM65 knockdown significantly inhibited the HepG2 cells growth while TRIM65 overexpression highly increased the Huh7 cells growth in vitro. TRIM65 knockout significantly inhibited the tumor growth as well as macrophages polarization towards M2 but promoted macrophages polarization towards M1 in vivo. Mechanistically, the results demonstrate that TRIM65 knockout promoted macrophage M1 polarization in conditioned medium-stimulated peritoneal macrophages and in tumor tissues by activating JAK1/STAT1 signaling pathway. CONCLUSIONS Taken together, our study suggests that tumor cells utilize TRIM65-JAK1/STAT1 axis to inhibit macrophage M1 polarization and promote tumor growth, reveals the role of TRIM65 in TAM-targeting tumor immunotherapy.
Collapse
Affiliation(s)
- Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Dan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Ning Su
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Weiming Lou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Yinni Chen
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Haiyan Yang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Chen Chen
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Feiyang Xi
- The QUEEN MARY School, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Libin Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Xiaoli Tang
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
17
|
Huang Y, Chen T, Jiang M, Xiong C, Mei C, Nie J, Zhang Q, Zhu Q, Huang X, Zhang X, Li Y. E3 ligase TRIM65 alleviates intestinal ischemia/reperfusion injury through inhibition of TOX4-mediated apoptosis. Cell Death Dis 2024; 15:29. [PMID: 38212319 PMCID: PMC10784301 DOI: 10.1038/s41419-023-06410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Intestinal ischemia-reperfusion (II/R) injury is an urgent clinical disease with high incidence and mortality, and impaired intestinal barrier function caused by excessive apoptosis of intestinal cells is an important cause of its serious consequences. Tripartite motif-containing protein 65 (TRIM65) is an E3 ubiquitin ligase that is recently reported to suppress the inflammatory response and apoptosis. However, the biological function and regulation of TRIM65 in II/R injury are totally unknown. We found that TRIM65 was significantly decreased in hypoxia-reoxygenation (H/R) induced intestinal epithelial cells and II/R-induced intestine tissue. TRIM65 knockout mice markedly aggravated intestinal apoptosis and II/R injury. To explore the molecular mechanism of TRIM65 in exacerbating II/R-induced intestinal apoptosis and damage, thymocyte selection-associated high mobility group box factor 4 (TOX4) was screened out as a novel substrate of TRIM65 using the yeast two-hybrid system. TRIM65 binds directly to the N-terminal of TOX4 through its coiled-coil and SPRY structural domains. Immunofluorescence confocal microscopy showed that they can co-localize both in the cytoplasm and nucleus. Furthermore, TRIM65 mediated the K48 ubiquitination and degradation of TOX4 depending on its E3 ubiquitin ligase activity. In addition, TRIM65 inhibits H/R-induced intestinal epithelial apoptosis via TOX4. In summary, our results indicated that TRIM65 promotes ubiquitination and degradation of TOX4 to inhibit apoptosis in II/R. These findings provide a promising target for the clinical treatment of II/R injury.
Collapse
Affiliation(s)
- Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Ming Jiang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Chenlu Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Chao Mei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Jinping Nie
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China.
| | - Xuekang Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
| |
Collapse
|
18
|
Ma XF, Zhou YR, Zhou ZX, Liu HT, Zhou BB, Deng NH, Zhou K, Tian Z, Wu ZF, Liu XY, Fu MG, Jiang ZS. TRIM65 Suppresses oxLDL-induced Endothelial Inflammation by Interaction with VCAM-1 in Atherogenesis. Curr Med Chem 2024; 31:4898-4911. [PMID: 37608612 DOI: 10.2174/0929867331666230822152350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Endothelial cell activation, characterized by increased levels of vascular cell adhesion molecule 1 (VCAM-1), plays a crucial role in the development of atherosclerosis (AS). Therefore, inhibition of VCAM-1-mediated inflammatory response is of great significance in the prevention and treatment of AS. The tripartite motif (TRIM) protein-TRIM65 is involved in the regulation of cancer development, antivirals and inflammation. We aimed to study the functions of TRIM65 in regulating endothelial inflammation by interacting with VCAM-1 in atherogenesis. METHODS AND RESULTS In vitro, we report that human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (oxLDL) significantly upregulate the expression of TRIM65 in a time- and dose-dependent manner. Overexpression of TRIM65 reduces oxLDL-triggered VCAM-1 protein expression, decreases monocyte adhesion to HUVECs and inhibits the production of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α as well as endothelial oxLDL transcytosis. In contrast, siRNA-mediated knockdown of TRIM65 promotes the expression of VCAM-1, resulting in increased adhesion of monocytes and the release of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α and enhances endothelial oxLDL transcytosis. In vivo, we measured the high expression of TRIM65 in ApoE-/- mouse aortic plaques compared to C57BL/6J mouse aortic plaques. Then, we examined whether the blood levels of VCAM-1 were higher in TRIM65 knockout ApoE-/- mice than in control mice induced by a Western diet. Furthermore, Western blot results showed that the protein expression of VCAM-1 was markedly enhanced in TRIM65 knockout ApoE-/- mouse aortic tissues compared to that of the controls. Immunofluorescence staining revealed that the expression of VCAM-1 was significantly increased in atherosclerotic plaques of TRIM65-/-/ApoE-/- aortic vessels compared to ApoE-/- controls. Mechanistically, TRIM65 specifically interacts with VCAM-1 and targets it for K48-linked ubiquitination. CONCLUSION Our studies indicate that TRIM65 attenuates the endothelial inflammatory response by targeting VCAM-1 for ubiquitination and provides a potential therapeutic target for the inhibition of endothelial inflammation in AS.
