1
|
Arcega Castillo G, Backus LH, Gouge D, Li L, Walker K, Foley J. Diversity of Ticks and Rickettsiae in the Southwestern United States: Implications for Public Health. Vector Borne Zoonotic Dis 2025; 25:240-249. [PMID: 40040524 DOI: 10.1089/vbz.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Background: Surveillance is important in addressing the significant public health concerns posed by tick-borne diseases. However, the southwestern U.S. presents particular challenges due to diverse tick fauna and varied ecologies. Methods: From 2021 to 2022, we conducted a partner-based tick surveillance program in Arizona and California to assess the presence of Rickettsia spp. pathogens and species composition of tick vectors. Results: A total of 913 ticks was collected, comprising in descending abundance Rhipicephalus sanguineus, Dermacentor similis, Ixodes pacificus (I. pacificus), Argas sp., Otobius megnini, and Haemaphysalis leporispalustris. Arizona submitted predominantly brown dog ticks (90.05% of all ticks from Arizona), while California showed greater tick species richness with five species identified. No Rickettsia rickettsii was detected, but a variety of other Rickettsia spp. was found in ticks from both Arizona and California and included Rickettsia rhipicephali (R. rhipicephali), Rickettsia massiliae, and Rickettsia monacensis-like rickettsial agents of I. pacificus, and two rickettsial organisms that were not identified to species: one Rickettsia montanensis or Rickettsia raoultii-like, and the other most similar to Candidatus Rickettsia tarasevichiae (R. tarasevichiae). Conclusion: This research contributes to our understanding of tickborne diseases in the southwestern U.S., and emphasizes the need for targeted surveillance and intervention initiatives in a region with complex relationships among ticks, hosts, and Rickettsia species. In particular, the finding of an apparently novel pairing of an unknown Argas sp. tick and R. tarasevichiae-like organism suggests that argasid species are an important target for future research. In addition, the results-both tick species submitted and resulting Rickettsia spp. identified-highlights the strengths and potential biases associated with a partner-based sampling method for tick surveillance.
Collapse
Affiliation(s)
- Guillermo Arcega Castillo
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Laura H Backus
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Dawn Gouge
- Department of Entomology, University of Arizona, Tucson, Arizona, USA
| | - Lucy Li
- Department of Entomology, University of Arizona, Tucson, Arizona, USA
| | - Kathleen Walker
- Department of Entomology, University of Arizona, Tucson, Arizona, USA
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
2
|
Horton O, Propst J, Loss SR, Noden BH. Tick Utilization of Eastern Redcedar 1 Encroached Areas at the Individual Tree Scale in Oklahoma. THE SOUTHWESTERN ENTOMOLOGIST 2024; 49:1414-1422. [PMID: 40297325 PMCID: PMC12036698 DOI: 10.3958/059.049.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The Great Plains region is experiencing a biome-level conversion as grasslands are being rapidly encroached by eastern redcedar (Juniperus virginiana L.; ERC) which, in turn, causes abiotic and biotic changes throughout the region. These changes brought about by ERC encroachment are providing habitat for ticks and mosquitoes that increase the risk for vector-borne diseases. This study evaluated the influence of ERC on the abundance of ticks at the tree level by matching CO2 traps under individual ERC trees with traps in nearby grass patches at seven sites across central and western Oklahoma. From 3,654 ticks collected, significantly more adult and nymphal Amblyomma americanum (L.) and adult Dermacentor variabilis (Say) were collected under the individual ERC trees compared to the adjacent grass patches. Along with growing evidence that larger-scale ERC encroachment increases the abundance of ticks, this finding suggests that even single ERC trees within an encroached area provide sufficient habitat for A. americanum and D. variabilis. This study also contributes novel information about the fine-scale effects of this invasive encroaching tree species on the ecology of vector-borne disease systems.
Collapse
Affiliation(s)
- Olivia Horton
- Department of Natural Resource Ecology and Management, Oklahoma State University, 320 Agricultural Hall, 311 North Monroe St., Stillwater, OK 74078
| | - Jozlyn Propst
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078
| | - Scott R. Loss
- Department of Natural Resource Ecology and Management, Oklahoma State University, 320 Agricultural Hall, 311 North Monroe St., Stillwater, OK 74078
| | - Bruce H. Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078
| |
Collapse
|
3
|
Cobos ME, Winters T, Martinez I, Yao Y, Xiao X, Ghosh A, Sundstrom K, Duncan K, Brennan RE, Little SE, Peterson AT. Modeling spatiotemporal dynamics of Amblyomma americanum questing activity in the central Great Plains. PLoS One 2024; 19:e0304427. [PMID: 39466807 PMCID: PMC11515986 DOI: 10.1371/journal.pone.0304427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Ticks represent important vectors of a number of bacterial and viral disease agents, owing to their hematophagous nature and their questing behavior (the process in which they seek new hosts). Questing activity is notably seasonal with spatiotemporal dynamics that needs to be understood in detail as part of mediating and mitigating tick-borne disease risk. Models of the geography of tick questing activity developed to date, however, have ignored the temporal dimensions of that behavior; more fundamentally, they have often not considered the sampling underlying available occurrence data. Here, we have addressed these shortfalls for Amblyomma americanum, the most commonly encountered tick in the central Great Plains, via (1) detailed, longitudinal sampling to characterize the spatiotemporal dimensions of tick questing activity; (2) randomization tests to establish in which environmental dimensions a species is manifesting selective use; and (3) modeling methods that include both presence data and absence data, taking fullest advantage of the information available in the data resource. The outcome was a detailed picture of geographic and temporal variation in suitability for the species through the two-year course of this study. Such models that take full advantage of available information will be crucial in understanding the risk of tick-borne disease into the future.
Collapse
Affiliation(s)
- Marlon E. Cobos
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - Taylor Winters
- Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - Ismari Martinez
- Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - Yuan Yao
- School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK, United States of America
| | - Xiangming Xiao
- School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK, United States of America
| | - Anuradha Ghosh
- Department of Biology, Pittsburg State University, Pittsburg, KS, United States of America
| | - Kellee Sundstrom
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States of America
| | - Kathryn Duncan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States of America
| | - Robert E. Brennan
- Department of Biology, Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, United States of America
| | - Susan E. Little
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States of America
| | - A. Townsend Peterson
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| |
Collapse
|
4
|
Martinez-Villegas L, Lado P, Klompen H, Wang S, Cummings C, Pesapane R, Short SM. The microbiota of Amblyomma americanum reflects known westward expansion. PLoS One 2024; 19:e0304959. [PMID: 38857239 PMCID: PMC11164389 DOI: 10.1371/journal.pone.0304959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Amblyomma americanum, a known vector of multiple tick-borne pathogens, has expanded its geographic distribution across the United States in the past decades. Tick microbiomes may play a role shaping their host's life history and vectorial capacity. Bacterial communities associated with A. americanum may reflect, or enable, geographic expansion and studying the microbiota will improve understanding of tick-borne disease ecology. We examined the microbiota structure of 189 adult ticks collected in four regions encompassing their historical and current geographic distribution. Both geographic region of origin and sex were significant predictors of alpha diversity. As in other tick models, within-sample diversity was low and uneven given the presence of dominant endosymbionts. Beta diversity analyses revealed that bacterial profiles of ticks of both sexes collected in the West were significantly different from those of the Historic range. Biomarkers were identified for all regions except the historical range. In addition, Bray-Curtis dissimilarities overall increased with distance between sites. Relative quantification of ecological processes showed that, for females and males, respectively, drift and dispersal limitation were the primary drivers of community assembly. Collectively, our findings highlight how microbiota structural variance discriminates the western-expanded populations of A. americanum ticks from the Historical range. Spatial autocorrelation, and particularly the detection of non-selective ecological processes, are indicative of geographic isolation. We also found that prevalence of Ehrlichia chaffeensis, E. ewingii, and Anaplasma phagocytophilum ranged from 3.40-5.11% and did not significantly differ by region. Rickettsia rickettsii was absent from our samples. Our conclusions demonstrate the value of synergistic analysis of biogeographic and microbial ecology data in investigating range expansion in A. americanum and potentially other tick vectors as well.
