1
|
Ling H, Fu X, Huang N, Zhong Z, Liu T, Cui H, Que Y. A Sugarcane Smut Fungus Effector Hijacks Plant Vacuolar Sorting Receptor-Mediated Trafficking to Evade Host Immune Detection. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40166905 DOI: 10.1111/pce.15500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
The smut fungus Sporisorium scitamineum is a major pathogen in sugarcane, causing significant agricultural losses worldwide. However, the molecular mechanisms by which its effectors facilitate infection and evade host immunity remain largely unclear. In this study, we identified the sugarcane vacuolar sorting receptor 1 gene (ScVSR1), whose expression negatively correlate with several putative S. scitamineum effector genes in a co-expression network. Overexpression of ScVSR1 in Arabidopsis thaliana reduced resistance to a fungal powdery mildew pathogen, indicating the negative role of ScVSR1 in plant defence. Among the co-expressed S. scitamineum effectors, SsPE15, a secreted cerato-platanin-like protein (CPP), physically interacts with ScVSR1 and is sorted into the prevacuolar compartment (PVC) by interacting with ScVSR1 in plant cells. Deletion of SsPE15 in S. scitamineum enhanced fungal virulence, suggesting that SsPE15 acts as an immune elicitor. Furthermore, the C-terminal domain of the SsPE15, containing the VSR sorting signal, was found to facilitate vesicular location. Notably, fusing this C-terminal domain to the bacterial effector AvrRpt2 significantly reduced AvrRpt2-triggered programmed cell death in Arabidopsis, a process partially dependent on AtVSR1 and AtVSR2. These findings reveal an immune evasion strategy by which S. scitamineum effector SsPE15 hijacks the host's vesicular trafficking system to avoid immune detection.
Collapse
Affiliation(s)
- Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Intelligent Agriculture, Yulin Normal University, Yulin, Guangxi, China
| | - Xueqin Fu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ning Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Intelligent Agriculture, Yulin Normal University, Yulin, Guangxi, China
| | - Zaofa Zhong
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Tingting Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Intelligent Agriculture, Yulin Normal University, Yulin, Guangxi, China
| | - Haitao Cui
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
2
|
Schrey H, Lambert C, Stadler M. Fungi: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry. IMA Fungus 2025; 16:e142462. [PMID: 40093757 PMCID: PMC11909596 DOI: 10.3897/imafungus.16.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.
Collapse
Affiliation(s)
- Hedda Schrey
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Christopher Lambert
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Marc Stadler
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
3
|
Pang L, Huang Y, He Y, Jiang D, Li R. The adaptor protein AP-3β disassembles heat-induced stress granules via 19S regulatory particle in Arabidopsis. Nat Commun 2025; 16:2039. [PMID: 40016204 PMCID: PMC11868639 DOI: 10.1038/s41467-025-57306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
To survive under adverse conditions, plants form stress granules (SGs) to temporally store mRNA and halt translation as a primary response. Dysregulation in SG disassembly can have detrimental effects on plant survival after stress release, yet the underlying mechanism remains poorly understood. Using Arabidopsis as a model system, we demonstrate that the β subunit of adaptor protein (AP) -3 complex (AP-3β) interacts with the SG core RNA-binding proteins Tudor staphylococcal nuclease 1/2 (TSN1/2) both in vitro and in vivo. We also show that AP-3β is rapidly recruited to SGs upon heat induction and plays a key role in disassembling SGs during stress recovery. Genetic evidences support that AP-3β serves as an adaptor to recruit the 19S regulatory particle (RP) of the proteasome to SGs. Notably, the 19S RP promotes SG disassembly through RP-associated deubiquitylation, independent of its proteolytic activity. This deubiquitylation process of SG components is crucial for translation reinitiation and growth recovery after heat release. Our findings uncover a previously unexplored role of the 19S RP in regulating SG disassembly and highlights the importance of endomembrane proteins in supporting RNA granule dynamics in plants.
Collapse
Affiliation(s)
- Lei Pang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanzhi Huang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yilin He
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Jiang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruixi Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Gao Y, Tang T, Cao W, Ali M, Zhou Q, Zhu D, Ma X, Cai Y, Zhang Q, Wang Z, Pei D, Huang J, Shen J. Protoplast transient transformation facilitates subcellular localization and functional analysis of walnut proteins. PLANT PHYSIOLOGY 2025; 197:kiae627. [PMID: 39576030 DOI: 10.1093/plphys/kiae627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 02/26/2025]
Abstract
Walnut (Juglans regia L.), an important contributor to oil production among woody plants, encounters research constraints due to difficulties in the subcellular localization and functional analysis of its proteins. These limitations arise from the protracted fruiting cycle and the absence of a reliable transient gene transformation system and organelle markers. In this study, we established a transient expression system using walnut protoplasts and generated fluorescent-tagged organelle markers, whose localization was validated against Arabidopsis (Arabidopsis thaliana) organelle markers. The versatility of this system was demonstrated through pharmaceutical treatments, confirming its ability to determine the subcellular localization of endogenous proteins. We determined the subcellular localization of walnut oleosin proteins and explored protein-protein interactions through bimolecular fluorescence complementation analysis. We also explored the effects of abscisic acid signaling on oil body morphology and the regulation of walnut WRINKLED1 (JrWRI1) in lipid biosynthesis. Overall, this stable and versatile protoplast-based transient expression system, integrated with walnut organelle markers, enhances the subcellular localization and functional studies of uncharacterized walnut proteins. This advancement accelerates research into walnut gene function and streamlines molecular breeding processes with high-throughput efficiency.
Collapse
Affiliation(s)
- Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Tianyu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Muhammad Ali
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Qirong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dongmei Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaohui Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
5
|
Li X, Zheng J, Su J, Wang L, Luan L, Wang T, Bai F, Zhong Q, Gong Q. Myotubularin 2 interacts with SEC23A and negatively regulates autophagy at ER exit sites in Arabidopsis. Autophagy 2025; 21:141-159. [PMID: 39177202 DOI: 10.1080/15548627.2024.2394302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Starvation- or stress-induced phosphatidylinositol 3-phosphate (PtdIns3P/PI3P) production at the endoplasmic reticulum (ER) subdomains organizes phagophore assembly and autophagosome formation. Coat protein complex II (COPII) vesicles budding from ER exit site (ERES) also contribute to autophagosome formation. Whether any PtdIns3P phosphatase functions at ERES to inhibit macroautophagy/autophagy is unknown. Here we report Myotubularin 2 (MTM2) of Arabidopsis as a PtdIns3P phosphatase that localizes to ERES and negatively regulates autophagy. MTM2 binds PtdIns3P with its PH-GRAM domain in vitro and acts toward PtdIns3P in vivo. Transiently expressed MTM2 colocalizes with ATG14b, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex, and overexpression of MTM2 blocks autophagic flux and causes over-accumulation of ATG18a, ATG5, and ATG8a. The mtm2 mutant has higher levels of autophagy and is more tolerant to starvation, whereas MTM2 overexpression leads to reduced autophagy and sensitivity to starvation. The phenotypes of mtm2 are suppressed by ATG2 mutation, suggesting that MTM2 acts upstream of ATG2. Importantly, MTM2 does not affect the endosomal functions of PtdIns3P. Instead, MTM2 specifically colocalizes with COPII coat proteins and is cradled by the ERES-defining protein SEC16. MTM2 interacts with SEC23A with its phosphatase domain and inhibits COPII-mediated protein secretion. Finally, a role for MTM2 in salt stress response is uncovered. mtm2 resembles the halophyte Thellungiella salsuginea in its efficient vacuolar compartmentation of Na+, maintenance of chloroplast integrity, and timely regulation of autophagy-related genes. Our findings reveal a balance between PtdIns3P synthesis and turnover in autophagosome formation, and provide a new link between autophagy and COPII function.Abbreviations: ATG: autophagy related; BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CHX: cycloheximide; ConA: concanamycin A; COPII: coat protein complex II; ER: endoplasmic reticulum; ERES: ER exit site; MS: Murashige and Skoog; MTM: myotubularin; MVB: multivesicular body; PAS: phagophore assembly site; PI: phosphoinositide; TEM: transmission electron microscopy; WT: wild-type.
Collapse
Affiliation(s)
- Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jing Zheng
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Jing Su
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Lin Luan
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
6
|
Hasegawa Y, Luo Y, Sato T. Recent Advances in Ubiquitin Signals Regulating Plant Membrane Trafficking. PLANT & CELL PHYSIOLOGY 2024; 65:1907-1924. [PMID: 39446594 DOI: 10.1093/pcp/pcae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Ubiquitination is a reversible post-translational modification involving the attachment of ubiquitin, a 76-amino acid protein conserved among eukaryotes. The protein 'ubiquitin' was named after it was found to be ubiquitously expressed in cells. Ubiquitination was first identified as a post-translational modification that mediates energy-consuming protein degradation by the proteasome. After half a century, the manifold functions of ubiquitin are widely recognized to play key roles in diverse molecular pathways and physiological processes. Compared to humans, the number of enzymes related to ubiquitination is almost twice as high in plant species, such as Arabidopsis and rice, suggesting that this modification plays a critical role in many aspects of plant physiology including development and environmental stress responses. Here, we summarize and discuss recent knowledge of ubiquitination focusing on the regulation of membrane trafficking in plants. Ubiquitination of plasma membrane-localized proteins often leads to endocytosis and vacuolar targeting. In addition to cargo proteins, ubiquitination of membrane trafficking regulators regulates the morphodynamics of the endomembrane system. Thus, throughout this review, we focus on the physiological responses regulated by ubiquitination and their underlying mechanisms to clarify what is already known and what would be interesting to investigate in the future.