Collapse
Affiliation(s)
- Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Yi-Ren Zhou
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhi-Xiang Zhou
- Key Laboratory for Arteriosclerosis of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Hui-Ting Liu
- Key Laboratory for Arteriosclerosis of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Bo-Bin Zhou
- Key Laboratory for Arteriosclerosis of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Nian-Hua Deng
- Key Laboratory for Arteriosclerosis of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Kun Zhou
- Key Laboratory for Arteriosclerosis of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhen Tian
- Key Laboratory for Arteriosclerosis of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Ze-Fan Wu
- Key Laboratory for Arteriosclerosis of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Xi-Yan Liu
- Key Laboratory for Arteriosclerosis of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Ming-Gui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Zhi-Sheng Jiang
- Key Laboratory for Arteriosclerosis of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| |
Collapse
|
19
|
Arioka M, Seto-Tetsuo F, Inoue T, Miura K, Ishikane S, Igawa K, Tomooka K, Takahashi-Yanaga F, Sasaguri T. Differentiation-inducing factor-1 reduces lipopolysaccharide-induced vascular cell adhesion molecule-1 by suppressing mTORC1-S6K signaling in vascular endothelial cells. Life Sci 2023; 335:122278. [PMID: 37981227 DOI: 10.1016/j.lfs.2023.122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
AIMS Differentiation-inducing factor-1 (DIF-1), a compound in Dictyostelium discoideum, exhibits anti-cancer effects by inhibiting cell proliferation and motility of various mammalian cancer cells in vitro and in vivo. In addition, DIF-1 suppresses lung colony formation in a mouse model, thus impeding cancer metastasis. However, the precise mechanism underlying its anti-metastatic effect remains unclear. In the present study, we aim to elucidate this mechanism by investigating the adhesion of circulating tumor cells to blood vessels using in vitro and in vivo systems. MAIN METHODS Melanoma cells (1.0 × 105 cells) were injected into the tail vein of 8-week-old male C57BL/6 mice after administration of DIF-1 (300 mg/kg per day) and/or lipopolysaccharide (LPS: 2.5 mg/kg per day). To investigate cell adhesion and molecular mechanisms, cell adhesion assay, western blotting, immunofluorescence staining, and flow cytometry were performed. KEY FINDINGS Intragastric administration of DIF-1 suppressed lung colony formation. DIF-1 also substantially inhibited the adhesion of cancer cells to human umbilical vein endothelial cells. Notably, DIF-1 did not affect the expression level of adhesion-related proteins in cancer cells, but it did decrease the expression of vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells by suppressing its mRNA-to-protein translation through inhibition of mTORC1-p70 S6 kinase signaling. SIGNIFICANCE DIF-1 reduced tumor cell adhesion to blood vessels by inhibiting mTORC1-S6K signaling and decreasing the expression of adhesion molecule VCAM-1 on vascular endothelial cells. These findings highlight the potential of DIF-1 as a promising compound for the development of anti-cancer drugs with anti-metastatic properties.
Collapse
Affiliation(s)
- Masaki Arioka
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Fumi Seto-Tetsuo
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Microbiology and Oral Infection, Graduate School of Biochemical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Takeru Inoue
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Koichi Miura
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Ishikane
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Kazunobu Igawa
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Japan.