Collapse
Affiliation(s)
- Luis Martinez-Villegas
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Paula Lado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Hans Klompen
- Department of Evolution, Ecology, and Organismal Biology and Museum of Biological Diversity, The Ohio State University, Columbus, Ohio, United States of America
| | - Selena Wang
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Caleb Cummings
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Risa Pesapane
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
5
|
Ng’eno E, Alkishe A, Romero-Alvarez D, Sundstrom K, Cobos ME, Belgum H, Chitwood A, Grant A, Keck A, Kloxin J, Letterman B, Lineberry M, McClung K, Nippoldt S, Sharum S, Struble S, Thomas B, Ghosh A, Brennan R, Little S, Peterson AT. Phenology of five tick species in the central Great Plains. PLoS One 2024; 19:e0302689. [PMID: 38722854 PMCID: PMC11081307 DOI: 10.1371/journal.pone.0302689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020-2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species was A. americanum (24098, 97%) followed by Dermacentor variabilis (370, 2%), D. albipictus (271, 1%), Ixodes scapularis (91, <1%) and A. maculatum (38, <1%). Amblyomma americanum, A. maculatum and D. variabilis were active in Spring and Summer, while D. albipictus and I. scapularis were active in Fall and Winter. Factors associated with numbers of individuals of A. americanum included day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity.
Collapse
Affiliation(s)
- Eric Ng’eno
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Abdelghafar Alkishe
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Daniel Romero-Alvarez
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
- Faculty of Health Sciences, Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity Research Group, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Kellee Sundstrom
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Marlon E. Cobos
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Hallee Belgum
- Department of Biology, Pittsburg State University, Pittsburg, Kansas, United States of America
| | - Abigail Chitwood
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Amber Grant
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Alex Keck
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Josiah Kloxin
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Brayden Letterman
- Department of Biology, Pittsburg State University, Pittsburg, Kansas, United States of America
| | - Megan Lineberry
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Kristin McClung
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Sydney Nippoldt
- Department of Biology, Pittsburg State University, Pittsburg, Kansas, United States of America
| | - Sophia Sharum
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Stefan Struble
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Breanne Thomas
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Anuradha Ghosh
- Department of Biology, Pittsburg State University, Pittsburg, Kansas, United States of America
| | - Robert Brennan
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Susan Little
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
6
|
Weerarathne P, Sanders TL, Kao YF, Cotey SR, Place JD, Fairbanks WS, Miller CA, Reichard MV. HIGH PREVALENCE OF CYTAUXZOON FELIS IN BOBCATS (LYNX RUFUS) ACROSS OKLAHOMA AND OCCURRENCE IN WEST TEXAS, USA. J Wildl Dis 2023; 59:432-441. [PMID: 37270185 DOI: 10.7589/jwd-d-22-00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/10/2023] [Indexed: 06/05/2023]
Abstract
Cytauxzoonosis is a fatal tick-borne disease in domestic cats caused by infection with the apicomplexan Cytauxzoon felis. Bobcats are the natural wild-vertebrate reservoirs for C. felis, and infections are typically subclinical and chronic in this species. The present study was done to determine the prevalence and geographic distribution of C. felis infection in wild bobcats from Oklahoma and the occurrence in northwestern Texas. Tongue samples from 360 bobcats were collected from 53 counties in Oklahoma and 13 samples from three counties in Texas. For DNA extracted from each tongue sample, a probe-based droplet digital PCR assay was performed targeting the C. felis mitochondrial gene cytochrome c oxidase subunit III (cox3). Prevalence of C. felis infection was calculated for each county sampled, and data from individual counties were combined according to geographic regions and compared using chi-square tests. Overall prevalence of C. felis in bobcats from Oklahoma was 80.0% (95% confidence interval [CI], 75.6-83.8). The prevalence of infection was >90% for bobcats from central, northeastern, south-central, and southeastern regions of Oklahoma, but <68% for bobcats from northwestern and southwestern regions. Bobcats from central counties in Oklahoma were 25.693 times more likely to be infected with C. felis compared to all other bobcats sampled from the state. Higher prevalence estimates of C. felis in bobcats appeared to be in counties where known tick vectors are most common. Occurrence of C. felis in bobcats from northwestern Texas was 30.8% (95% CI, 12.4%-58.0%) based on 13 samples. Results of this study support the utilization of bobcats as sentinel animals to identify geographic areas with risk of C. felis infection to domestic cats.