Collapse
Affiliation(s)
- Yoko Hasegawa
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Yongming Luo
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| | - Takeo Sato
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| |
Collapse
|
7
|
Wang Y, Li S, Mokbel M, May AI, Liang Z, Zeng Y, Wang W, Zhang H, Yu F, Sporbeck K, Jiang L, Aland S, Agudo-Canalejo J, Knorr RL, Fang X. Biomolecular condensates mediate bending and scission of endosome membranes. Nature 2024; 634:1204-1210. [PMID: 39385023 PMCID: PMC11525194 DOI: 10.1038/s41586-024-07990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/23/2024] [Indexed: 10/11/2024]
Abstract
Multivesicular bodies are key endosomal compartments implicated in cellular quality control through their degradation of membrane-bound cargo proteins1-3. The ATP-consuming ESCRT protein machinery mediates the capture and engulfment of membrane-bound cargo proteins through invagination and scission of multivesicular-body membranes to form intraluminal vesicles4,5. Here we report that the plant ESCRT component FREE16 forms liquid-like condensates that associate with membranes to drive intraluminal vesicle formation. We use a minimal physical model, reconstitution experiments and in silico simulations to identify the dynamics of this process and describe intermediate morphologies of nascent intraluminal vesicles. Furthermore, we find that condensate-wetting-induced line tension forces and membrane asymmetries are sufficient to mediate scission of the membrane neck without the ESCRT protein machinery or ATP consumption. Genetic manipulation of the ESCRT pathway in several eukaryotes provides additional evidence for condensate-mediated membrane scission in vivo. We find that the interplay between condensate and machinery-mediated scission mechanisms is indispensable for osmotic stress tolerance in plants. We propose that condensate-mediated scission represents a previously undescribed scission mechanism that depends on the physicomolecular properties of the condensate and is involved in a range of trafficking processes. More generally, FREE1 condensate-mediated membrane scission in multivesicular-body biogenesis highlights the fundamental role of wetting in intracellular dynamics and organization.
Collapse
Affiliation(s)
- Yanning Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shulin Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Marcel Mokbel
- Faculty of Mathematics and Informatics, Technical University Freiberg, Freiberg, Germany
| | - Alexander I May
- Institute of Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Zizhen Liang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonglun Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Wang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Honghong Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Katharina Sporbeck
- Institute of Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sebastian Aland
- Faculty of Mathematics and Informatics, Technical University Freiberg, Freiberg, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Physics and Astronomy, University College London, London, UK
| | - Roland L Knorr
- Institute of Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
- Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Xiaofeng Fang
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Mohr I, Mirzaiebadizi A, Sanyal SK, Chuenban P, Ahmadian MR, Ivanov R, Bauer P. Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5. J Cell Sci 2024; 137:jcs262315. [PMID: 39056156 PMCID: PMC11361645 DOI: 10.1242/jcs.262315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Small GTPases switch between GDP- and GTP-bound states during cell signaling. The ADP-ribosylation factor (ARF) family of small GTPases is involved in vesicle trafficking. Although evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. We characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5 (TTN5; also known as HALLIMASCH, ARL2 and ARLC1) from Arabidopsis thaliana, and two TTN5 proteins with point mutants in conserved residues, TTN5T30N and TTN5Q70L, that were expected to be unable to perform nucleotide exchange and GTP hydrolysis, respectively. TTN5 exhibited very rapid intrinsic nucleotide exchange and remarkably low GTP hydrolysis activity, functioning as a non-classical small GTPase being likely present in a GTP-loaded active form. We analyzed signals from YFP-TTN5 and HA3-TTN5 by in situ immunolocalization in Arabidopsis seedlings and through use of a transient expression system. Colocalization with endomembrane markers and pharmacological treatments suggests that TTN5 can be present at the plasma membrane and that it dynamically associates with membranes of vesicles, Golgi stacks and multivesicular bodies. Although TTN5Q70L mirrored wild-type TTN5 behavior, the TTN5T30N mutant differed in some aspects. Hence, the unusual rapid nucleotide exchange activity of TTN5 is linked with its membrane dynamics, and TTN5 likely has a role in vesicle transport within the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sibaji K. Sanyal
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Pichaporn Chuenban
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Plant Genome Engineering, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Mohr I, Mirzaiebadizi A, Sanyal SK, Chuenban P, Ahmadian MR, Ivanov R, Bauer P. Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538563. [PMID: 37162876 PMCID: PMC10168340 DOI: 10.1101/2023.04.27.538563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Small GTPases function by conformational switching ability between GDP- and GTP-bound states in rapid cell signaling events. The ADP-ribosylation factor (ARF) family is involved in vesicle trafficking. Though evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. Here, we characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5/HALLIMASCH/ARL2/ARLC1 (hereafter termed TTN5) from Arabidopsis thaliana. Two TTN5 variants were included in the study with point mutations at conserved residues, suspected to be functional for nucleotide exchange and GTP hydrolysis, TTN5T30N and TTN5Q70L. We found that TTN5 had a very rapid intrinsic nucleotide exchange capacity with a conserved nucleotide switching mechanism. TTN5 acted as a non-classical small GTPase with a remarkably low GTP hydrolysis activity, suggesting it is likely present in GTP-loaded active form in the cell. We analyzed signals from yellow fluorescent protein (YFP)-tagged TTN5 and from in situ immunolocalization of hemagglutine-tagged HA3-TTN5 in Arabidopsis seedlings and in a transient expression system. Together with colocalization using endomembrane markers and pharmacological treatments the microscopic analysis suggests that TTN5 can be present at the plasma membrane and dynamically associated with membranes of vesicles, Golgi stacks and multivesicular bodies. While the TTN5Q70L variant showed similar GTPase activities and localization behavior as wild-type TTN5, the TTN5T30N mutant differed in some aspects. Hence, the unusual capacity of rapid nucleotide exchange activity of TTN5 is linked with cell membrane dynamics, likely associated with vesicle transport pathways in the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sibaji K Sanyal
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Pichaporn Chuenban
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Meng R, Li Z, Kang X, Zhang Y, Wang Y, Ma Y, Wu Y, Dong S, Li X, Gao L, Chu X, Yang G, Yuan X, Wang J. High Overexpression of SiAAP9 Leads to Growth Inhibition and Protein Ectopic Localization in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:5840. [PMID: 38892028 PMCID: PMC11172308 DOI: 10.3390/ijms25115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Amino acid permeases (AAPs) transporters are crucial for the long-distance transport of amino acids in plants, from source to sink. While Arabidopsis and rice have been extensively studied, research on foxtail millet is limited. This study identified two transcripts of SiAAP9, both of which were induced by NO3- and showed similar expression patterns. The overexpression of SiAAP9L and SiAAP9S in Arabidopsis inhibited plant growth and seed size, although SiAAP9 was found to transport more amino acids into seeds. Furthermore, SiAAP9-OX transgenic Arabidopsis showed increased tolerance to high concentrations of glutamate (Glu) and histidine (His). The high overexpression level of SiAAP9 suggested its protein was not only located on the plasma membrane but potentially on other organelles, as well. Interestingly, sequence deletion reduced SiAAP9's sensitivity to Brefeldin A (BFA), and SiAAP9 had ectopic localization on the endoplasmic reticulum (ER). Protoplast amino acid uptake experiments indicated that SiAAP9 enhanced Glu transport into foxtail millet cells. Overall, the two transcripts of SiAAP9 have similar functions, but SiAAP9L shows a higher colocalization with BFA compartments compared to SiAAP9S. Our research identifies a potential candidate gene for enhancing the nutritional quality of foxtail millet through breeding.
Collapse
Affiliation(s)
- Ru Meng
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Zhipeng Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Xueting Kang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yujia Zhang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yiru Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yuchao Ma
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yanfeng Wu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Jinzhong 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiagang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
11
|
Zhuang X, Li R, Jiang L. A century journey of organelles research in the plant endomembrane system. THE PLANT CELL 2024; 36:1312-1333. [PMID: 38226685 PMCID: PMC11062446 DOI: 10.1093/plcell/koae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
12
|
Ricardi MM, Wallmeroth N, Cermesoni C, Mehlhorn DG, Richter S, Zhang L, Mittendorf J, Godehardt I, Berendzen KW, von Roepenack-Lahaye E, Stierhof YD, Lipka V, Jürgens G, Grefen C. A tyrosine phospho-switch within the Longin domain of VAMP721 modulates SNARE functionality. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1633-1651. [PMID: 37659090 DOI: 10.1111/tpj.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.
Collapse
Affiliation(s)
- Martiniano Maria Ricardi
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Niklas Wallmeroth
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
| | - Cecilia Cermesoni
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Sandra Richter
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
- University of Tübingen, ZMBP Central Facilities, Tübingen, Germany
| | - Lei Zhang
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Josephine Mittendorf
- University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Göttingen, Germany
| | - Ingeborg Godehardt
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | | | | | | | - Volker Lipka
- University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Göttingen, Germany
| | - Gerd Jürgens
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
| | - Christopher Grefen
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| |
Collapse
|
13
|
Wang T, Li X, Liu N, Yang Y, Gong Q. TurboID-based proximity labelling reveals a connection between VPS34 and cellular homeostasis. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154100. [PMID: 37748420 DOI: 10.1016/j.jplph.2023.154100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Unlike animals, plants and yeasts only have a class III phosphatidylinositol 3-kinase (PI3KC3). Its lipid product, phosphatidylinositol 3-phosphate (PtdIns-3-P, PI3P), organizes intracellular trafficking routes such as autophagosome formation, multivesicular body (MVB) formation, retro-transport from trans-Golgi network (TGN) to late Golgi, and the fusion events between autophagosomes and MVBs and the vacuole. The catalytic subunit of plant PI3KC3 is encoded by the essential gene Vacuolar Protein Sorting 34 (VPS34). Despite the importance of VPS34 in cellular homeostasis and plant development, a VPS34 interactome is lacking. Here we employed TurboID, an enzyme-catalyzed proximity labelling (PL) method, to describe a proximal interactome of Arabidopsis VPS34. TurboID catalyzed spatially restricted biotinylation and enabled VPS34-specific enrichment of 273 proteins from affinity purification coupled with mass spectrometry. The interactome confirmed known functions of VPS34 in endo-lysosomal trafficking. Intriguingly, carbohydrate metabolism was the most enriched Gene Ontology (GO) term, including glycolytic enzymes in the triose portion and enzymes functioning in chloroplast triose export and sucrose biosynthesis. The interaction between VPS34 and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1/2) was validated in planta. Also verified was the interaction between VPS34 and the plasma membrane H+-ATPase AHA2, a primary determinant of membrane potential. Our study links PI3KC3 to carbohydrate metabolism and membrane potential, two key processes that maintain cellular homeostasis.