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Toshiyuki Sasaguri
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
20
|
Wang Y, Yixiong Z, Wang L, Huang X, Xin HB, Fu M, Qian Y. E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies. J Cardiovasc Pharmacol 2023; 82:93-103. [PMID: 37314134 PMCID: PMC10527814 DOI: 10.1097/fjc.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.
Collapse
Affiliation(s)
- Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhan Yixiong
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| | - Linsiqi Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| |
Collapse
|
21
|
Wang J, He Y, Zhou D. The role of ubiquitination in microbial infection induced endothelial dysfunction: potential therapeutic targets for sepsis. Expert Opin Ther Targets 2023; 27:827-839. [PMID: 37688775 DOI: 10.1080/14728222.2023.2257888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION The ubiquitin system is an evolutionarily conserved and universal means of protein modification that regulates many essential cellular processes. Endothelial dysfunction plays a critical role in the pathophysiology of sepsis and organ failure. However, the mechanisms underlying the ubiquitination-mediated regulation on endothelial dysfunction are not fully understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of diverse ubiquitination events in endothelial cells, discussing the fundamental role of ubiquitination mediated regulations involving in endothelial dysfunction to provide potential therapeutic targets for sepsis. EXPERT OPINION The central event underlying sepsis syndrome is the overwhelming host inflammatory response to the pathogen infection, leading to endothelial dysfunction. As the key components of the ubiquitin system, E3 ligases are at the center stage of the battle between host and microbial pathogens. Such a variety of ubiquitination regulates a multitude of cellular regulatory processes, including signal transduction, autophagy, inflammasome activation, redox reaction and immune response and so forth. In this review, we discuss the many mechanisms of ubiquitination-mediated regulation with a focus on those that modulate endothelial function to provide potential therapeutic targets for the management of sepsis.
Collapse
Affiliation(s)
- Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
22
|
Liu S, Bi H, Jiang M, Chen Y, Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed Pharmacother 2023; 160:114321. [PMID: 36736278 DOI: 10.1016/j.biopha.2023.114321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium arteries that includes lipid metabolism disorder and recruitment of immune cells to the artery wall. An increasing number of studies have confirmed that inflammasome over-activation is associated with the onset and progression of atherosclerosis. The NLRP3 inflammasome, in particular, has been proven to increase the incidence rate of cardiovascular diseases (CVD) by promoting pro-inflammatory cytokine release and reducing plaque stability. The strict control of inflammasome and prevention of excessive inflammatory reactions have been the research focus of inflammatory diseases. Tripartite motif (TRIM) is a protein family with a conservative structure and rapid evolution. Several studies have demonstrated the TRIM family's regulatory role in mediating inflammation. This review aims to clarify the relationship between TRIMs and NLRP3 inflammasome and provide insights for future research and treatment discovery.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY school, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Hongfeng Bi
- Medical Equipment Department, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Meiling Jiang
- Department of obstetrics, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
23
|
Machine learning and bioinformatics to identify 8 autophagy-related biomarkers and construct gene regulatory networks in dilated cardiomyopathy. Sci Rep 2022; 12:15030. [PMID: 36056063 PMCID: PMC9440113 DOI: 10.1038/s41598-022-19027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a condition of impaired ventricular remodeling and systolic diastole that is often complicated by arrhythmias and heart failure with a poor prognosis. This study attempted to identify autophagy-related genes (ARGs) with diagnostic biomarkers of DCM using machine learning and bioinformatics approaches. Differential analysis of whole gene microarray data of DCM from the Gene Expression Omnibus (GEO) database was performed using the NetworkAnalyst 3.0 platform. Differentially expressed genes (DEGs) matching (|log2FoldChange ≥ 0.8, p value < 0.05|) were obtained in the GSE4172 dataset by merging ARGs from the autophagy gene libraries, HADb and HAMdb, to obtain autophagy-related differentially expressed genes (AR-DEGs) in DCM. The correlation analysis of AR-DEGs and their visualization were performed using R language. Gene Ontology (GO) enrichment analysis and combined multi-database pathway analysis were served by the Enrichr online enrichment analysis platform. We used machine learning to screen the diagnostic biomarkers of DCM. The transcription factors gene regulatory network was constructed by the JASPAR database of the NetworkAnalyst 3.0 platform. We also used the drug Signatures database (DSigDB) drug database of the Enrichr platform to screen the gene target drugs for DCM. Finally, we used the DisGeNET database to analyze the comorbidities associated with DCM. In the present study, we identified 23 AR-DEGs of DCM. Eight (PLEKHF1, HSPG2, HSF1, TRIM65, DICER1, VDAC1, BAD, TFEB) molecular markers of DCM were obtained by two machine learning algorithms. Transcription factors gene regulatory network was established. Finally, 10 gene-targeted drugs and complications for DCM were identified.