Collapse
Affiliation(s)
- Pabasara Weerarathne
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Tiana L Sanders
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Yun-Fan Kao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Stacy R Cotey
- College of Forest Resources and Environmental Science, Michigan Tech University, Houghton, Michigan 49931, USA
| | - Joshua D Place
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - W Sue Fairbanks
- Department of Natural Resources Ecology and Management, Division of Agricultural Science and Natural Resources, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Mason V Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| |
Collapse
|
7
|
Chenery ES, Harms NJ, Fenton H, Mandrak NE, Molnár PK. Revealing large‐scale parasite ranges: An integrated spatiotemporal database and multisource analysis of the winter tick. Ecosphere 2023. [DOI: 10.1002/ecs2.4376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Emily S. Chenery
- Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada
| | - N. Jane Harms
- Animal Health Unit Department of Environment Whitehorse Yukon Canada
| | - Heather Fenton
- Department of Environment and Natural Resources Government of Northwest Territories Yellowknife Northwest Territories Canada
| | - Nicholas E. Mandrak
- Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Biological Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Péter K. Molnár
- Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Biological Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
8
|
Rochlin I, Egizi A, Ginsberg HS. Modeling of historical and current distributions of lone star tick, Amblyomma americanum (Acari: Ixodidae), is consistent with ancestral range recovery. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:85-103. [PMID: 36482230 DOI: 10.1007/s10493-022-00765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The lone star tick, Amblyomma americanum L., is a three-host hard tick notorious for aggressive feeding behavior. In the early to mid-20th century, this species' range was mostly limited to the southern USA. Since the 1950s, A. americanum has been detected in many new localities in the western, northcentral, and northeastern regions of the country. To examine the influence of climate on this apparent expansion, we used historical (1748-1950) lone star locations from the literature and museum records to model areas suitable for this species based on past environmental conditions in the late 1800s - early 1900s. We then projected this model forward using present (2011-2020) climatic conditions and compared the two for evidence of climate-associated distributional shifts. A maximum entropy distribution or Maxent model was generated by using a priori selected climatic variables including temperature, precipitation, and vapor pressure deficit. Temperature and vapor pressure deficit were selected as the most important factors in creating a sensitive and specific model (success rate = 82.6 ± 6.1%) that had a good fit to the existing data and was significantly better than a random model [partial ROC (receiver operating characteristic) to AUC (area under the ROC curve) ratio = 1.97 ± 0.07, P < 0.001]. The present projected model was tested with an independent dataset of curated museum records (1952-2020) and found to be 95.6% accurate. Comparison of past and present models revealed > 98% A. americanum niche overlap. The model suggests that some areas along the western fringe are becoming less suitable for A. americanum, whereas areas in some Great Lakes and coastal northeastern regions are becoming more suitable, results that are compatible with possible effects of climate change. However, these changes are minor, and overall climate in North America does not appear to have changed in ways significant to A. americanum's distribution. These findings are consistent with an alternative hypothesis that recent changes in A. americanum's distribution are a result of this species re-occupying its historical range, driven predominantly by factors other than climate, such as shifts in land use and population densities of major hosts.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, 08901, New Brunswick, NJ, USA.
- Department of Microbiology and Immunology, Center for Infectious DiseasesCenters for Molecular Medicine, Stony Brook University, 238, 11794, Stony Brook, NY, USA.
| | - Andrea Egizi
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, 08901, New Brunswick, NJ, USA
- Tick-Borne Disease Program, Monmouth County Mosquito Control Division, 1901 Wayside Road, 07724, Tinton Falls, NJ, USA
| | - Howard S Ginsberg
- Eastern Ecological Science Center, RI Field Station, U.S. Geological Survey, University of Rhode Island, 02881, Kingston, RI, USA
| |
Collapse
|
9
|
Noden BH, Dubie TR, Henriquez BE, Gilliland M, Talley JL. Seasonality of Ticks and Prevalence of Rickettsiae Species in Dermacentor variabilis and Amblyomma maculatum Across Oklahoma Pastures. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1033-1041. [PMID: 35289851 DOI: 10.1093/jme/tjac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Tick-borne diseases are an increasing concern for people and companion animals in the United States, but there is a need for continued vigilance regarding livestock in pasture systems. The south-central United States has some of the highest incidences of tick-borne diseases, and there is a need to re-examine the ecology of tick vectors in relation to pasture systems and livestock. The objective of this study was to establish a baseline of seasonal activity for tick species in diverse regional Oklahoma pastures and screen for important pathogens in Dermacentor variabilis (Say) and Amblyomma maculatum Koch group that may impact livestock and human health. Between 2015 and 2017, transects in five pastures across Oklahoma were visited each month. DNA extracted from adult D. variabilis and A. maculatum group was tested for the presence of bacterial pathogens. We found that tick communities in pastures across Oklahoma differ by season, abundance, and bacterial presence and prevalence. The peak abundance of Amblyomma americanum (L.) adults and nymphs occurred a month earlier over the 2 yr of the study compared with historical studies in the same regions. Additionally, we observed notable differences in peak activity between A. americanum adults and nymphs collected in pastures in central Oklahoma (April) versus pastures in northern part of the state (May). We detected Rickettsia parkeri, R. bellii, and Anaplasma sp. DNA in D. variabilis from pastures across the state. These results potentially have important ramifications for human and livestock risk of encountering infected ticks in pastures across the southern Great Plains.
Collapse
Affiliation(s)
- Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Trisha R Dubie
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Brandon E Henriquez
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Meghan Gilliland
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Justin L Talley
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
10
|
Knowlton E, Talley JL, Noden BH, Hoback WW. College Students' Knowledge of Ticks in Oklahoma: Assessment and Insights. INSECTS 2021; 12:insects12070658. [PMID: 34357318 PMCID: PMC8303360 DOI: 10.3390/insects12070658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Ticks (Arachnida: Acari) are common in Oklahoma and may transmit tick-borne diseases (TBDs) to people. Due to the difficulty in reducing tick populations, awareness of tick bite prevention, proper tick removal, and knowledge of when to seek medical treatment are critical. However, outreach and extension programs are hampered by a lack of knowledge of what community members know about ticks. To address this limitation, we surveyed college students enrolled in three non-major Entomology courses at Oklahoma State University in 2018. Of the 483 students invited to take a survey, 224 (46.4%) students took both surveys. Pre-survey responses indicated lower levels of knowledge of tick biology compared to post-survey responses. For both pre- and post-survey respondents, "ticks can jump" and "ticks reside up in trees" received the fewest correct responses. A majority of survey respondents considered Lyme disease to be the predominant TBD in Oklahoma, although it is not established in Oklahoma. Supplemental education overcame these knowledge gaps, with the exception of knowledge of Lyme disease which was still considered to be the predominant TBD in the post-survey. Our results can be used to develop assessment tools to improve extension programs and enhance protection from TBDs.
Collapse
Affiliation(s)
- Elise Knowlton
- Department of Pediatrics, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA;
| | - Justin L. Talley
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.T.); (B.H.N.)
| | - Bruce H. Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.T.); (B.H.N.)
| | - William Wyatt Hoback
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.T.); (B.H.N.)
- Correspondence:
| |
Collapse
|
11
|
Eisen RJ, Paddock CD. Tick and Tickborne Pathogen Surveillance as a Public Health Tool in the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1490-1502. [PMID: 32440679 PMCID: PMC8905548 DOI: 10.1093/jme/tjaa087] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 05/03/2023]
Abstract
In recent decades, tickborne disease (TBD) cases and established populations of medically important ticks have been reported over expanding geographic areas, and an increasing number of tickborne bacteria, viruses, and protozoans have been recognized as human pathogens, collectively contributing to an increasing burden of TBDs in the United States. The prevention and diagnosis of TBDs depend greatly on an accurate understanding by the public and healthcare providers of when and where persons are at risk for exposure to human-biting ticks and to the pathogens these ticks transmit. However, national maps showing the distributions of medically important ticks and the presence or prevalence of tickborne pathogens are often incomplete, outdated, or lacking entirely. Similar deficiencies exist regarding geographic variability in host-seeking tick abundance. Efforts to accurately depict acarological risk are hampered by lack of systematic and routine surveillance for medically important ticks and their associated human pathogens. In this review, we: 1) outline the public health importance of tick surveillance; 2) identify gaps in knowledge regarding the distributions and abundance of medically important ticks in the United States and the presence and prevalence of their associated pathogens; 3) describe key objectives for tick surveillance and review methods appropriate for addressing those goals; and 4) assess current capacity and barriers to implementation and sustainability of tick surveillance programs.