Collapse
Affiliation(s)
- Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ningjing Liu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yi Yang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
14
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
15
|
Weng X, Shen Y, Jiang L, Zhao L, Wang H. Spatiotemporal organization and correlation of tip-focused exocytosis and endocytosis in regulating pollen tube tip growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111633. [PMID: 36775070 DOI: 10.1016/j.plantsci.2023.111633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Pollen tube polar growth is a key cellular process during plant fertilization and is regulated by tip-focused exocytosis and endocytosis. However, the spatiotemporal dynamics and localizations of apical exocytosis and endocytosis in the tip region are still a matter of debate. Here, we use a refined spinning-disk confocal microscope coupled with fluorescence recovery after photobleaching for sustained live imaging and quantitative analysis of rapid vesicular activities in growing pollen tube tips. We traced and analyzed the occurrence site of exocytic plasma membrane-targeting of Arabidopsis secretory carrier membrane protein 4 and its subsequent endocytosis in tobacco pollen tube tips. We demonstrated that the pollen tube apex is the site for both vesicle polar exocytic fusion and endocytosis to take place. In addition, we disrupted either tip-focused exocytosis or endocytosis and found that their dynamic activities are closely correlated with one another basing on the spatial organization of actin fringe. Collectively, our findings attempt to propose a new exocytosis and endocytosis-coordinated yin-yang working model underlying the apical membrane organization and dynamics during pollen tube tip growth.
Collapse
Affiliation(s)
- Xun Weng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Shen
- Utahloy International School of Guangzhou, Guangzhou 510642, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Plant Molecular Biology & Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lifeng Zhao
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Zhou J, Ma J, Yang C, Zhu X, Li J, Zheng X, Li X, Chen S, Feng L, Wang P, Ho MI, Ma W, Liao J, Li F, Wang C, Zhuang X, Jiang L, Kang BH, Gao C. A non-canonical role of ATG8 in Golgi recovery from heat stress in plants. NATURE PLANTS 2023; 9:749-765. [PMID: 37081290 DOI: 10.1038/s41477-023-01398-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Above-optimal growth temperatures, usually referred to as heat stress (HS), pose a challenge to organisms' survival as they interfere with essential physiological functions and disrupt cellular organization. Previous studies have elucidated the complex transcriptional regulatory networks involved in plant HS responses, but the mechanisms of organellar remodelling and homeostasis during plant HS adaptations remain elusive. Here we report a non-canonical function of ATG8 in regulating the restoration of plant Golgi damaged by HS. Short-term acute HS causes vacuolation of the Golgi apparatus and translocation of ATG8 to the dilated Golgi membrane. The inactivation of the ATG conjugation system, but not of the upstream autophagic initiators, abolishes the targeting of ATG8 to the swollen Golgi, causing a delay in Golgi recovery after HS. Using TurboID-based proximity labelling, we identified CLATHRIN LIGHT CHAIN 2 (CLC2) as an interacting partner of ATG8 via the AIM-LDS interface. CLC2 is recruited to the cisternal membrane by ATG8 to facilitate Golgi reassembly. Collectively, our study reveals a hitherto unanticipated process of Golgi stack recovery from HS in plant cells and uncovers a previously unknown mechanism of organelle resilience involving ATG8.
Collapse
Affiliation(s)
- Jun Zhou
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| | - Juncai Ma
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Chao Yang
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiu Zhu
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jing Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Xuanang Zheng
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xibao Li
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Siyu Chen
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lei Feng
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Man Ip Ho
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Wenlong Ma
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Jun Liao
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chao Wang
- College of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China.
| | - Caiji Gao
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
17
|
Yan H, Zhuang M, Xu X, Li S, Yang M, Li N, Du X, Hu K, Peng X, Huang W, Wu H, Tse YC, Zhao L, Wang H. Autophagy and its mediated mitochondrial quality control maintain pollen tube growth and male fertility in Arabidopsis. Autophagy 2023; 19:768-783. [PMID: 35786359 PMCID: PMC9980518 DOI: 10.1080/15548627.2022.2095838] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macroautophagy/autophagy, a major catabolic pathway in eukaryotes, participates in plant sexual reproduction including the processes of male gametogenesis and the self-incompatibility response. Rapid pollen tube growth is another essential reproductive process that is metabolically highly demanding to drive the vigorous cell growth for delivery of male gametes for fertilization in angiosperms. Whether and how autophagy operates to maintain the homeostasis of pollen tubes remains unknown. Here, we provide evidence that autophagy is elevated in growing pollen tubes and critically required during pollen tube growth and male fertility in Arabidopsis. We demonstrate that SH3P2, a critical non-ATG regulator of plant autophagy, colocalizes with representative ATG proteins during autophagosome biogenesis in growing pollen tubes. Downregulation of SH3P2 expression significantly disrupts Arabidopsis pollen germination and pollen tube growth. Further analysis of organelle dynamics reveals crosstalk between autophagosomes and prevacuolar compartments following the inhibition of phosphatidylinositol 3-kinase. In addition, time-lapse imaging and tracking of ATG8e-labeled autophagosomes and depolarized mitochondria demonstrate that they interact specifically via the ATG8-family interacting motif (AIM)-docking site to mediate mitophagy. Ultrastructural identification of mitophagosomes and two additional forms of autophagosomes imply that multiple types of autophagy are likely to function simultaneously within pollen tubes. Altogether, our results suggest that autophagy is functionally crucial for mediating mitochondrial quality control and canonical cytoplasm recycling during pollen tube growth.Abbreviations: AIM: ATG8-family interacting motif; ATG8: autophagy related 8; ATG5: autophagy related 5; ATG7: autophagy related 7; BTH: acibenzolar-S-methyl; DEX: dexamethasone; DNP: 2,4-dinitrophenol; GFP: green fluorescent protein; YFP: yellow fluorescent protein; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PVC: prevacuolar compartment; SH3P2: SH3 domain-containing protein 2.
Collapse
Affiliation(s)
- He Yan
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Menglong Zhuang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaoyu Xu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Shanshan Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Mingkang Yang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Nianle Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Kangwei Hu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaomin Peng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Wei Huang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Hong Wu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Yu Chung Tse
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| |
Collapse
|
18
|
Shi J, Jiang M, Wang H, Luo Z, Guo Y, Chen Y, Zhao X, Qiang S, Strasser RJ, Kalaji HM, Chen S. Effects of Mycotoxin Fumagillin, Mevastatin, Radicicol, and Wortmannin on Photosynthesis of Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030665. [PMID: 36771749 PMCID: PMC9920790 DOI: 10.3390/plants12030665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 05/12/2023]
Abstract
Mycotoxins are one of the most important sources for the discovery of new pesticides and drugs because of their chemical structural diversity and fascinating bioactivity as well as unique novel targets. Here, the effects of four mycotoxins, fumagillin, mevastatin, radicicol, and wortmannin, on photosynthesis were investigated to identify their precise sites of action on the photosynthetic apparatus of Chlamydomonas reinhardtii. Our results showed that these four mycotoxins have multiple targets, acting mainly on photosystem II (PSII). Their mode of action is similar to that of diuron, inhibiting electron flow beyond the primary quinone electron acceptor (QA) by binding to the secondary quinone electron acceptor (QB) site of the D1 protein, thereby affecting photosynthesis. The results of PSII oxygen evolution rate and chlorophyll (Chl) a fluorescence imaging suggested that fumagillin strongly inhibited overall PSII activity; the other three toxins also exhibited a negative influence at the high concentration. Chl a fluorescence kinetics and the JIP test showed that the inhibition of electron transport beyond QA was the most significant feature of the four mycotoxins. Fumagillin decreased the rate of O2 evolution by interrupting electron transfer on the PSII acceptor side, and had multiple negative effects on the primary photochemical reaction and PSII antenna size. Mevastatin caused a decrease in photosynthetic activity, mainly due to the inhibition of electron transport. Both radicicol and wortmannin decreased photosynthetic efficiency, mainly by inhibiting the electron transport efficiency of the PSII acceptor side and the activity of the PSII reaction centers. In addition, radicicol reduced the primary photochemical reaction efficiency and antenna size. The simulated molecular model of the four mycotoxins' binding to C. reinhardtii D1 protein indicated that the residue D1-Phe265 is their common site at the QB site. This is a novel target site different from those of commercial PSII herbicides. Thus, the interesting effects of the four mycotoxins on PSII suggested that they provide new ideas for the design of novel and efficient herbicide molecules.
