1
|
de Souza VF, Gonçalves JFDC, Rasulov B, Talts E, Morfopoulos C, Junior SD, Albuquerque PM, Niinemets Ü. Photosynthetic Temperature Tolerance Threshold Determines How Isoprene Emission is Affected by Elevated CO 2 Concentration at High Temperatures. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70053. [PMID: 40322773 PMCID: PMC12046568 DOI: 10.1002/pei3.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025]
Abstract
The suppression of isoprene emissions by high CO2 levels can be mitigated by increasing temperature; however, little is known about why and to what extent species differ in their temperature-dependent release from high CO2 inhibition. We studied leaf photosynthetic characteristics and isoprene emissions over a 25°C-40°C temperature range at CO2 concentrations of 150, 400, and 1000 μmol mol-1 in two species with contrasting heat resistance. In the temperate species Populus tremula, rising temperatures above 30°C shifted electron flow from photosynthesis to isoprene synthesis, reducing CO2 inhibition due to enhanced isoprene synthase activity and decreased sensitivity of the DMADP pool. Conversely, the tropical species Inga edulis showed greater heat tolerance in its photosynthetic apparatus, maintaining electron flow for CO2 fixation, and exhibited a consistent CO2 suppression of isoprene emissions throughout the experiment. These findings indicate that species differences in relative sensitivity of light and dark reactions of photosynthesis play crucial roles in modulating isoprene emissions under combined high CO2 and temperature conditions.
Collapse
Affiliation(s)
| | | | - Bakhtier Rasulov
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Eero Talts
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | | | | | | | - Ülo Niinemets
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
- Estonian Academy of SciencesTallinnEstonia
| |
Collapse
|
2
|
Abiola YO, Liu B, Sulaiman HY, Kaurilind E, Tosens T, Niinemets Ü. Contrasting leaf structural, photosynthetic and allocation responses to elevated [CO 2] in different-aged leaves of tropical fruit trees Persea americana and Annona muricata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109842. [PMID: 40199162 DOI: 10.1016/j.plaphy.2025.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Responses of leaf photosynthetic traits to elevated growth [CO2] vary among species, but there is limited understanding of underlying trait trade-offs, especially for tropical species with continuous leaf formation. Persea americana and Annona muricata with significant investments in defense structures (idioblasts) were used to study the impacts of growth [CO2] (400 vs 800 μmol mol-1) on leaf structural, chemical, and photosynthetic characteristics at different leaf developmental stages. Growth at elevated [CO2] increased whole plant leaf area (ST) and whole plant average leaf dry mass per unit area (MAv) in P. americana, whereas both ST and MAv were reduced in A. muricata. Elevated [CO2] moderately reduced foliage N and P contents per dry mass in P. americana but increased in A. muricata. In P. americana, elevated [CO2] increased anthocyanin content in young leaves and decreased in mature leaves, and increased the share of idioblast tissue fraction (fI) with moderate downregulation of photosynthesis (A). In A. muricata, elevated [CO2] reduced anthocyanin content in young leaves and fI was unaffected, whereas a major downregulation in A was observed. In this species, photosynthetic downregulation was not associated with nutrient starvation, but occurred due to direct inhibition of stomatal conductance by elevated [CO2], ultimately limiting leaf development and growth and curbing Vcmax and Jmax in mature leaves. These results demonstrate a limited impact of primary/secondary metabolism trade-off on photosynthetic response to growth [CO2], underscore major species differences in response to elevated [CO2] and emphasize the impact of leaf age in determining whole plant growth response.