Collapse
Affiliation(s)
- Rebecca J. Eisen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Christopher D. Paddock
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
12
|
Noden BH, Tanner EP, Polo JA, Fuhlendorf SD. Invasive woody plants as foci of tick-borne pathogens: eastern redcedar in the southern Great Plains. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:12-18. [PMID: 35229576 DOI: 10.52707/1081-1710-46.1.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/05/2020] [Indexed: 06/14/2023]
Abstract
Habitat preference and usage by disease vectors are directly correlated with landscapes often undergoing anthropogenic environmental change. A predominant type of land use change occurring in the United States is the expansion of native and non-native woody plant species in grasslands, but little is known regarding the impact of this expansion on regional vector-borne disease transmission. In this study, we focused on the impact of expanding eastern redcedar (Juniperus virginiana; ERC) and tested two hypotheses involving relationships between habitat preferences of adult tick species in rural habitats in central Oklahoma. Using CO2 traps, we collected ticks from two densities of ERC and grassland and screened adult ticks for the presence of pathogen DNA. We found support for our first hypothesis with significantly more Amblyomma americanum (Linnaeus) and Dermacentor variabilis (Say) collected in ERC habitats than in grassland. Our second hypothesis was also supported, as Ehrlichia- and Rickettsia-infected A. americanum were significantly more likely to be collected from ERC habitats than grassland. As the first evidence that links woody plant encroachment with important tick-borne pathogens in the continental United States, these results have important ramifications involving human and companion animal risk for encountering pathogen-infected ticks in the southern Great Plains.
Collapse
Affiliation(s)
- Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A.
| | - Evan P Tanner
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, TX 78363, U.S.A
- Department of Natural Resource and Ecology Management, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - John A Polo
- Department of Natural Resource and Ecology Management, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Sam D Fuhlendorf
- Department of Natural Resource and Ecology Management, Oklahoma State University, Stillwater, OK 74078, U.S.A
| |
Collapse
|
13
|
Small M, Brennan RE. Detection of Rickettsia amblyommatis and Ehrlichia chaffeensis in Amblyomma americanum Inhabiting Two Urban Parks in Oklahoma. Vector Borne Zoonotic Dis 2021; 21:385-387. [PMID: 33733878 DOI: 10.1089/vbz.2020.2755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For the past 30 years, the number of people infected with causative agents of ehrlichiosis, Rocky Mountain spotted fever, and spotted fever group rickettiosis (SFGR) has increased in Oklahoma. However, there is a lack of data on pathogen prevalence within urban environments. To assess the prevalence of tick-borne pathogens in different environments, 434 Amblyomma americanum (lone star) ticks were collected from the environment in two parks in Edmond, Oklahoma. The presence of Ehrlichia spp. and spotted fever group (SFG) Rickettsia spp. was determined using quantitative real-time polymerase chain reaction (qPCR). 33.6% (146/434) of the A. americanum ticks were positive for Rickettsia amblyommatis and 15.2% (66/434) were positive for Ehrlichia chaffeensis. No ticks were positive for other SFG Rickettsiae (R. rickettsii, R. parkeri) or other Ehrlichiae (E. ewingii, and Panola Mountain Ehrlichia). These studies provide increased understanding of the potential risk for encountering tick-borne pathogens in urban environments.
Collapse
Affiliation(s)
- Mariah Small
- Biology Department, University of Central Oklahoma, Edmond, Oklahoma, USA
| | - Robert E Brennan
- Biology Department, University of Central Oklahoma, Edmond, Oklahoma, USA
| |
Collapse
|
14
|
Alkishe A, Raghavan RK, Peterson AT. Likely Geographic Distributional Shifts among Medically Important Tick Species and Tick-Associated Diseases under Climate Change in North America: A Review. INSECTS 2021; 12:225. [PMID: 33807736 PMCID: PMC8001278 DOI: 10.3390/insects12030225] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022]
Abstract
Ticks rank high among arthropod vectors in terms of numbers of infectious agents that they transmit to humans, including Lyme disease, Rocky Mountain spotted fever, Colorado tick fever, human monocytic ehrlichiosis, tularemia, and human granulocytic anaplasmosis. Increasing temperature is suspected to affect tick biting rates and pathogen developmental rates, thereby potentially increasing risk for disease incidence. Tick distributions respond to climate change, but how their geographic ranges will shift in future decades and how those shifts may translate into changes in disease incidence remain unclear. In this study, we have assembled correlative ecological niche models for eight tick species of medical or veterinary importance in North America (Ixodes scapularis, I. pacificus, I. cookei, Dermacentor variabilis, D. andersoni, Amblyomma americanum, A. maculatum, and Rhipicephalus sanguineus), assessing the distributional potential of each under both present and future climatic conditions. Our goal was to assess whether and how species' distributions will likely shift in coming decades in response to climate change. We interpret these patterns in terms of likely implications for tick-associated diseases in North America.
Collapse
Affiliation(s)
- Abdelghafar Alkishe
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
- Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya
| | - Ram K. Raghavan
- Center for Vector-borne and Emerging Infectious Diseases, Departments of Veterinary Pathobiology and Public Health, College of Veterinary Medicine and School of Health Professions, University of Missouri, Columbia, MO 65211, USA;
| | | |
Collapse
|
15
|
Saleh MN, Allen KE, Lineberry MW, Little SE, Reichard MV. Ticks infesting dogs and cats in North America: Biology, geographic distribution, and pathogen transmission. Vet Parasitol 2021; 294:109392. [PMID: 33971481 PMCID: PMC9235321 DOI: 10.1016/j.vetpar.2021.109392] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
A diverse array of ixodid and argasid ticks infest dogs and cats in North America, resulting in skin lesions, blood loss, and disease. The ticks most commonly found on pets in this region are hard ticks of the genera Amblyomma, Dermacentor, Ixodes, and Rhipicephalus, as well as the more recently established Haemaphysalis longicornis. Soft tick genera, especially Otobius and Ornithodoros, are also reported from pets in some regions. In this review, we provide a summary of the complex and diverse life histories, distinct morphologies, and questing and feeding behaviors of the more common ticks of dogs and cats in North America with a focus on recent changes in geographic distribution. We also review pathogens of dogs and cats associated with the different tick species, some of which can cause serious, potentially fatal disease, and describe the zoonotic risk posed by ticks of pets. Understanding the natural history of ticks and the maintenance cycles responsible for providing an ongoing source of tick-borne infections is critical to effectively combatting the challenges ticks pose to the health of pets and people.