Collapse
Affiliation(s)
- Jiale Shi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyun Jiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - He Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Luo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjing Guo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxi Zhao
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Reto Jörg Strasser
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- Bioenergetics Laboratory, University of Geneva, CH-1254 Jussy, Geneva, Switzerland
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
19
|
Liu Y, Mu C, Du D, Yang Y, Li L, Xuan W, Kircher S, Palme K, Li X, Li R. Alkaline stress reduces root waving by regulating PIN7 vacuolar transport. FRONTIERS IN PLANT SCIENCE 2022; 13:1049144. [PMID: 36582637 PMCID: PMC9792863 DOI: 10.3389/fpls.2022.1049144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Root development and plasticity are assessed via diverse endogenous and environmental cues, including phytohormones, nutrition, and stress. In this study, we observed that roots in model plant Arabidopsis thaliana exhibited waving and oscillating phenotypes under normal conditions but lost this pattern when subjected to alkaline stress. We later showed that alkaline treatment disturbed the auxin gradient in roots and increased auxin signal in columella cells. We further demonstrated that the auxin efflux transporter PIN-FORMED 7 (PIN7) but not PIN3 was translocated to vacuole lumen under alkaline stress. This process is essential for root response to alkaline stress because the pin7 knockout mutants retained the root waving phenotype. Moreover, we provided evidence that the PIN7 vacuolar transport might not depend on the ARF-GEFs but required the proper function of an ESCRT subunit known as FYVE domain protein required for endosomal sorting 1 (FREE1). Induced silencing of FREE1 disrupted the vacuolar transport of PIN7 and reduced sensitivity to alkaline stress, further highlighting the importance of this cellular process. In conclusion, our work reveals a new role of PIN7 in regulating root morphology under alkaline stress.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chenglin Mu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Dongdong Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower‐Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Stefan Kircher
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
20
|
Jiang D, He Y, Zhou X, Cao Z, Pang L, Zhong S, Jiang L, Li R. Arabidopsis HOPS subunit VPS41 carries out plant-specific roles in vacuolar transport and vegetative growth. PLANT PHYSIOLOGY 2022; 189:1416-1434. [PMID: 35417008 PMCID: PMC9237685 DOI: 10.1093/plphys/kiac167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The homotypic fusion and protein sorting (HOPS) complex is a conserved, multi-subunit tethering complex in eukaryotic cells. In yeast and mammalian cells, the HOPS subunit vacuolar protein sorting-associated protein 41 (VPS41) is recruited to late endosomes after Ras-related protein 7 (Rab7) activation and is essential for vacuole fusion. However, whether VPS41 plays conserved roles in plants is not clear. Here, we demonstrate that in the model plant Arabidopsis (Arabidopsis thaliana), VPS41 localizes to distinct condensates in root cells in addition to its reported localization at the tonoplast. The formation of condensates does not rely on the known upstream regulators but depends on VPS41 self-interaction and is essential for vegetative growth regulation. Genetic evidence indicates that VPS41 is required for both homotypic vacuole fusion and cargo sorting from the adaptor protein complex 3, Rab5, and Golgi-independent pathways but is dispensable for the Rab7 cargo inositol transporter 1. We also show that VPS41 has HOPS-independent functions in vacuolar transport. Taken together, our findings indicate that Arabidopsis VPS41 is a unique subunit of the HOPS complex that carries out plant-specific roles in both vacuolar transport and developmental regulation.
Collapse
Affiliation(s)
- Dong Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilin He
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangui Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiran Cao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Pang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Liang C, Li C, Wu J, Zhao M, Chen D, Liu C, Chu J, Zhang W, Hwang I, Wang M. SORTING NEXIN2 proteins mediate stomatal movement and the response to drought stress by modulating trafficking and protein levels of the ABA exporter ABCG25. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1603-1618. [PMID: 35384109 DOI: 10.1111/tpj.15758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates ion channel activity and stomatal movement in response to drought stress. Cellular ABA levels change depending on cellular and environmental conditions via modulation of its biosynthesis, catabolism and transport. Although factors involved in ABA biosynthesis and degradation have been studied extensively, how ABA transporters are modulated to fine-tune ABA levels, especially under drought stress, remains elusive. Here, we show that Arabidopsis thaliana SORTING NEXIN 2 (SNX2) proteins play a critical role in endosomal trafficking of the ABA exporter ATP BINDING CASETTE G25 (ABCG25) via direct interaction at endosomes, leading to its degradation in the vacuole. In agreement, snx2a and snx2b mutant plants showed enhanced recycling of GFP-ABCG25 from early endosomes to the plasma membrane and higher accumulation of GFP-ABCG25. Phenotypically, snx2a and snx2b plants were highly sensitive to exogenous ABA and displayed enhanced ABA-mediated inhibition of inward K+ currents and ABA-mediated activation of slow anion currents in guard cells, resulting in an increased tolerance to drought stress. Based on these results, we propose that SNX2 proteins play a crucial role in stomatal movement and tolerance to drought stress by modulating the endosomal trafficking of ABCG25 and thus cellular ABA levels.
Collapse
Affiliation(s)
- Chaochao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jing Wu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Min Zhao
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| |
Collapse
|
22
|
Plant ESCRT protein ALIX coordinates with retromer complex in regulating receptor-mediated sorting of soluble vacuolar proteins. Proc Natl Acad Sci U S A 2022; 119:e2200492119. [PMID: 35533279 PMCID: PMC9171914 DOI: 10.1073/pnas.2200492119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery in multicellular organisms plays canonical functions in multivesicular body (MVB) biogenesis and membrane protein sorting. Nonetheless, its critical role in the sorting of soluble vacuolar proteins and its interplay with endosomal recycling machinery have yet to be reported. In this study, we demonstrate that Arabidopsis ESCRT-associated ALIXinteracts with the retromer core subunitsto regulate their recruitment onto endosome membrane for recycling of vacuolar sorting receptors (VSRs) for efficient sorting of soluble vacuolar proteins. This work provides molecular insights into the unique properties of ALIX in regulating vacuolar transport of soluble proteins, thus shedding new light on the crosstalk and coordination between the vacuolar trafficking and endosomal recycling pathways in plants. Vacuolar proteins play essential roles in plant physiology and development, but the factors and the machinery regulating their vesicle trafficking through the endomembrane compartments remain largely unknown. We and others have recently identified an evolutionarily conserved plant endosomal sorting complex required for transport (ESCRT)-associated protein apoptosis-linked gene-2 interacting protein X (ALIX), which plays canonical functions in the biogenesis of the multivesicular body/prevacuolar compartment (MVB/PVC) and in the sorting of ubiquitinated membrane proteins. In this study, we elucidate the roles and underlying mechanism of ALIX in regulating vacuolar transport of soluble proteins, beyond its conventional ESCRT function in eukaryotic cells. We show that ALIX colocalizes and physically interacts with the retromer core subunits Vps26 and Vps29 in planta. Moreover, double-mutant analysis reveals the genetic interaction of ALIX with Vps26 and Vps29 for regulating trafficking of soluble vacuolar proteins. Interestingly, depletion of ALIX perturbs membrane recruitment of Vps26 and Vps29 and alters the endosomal localization of vacuolar sorting receptors (VSRs). Taken together, ALIX functions as a unique retromer core subcomplex regulator by orchestrating receptor-mediated vacuolar sorting of soluble proteins.
Collapse
|
23
|
Hao G, Zhao X, Zhang M, Ying J, Yu F, Li S, Zhang Y. Vesicle trafficking in
Arabidopsis
pollen tubes. FEBS Lett 2022; 596:2231-2242. [DOI: 10.1002/1873-3468.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guang‐Jiu Hao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Xin‐Ying Zhao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | | | - Jun Ying
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Fei Yu
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Sha Li
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Yan Zhang
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
- College of Life Sciences Nankai University China
- Frontiers Science Center for Cell Responses Nankai University China
| |
Collapse
|
24
|
Hasegawa Y, Huarancca Reyes T, Uemura T, Baral A, Fujimaki A, Luo Y, Morita Y, Saeki Y, Maekawa S, Yasuda S, Mukuta K, Fukao Y, Tanaka K, Nakano A, Takagi J, Bhalerao RP, Yamaguchi J, Sato T. The TGN/EE SNARE protein SYP61 and the ubiquitin ligase ATL31 cooperatively regulate plant responses to carbon/nitrogen conditions in Arabidopsis. THE PLANT CELL 2022; 34:1354-1374. [PMID: 35089338 PMCID: PMC8972251 DOI: 10.1093/plcell/koac014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/30/2021] [Indexed: 05/23/2023]
Abstract
Ubiquitination is a post-translational modification involving the reversible attachment of the small protein ubiquitin to a target protein. Ubiquitination is involved in numerous cellular processes, including the membrane trafficking of cargo proteins. However, the ubiquitination of the trafficking machinery components and their involvement in environmental responses are not well understood. Here, we report that the Arabidopsis thaliana trans-Golgi network/early endosome localized SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein SYP61 interacts with the transmembrane ubiquitin ligase ATL31, a key regulator of resistance to disrupted carbon (C)/nitrogen/(N)-nutrient conditions. SYP61 is a key component of membrane trafficking in Arabidopsis. The subcellular localization of ATL31 was disrupted in knockdown mutants of SYP61, and the insensitivity of ATL31-overexpressing plants to high C/low N-stress was repressed in these mutants, suggesting that SYP61 and ATL31 cooperatively function in plant responses to nutrient stress. SYP61 is ubiquitinated in plants, and its ubiquitination level is upregulated under low C/high N-nutrient conditions. These findings provide important insights into the ubiquitin signaling and membrane trafficking machinery in plants.