Collapse
|
24
|
Yao H, Xie W, Dai Y, Liu Y, Gu W, Li J, Wu L, Xie J, Rui W, Ren B, Xue L, Cheng Y, Lin S, Li C, Tang H, Wang Y, Lou M, Zhang X, Hu R, Shang H, Huang J, Wu ZB. TRIM65 determines the fate of a novel subtype of pituitary neuroendocrine tumors via ubiquitination and degradation of TPIT. Neuro Oncol 2022; 24:1286-1297. [PMID: 35218667 PMCID: PMC9340636 DOI: 10.1093/neuonc/noac053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Pituitary neuroendocrine tumors (PitNETs) are common intracranial tumors that are classified into seven histological subtypes, including lactotroph, somatotroph, corticotroph, thyrotroph, gonadotroph, null cell, and plurihormonal PitNETs. However, the molecular characteristics of these types of PitNETs are not completely clear. METHODS A total of 180 consecutive cases of PitNETs were collected to perform RNA sequencing. All subtypes of PitNETs were distinguished by unsupervised clustering analysis. We investigated the regulation of TPIT by TRIM65 and its effects on ACTH production and secretion in ACTH-secreting pituitary cell lines, as well as in murine models using biochemical analyses, confocal microscopy, and luciferase reporter assays. RESULTS A novel subtype of PitNETs derived from TPIT lineage cells was identified as with normal TPIT transcription but with lowered protein expression. Furthermore, for the first time, TRIM65 was identified as the E3 ubiquitin ligase of TPIT. Depending on the RING domain, TRIM65 ubiquitinated and degraded the TPIT protein at multiple Lys sites. In addition, TRIM65-mediated ubiquitination of TPIT inhibited POMC transcription and ACTH production to determine the fate of the novel subtype of PitNETs in vitro and in vivo. CONCLUSION Our studies provided a novel classification of PitNETs and revealed that the TRIM65-TPIT complex controlled the fate of the novel subtype of PitNETs, which provides a potential therapy target for Cushing's disease.
Collapse
Affiliation(s)
- Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqun Xie
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Gu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Rui
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bohan Ren
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Cheng
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changsheng Li
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ronggui Hu
- State Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai,China
| | - Hanbing Shang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Qian Y, Wang Z, Lin H, Lei T, Zhou Z, Huang W, Wu X, Zuo L, Wu J, Liu Y, Wang LF, Guan XH, Deng KY, Fu M, Xin HB. TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2. Signal Transduct Target Ther 2022; 7:148. [PMID: 35513381 PMCID: PMC9072678 DOI: 10.1038/s41392-022-00953-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/18/2022] Open
Abstract
Endothelial activation plays an essential role in the pathogenesis of sepsis-induced acute lung injury, however, the detailed regulatory mechanisms remain largely unknown. Here, we reported that TRIM47, an E3 ubiquitin ligase of the tripartite motif-containing protein family, was highly expressed in vascular endothelial cells. TRIM47-deficient mice were effectively resistant to lipopolysaccharide (LPS)-induced acute lung injury and death by attenuating pulmonary inflammation. TRIM47 was upregulated during TNFα-induced endothelial activation in vitro. Knockdown of TRIM47 in endothelial cells inhibited the transcription of multiple pro-inflammatory cytokines, reduced monocyte adhesion and the expression of adhesion molecules, and suppressed the secretion of IL-1β and IL-6 in endothelial cells. By contrast, overexpression of TRIM47 promoted inflammatory response and monocyte adhesion upon TNFα stimulation. In addition, TRIM47 was able to activate the NF-κB and MAPK signaling pathways during endothelial activation. Furthermore, our experiments revealed that TRIM47 resulted in endothelial activation by promoting the K63-linked ubiquitination of TRAF2, a key component of the TNFα signaling pathway. Taken together, our studies demonstrated that TRIM47 as a novel activator of endothelial cells, promoted LPS-induced pulmonary inflammation and acute lung injury through potentiating the K63-linked ubiquitination of TRAF2, which in turn activates NF-κB and MAPK signaling pathways to trigger an inflammatory response in endothelial cells.