Collapse
Affiliation(s)
- Meriam N Saleh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Kelly E Allen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States.
| | - Megan W Lineberry
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Susan E Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Mason V Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| |
Collapse
|
16
|
Lado P, Smith ML, Carstens BC, Klompen H. Population genetic structure and demographic history of the lone star tick, Amblyomma americanum (Ixodida: Ixodidae): New evidence supporting old records. Mol Ecol 2020; 29:2810-2823. [PMID: 32574413 DOI: 10.1111/mec.15524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/25/2023]
Abstract
Range expansions are a potential outcome of changes in habitat suitability, which commonly result as a consequence of climate change. Hypotheses on such changes in the geographic distribution of a certain species can be evaluated using population genetic structure and demography. In this study we explore the population genetic structure, genetic variability, demographic history of, and habitat suitability for Amblyomma americanum, a North American tick species that is a known vector of several pathogenic microorganisms. We used a double digestion restriction site-associated DNA sequencing technique (dd-RAD seq) and discovered 8,181 independent single nucleotide polymorphisms (SNPs) in 189 ticks from across the geographic range of the species. Genetic diversity was low, particularly when considering the broad geographic range of this species. The edge populations were less diverse than populations belonging to the historic range, possibly indicative of a range expansion, but this hypothesis was not statistically supported by a test based on genetic data. Nonetheless, moderate levels of population structure and substructure were detected between geographic regions. For New England, demographic and species distribution models support a scenario where A. americanum was present in more northern locations in the past, underwent a bottleneck, and subsequently recovered. These results are consistent with a hypothesis that this species is re-establishing in this area, rather than one focused on range expansion from the south. This hypothesis is consistent with old records describing the presence of A. americanum in the northeastern US in the early colonial period.
Collapse
Affiliation(s)
- Paula Lado
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Megan L Smith
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Bryan C Carstens
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Hans Klompen
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Gilliam B, Gronemeyer P, Chakraborty S, Winata F, Lyons LA, Miller-Hunt C, Tuten HC, Debosik S, Freeman D, O’hara-Ruiz M, Mateus-Pinilla N. Impact of Unexplored Data Sources on the Historical Distribution of Three Vector Tick Species in Illinois. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:872-883. [PMID: 31832656 PMCID: PMC7197698 DOI: 10.1093/jme/tjz235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 05/08/2023]
Abstract
We updated the Illinois historical (1905-December 2017) distribution and status (not reported, reported or established) maps for Amblyomma americanum (L.) (Acari: Ixodidae), Dermacentor variabilis (Say) (Acari: Ixodidae), and Ixodes scapularis (Say) (Acari: Ixodidae) by compiling publicly available, previously unexplored or newly identified published and unpublished data (untapped data). Primary data sources offered specific tick-level information, followed by secondary and tertiary data sources. For A. americanum, D. variabilis, and I. scapularis, primary data contributed to 90% (4,045/4,482), 80% (2,124/2,640), and 32% (3,490/10,898) tick records vs 10%, 20%, and 68%, respectively from secondary data; primary data updated status in 95% (62/65), 94% (51/54) and in 90% (9/10) of the updated counties for each of these tick species; by 1985 there were tick records in 6%, 68%, and 0% of the counties, compared to 20%, 72%, and 58% by 2004, and 77%, 96%, and 75% of the counties by 2017, respectively for A. americanum, D. variabilis, and I. scapularis. We document the loss of tick records due to unidentified, not cataloged tick collections, unidentified ticks in tick collections, unpublished data or manuscripts without specific county location, and tick-level information, to determine distribution and status. In light of the increase in tick-borne illnesses, updates in historical distributions and status maps help researchers and health officials to identify risk areas for a tick encounter and suggest targeted areas for public outreach and surveillance efforts for ticks and tick-borne diseases. There is a need for a systematic, national vector surveillance program to support research and public health responses to tick expansions and tick-borne diseases.
Collapse
Affiliation(s)
- Beth Gilliam
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL
- USDA Natural Resource Conservation Service, Malcom, IA
| | - Peg Gronemeyer
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL
- College of Veterinary Medicine, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Sulagna Chakraborty
- College of Veterinary Medicine, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Fikriyah Winata
- College of Veterinary Medicine, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Lee Ann Lyons
- College of Veterinary Medicine, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - Holly C Tuten
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL
| | | | | | - Marilyn O’hara-Ruiz
- College of Veterinary Medicine, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Nohra Mateus-Pinilla
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL
| |
Collapse
|
18
|
Sagurova I, Ludwig A, Ogden NH, Pelcat Y, Dueymes G, Gachon P. Predicted Northward Expansion of the Geographic Range of the Tick Vector Amblyomma americanum in North America under Future Climate Conditions. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107014. [PMID: 31670575 PMCID: PMC6867274 DOI: 10.1289/ehp5668] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND The geographic range of the tick Amblyomma americanum, a vector of diseases of public health significance such as ehrlichiosis, has expanded from the southeast of the United States northward during the 20th century. Recently, populations of this tick have been reported to be present close to the Canadian border in Michigan and New York states, but established populations are not known in Canada. Previous research suggests that changing temperature patterns with climate change may influence tick life cycles and permit northward range expansion of ticks in the northern hemisphere. OBJECTIVES We aimed to estimate minimal temperature conditions for survival of A. americanum populations at the northern edge of the tick's range and to investigate the possibility of range expansion of A. americanum into northern U.S. states and southern Canada in the coming decades. METHODS A simulation model of the tick A. americanum was used, via simulations using climate data from meteorological stations in the United States and Canada, to estimate minimal temperature conditions for survival of A. americanum populations at the northern edge of the tick's range. RESULTS The predicted geographic scope of temperature suitability [≥3,285 annual cumulative degree days (DD) >0°C] included most of the central and eastern U.S. states east of longitude 110°W, which is consistent with current surveillance data for the presence of the tick in this region, as well as parts of southern Quebec and Ontario in Canada. Regional climate model output raises the possibility of northward range expansion into all provinces of Canada from Alberta to Newfoundland and Labrador during the coming decades, with the greatest northward range expansion (up to 1,000km by the year 2100) occurring under the greenhouse gas (GHG) emissions of Representative Concentration Pathway (RCP) 8.5. Predicted northward range expansion was reduced by approximately half under the reduced GHG emissions of RCP4.5. DISCUSSION Our results raise the possibility of range expansion of A. americanum into northern U.S. states and southern Canada in the coming decades, and conclude that surveillance for this tick, and the diseases it transmits, would be prudent. https://doi.org/10.1289/EHP5668.