Collapse
Affiliation(s)
- Yoko Hasegawa
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Thais Huarancca Reyes
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Anirban Baral
- Umeå Plant Science Centre, Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå S-901 83, Sweden
| | - Akari Fujimaki
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yongming Luo
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yoshie Morita
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shugo Maekawa
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Shigetaka Yasuda
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Koki Mukuta
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Junpei Takagi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå S-901 83, Sweden
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| |
Collapse
|
25
|
Lee J, Hanh Nguyen H, Park Y, Lin J, Hwang I. Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:816-830. [PMID: 34797009 DOI: 10.1111/tpj.15593] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Various environmental stresses can induce production of reactive oxygen species (ROS) to turn on signaling for proper responses to those stresses. Plasma membrane (PM)-localized respiratory burst oxidase homologs (RBOHs), in particular RBOHD, produce ROS via the post-translational activation upon abiotic and biotic stresses. Although the mechanisms of RBOHD activation upon biotic stress have been elucidated in detail, it remains elusive how salinity stress activates RBOHD. Here, we present evidence that trafficking of PM-localized RBOHD to endosomes and then its recycling back to the PM is critical for ROS accumulation upon salinity stress. ateca4 plants that were defective in recycling of proteins from endosomes to the PM and clc2-1 and chc2-1 plants that were defective in endocytosis showed a defect in salinity stress-induced ROS production. In addition, ateca4 plants showed a defect in transient accumulation of GFP:RBOHD to the PM at the early stage of salinity stress. By contrast, ateca4 plants showed no defect in the increase in the ROS level and accumulation of RBOHD to the PM upon flg22 treatment as wild-type plants. Based on these observations, we propose that factors involved in the trafficking machinery such as AtECA4 and clathrin are important players in salt stress-induced, but not flg22-induced, ROS accumulation.
Collapse
Affiliation(s)
- Jihyeong Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hong Hanh Nguyen
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Youngmin Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Bioapplications, Pohang, Korea
| | - Jinxing Lin
- Key Lab of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
26
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
27
|
Garnelo Gómez B, Holzwart E, Shi C, Lozano-Durán R, Wolf S. Phosphorylation-dependent routing of RLP44 towards brassinosteroid or phytosulfokine signalling. J Cell Sci 2021; 134:272537. [PMID: 34569597 PMCID: PMC8572011 DOI: 10.1242/jcs.259134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants rely on cell surface receptors to integrate developmental and environmental cues into behaviour adapted to the conditions. The largest group of these receptors, leucine-rich repeat receptor-like kinases, form a complex interaction network that is modulated and extended by receptor-like proteins. This raises the question of how specific outputs can be generated when receptor proteins are engaged in a plethora of promiscuous interactions. RECEPTOR-LIKE PROTEIN 44 (RLP44) acts to promote both brassinosteroid and phytosulfokine signalling, which orchestrate diverse cellular responses. However, it is unclear how these activities are coordinated. Here, we show that RLP44 is phosphorylated in its highly conserved cytosolic tail and that this post-translational modification governs its subcellular localization. Whereas phosphorylation is essential for brassinosteroid-associated functions of RLP44, its role in phytosulfokine signalling is not affected by phospho-status. Detailed mutational analysis suggests that phospho-charge, rather than modification of individual amino acids determines routing of RLP44 to its target receptor complexes, providing a framework to understand how a common component of different receptor complexes can get specifically engaged in a particular signalling pathway.
Collapse
Affiliation(s)
- Borja Garnelo Gómez
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Eleonore Holzwart
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany
| | - Chaonan Shi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| | - Sebastian Wolf
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
28
|
Li S, Cerri M, Strazzer P, Li Y, Spelt C, Bliek M, Vandenbussche M, Martínez-Calvó E, Lai B, Reale L, Koes R, Quattrocchio FM. An ancient RAB5 governs the formation of additional vacuoles and cell shape in petunia petals. Cell Rep 2021; 36:109749. [PMID: 34592147 DOI: 10.1016/j.celrep.2021.109749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/11/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022] Open
Abstract
Homologous ("canonical") RAB5 proteins regulate endosomal trafficking to lysosomes in animals and to the central vacuole in plants. Epidermal petal cells contain small vacuoles (vacuolinos) that serve as intermediate stations for proteins on their way to the central vacuole. Here, we show that transcription factors required for vacuolino formation in petunia induce expression of RAB5a. RAB5a defines a previously unrecognized clade of canonical RAB5s that is evolutionarily and functionally distinct from ARA7-type RAB5s, which act in trafficking to the vacuole. Loss of RAB5a reduces cell height and abolishes vacuolino formation, which cannot be rescued by the ARA7 homologs, whereas constitutive RAB5a (over)expression alters the conical cell shape and promotes homotypic vacuolino fusion, resulting in oversized vacuolinos. These findings provide a rare example of how gene duplication and neofunctionalization increased the complexity of membrane trafficking during evolution and suggest a mechanism by which cells may form multiple vacuoles with distinct content and function.
Collapse
Affiliation(s)
- Shuangjiang Li
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Martina Cerri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Pamela Strazzer
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Yanbang Li
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Cornelis Spelt
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Mattijs Bliek
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes (RDP), ENS de Lyon/CNRS/INRA/UCBL, 46 Allée d'Italie, 69364 Lyon, France
| | - Enric Martínez-Calvó
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Biao Lai
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Lara Reale
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Ronald Koes
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Francesca M Quattrocchio
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
29
|
Ito Y, Esnay N, Fougère L, Platre MP, Cordelières F, Jaillais Y, Boutté Y. Inhibition of Very Long Chain Fatty Acids Synthesis Mediates PI3P Homeostasis at Endosomal Compartments. Int J Mol Sci 2021; 22:ijms22168450. [PMID: 34445155 PMCID: PMC8395082 DOI: 10.3390/ijms22168450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
A main characteristic of sphingolipids is the presence of a very long chain fatty acid (VLCFA) whose function in cellular processes is not yet fully understood. VLCFAs of sphingolipids are involved in the intracellular traffic to the vacuole and the maturation of early endosomes into late endosomes is one of the major pathways for vacuolar traffic. Additionally, the anionic phospholipid phosphatidylinositol-3-phosphate (PtdIns (3)P or PI3P) is involved in protein sorting and recruitment of small GTPase effectors at late endosomes/multivesicular bodies (MVBs) during vacuolar trafficking. In contrast to animal cells, PI3P mainly localizes to late endosomes in plant cells and to a minor extent to a discrete sub-domain of the plant's early endosome (EE)/trans-Golgi network (TGN) where the endosomal maturation occurs. However, the mechanisms that control the relative levels of PI3P between TGN and MVBs are unknown. Using metazachlor, an inhibitor of VLCFA synthesis, we found that VLCFAs are involved in the TGN/MVB distribution of PI3P. This effect is independent from either synthesis of PI3P by PI3-kinase or degradation of PI(3,5)P2 into PI3P by the SUPPRESSOR OF ACTIN1 (SAC1) phosphatase. Using high-resolution live cell imaging microscopy, we detected transient associations between TGNs and MVBs but VLCFAs are not involved in those interactions. Nonetheless, our results suggest that PI3P might be transferable from TGN to MVBs and that VLCFAs act in this process.
Collapse
Affiliation(s)
- Yoko Ito
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France; (Y.I.); (N.E.); (L.F.)
| | - Nicolas Esnay
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France; (Y.I.); (N.E.); (L.F.)
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Louise Fougère
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France; (Y.I.); (N.E.); (L.F.)
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, 69342 Lyon, France; (M.P.P.); (Y.J.)
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fabrice Cordelières
- Bordeaux Imaging Center, Université de Bordeaux, CNRS, 33000 Bordeaux, France;
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, 69342 Lyon, France; (M.P.P.); (Y.J.)
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France; (Y.I.); (N.E.); (L.F.)
- Correspondence:
| |
Collapse
|
30
|
Sommer A, Hoeftberger M, Foissner I. Fluid-phase and membrane markers reveal spatio-temporal dynamics of membrane traffic and repair in the green alga Chara australis. PROTOPLASMA 2021; 258:711-728. [PMID: 33704568 PMCID: PMC8211606 DOI: 10.1007/s00709-021-01627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
We investigated the mechanisms and the spatio-temporal dynamics of fluid-phase and membrane internalization in the green alga Chara australis using fluorescent hydrazides markers alone, or in conjunction with styryl dyes. Using live-cell imaging, immunofluorescence and inhibitor studies we revealed that both fluid-phase and membrane dyes were actively taken up into the cytoplasm by clathrin-mediated endocytosis and stained various classes of endosomes including brefeldin A- and wortmannin-sensitive organelles (trans-Golgi network and multivesicular bodies). Uptake of fluorescent hydrazides was poorly sensitive to cytochalasin D, suggesting that actin plays a minor role in constitutive endocytosis in Chara internodal cells. Sequential pulse-labelling experiments revealed novel aspects of the temporal progression of endosomes in Chara internodal cells. The internalized fluid-phase marker distributed to early compartments within 10 min from dye exposure and after about 30 min, it was found almost exclusively in late endocytic compartments. Notably, fluid cargo consecutively internalized at time intervals of more than 1h, was not targeted to the same vesicular structures, but was sorted into distinct late compartments. We further found that fluorescent hydrazide dyes distributed not only to rapidly recycling endosomes but also to long-lived compartments that participated in plasma membrane repair after local laser injury. Our approach highlights the benefits of combining different fluid-phase markers in conjunction with membrane dyes in simultaneous and sequential application modus for investigating vesicle traffic, especially in organisms, which are still refractory to genetic transformation like characean algae.
Collapse
Affiliation(s)
- Aniela Sommer
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| | - Margit Hoeftberger
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Ilse Foissner
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
31
|
Ivanov R, Robinson DG. EMAC, Retromer, and VSRs: do they connect? PROTOPLASMA 2020; 257:1725-1729. [PMID: 32780164 PMCID: PMC8286218 DOI: 10.1007/s00709-020-01543-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/06/2020] [Indexed: 06/02/2023]
Abstract
Eukaryotic organisms share many common features in terms of endomembrane trafficking. This fact has helped plant scientists to propose testable hypotheses on how plant intracellular membrane trafficking is achieved and regulated based on knowledge from yeast and mammals. However, when a new compartment has been identified in a plant cell that has a vesicle tethering complex located at a position which is completely different to its counterpart in yeast and mammalian cells, caution is demanded when interpreting possible interactions with other trafficking elements. This is exemplified by the recently discovered EMAC (ER and microtubule-associated compartment). It has been postulated that this compartment is the recipient of vacuolar sorting receptors (VSRs) transported retrogradely via "retromer vesicles" from a post-Golgi location. Unfortunately, this suggestion was based entirely on our knowledge of retromer from yeast and mammalian cells, and did not take into account the available literature on the composition, localization, and function of the plant retromer. It also lacked reference to recent contradictory findings on VSR trafficking. In this short article, we have tried to rectify this situation, pointing out that plant retromer may not function as a pentameric complex of two subunits: the retromer core and the sorting nexins.