Collapse
Affiliation(s)
- Yusuph Olawale Abiola
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.
| | - Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Hassan Yusuf Sulaiman
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Tiina Tosens
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
3
|
Bunce J. Changes in the Responses of Leaf Gas Exchange to Temperature and Photosynthesis Model Parameters in Four C 3 Species in the Field. PLANTS (BASEL, SWITZERLAND) 2025; 14:550. [PMID: 40006809 PMCID: PMC11860128 DOI: 10.3390/plants14040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025]
Abstract
Substantial variation in the temperature dependence of parameters of the Farquhar, von Caemmerer, and Berry C3 photosynthesis model, as well as those of in vitro Rubisco kinetic characteristics, have been observed in controlled conditions but have seldom been systematically examined in the field. In this work, A vs. Ci curves were measured over a 15 or 20 °C range of temperature in four C3 species growing outdoors on two occasions about three weeks apart early in the growing season and also once near mid-season when air temperatures were more stable. The two early season occasions were chosen for having contrasting temperatures for 3 to 4 days preceding the measurements. Low temperatures (mean maximum/minimum temperatures of 19/11 °C) resulted in higher values of the VCmax of Rubisco and Jmax at a given measurement temperature in most species compared with higher temperatures (max/min 31/25 °C). The apparent activation energy of VCmax of Rubisco ranged from 56 to 82 kJ mol-1, and that of electron transport (Jmax) ranged from 28 to 56 kJ mol-1 across species and temperatures. In three of the four species, the activation energy of VCmax decreased and that of Jmax increased after the cooler temperatures. Stomatal conductance measured at 20 and 25 °C increased strongly with the prior warm temperatures in all species. Measurements made near mid-season, after a period of relatively stable temperatures (mean maximum/minimum temperatures of 27/18 °C), also indicated a wide range of values of the activation energies of VCmax and Jmax among these species.
Collapse
Affiliation(s)
- James Bunce
- USDA ARS, Adaptive Cropping Systems Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Ancín M, Gámez AL, Jauregui I, Galmes J, Sharwood RE, Erice G, Ainsworth EA, Tissue DT, Sanz-Sáez A, Aranjuelo I. Does the response of Rubisco and photosynthesis to elevated [CO2] change with unfavourable environmental conditions? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7351-7364. [PMID: 39264212 PMCID: PMC11629997 DOI: 10.1093/jxb/erae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
Climate change due to anthropogenic CO2 emissions affects plant performance globally. To improve crop resilience, we need to understand the effects of elevated CO2 concentration (e[CO2]) on CO2 assimilation and Rubisco biochemistry. However, the interactive effects of e[CO2] and abiotic stress are especially unclear. This study examined the CO2 effect on photosynthetic capacity under different water availability and temperature conditions in 42 different crop species, varying in functional group, photosynthetic pathway, and phenological stage. We analysed close to 3000 data points extracted from 120 published papers. For C3 species, e[CO2] increased net photosynthesis and intercellular [CO2], while reducing stomatal conductance and transpiration. Maximum carboxylation rate and Rubisco in vitro extractable maximal activity and content also decreased with e[CO2] in C3 species, while C4 crops are less responsive to e[CO2]. The interaction with drought and/or heat stress did not significantly alter these photosynthetic responses, indicating that the photosynthetic capacity of stressed plants responded to e[CO2]. Moreover, e[CO2] had a strong effect on the photosynthetic capacity of grasses mainly in the final stages of development. This study provides insight into the intricate interactions within the plant photosynthetic apparatus under the influence of climate change, enhancing the understanding of mechanisms governing plant responses to environmental parameters.