Collapse
Affiliation(s)
- Irina Sagurova
- ESCER (Étude et Simulation du Climat à l’Échelle Régionale) centre, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Antoinette Ludwig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Nicholas H. Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Yann Pelcat
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Guillaume Dueymes
- ESCER (Étude et Simulation du Climat à l’Échelle Régionale) centre, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Philippe Gachon
- ESCER (Étude et Simulation du Climat à l’Échelle Régionale) centre, Université du Québec à Montréal, Montréal, Québec, Canada
- Strategic Research Chair on Hydro-Meteorological Risks under Climate Change, Department of Geography, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
19
|
Trout Fryxell RT, Vogt JT. Collaborative-Tick Surveillance Works: An Academic and Government Partnership for Tick Surveillance in the Southeastern United States (Acari: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1411-1419. [PMID: 31049584 DOI: 10.1093/jme/tjz055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Tick surveillance provides essential information on distributions and encounter frequencies; it is a component of operational activities in public health practice. Our research objectives were a proof-of-concept for collaborative surveillance, which involved establishing an academic and government partnership to enhance tick surveillance efforts. The University of Tennessee (UT) collaborated with United States Department of Agriculture Forest Service, Southern Research Station Forest Inventory Analysis (FIA) in an Occupational Health and Safety partnership. UT provided FIA crews in the southeastern United States with vials containing 80% ethanol (July 2014-November 2017). Crew members were instructed to put all encountered ticks into the vials and return them to FIA headquarters. UT identified all submitted ticks to species and life stage, and screened Amblyomma americanum (L.) for Ehrlichia bacteria using a nested-PCR assay. From the 198 returned vials, 1,180 ticks were submitted, including A. americanum (90.51%; 202 larvae, 503 nymphs, and 363 adults), Dermacentor variabilis Say (7.12%; 1 nymph, 83 adults), Ixodes scapularis (Say) (1.61%; 19 adults), Amblyomma maculatum Koch (0.59%; 1 nymph, 6 adults), and Amblyomma cajennense (Fabricius) (0.17%; 1 nymph, 1 adult). FIA crews encountered A. americanum with Ehrlichia and collection information was used to generate baseline occurrence data of tick encounters. Results indicate that this collaborative-tick surveillance can be improved and used to generate useful data including pathogen detection, and because crews revisit these sites, changes in tick encounters can be monitored.
Collapse
Affiliation(s)
- R T Trout Fryxell
- Department of Entomology and Plant Pathology, Plant Biotechnology Building, University of Tennessee, Knoxville, TN )
| | - J T Vogt
- United States Department of Agriculture Forest Service, Southern Research Station - Insects, Diseases, and Invasive Plants in Southern Forests, Athens, GA
| |
Collapse
|
20
|
Maldonado-Ruiz LP, Montenegro-Cadena L, Blattner B, Menghwar S, Zurek L, Londono-Renteria B. Differential Tick Salivary Protein Profiles and Human Immune Responses to Lone Star Ticks ( Amblyomma americanum) From the Wild vs. a Laboratory Colony. Front Immunol 2019; 10:1996. [PMID: 31555263 PMCID: PMC6724717 DOI: 10.3389/fimmu.2019.01996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
Ticks are a growing concern to human and animal health worldwide and they are leading vectors of arthropod-borne pathogens in the United States. Ticks are pool blood feeders that can attach to the host skin for days to weeks using their saliva to counteract the host defenses. Tick saliva, as in other hematophagous arthropods, contains pharmacological and immunological active compounds, which modulate local and systemic immune responses and induce antibody production. In the present study, we explore differences in the salivary gland extract (SGE) protein content of Amblyomma americanum ticks raised in a laboratory colony (CT) vs. those collected in the field (FT). First, we measured the IgG antibody levels against SGE in healthy volunteers residing in Kansas. ELISA test showed higher IgG antibody levels when using the SGE from CT as antigen. Interestingly, antibody levels against both, CT-SGE and FT-SGE, were high in the warm months (May-June) and decreased in the cold months (September-November). Immunoblot testing revealed a set of different immunogenic bands for each group of ticks and mass spectrometry data revealed differences in at 19 proteins specifically identified in the CT-SGE group and 20 from the FT-SGE group. Our results suggest that differences in the salivary proteins between CT-SGE and FT-SGE may explain the differential immune responses observed in this study.
Collapse
Affiliation(s)
- L Paulina Maldonado-Ruiz
- Medical/Veterinary Entomology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Lidia Montenegro-Cadena
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Brittany Blattner
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Sapna Menghwar
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Ludek Zurek
- Department of Pathology and Parasitology, CEITEC Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Berlin Londono-Renteria
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
21
|
Small MM, Laverty SM, King CB, Brennan RE. Tick species establishment in Oklahoma County, Oklahoma, U.S.A., identified by seasonal sampling in residential and non-residential sites. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:105-111. [PMID: 31124238 DOI: 10.1111/jvec.12334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
In recent years, human tick-borne disease occurrence has risen in Oklahoma, U.S.A., but year-round data on tick presence in frequently used recreational areas is not widely available. In this study, ticks were collected monthly for one year at residential and non-residential sites in a suburban area of Oklahoma County, OK, U.S.A. At each trapping site, dry ice traps were used in both woodland and grassland areas and fabric tick drags were used in grassland areas. Four species were collected from each park: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. Prior to this study, A. americanum was the only species with an established population in Oklahoma County. Consistent with this, A. americanum was collected in all months of the year and accounted for over 90% of ticks collected at each site. Based on our tick survey, we report that A. maculatum, D. variabilis, and I. scapularis, which were each collected in numbers greater than six within a single sampling occasion, are now each confirmed as established populations in Oklahoma County.
Collapse
Affiliation(s)
- Mariah M Small
- University of Central Oklahoma, Department of Biology, Edmond, OK 73034, U.S.A
| | - Sean M Laverty
- University of Central Oklahoma, Department of Mathematics and Statistics, Edmond, OK 73034, U.S.A
| | - Chad B King
- University of Central Oklahoma, Department of Biology, Edmond, OK 73034, U.S.A
| | - Robert E Brennan
- University of Central Oklahoma, Department of Biology, Edmond, OK 73034, U.S.A
| |
Collapse
|
22
|
Pak D, Jacobs SB, Sakamoto JM. A 117-year retrospective analysis of Pennsylvania tick community dynamics. Parasit Vectors 2019; 12:189. [PMID: 31036065 PMCID: PMC6489237 DOI: 10.1186/s13071-019-3451-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/20/2019] [Indexed: 11/29/2022] Open
Abstract
Background Tick-borne diseases have been increasing at the local, national, and global levels. Researchers studying ticks and tick-borne diseases need a thorough knowledge of the pathogens, vectors, and epidemiology of disease spread. Both active and passive surveillance approaches are typically used to estimate tick population size and risk of tick encounter. Our data consists of a composite of active and long-term passive surveillance, which has provided insight into spatial variability and temporal dynamics of ectoparasite communities and identified rarer tick species. We present a retrospective analysis on compiled data of ticks from Pennsylvania over the last 117 years. Methods We compiled data from ticks collected during tick surveillance research, and from citizen-based submissions. The majority of the specimens were submitted by citizens. However, a subset of the data was collected through active methods (flagging or dragging, or removal of ticks from wildlife). We analyzed all data from 1900–2017 for tick community composition, host associations, and spatio-temporal dynamics. Results In total there were 4491 submission lots consisting of 7132 tick specimens. Twenty-four different species were identified, with the large proportion of submissions represented by five tick species. We observed a shift in tick community composition in which the dominant species of tick (Ixodes cookei) was overtaken in abundance by Dermacentor variabilis in the early 1990s and then replaced in abundance by I. scapularis. We analyzed host data and identified overlaps in host range amongst tick species. Conclusions We highlight the importance of long-term passive tick surveillance in investigating the ecology of both common and rare tick species. Information on the geographical distribution, host-association, and seasonality of the tick community can help researchers and health-officials to identify high-risk areas. Electronic supplementary material The online version of this article (10.1186/s13071-019-3451-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Damie Pak
- Department of Biology, Pennsylvania State University, W-234A, Millennium Science Complex, University Park, PA, 16802, USA
| | - Steven B Jacobs
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA
| | - Joyce M Sakamoto
- Department of Entomology, Pennsylvania State University, W-104 Millennium Science Complex, University Park, PA, 16802, USA.