Collapse
Affiliation(s)
- Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225, Düsseldorf, Germany.
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69117, Heidelberg, Germany
| |
Collapse
|
32
|
Shen W, Wei J, Gao C. Functional Analysis of Plant FYVE Domain Proteins in Endosomal Trafficking. Methods Mol Biol 2020; 2177:83-94. [PMID: 32632807 DOI: 10.1007/978-1-0716-0767-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The FYVE domain is a double zinc finger-like domain that predominantly binds phosphatidylinositol 3-phosphate. The FYVE domain is usually found in proteins primarily involved in regulating various aspects of endomembrane homeostasis, including endosome tethering, endocytic recycling, membrane protein sorting, and autophagosome maturation. Whereas FYVE domain proteins have been extensively studied in mammals and yeast, only a few FYVE domain proteins have been identified and characterized in plants. Here, by using as an example FREE1 (FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1), a protein previously identified by us as a critical factor for endosomal trafficking, we describe methods to determine its lipid binding properties and endosomal localization. In addition, we also demonstrate a method to quickly test whether an FYVE domain protein is involved in endosomal sorting in plant cells.
Collapse
Affiliation(s)
- Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Juan Wei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
33
|
Subcellular Localization of PI3P in Arabidopsis. Methods Mol Biol 2020. [PMID: 32632809 DOI: 10.1007/978-1-0716-0767-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phosphatidylinositol-3-phosphate (PI3P) is a signaling phospholipid enriched in the membranes of late endosomes (LE) and vacuoles. PI3P mediates vacuolar and endosomal trafficking through recruiting PI3P-binding effector proteins to the LE. PI3P is produced from phosphatidylinositol by the PI 3-kinase complex containing VACUOLAR PROTEIN SORTING 34 (VPS34). The role of PI3P has been elucidated by using genetically encoded PI3P biosensors. We previously showed that Arabidopsis VPS38, a component of the VPS34 complex, localized at the LE and that VPS38 is essential for proper PI3P distribution in endosomal and vacuolar trafficking routes. In this chapter, we describe methods for microscopic imaging of PI3P using the PI3P biosensor citrine-2 × FYVE and the PI 3-kinase inhibitors.
Collapse
|
34
|
Renna L, Brandizzi F. The mysterious life of the plant trans-Golgi network: advances and tools to understand it better. J Microsc 2020; 278:154-163. [PMID: 32115699 DOI: 10.1111/jmi.12881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022]
Abstract
By being at the interface of the exocytic and endocytic pathways, the plant trans-Golgi network (TGN) is a multitasking and highly diversified organelle. Despite governing vital cellular processes, the TGN remains one of the most uncharacterized organelle of plant cells. In this review, we highlight recent studies that have contributed new insights and to the generation of markers needed to answer several important questions on the plant TGN. Several drugs specifically affecting proteins critical for the TGN functions have been extremely useful for the identification of mutants of the TGN in the pursuit to understand how the morphology and the function of this organelle are controlled. In addition to these chemical tools, we review emerging microscopy techniques that help visualize the TGN at an unpreceded resolution and appreciate the heterogeneity and dynamics of this organelle in plant cells.
Collapse
Affiliation(s)
- L Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, U.S.A
| | - F Brandizzi
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
35
|
Ren Y, Wang Y, Pan T, Wang Y, Wang Y, Gan L, Wei Z, Wang F, Wu M, Jing R, Wang J, Wan G, Bao X, Zhang B, Zhang P, Zhang Y, Ji Y, Lei C, Zhang X, Cheng Z, Lin Q, Zhu S, Zhao Z, Wang J, Wu C, Qiu L, Wang H, Wan J. GPA5 Encodes a Rab5a Effector Required for Post-Golgi Trafficking of Rice Storage Proteins. THE PLANT CELL 2020; 32:758-777. [PMID: 31949008 PMCID: PMC7054044 DOI: 10.1105/tpc.19.00863] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
Dense vesicles (DVs) are vesicular carriers, unique to plants, that mediate post-Golgi trafficking of storage proteins to protein storage vacuoles (PSVs) in seeds. However, the molecular mechanisms regulating the directional targeting of DVs to PSVs remain elusive. Here, we show that the rice (Oryza sativa) glutelin precursor accumulation5 (gpa5) mutant is defective in directional targeting of DVs to PSVs, resulting in discharge of its cargo proteins into the extracellular space. Molecular cloning revealed that GPA5 encodes a plant-unique phox-homology domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN. We show that GPA5 is a membrane-associated protein capable of forming homodimers and that it is specifically localized to DVs in developing endosperm. Colocalization, biochemical, and genetic evidence demonstrates that GPA5 acts in concert with Rab5a and VPS9a to regulate DV-mediated post-Golgi trafficking to PSVs. Furthermore, we demonstrated that GPA5 physically interacts with a class C core vacuole/endosome tethering complex and a seed plant-specific VAMP727-containing R-soluble N-ethylmaleimide sensitive factor attachment protein receptor complex. Collectively, our results suggest that GPA5 functions as a plant-specific effector of Rab5a required for mediating tethering and membrane fusion of DVs with PSVs in rice endosperm.
Collapse
Affiliation(s)
- Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyan Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gexing Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Binglei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengcheng Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Ji
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Hu S, Li Y, Shen J. A Diverse Membrane Interaction Network for Plant Multivesicular Bodies: Roles in Proteins Vacuolar Delivery and Unconventional Secretion. FRONTIERS IN PLANT SCIENCE 2020; 11:425. [PMID: 32425960 PMCID: PMC7203423 DOI: 10.3389/fpls.2020.00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 05/15/2023]
Abstract
Vesicle trafficking between the membrane-bound organelles in plant cells plays crucial roles in the precise transportation of various materials, and thus supports cell proliferation and cellular polarization. Conventionally, plant prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs), play important roles in both the secretory pathway as intermediate compartments and the endocytic pathway as late endosomes. In recent years, the PVC/MVBs have been proposed to play important roles in both protein vacuolar delivery and unconventional secretion, but several important questions on the new regulators and environmental cues that coordinate the PVC/MVB-organelle membrane interactions and their biological significances remain. In this review, we first summarize the identity and nature of the plant PVC/MVBs, and then we present an update on our current understanding on the interaction of PVC/MVBs with other organelles in the plant endomembrane system with focus on the vacuole, autophagosome, and plasma membrane (PM) in plant development and stress responses. Finally, we raise some open questions and present future perspectives in the study of PVC/MVB-organelle interactions and associated biological functions.
Collapse
|
37
|
Cao P, Kim SJ, Xing A, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. eLife 2019; 8:e50747. [PMID: 31808741 PMCID: PMC6937141 DOI: 10.7554/elife.50747] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 01/11/2023] Open
Abstract
The target of rapamycin (TOR) kinase is an evolutionarily conserved hub of nutrient sensing and metabolic signaling. In plants, a functional connection of TOR activation with glucose availability was demonstrated, while it is yet unclear whether branched-chain amino acids (BCAAs) are a primary input of TOR signaling as they are in yeast and mammalian cells. Here, we report on the characterization of an Arabidopsis mutant over-accumulating BCAAs. Through chemical interventions targeting TOR and by examining mutants of BCAA biosynthesis and TOR signaling, we found that BCAA over-accumulation leads to up-regulation of TOR activity, which causes reorganization of the actin cytoskeleton and actin-associated endomembranes. Finally, we show that activation of TOR is concomitant with alteration of cell expansion, proliferation and specialized metabolism, leading to pleiotropic effects on plant growth and development. These results demonstrate that BCAAs contribute to plant TOR activation and reveal previously uncharted downstream subcellular processes of TOR signaling.
Collapse
Affiliation(s)
- Pengfei Cao
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
| | - Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| | - Anqi Xing
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Craig A Schenck
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Lu Liu
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
| | - Nan Jiang
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Jie Wang
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
| | - Robert L Last
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Federica Brandizzi
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
38
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
39
|
Zhao Q, Shen J, Gao C, Cui Y, Wang Y, Cui J, Cheng L, Cao W, Zhu Y, Huang S, Zhou Q, Leong CK, Leung KP, Chen X, Jiang L. RST1 Is a FREE1 Suppressor That Negatively Regulates Vacuolar Trafficking in Arabidopsis. THE PLANT CELL 2019; 31:2152-2168. [PMID: 31221737 PMCID: PMC6751125 DOI: 10.1105/tpc.19.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/18/2019] [Accepted: 06/17/2019] [Indexed: 05/23/2023]
Abstract
FYVE domain protein required for endosomal sorting1 (FREE1), a plant-specific endosomal sorting complex required for transport-I component, is essential for the biogenesis of multivesicular bodies (MVBs), vacuolar degradation of membrane protein, cargo vacuolar sorting, autophagic degradation, and vacuole biogenesis in Arabidopsis (Arabidopsis thaliana). Here, we report the characterization of RESURRECTION1 (RST1) as a suppressor of free1 that, when mutated as a null mutant, restores the normal MVB and vacuole formation of a FREE1-RNAi knockdown line and consequently allows survival. RST1 encodes an evolutionarily conserved multicellular organism-specific protein, which contains two Domain of Unknown Function 3730 domains, showing no similarity to known proteins, and predominantly localizes in the cytosol. The depletion of FREE1 causes substantial accumulation of RST1, and transgenic Arabidopsis plants overexpressing RST1 display retarded seedling growth with dilated MVBs, and inhibition of endocytosed FM4-64 dye to the tonoplast, suggesting that RST1 has a negative role in vacuolar transport. Consistently, enhanced endocytic degradation of membrane vacuolar cargoes occurs in the rst1 mutant. Further transcriptomic comparison of rst1 with free1 revealed a negative association between gene expression profiles, demonstrating that FREE1 and RST1 have antagonistic functions. Thus, RST1 is a negative regulator controlling membrane protein homeostasis and FREE1-mediated functions in plants.