Collapse
Affiliation(s)
- Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Ziwei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Hongru Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Tianhua Lei
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Zhou Zhou
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Weilu Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Xuehan Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Li Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Mingui Fu
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China.
| |
Collapse
|
26
|
Wang XY, Mao HW, Guan XH, Huang QM, Yu ZP, Wu J, Tan HL, Zhang F, Huang X, Deng KY, Xin HB. TRIM65 Promotes Cervical Cancer Through Selectively Degrading p53-Mediated Inhibition of Autophagy and Apoptosis. Front Oncol 2022; 12:853935. [PMID: 35402260 PMCID: PMC8987532 DOI: 10.3389/fonc.2022.853935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif containing 65 (TRIM65) is an E3 ubiquitin ligase that has been implicated in a variety of cellular processes as well as tumor progression, but its biological role and the underlying mechanism in cervical cancer is unclear. Here, we reported that TRIM65 expression in human cervical cancer tissues was significantly higher than that in the adjacent normal cervical tissues, and TRIM65 knockdown enhanced autophagic flux and cell apoptosis, but not cell cycle, to dramatically inhibit the proliferation and migration of cervical cancer cells. Furthermore, our experiments showed that TRIM65 exhibited oncogenic activities via directly targeting p53, a tumor suppressor and a common upsteam regulator between autophagy and apoptosis, promoting ubiquitination and proteasomal degradation of p53. Taken together, our studies demonstrated that TRIM65 knockdown promotes cervical cancer cell death through enhancing autophagy and apoptosis, suggesting that TRIM65 may be a potential therapeutic target for cervical cancer clinically.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Hai-Wei Mao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- Outpatient Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- *Correspondence: Hong-Bo Xin, ; Ke-Yu Deng,
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- *Correspondence: Hong-Bo Xin, ; Ke-Yu Deng,
| |
Collapse
|
27
|
Deng NH, Zhou ZX, Liu HT, Tian Z, Wu ZF, Liu XY, Xiong WH, Wang Z, Jiang ZS. TRIMs: Generalists Regulating the NLRP3 Inflammasome Signaling Pathway. DNA Cell Biol 2022; 41:262-275. [PMID: 35180350 PMCID: PMC8972007 DOI: 10.1089/dna.2021.0943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Inflammation is a double-edged sword. The moderate inflammatory response is a fundamental defense mechanism produced by the body's resistance to dangerous stimuli and a repair process of the body itself. Increasing studies have confirmed that the overactivation of the inflammasome is involved in the occurrence and development of inflammatory diseases. Strictly controlling the overactivation of the inflammasome and preventing excessive inflammatory response have always been the research focus on inflammatory diseases. However, the endogenous regulatory mechanism of inflammasome is not completely clear. The tripartite motif (TRIM) protein is one of the members of E3 ligases in the process of ubiquitination. The universality and importance of the functions of TRIM members are recognized, including the regulation of inflammatory response. This article will focus on research on the relationship between TRIMs and NLRP3 Inflammasome, which may help us make some references for future related research and the discovery of treatment methods.
Collapse
Affiliation(s)
- Nian-Hua Deng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Zhen Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Ze-Fan Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Xi-Yan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, PR China.,Address correspondence to: Zhi-Sheng Jiang, PhD, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province 421001, PR China
| |
Collapse
|
28
|
Ataxin-10 Inhibits TNF- α-Induced Endothelial Inflammation via Suppressing Interferon Regulatory Factor-1. Mediators Inflamm 2021; 2021:7042148. [PMID: 34858081 PMCID: PMC8632433 DOI: 10.1155/2021/7042148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023] Open
Abstract
Endothelial inflammation is a crucial event in the initiation of atherosclerosis. Here, we identify Ataxin-10 protein as a novel negative modulator of endothelial activation by suppressing IRF-1 transcription activity. The protein level of Ataxin-10 is relatively higher in human vascular endothelial cells, which can be significantly suppressed by TNF-α in both HUVECs and HLMECs. Overexpression of Ataxin-10 markedly inhibited the mRNA expressions of VCAM-1 and several cytokines including MCP-1, CXCL-1, CCL-5, and TNF-α; thus, it can also suppress monocyte adhesion to endothelial cells. Accordingly, Ataxin-10 silencing promoted endothelial inflammation. However, Ataxin-10 did not affect the MAPK/NF-κB signaling pathway stimulated by TNF-α in HUVECs. Using the yeast two-hybrid assay, we found that Ataxin-10 can directly bind to interferon regulatory factor-1 (IRF-1). Upon TNF-α stimulation, Ataxin-10 promoted the cytoplasmic localization of IRF-1, which inhibited the transcription of VCAM-1. Moreover, knockdown of IRF-1 can eliminate the effect of Ataxin-10 on the expression of VCAM-1 in HUVECs induced by TNF-α. Taken together, these results indicate that Ataxin-10 inhibits endothelial cell activation and may serve as a promising therapeutic target for some vascular inflammatory-related diseases such as atherosclerosis.