| |
Collapse
|
23
|
Sakamoto JM. Progress, challenges, and the role of public engagement to improve tick-borne disease literacy. CURRENT OPINION IN INSECT SCIENCE 2018; 28:81-89. [PMID: 30551772 DOI: 10.1016/j.cois.2018.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 06/09/2023]
Abstract
Vector-borne diseases have increased worldwide, facilitated by globalization and variations in climate. Tick and tick-borne disease researchers, veterinarians, medical practitioners, and public health specialists are working to share their expertise on tick ecology, disease transmission, diagnostics, and treatment in order to control tick-borne epidemics and potential pandemics. This review will be a brief overview of the current status of tick-borne diseases, challenges on the scientific and public fronts, and the role of public engagement in improving citizen education within the context of ticks and tick-borne disease research.
Collapse
Affiliation(s)
- Joyce M Sakamoto
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802 United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802 United States.
| |
Collapse
|
24
|
Machtinger ET, Li AY. Evaluation of four commercial natural products for repellency and toxicity against the lone star tick, Amblyomma americanum (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:451-460. [PMID: 29168105 DOI: 10.1007/s10493-017-0185-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Lone star ticks are aggressive ectoparasites of domestic and wild animals, as well as humans. These ticks can transmit many pathogens that cause disease including Erhlichia and tularemia. Common compounds used for personal protection and area sprays are N-diethyl-3-methyl benzamide (DEET) and permethrin, but public concern over personal and environmental safety require the development of new, safer products. In the current study, four commercially available products (Wondercide, Essentria IC3, Vet's Best, and Mosquito Barrier) were tested for both repellent and toxic effects against lone star tick nymphs and adults. Overall, all four products were more effective against nymphs than against adults. Wondercide and Essentria IC3 were as toxic to nymphs as permethrin at concentrations of 3.13% and higher, and as repellent as DEET at all concentrations. Nymphs were also repelled by Mosquito Barrier and Vet's Best, but these products had about half or less of the repellent effects of Wondercide and Essentria IC3 at most of the concentrations. Adult ticks were repelled similarly by all products at all tested concentrations, but at lower levels than nymphs. Toxicity of the four tested products on adults was similar at concentrations of 12.5% and below, less than half of what was observed with permethrin with declining effectiveness as concentrations decreased. Overall, these four products may offer a natural way to repel lone star ticks, but further field testing is needed to determine rates of application and residual activity.
Collapse
Affiliation(s)
- Erika T Machtinger
- Invasive Insect Biocontrol and Behavior Laboratory, USDA, ARS, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
- Department of Entomology, The Pennsylvania State University, 4 Chemical Ecology Laboratory, University Park, PA, 16802, USA.
| | - Andrew Y Li
- Invasive Insect Biocontrol and Behavior Laboratory, USDA, ARS, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| |
Collapse
|
25
|
Little SE. Lotilaner - a novel systemic tick and flea control product for dogs. Parasit Vectors 2017; 10:539. [PMID: 29089062 PMCID: PMC5664799 DOI: 10.1186/s13071-017-2471-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022] Open
Affiliation(s)
- Susan E Little
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74074, USA.
| |
Collapse
|
26
|
Noden BH, Dubie T. Involvement of invasive eastern red cedar (Juniperus virginiana) in the expansion of Amblyomma americanum in Oklahoma. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:178-183. [PMID: 28504442 DOI: 10.1111/jvec.12253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078 U.S.A
| | - Trisha Dubie
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078 U.S.A
| |
Collapse
|
27
|
Mitcham JR, Barrett AW, Gruntmeir JM, Holland T, Martin JE, Johnson EM, Little SE, Noden BH. Active surveillance to update county scale distribution of four tick species of medical and veterinary importance in Oklahoma. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:60-73. [PMID: 28504425 DOI: 10.1111/jvec.12240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/08/2016] [Indexed: 06/07/2023]
Abstract
The incidence of tick-borne disease continues to increase in humans and companion animals in the United States, yet distribution maps for several tick vectors in Oklahoma, including Dermacentor variabilis, Dermacentor albipictus, Ixodes scapularis, and Amblyomma maculatum, are not available or are outdated. To address this issue, county-scale tick records from peer-reviewed literature and passive collections were reviewed for Oklahoma. Additionally, dry ice traps, tick drags, and harvested deer were utilized to actively collect adult ticks throughout the state. Through these methods, D. variabilis, D. albipictus, I. scapularis, and A. maculatum were identified in 88% (68/77), 45.4% (35/77), 66.2% (51/77), and 64.9% (50/77) of the counties in Oklahoma, respectively. Baseline maps were developed for the distribution of D. variabilis and D. albipictus and distribution maps were updated for I. scapularis and A. maculatum. This data confirms that these four species of ticks continue to be widespread within Oklahoma with a western expansion of the range of I. scapularis within the state. These results assist efforts to better understand the epidemiology of the different diseases caused by pathogens transmitted by these tick species within the Great Plains region.
Collapse
Affiliation(s)
- Jessica R Mitcham
- Department of Entomology and Plant Pathology, Oklahoma State University, College of Agricultural Sciences and Natural Resources, 127 Noble Research Center, Stillwater, OK 74078, U.S.A
| | - Anne W Barrett
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, U.S.A
| | - Jeff M Gruntmeir
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, U.S.A
| | - Taylor Holland
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, U.S.A
| | - Jaclyn E Martin
- Department of Entomology and Plant Pathology, Oklahoma State University, College of Agricultural Sciences and Natural Resources, 127 Noble Research Center, Stillwater, OK 74078, U.S.A
| | - Eileen M Johnson
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, U.S.A
| | - Susan E Little
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, U.S.A
| | - Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, College of Agricultural Sciences and Natural Resources, 127 Noble Research Center, Stillwater, OK 74078, U.S.A
| |
Collapse
|
28
|
Risk of encountering ticks and tick-borne pathogens in a rapidly growing metropolitan area in the U.S. Great Plains. Ticks Tick Borne Dis 2016; 8:119-124. [PMID: 27773826 DOI: 10.1016/j.ttbdis.2016.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/16/2016] [Accepted: 10/13/2016] [Indexed: 11/22/2022]
Abstract
The prevalence of tick-borne diseases has increased dramatically in many urban areas of the U.S., yet little is known about the ecology of ticks and tick-borne pathogens in relation to characteristics of North American urban and suburban landscapes. This study aimed to begin identification of the risk of encountering ticks and tick-borne pathogens within a rapidly expanding metropolitan area in the U.S. Great Plains region. Ten sites across Oklahoma City, Oklahoma were selected for tick sampling based on presence of tick habitat and level of urbanization intensity. Sampling was conducted using CO2 traps and flagging in June, July and October 2015. A total of 552 ticks were collected from eight of the ten sampled greenspaces. The majority of ticks collected in summer were Amblyomma americanum (N=534 (97.8%)), followed by Dermacentor variabilis (N=10 (1.8%)) and Amblyomma maculatum (N=2 (0.3%)). Ixodes scapularis adult females (N=4) and nymphal A. americanum (N=2) were also collected in October 2015. Tick species diversity was highest in sites with >15% of the surrounding landscape composed of undeveloped land. Rickettsia sp. (including R. amblyommii and 'Candidatus R. andeanae'), Ehrlichia chaffeensis and/or E. ewingii were detected in tick pools from all eight sites where ticks were found. Our data suggest that the risk of encountering ticks and tick-borne pathogens exists throughout the Oklahoma City metropolitan area and that tick populations are likely influenced by urbanization intensity. Continued research is needed to clarify the full range of abiotic and biotic features of urban landscapes that influence the risk of encountering ticks and transmitting tick-borne diseases.