Collapse
Affiliation(s)
- Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yongyi Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jie Cui
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lixin Cheng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medicine College of Ji’nan University, Shenzhen 518020, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qianzi Zhou
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Cheuk Ka Leong
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - King Pong Leung
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
40
|
Gao J, Chaudhary A, Vaddepalli P, Nagel MK, Isono E, Schneitz K. The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3881-3894. [PMID: 31107531 PMCID: PMC6685663 DOI: 10.1093/jxb/erz190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis requires the atypical receptor kinase STRUBBELIG (SUB). Here, we studied the endocytic mechanism of SUB. Our data revealed that a functional SUB-enhanced green fluorescent protein (EGFP) fusion is ubiquitinated in vivo. We further showed that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also found that SUB:EGFP associates with the trans-Golgi network and accumulates in multivesicular bodies and the vacuole. Co-immunoprecipitation experiments revealed that SUB:EGFP and clathrin are present within the same protein complex. Our genetic analysis showed that SUB and CLATHRIN HEAVY CHAIN (CHC) 2 regulate root hair patterning. By contrast, genetic reduction of CHC activity ameliorates the floral defects of sub mutants. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not rely on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue-specific manner.
Collapse
Affiliation(s)
- Jin Gao
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Ajeet Chaudhary
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Present address: Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Marie-Kristin Nagel
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Correspondence:
| |
Collapse
|
41
|
Asfaw KG, Liu Q, Maisch J, Münch SW, Wehl I, Bräse S, Bogeski I, Schepers U, Nick P. A Peptoid Delivers CoQ-derivative to Plant Mitochondria via Endocytosis. Sci Rep 2019; 9:9839. [PMID: 31285457 PMCID: PMC6614412 DOI: 10.1038/s41598-019-46182-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/21/2019] [Indexed: 11/09/2022] Open
Abstract
Controlled delivery of molecules interfering specifically with target activities in a cell of interest can be a powerful tool for experimental manipulation, because it can be administered at a defined time point and does not require genetic transformation, which in some systems is difficult and time consuming. Peptides as versatile tools that can be tailored for binding numerous binding partners, are of special interest. However, their passage through membranes, their intracellular targeting, and their sensitivity to proteases is limiting. The use of peptoids, where cationic amino-acid side chains are linked to nitrogen (rather than to carbon) of the peptide bond, can circumvent these limitations, because they are not cleavable by proteases. In the current work, we provide a proof-of-concept that such Trojan Peptoids, the plant PeptoQ, can be used to target a functional cargo (i.e. a rhodamine-labelled peptoid and a coenzyme Q10 derivative) into mitochondria of tobacco BY-2 cells as experimental model. We show that the uptake is specific for mitochondria, rapid, dose-dependent, and requires clathrin-mediated endocytosis, as well as actin filaments, while microtubules seem to be dispensable. Viability of the treated cells is not affected, and they show better survival under salt stress, a condition that perturbs oxidative homeostasis in mitochondria. In congruence with improved homeostasis, we observe that the salt induced accumulation of superoxide is mitigated and even inverted by pretreatment with PeptoQ. Using double labelling with appropriate fluorescent markers, we show that targeting of this Trojan Peptoid to the mitochondria is not based on a passage through the plasma membrane (as thought hitherto), but on import via endocytotic vesicles and subsequent accumulation in the mitochondrial intermembrane space, from where it can enter the matrix, e.g. when the permeability of the inner membrane is increased under salt stress.
Collapse
Affiliation(s)
- Kinfemichael Geressu Asfaw
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stephan W Münch
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1 D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1 D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, 37073, Göttingen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
42
|
Cui Y, Cao W, He Y, Zhao Q, Wakazaki M, Zhuang X, Gao J, Zeng Y, Gao C, Ding Y, Wong HY, Wong WS, Lam HK, Wang P, Ueda T, Rojas-Pierce M, Toyooka K, Kang BH, Jiang L. A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. NATURE PLANTS 2019; 5:95-105. [PMID: 30559414 DOI: 10.1038/s41477-018-0328-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023]
Abstract
Plant vacuoles are dynamic organelles that play essential roles in regulating growth and development. Two distinct models of vacuole biogenesis have been proposed: separate vacuoles are formed by the fusion of endosomes, or the single interconnected vacuole is derived from the endoplasmic reticulum. These two models are based on studies of two-dimensional (2D) transmission electron microscopy and 3D confocal imaging, respectively. Here, we performed 3D electron tomography at nanometre resolution to illustrate vacuole biogenesis in Arabidopsis root cells. The whole-cell electron tomography analysis first identified unique small vacuoles (SVs; 400-1,000 nm in diameter) as nascent vacuoles in early developmental cortical cells. These SVs contained intraluminal vesicles and were mainly derived/matured from multivesicular body (MVB) fusion. The whole-cell vacuole models and statistical analysis on wild-type root cells of different vacuole developmental stages demonstrated that central vacuoles were derived from MVB-to-SV transition and subsequent fusions of SVs. Further electron tomography analysis on mutants defective in MVB formation/maturation or vacuole fusion demonstrated that central vacuole formation required functional MVBs and membrane fusion machineries.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yilin He
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Food Science & Technology, School of Science and Technology, Jinan University, Guangzhou, China
| | - Hiu Yan Wong
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wing Shing Wong
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ham Karen Lam
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
43
|
Dragwidge JM, Scholl S, Schumacher K, Gendall AR. NHX-type Na+(K+)/H+ antiporters are required for TGN/EE trafficking and endosomal ion homeostasis in Arabidopsis. J Cell Sci 2019; 132:jcs.226472. [DOI: 10.1242/jcs.226472] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022] Open
Abstract
The regulation of ion and pH homeostasis of endomembrane organelles is critical for functional protein trafficking, sorting and modification in eukaryotic cells. pH homeostasis is maintained through the activity of vacuolar H+-ATPases (V-ATPases) pumping protons (H+) into the endomembrane lumen, and counter-action by cation/proton exchangers such as the NHX family of Na+(K+)/H+ exchangers. In plants, V-ATPase activity at the trans-Golgi network/early endosome (TGN/EE) is important for secretory and endocytic trafficking, however the role of the endosomal antiporters NHX5 and NHX6 in endomembrane trafficking is unclear. Here we show through genetic, pharmacological, and live-cell imaging approaches that double knockout of NHX5 and NHX6 results in the impairment of endosome motility, protein recycling at the TGN/EE, but not in the secretion of integral membrane proteins. Furthermore, we report that nhx5 nhx6 mutants are partially insensitive to osmotic swelling of TGN/EE induced by the monovalent cation ionophore monensin, and to late endosomal swelling by the phosphatidylinositol 3/4-kinase inhibitor wortmannin, demonstrating that NHX5 and NHX6 function to regulate the luminal cation composition of endosomes.
Collapse
Affiliation(s)
- Jonathan Michael Dragwidge
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Scholl
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Anthony Richard Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
44
|
Cui Y, Cao W, He Y, Zhao Q, Wakazaki M, Zhuang X, Gao J, Zeng Y, Gao C, Ding Y, Wong HY, Wong WS, Lam HK, Wang P, Ueda T, Rojas-Pierce M, Toyooka K, Kang BH, Jiang L. A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. NATURE PLANTS 2019; 5:95-105. [PMID: 30559414 DOI: 10.1038/s41477-018-0328-321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 05/28/2023]
Abstract
Plant vacuoles are dynamic organelles that play essential roles in regulating growth and development. Two distinct models of vacuole biogenesis have been proposed: separate vacuoles are formed by the fusion of endosomes, or the single interconnected vacuole is derived from the endoplasmic reticulum. These two models are based on studies of two-dimensional (2D) transmission electron microscopy and 3D confocal imaging, respectively. Here, we performed 3D electron tomography at nanometre resolution to illustrate vacuole biogenesis in Arabidopsis root cells. The whole-cell electron tomography analysis first identified unique small vacuoles (SVs; 400-1,000 nm in diameter) as nascent vacuoles in early developmental cortical cells. These SVs contained intraluminal vesicles and were mainly derived/matured from multivesicular body (MVB) fusion. The whole-cell vacuole models and statistical analysis on wild-type root cells of different vacuole developmental stages demonstrated that central vacuoles were derived from MVB-to-SV transition and subsequent fusions of SVs. Further electron tomography analysis on mutants defective in MVB formation/maturation or vacuole fusion demonstrated that central vacuole formation required functional MVBs and membrane fusion machineries.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yilin He
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Food Science & Technology, School of Science and Technology, Jinan University, Guangzhou, China
| | - Hiu Yan Wong
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wing Shing Wong
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ham Karen Lam
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
45
|
Onelli E, Scali M, Caccianiga M, Stroppa N, Morandini P, Pavesi G, Moscatelli A. Microtubules play a role in trafficking prevacuolar compartments to vacuoles in tobacco pollen tubes. Open Biol 2018; 8:180078. [PMID: 30381363 PMCID: PMC6223213 DOI: 10.1098/rsob.180078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
Fine regulation of exocytosis and endocytosis plays a basic role in pollen tube growth. Excess plasma membrane secreted during pollen tube elongation is known to be retrieved by endocytosis and partially reused in secretory pathways through the Golgi apparatus. Dissection of endocytosis has enabled distinct degradation pathways to be identified in tobacco pollen tubes and has shown that microtubules influence the transport of plasma membrane internalized in the tip region to vacuoles. Here, we used different drugs affecting the polymerization state of microtubules together with SYP21, a marker of prevacuolar compartments, to characterize trafficking of prevacuolar compartments in Nicotiana tabacum pollen tubes. Ultrastructural and biochemical analysis showed that microtubules bind SYP21-positive microsomes. Transient transformation of pollen tubes with LAT52-YFP-SYP21 revealed that microtubules play a key role in the delivery of prevacuolar compartments to tubular vacuoles.