Collapse
|
29
|
Abstract
Emerging evidence suggests that endothelial activation plays a central role in the pathogenesis of acute respiratory distress syndrome (ARDS) and multiorgan failure in patients with coronavirus disease 2019 (COVID-19). However, the molecular mechanisms underlying endothelial activation in COVID-19 patients remain unclear. In this study, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins that potently activate human endothelial cells were screened to elucidate the molecular mechanisms involved in endothelial activation. It was found that nucleocapsid protein (NP) of SARS-CoV-2 significantly activated human endothelial cells through Toll-like receptor 2 (TLR2)/NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Remarkably, though the protein sequences of N proteins from coronaviruses are highly conserved, only NP from SARS-CoV-2 induced endothelial activation. The NPs from other coronaviruses such as SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), HUB1-CoV, and influenza virus H1N1 did not activate endothelial cells. These findings are consistent with the results from clinical investigations showing broad endotheliitis and organ injury in severe COVID-19 patients. In conclusion, the study provides insights on SARS-CoV-2-induced vasculopathy and coagulopathy and suggests that simvastatin, an FDA-approved lipid-lowering drug, may help prevent the pathogenesis and improve the outcome of COVID-19 patients. IMPORTANCE Coronavirus disease 2019 (COVID-19), caused by the betacoronavirus SARS-CoV-2, is a worldwide challenge for health care systems. The leading cause of mortality in patients with COVID-19 is hypoxic respiratory failure from acute respiratory distress syndrome (ARDS). To date, pulmonary endothelial cells (ECs) have been largely overlooked as a therapeutic target in COVID-19, yet emerging evidence suggests that these cells contribute to the initiation and propagation of ARDS by altering vessel barrier integrity, promoting a procoagulative state, inducing vascular inflammation and mediating inflammatory cell infiltration. Therefore, a better mechanistic understanding of the vasculature is of utmost importance. In this study, we screened the SARS-CoV-2 viral proteins that potently activate human endothelial cells and found that nucleocapsid protein (NP) significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Our results provide insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients.
Collapse
|
30
|
Huang Y, Xiao Y, Zhang X, Huang X, Li Y. The Emerging Roles of Tripartite Motif Proteins (TRIMs) in Acute Lung Injury. J Immunol Res 2021; 2021:1007126. [PMID: 34712740 PMCID: PMC8548118 DOI: 10.1155/2021/1007126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) is an inflammatory disorder of the lung that causes high mortality and lacks any pharmacological intervention. Ubiquitination plays a critical role in the pathogenesis of ALI as it regulates the alveolocapillary barrier and the inflammatory response. Tripartite motif (TRIM) proteins are one of the subfamilies of the RING-type E3 ubiquitin ligases, which contains more than 80 distinct members in humans involved in a broad range of biological processes including antivirus innate immunity, development, and tumorigenesis. Recently, some studies have shown that several members of TRIM family proteins play important regulatory roles in inflammation and ALI. Herein, we integrate emerging evidence regarding the roles of TRIMs in ALI. Articles were selected from the searches of PubMed database that had the terms "acute lung injury," "ubiquitin ligases," "tripartite motif protein," "inflammation," and "ubiquitination" using both MeSH terms and keywords. Better understanding of these mechanisms may ultimately lead to novel therapeutic approaches by targeting TRIMs for ALI treatment.