Collapse
Affiliation(s)
- María Ancín
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain
| | - Angie L Gámez
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain
| | - Ivan Jauregui
- Dpto de Ciencias, Universidad Pública de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
| | - Jeroni Galmes
- Research Group on Plant Biology under Mediterranean Conditions. Universitat de les Illes Balears-INAGEA, Ctra. de Valldemossa Km 7.5, 07122 Palma, Balearic Islands
| | - Robert E Sharwood
- Western Sydney University, Hawkesbury Institute for the Environment, Richmond, NSW 2753, Australia
| | - Gorka Erice
- Atens, Agrotecnologías Naturales SL, La Riera de Gaia, 43762 Tarragona, Spain
| | - Elizabeth A Ainsworth
- USDA Agricultural Research Service, Global Change and Photosynthesis Research Unit, Urbana, IL-61801, USA
| | - David T Tissue
- Western Sydney University, Hawkesbury Institute for the Environment, Richmond, NSW 2753, Australia
| | - Alvaro Sanz-Sáez
- Department of Crop, Soil and Environmental Sciences, Auburn University, 253 Funchess Hall, Auburn, AL 36849, USA
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain
| |
Collapse
|
5
|
Paillassa J, Pepin S, Ethier G, Lamarque LJ, Maire V. Carboxylation capacity is the main limitation of carbon assimilation in High Arctic shrubs. PLANT, CELL & ENVIRONMENT 2024; 47:5315-5329. [PMID: 39189974 DOI: 10.1111/pce.15097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Increases in shrub height, biomass and canopy cover are key whole-plant features of warming-induced vegetation change in tundra. We investigated leaf functional traits underlying photosynthetic capacity of Arctic shrub species, particularly its main limiting processes such as mesophyll conductance. In this nutrient-limited ecosystem, we expect leaf nitrogen concentration to be the main limiting factor for photosynthesis. We measured the net photosynthetic rate at saturated light (Asat) in three Salix species throughout a glacial valley in High-Arctic tundra and used a causal approach to test relationships between leaf stomatal and mesophyll conductances (gsc, gm), carboxylation capacity (Vcmax), nitrogen and phosphorus concentration (Narea, Parea) and leaf mass ratio (LMA). Arctic Salix species showed no difference in Asat compared to a global data set, while being characterized by higher Narea, Parea and LMA. Vcmax, gsc and gm independently increased Asat, with Vcmax as its main limitation. We highlighted a nitrogen-influenced pathway for increasing photosynthesis in the two prostrate mesic habitat species. In contrast, the erect wetland habitat Salix richardsonii mainly increased Asat with increasing gsc. Overall, our study revealed high photosynthetic capacities of Arctic Salix species but contrasting regulatory pathways that may influence shrub ability to respond to environmental changes in High Arctic tundra.
Collapse
Affiliation(s)
- Jennifer Paillassa
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
- Département des sols et de génie agroalimentaire, Université Laval, Québec, Quebec, Canada
| | - Steeve Pepin
- Département des sols et de génie agroalimentaire, Université Laval, Québec, Quebec, Canada
| | - Gilbert Ethier
- Département de phytologie, Université Laval, Québec, Quebec, Canada
| | - Laurent J Lamarque
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
6
|
Bellasio C. Instantaneous growth: a compact measure of efficient carbon and nitrogen allocation in leaves and roots of C 3 and C 4 plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14535. [PMID: 39431421 DOI: 10.1111/ppl.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 10/22/2024]
Abstract
Elucidating plant functions and identifying crop productivity bottlenecks requires the accurate quantification of their performance. This task has been attained through photosynthetic models. However, their traditional focus on the leaf's capacity to uptake CO2 is becoming increasingly restrictive. Advanced bioengineering of C3 plants has made it possible to increase rates of CO2 assimilation by packing photosynthetic structures more densely within leaves. The operation of mechanisms that concentrate CO2 inside leaves can boost rates of assimilation while requiring a lower investment in carboxylating enzymes. Therefore, whether in the context of spontaneous plants or modern manipulation, considering trade-offs in resource utilization efficiency emerges as a critical necessity. I've developed a concise and versatile analytical model that simulates concurrent leaf and root growth by balancing instantaneous fluxes of carbon and nitrogen. Carbon is made available by leaf photosynthesis, encompassing all types of biochemistries, while nitrogen is either taken up by roots or remobilized after senescence. The allocation of leaf nitrogen between light or carbon reactions was determined using a fitting algorithm: growth maximisation was the only reliable fitting goal. Both the leaf nitrogen pool and the root-to-leaf ratio responded realistically to various environmental drivers (CO2 concentration, light intensity, soil nitrogen), replicating trends typically observed in plants. Furthermore, modifying the strength of CO2 concentrating mechanisms proved sufficient to alter the root-to-leaf ratio between C3 and C4 types. This direct and mechanistic one-to-one link convincingly demonstrates, for the first time, the functional dependence of a morphological trait on a single biochemical property.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology & Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Chemistry, Biology and Biotechnology, Università Degli Studi di Perugia, Perugia, Italy
- University of the Balearic Islands, Palma, Illes Balears, Spain
- Research School of Biology, Australian National University, Acton, ACT, Australia
| |
Collapse
|
7
|
Busch FA, Ainsworth EA, Amtmann A, Cavanagh AP, Driever SM, Ferguson JN, Kromdijk J, Lawson T, Leakey ADB, Matthews JSA, Meacham-Hensold K, Vath RL, Vialet-Chabrand S, Walker BJ, Papanatsiou M. A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. PLANT, CELL & ENVIRONMENT 2024; 47:3344-3364. [PMID: 38321805 DOI: 10.1111/pce.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.