Collapse
|
29
|
Monzón JD, Atkinson EG, Henn BM, Benach JL. Population and Evolutionary Genomics of Amblyomma americanum, an Expanding Arthropod Disease Vector. Genome Biol Evol 2016; 8:1351-60. [PMID: 27190204 PMCID: PMC4898797 DOI: 10.1093/gbe/evw080] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The lone star tick, Amblyomma americanum, is an important disease vector and the most frequent tick found attached to humans in the eastern United States. The lone star tick has recently experienced a rapid range expansion into the Northeast and Midwest, but despite this emerging infectious threat to wildlife, livestock, and human health, little is known about the genetic causes and consequences of the geographic expansion. In the first population genomic analysis of any tick species, we characterize the genetic diversity and population structure of A. americanum across its current geographic range, which has recently expanded. Using a high-throughput genotyping-by-sequencing approach, we discovered more than 8,000 single nucleotide polymorphisms in 90 ticks from five locations. Surprisingly, newly established populations in New York (NY) and Oklahoma (OK) are as diverse as historic range populations in North and South Carolina. However, substantial population structure occurs among regions, such that new populations in NY and OK are genetically distinct from historic range populations and from one another. Ticks from a laboratory colony are genetically distinct from wild populations, underscoring the need to account for natural variation when conducting transmission or immunological studies, many of which utilize laboratory-reared ticks. An FST-outlier analysis comparing a recently established population to a long-standing population detected numerous outlier sites, compatible with positive and balancing selection, highlighting the potential for adaptation during the range expansion. This study provides a framework for applying high-throughput DNA sequencing technologies for future investigations of ticks, which are common vectors of diseases.
Collapse
Affiliation(s)
- Javier D Monzón
- Natural Science Division, Pepperdine University Department of Molecular Genetics & Microbiology, Stony Brook University
| | | | - Brenna M Henn
- Department of Ecology & Evolution, Stony Brook University
| | - Jorge L Benach
- Department of Molecular Genetics & Microbiology, Stony Brook University
| |
Collapse
|
30
|
Meng H, Li AY, Costa Junior LM, Castro-Arellano I, Liu J. Evaluation of DEET and eight essential oils for repellency against nymphs of the lone star tick, Amblyomma americanum (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:241-249. [PMID: 26590930 DOI: 10.1007/s10493-015-9994-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
DEET and Eight commercially available essential oils (oregano, clove, thyme, vetiver, sandalwood, cinnamon, cedarwood, and peppermint) were evaluated for repellency against host-seeking nymphs of the lone star tick, Amblyomma americanum. Concentration-repellency response was established using the vertical paper bioassay technique for each essential oil and compared with that of N,N-diethyl-3-methyl benzamide (DEET), a standard repellent compound present in many commercial repellent formulations. The effective concentration of DEET that repels 50% of ticks (EC50) was estimated at 0.02 mg/cm(2), while EC50s of the essential oils fall between 0.113 and 0.297 mg/cm(2). Based on EC50 estimates, oregano essential oil was the most effective among all essential oils tested, followed by clove, thyme, vetiver, sandalwood, cinnamon, cedarwood, and peppermint oils. None of the tested essential oils demonstrated a level of tick repellency found with DEET. Results from this study illustrated the challenge in search for more effective natural tick repellents.
Collapse
Affiliation(s)
- Hao Meng
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
- College of Life Sciences, Hebei Normal University, No 20, Road E. 2nd Ring South, Shijiazhuang, 050024, Hebei, China
| | - Andrew Y Li
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| | - Livio M Costa Junior
- Biological and Health Science Center, Federal University of Maranhão, Av. dos portugueses, 1966, Cidade Universitária do Bacanga, São Luís, MA, CEP 65080-805, Brazil
| | - Ivan Castro-Arellano
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Jingze Liu
- College of Life Sciences, Hebei Normal University, No 20, Road E. 2nd Ring South, Shijiazhuang, 050024, Hebei, China
| |
Collapse
|
31
|
Springer YP, Jarnevich CS, Barnett DT, Monaghan AJ, Eisen RJ. Modeling the Present and Future Geographic Distribution of the Lone Star Tick, Amblyomma americanum (Ixodida: Ixodidae), in the Continental United States. Am J Trop Med Hyg 2015; 93:875-90. [PMID: 26217042 PMCID: PMC4596614 DOI: 10.4269/ajtmh.15-0330] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/09/2015] [Indexed: 12/30/2022] Open
Abstract
The Lone star tick (Amblyomma americanum L.) is the primary vector for pathogens of significant public health importance in North America, yet relatively little is known about its current and potential future distribution. Building on a published summary of tick collection records, we used an ensemble modeling approach to predict the present-day and future distribution of climatically suitable habitat for establishment of the Lone star tick within the continental United States. Of the nine climatic predictor variables included in our five present-day models, average vapor pressure in July was by far the most important determinant of suitable habitat. The present-day ensemble model predicted an essentially contiguous distribution of suitable habitat extending to the Atlantic coast east of the 100th western meridian and south of the 40th northern parallel, but excluding a high elevation region associated with the Appalachian Mountains. Future ensemble predictions for 2061-2080 forecasted a stable western range limit, northward expansion of suitable habitat into the Upper Midwest and western Pennsylvania, and range contraction along portions of the Gulf coast and the lower Mississippi river valley. These findings are informative for raising awareness of A. americanum-transmitted pathogens in areas where the Lone Star tick has recently or may become established.
Collapse
Affiliation(s)
- Yuri P Springer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado
| | - Catherine S Jarnevich
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado
| | - David T Barnett
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado
| | - Andrew J Monaghan
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado
| |
Collapse
|