Collapse
Affiliation(s)
- Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Xiao
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xuekang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Tang T, Li P, Zhou X, Wang R, Fan X, Yang M, Qi K. The E3 Ubiquitin Ligase TRIM65 Negatively Regulates Inflammasome Activation Through Promoting Ubiquitination of NLRP3. Front Immunol 2021; 12:741839. [PMID: 34512673 PMCID: PMC8427430 DOI: 10.3389/fimmu.2021.741839] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
The dysregulation of NLRP3 inflammasome plays a critical role in pathogenesis of various human inflammatory diseases, thus NLRP3 inflammasome activation must be tightly controlled at multiple levels. However, the underlying mechanism regulating NLRP3 inflammasome activation remains unclear. Herein, the effects of Tripartite motif-containing protein 65 (TRIM65) on NLRP3 inflammasome activation and the underlying molecular mechanism were investigated in vitro and in vivo. Inhibition or deletion of Trim65 could significantly strengthen agonist induced NLRP3 inflammasome activation in THP-1 cells and BMDMs, indicated by increased caspase-1 activation and interleukin-1β secretion. However, TRIM65 had no effect on poly (dA: dT)-induced AIM2 inflammasome activation or flagellin-induced IPAF inflammasome activation. Mechanistically, immunoprecipitation assays demonstrated that TRIM65 binds to NACHT domain of NLRP3, promotes lys48- and lys63- linked ubiquitination of NLRP3 and restrains the NEK7-NLRP3 interaction, thereby inhibiting NLRP3 inflammasome assembly, caspase-1 activation, and IL-1β secretion. In vivo, three models of inflammatory diseases were used to confirm the suppression role of TRIM65 in NLRP3 inflammasome activation. TRIM65-deficient mice had a higher production of IL-1β induced by lipopolysaccharide in sera, and more IL-1β secretion and neutrophil migration in the ascites, and more severity of joint swelling and associated IL-1β production induced by monosodium urate, suggesting that TRIM65 deficiency was susceptible to inflammation. Therefore, the data elucidate a TRIM65-dependent negative regulation mechanism of NLRP3 inflammasome activation and provide potential therapeutic strategies for the treatment of NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Tiantian Tang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ping Li
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xinhui Zhou
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Mengyi Yang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
32
|
Lin H, Wu X, Yang Y, Wang Z, Huang W, Wang LF, Liu QW, Guan XH, Deng KY, Li TS, Qian Y, Xin HB. Nicaraven inhibits TNFα-induced endothelial activation and inflammation through suppression of NF-κB signaling pathway. Can J Physiol Pharmacol 2021; 99:803-811. [PMID: 33356884 DOI: 10.1139/cjpp-2020-0558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation-induced activation and dysfunction of endothelial cells play an important role in the pathology of multiple vascular diseases. Nicaraven, a potent hydroxyl radical scavenger, has recently been found to have anti-inflammatory roles; however, the mechanism of its action is not fully understood. Here we investigated the effects of Nicaraven on tumor necrosis factor α (TNFα) - induced inflammatory response in human umbilical vein endothelial cells and we explore the underlying mechanisms related to the nuclear factor-κB (NF-κB) signaling pathway. Our results showed that Nicaraven significantly reduced the reactive oxygen species production after TNFα stimulation. Nicaraven suppressed TNFα-induced mRNA expression of multiple adhesion molecules and pro-inflammatory cytokines, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, MCP-1, TNFα, interleukin-1β (IL-1β), IL-6, and IL-8. In addition, Nicaraven inhibited monocyte adhesion and reduced the protein levels of VCAM-1 and ICAM-1. Mechanistically, Nicaraven prevented TNFα-induced activation of NF-κB signaling pathway by suppressing the phosphorylation of NF-κB p65, IκBα, and IκB kinase (IKK)α/β, stabilizing IκBα, and inhibiting the translocation of p65 from cytosol to nucleus. Finally, we showed that Nicaraven improved the functions of endothelial cells, seen as the upregulation of endothelial nitric oxide synthase and increased nitric oxide levels. Our findings indicated that Nicaraven effectively inhibits TNFα-induced endothelial activation and inflammatory response at least partly through inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuehan Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ziwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Weilu Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Quan-Wen Liu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
33
|
Qian Y, Lei T, Patel PS, Lee CH, Monaghan-Nichols P, Xin HB, Qiu J, Fu M. Direct activation of endothelial cells by SARS-CoV-2 nucleocapsid protein is blocked by Simvastatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.14.431174. [PMID: 33594363 PMCID: PMC7885915 DOI: 10.1101/2021.02.14.431174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Emerging evidence suggests that endothelial activation plays a central role in the pathogenesis of acute respiratory distress syndrome (ARDS) and multi-organ failure in patients with COVID-19. However, the molecular mechanisms underlying endothelial activation in COVID-19 patients remain unclear. In this study, the SARS-CoV-2 viral proteins that potently activate human endothelial cells were screened to elucidate the molecular mechanisms involved with endothelial activation. It was found that nucleocapsid protein (NP) of SARS-CoV-2 significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Remarkablely, though the protein sequences of N proteins from coronaviruses are highly conserved, only NP from SARS-CoV-2 induced endothelial activation. The NPs from other coronaviruses such as SARS-CoV, MERS-CoV, HUB1-CoV and influenza virus H1N1 did not affect endothelial activation. These findings are well consistent with the results from clinical investigations showing broad endotheliitis and organ injury in severe COVID-19 patients. In conclusion, the study provides insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients.