Collapse
Affiliation(s)
- Elisabetta Onelli
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Monica Scali
- Department of Life Science, Siena University, Via A. Moro 2, 53100 Siena, Italy
| | - Marco Caccianiga
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Nadia Stroppa
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | | |
Collapse
|
46
|
Mishev K, Lu Q, Denoo B, Peurois F, Dejonghe W, Hullaert J, De Rycke R, Boeren S, Bretou M, De Munck S, Sharma I, Goodman K, Kalinowska K, Storme V, Nguyen LSL, Drozdzecki A, Martins S, Nerinckx W, Audenaert D, Vert G, Madder A, Otegui MS, Isono E, Savvides SN, Annaert W, De Vries S, Cherfils J, Winne J, Russinova E. Nonselective Chemical Inhibition of Sec7 Domain-Containing ARF GTPase Exchange Factors. THE PLANT CELL 2018; 30:2573-2593. [PMID: 30018157 PMCID: PMC6241273 DOI: 10.1105/tpc.18.00145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/25/2018] [Accepted: 07/17/2018] [Indexed: 05/12/2023]
Abstract
Small GTP-binding proteins from the ADP-ribosylation factor (ARF) family are important regulators of vesicle formation and cellular trafficking in all eukaryotes. ARF activation is accomplished by a protein family of guanine nucleotide exchange factors (GEFs) that contain a conserved catalytic Sec7 domain. Here, we identified and characterized Secdin, a small-molecule inhibitor of Arabidopsis thaliana ARF-GEFs. Secdin application caused aberrant retention of plasma membrane (PM) proteins in late endosomal compartments, enhanced vacuolar degradation, impaired protein recycling, and delayed secretion and endocytosis. Combined treatments with Secdin and the known ARF-GEF inhibitor Brefeldin A (BFA) prevented the BFA-induced PM stabilization of the ARF-GEF GNOM, impaired its translocation from the Golgi to the trans-Golgi network/early endosomes, and led to the formation of hybrid endomembrane compartments reminiscent of those in ARF-GEF-deficient mutants. Drug affinity-responsive target stability assays revealed that Secdin, unlike BFA, targeted all examined Arabidopsis ARF-GEFs, but that the interaction was probably not mediated by the Sec7 domain because Secdin did not interfere with the Sec7 domain-mediated ARF activation. These results show that Secdin and BFA affect their protein targets through distinct mechanisms, in turn showing the usefulness of Secdin in studies in which ARF-GEF-dependent endomembrane transport cannot be manipulated with BFA.
Collapse
Affiliation(s)
- Kiril Mishev
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Qing Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Bram Denoo
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - François Peurois
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique, Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Wim Dejonghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jan Hullaert
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Riet De Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- VIB BioImaging Core, 9052 Ghent, Belgium
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, 6708 Wageningen, The Netherlands
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Steven De Munck
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Isha Sharma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Kaija Goodman
- Laboratory of Cell and Molecular Biology and Departments of Botany and Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Kamila Kalinowska
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Le Son Long Nguyen
- VIB Screening Core, 9052 Ghent, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, 9052 Ghent, Belgium
| | - Andrzej Drozdzecki
- VIB Screening Core, 9052 Ghent, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, 9052 Ghent, Belgium
| | - Sara Martins
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Wim Nerinckx
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, 9052 Ghent, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, 9052 Ghent, Belgium
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Marisa S Otegui
- Laboratory of Cell and Molecular Biology and Departments of Botany and Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Erika Isono
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Savvas N Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Sacco De Vries
- Laboratory of Biochemistry, Wageningen University, 6708 Wageningen, The Netherlands
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique, Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Johan Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
47
|
Shen J, Zhao Q, Wang X, Gao C, Zhu Y, Zeng Y, Jiang L. A plant Bro1 domain protein BRAF regulates multivesicular body biogenesis and membrane protein homeostasis. Nat Commun 2018; 9:3784. [PMID: 30224707 PMCID: PMC6141507 DOI: 10.1038/s41467-018-05913-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Plant development, defense, and many physiological processes rely on the endosomal sorting complex required for transport (ESCRT) machinery to control the homeostasis of membrane proteins by selective vacuolar degradation. Although ESCRT core components are conserved among higher eukaryotes, the regulators that control the function of the ESCRT machinery remain elusive. We recently identified a plant-specific ESCRT component, FREE1, that is essential for multivesicular body/prevacuolar compartment (MVB/PVC) biogenesis and vacuolar sorting of membrane proteins. Here we identify a plant-specific Bro1-domain protein BRAF, which regulates FREE1 recruitment to the MVB/PVC membrane by competitively binding to the ESCRT-I component Vps23. Altogether, we have successfully identified a role for BRAF, whose function as a unique evolutionary ESCRT regulator in orchestrating intraluminal vesicle formation in MVB/PVCs and the sorting of membrane proteins for degradation in plants makes it an important regulatory mechanism underlying the ESCRT machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Jinbo Shen
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Linan, Hangzhou, 311300, China.
| | - Qiong Zhao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Caiji Gao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Ying Zhu
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
48
|
Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants. Proc Natl Acad Sci U S A 2018; 115:E8305-E8314. [PMID: 30104351 DOI: 10.1073/pnas.1807763115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The vacuole is an essential organelle in plant cells, and its dynamic nature is important for plant growth and development. Homotypic membrane fusion is required for vacuole biogenesis, pollen germination, stomata opening, and gravity perception. Known components of the vacuole fusion machinery in eukaryotes include SNARE proteins, Rab GTPases, phosphoinositides, and the homotypic fusion and vacuolar protein sorting (HOPS) tethering complex. HOPS function is not well characterized in plants, but roles in embryogenesis and pollen tube elongation have been reported. Here, we show that Arabidopsis HOPS subunits VPS33 and VPS41 accumulate in late endosomes and that VPS41, but not VPS33, accumulates in the tonoplast via a wortmannin-sensitive process. VPS41 and VPS33 proteins bind to liposomes, but this binding is inhibited by phosphatidylinosiltol-3-phosphate [PtdIns(3)P] and PtdIns(3,5)P2, which implicates a nonconserved mechanism for HOPS recruitment in plants. Inducible knockdown of VPS41 resulted in dramatic vacuole fragmentation phenotypes and demonstrated a critical role for HOPS in vacuole fusion. Furthermore, we provide evidence for genetic interactions between VPS41 and VTI11 SNARE that regulate vacuole fusion, and the requirement of a functional SNARE complex for normal VPS41 and VPS33 localization. Finally, we provide evidence to support VPS33 and SYP22 at the initial stage for HOPS-SNARE interactions, which is similar to other eukaryotes. These results highlight both conserved and specific mechanisms for HOPS recruitment and function during vacuole fusion in plants.
Collapse
|
49
|
Zhang WT, Li E, Guo YK, Yu SX, Wan ZY, Ma T, Li S, Hirano T, Sato MH, Zhang Y. Arabidopsis VAC14 Is Critical for Pollen Development through Mediating Vacuolar Organization. PLANT PHYSIOLOGY 2018; 177:1529-1538. [PMID: 29884680 PMCID: PMC6084655 DOI: 10.1104/pp.18.00495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 05/20/2023]
Abstract
Pollen viability depends on dynamic vacuolar changes during pollen development involving increases and decreases of vacuolar volume through water and osmolite accumulation and vacuolar fission. Mutations in FAB1A to FAB1D, the genes encoding phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]-converting kinases, are male gametophyte lethal in Arabidopsis (Arabidopsis thaliana) due to defective vacuolar fission after pollen mitosis I, suggesting a key role of the phospholipid in dynamic vacuolar organization. However, other genetic components that regulate the production of PI(3,5)P2 and its involvement in pollen germination and tube growth are unknown. Here, we identified and characterized Arabidopsis VAC14, a homolog of the yeast and metazoan VAC14s that are crucial for the production of PI(3,5)P2VAC14 is constitutively expressed and highly present in developing pollen. Loss of function of VAC14 was male gametophyte lethal due to defective pollen development. Ultrastructural studies showed that vacuolar fission after pollen mitosis I was compromised in vac14 mutant microspores, which led to pollen abortion. We further showed that inhibiting the production of PI(3,5)P2 or exogenous application of PI(3,5)P2 mimicked or rescued the pollen developmental defect of the vac14 mutant, respectively. Genetic interference and pharmacological approaches suggested a role of PI(3,5)P2 in pollen germination and tube growth. Our results provide insights into the function of VAC14 and, by inference, that of PI(3,5)P2 in plant cells.
Collapse
Affiliation(s)
- Wei-Tong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan-Kui Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shi-Xia Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi-Yuan Wan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ting Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Tomoko Hirano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
50
|
Ito E, Ebine K, Choi SW, Ichinose S, Uemura T, Nakano A, Ueda T. Integration of two RAB5 groups during endosomal transport in plants. eLife 2018; 7:34064. [PMID: 29749929 DOI: 10.7554/elife.34064.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/11/2018] [Indexed: 05/26/2023] Open
Abstract
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells.
Collapse
Affiliation(s)
- Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI, Okazaki, Japan
| | - Seung-Won Choi
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Sakura Ichinose
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI, Okazaki, Japan
- Japan Science and Technology Agency, PRESTO, Saitama, Japan
| |
Collapse
|