Collapse
Affiliation(s)
- Yisong Qian
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang, 330031, China
| | - Tianhua Lei
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
| | - Parth S. Patel
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
| | - Chi H Lee
- Department of Pharmaceutics, School of Pharmacy, University of Missouri Kansas City, 2464 Charlotte Street, Kansas City, 64108
| | - Paula Monaghan-Nichols
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang, 330031, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
| |
Collapse
|
34
|
Zhou ZX, Ren Z, Yan BJ, Qu SL, Tang ZH, Wei DH, Liu LS, Fu MG, Jiang ZS. The Role of Ubiquitin E3 Ligase in Atherosclerosis. Curr Med Chem 2021; 28:152-168. [PMID: 32141415 DOI: 10.2174/0929867327666200306124418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease. Atherosclerotic cardiovascular disease is the main cause of death in both developed and developing countries. Many pathophysiological factors, including abnormal cholesterol metabolism, vascular inflammatory response, endothelial dysfunction and vascular smooth muscle cell proliferation and apoptosis, contribute to the development of atherosclerosis and the molecular mechanisms underlying the development of atherosclerosis are not fully understood. Ubiquitination is a multistep post-translational protein modification that participates in many important cellular processes. Emerging evidence suggests that ubiquitination plays important roles in the pathogenesis of atherosclerosis in many ways, including regulation of vascular inflammation, endothelial cell and vascular smooth muscle cell function, lipid metabolism and atherosclerotic plaque stability. This review summarizes important contributions of various E3 ligases to the development of atherosclerosis. Targeting ubiquitin E3 ligases may provide a novel strategy for the prevention of the progression of atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Min-Gui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, United States
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| |
Collapse
|
35
|
Gallart-Palau X, Serra A, Sze SK. System-wide molecular dynamics of endothelial dysfunction in Gram-negative sepsis. BMC Biol 2020; 18:175. [PMID: 33234129 PMCID: PMC7687804 DOI: 10.1186/s12915-020-00914-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
Background Inflammation affecting whole organism vascular networks plays a central role in the progression and establishment of several human diseases, including Gram-negative sepsis. Although the molecular mechanisms that control inflammation of specific vascular beds have been partially defined, knowledge lacks on the impact of these on the molecular dynamics of whole organism vascular beds. In this study, we have generated an in vivo model by coupling administration of lipopolysaccharide with stable isotope labeling in mammals to mimic vascular beds inflammation in Gram-negative sepsis and to evaluate its effects on the proteome molecular dynamics. Proteome molecular dynamics of individual vascular layers (glycocalyx (GC), endothelial cells (EC), and smooth muscle cells (SMC)) were then evaluated by coupling differential systemic decellularization in vivo with unbiased systems biology proteomics. Results Our data confirmed the presence of sepsis-induced disruption of the glycocalyx, and we show for the first time the downregulation of essential molecular maintenance processes in endothelial cells affecting this apical vascular coating. Similarly, a novel catabolic phenotype was identified in the newly synthesized EC proteomes that involved the impairment of protein synthesis, which affected multiple cellular mechanisms, including oxidative stress, the immune system, and exacerbated EC-specific protein turnover. In addition, several endogenous molecular protective mechanisms involving the synthesis of novel antithrombotic and anti-inflammatory proteins were also identified as active in EC. The molecular dynamics of smooth muscle cells in whole organism vascular beds revealed similar patterns of impairment as those identified in EC, although this was observed to a lesser extent. Furthermore, the dynamics of protein posttranslational modifications showed disease-specific phosphorylation sites in the EC proteomes. Conclusions Together, the novel findings reported here provide a broader picture of the molecular dynamics that take place in whole organism vascular beds in Gram-negative sepsis inflammation. Similarly, the obtained data can pave the way for future therapeutic strategies aimed at intervening in specific protein synthesis mechanisms of the vascular unit during acute inflammatory processes.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,University Hospital Institut Pere Mata, Reus, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Tarragona, Spain.,Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food & Health Sciences Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain.,Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aida Serra
- IMDEA Food & Health Sciences Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain. .,Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|