Collapse
Affiliation(s)
- Florian A Busch
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Research School of Biology, The Australian National University, Canberra, Australian Captial Territory, Australia
| | | | - Anna Amtmann
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Amanda P Cavanagh
- School of Life Sciences, University of Essex, Colchester, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - John N Ferguson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Andrew D B Leakey
- Departments of Plant Biology and Crop Sciences, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | | | | | - Richard L Vath
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- LI-COR Environmental, Lincoln, Nebraska, USA
| | - Silvere Vialet-Chabrand
- Department of Plant Sciences, Horticulture and Product Physiology, Wageningen, The Netherlands
| | - Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Maria Papanatsiou
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Aguiló-Nicolau P, Iñiguez C, Capó-Bauçà S, Galmés J. Rubisco kinetic adaptations to extreme environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2599-2608. [PMID: 39080917 DOI: 10.1111/tpj.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
Photosynthetic and chemosynthetic extremophiles have evolved adaptations to thrive in challenging environments by finely adjusting their metabolic pathways through evolutionary processes. A prime adaptation target to allow autotrophy in extreme conditions is the enzyme Rubisco, which plays a central role in the conversion of inorganic to organic carbon. Here, we present an extensive compilation of Rubisco kinetic traits from a wide range of species of bacteria, archaea, algae, and plants, sorted by phylogenetic group, Rubisco type, and extremophile type. Our results show that Rubisco kinetics for the few extremophile organisms reported up to date are placed at the margins of the enzyme's natural variability. Form ID Rubisco from thermoacidophile rhodophytes and form IB Rubisco from halophile terrestrial plants exhibit higher specificity and affinity for CO2 than their non-extremophilic counterparts, as well as higher carboxylation efficiency, whereas form ID Rubisco from psychrophile organisms possess lower affinity for O2. Additionally, form IB Rubisco from thermophile cyanobacteria shows enhanced CO2 specificity when compared to form IB non-extremophilic cyanobacteria. Overall, these findings highlight the unique characteristics of extremophile Rubisco enzymes and provide useful clues to guide next explorations aimed at finding more efficient Rubiscos.
Collapse
Affiliation(s)
- Pere Aguiló-Nicolau
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
9
|
Sakata T, Matsuyama S, Kawai K, Yasumoto K, Sekikawa S, Ishida A. Interspecific variation in Rubisco CO 2/O 2 specificity along the leaf economic spectrum across 23 woody angiosperm plants in the Pacific islands. THE NEW PHYTOLOGIST 2024; 243:951-965. [PMID: 38752314 DOI: 10.1111/nph.19820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
The coordinated interspecific variation in leaf traits and leaf lifespan is known as the leaf economic spectrum (LES). The limitation of CO2 diffusion to chloroplasts within the lamina is significant in C3 photosynthesis, resulting in a shortage of CO2 for Rubisco. Although Rubisco CO2/O2 specificity (SC/O) should be adaptively adjusted in response to the interspecific variation in CO2 concentrations [CO2] associated with Rubisco, SC/O variations across species along the LES remain unknown. We investigated the coordination among leaf traits, including SC/O, CO2 conductance, leaf protein content, and leaf mass area, across 23 woody C3 species coexisting on an oceanic island through phylogenetic correlation analyses. A high SC/O indicates a high CO2 specificity of Rubisco. SC/O was negatively correlated with [CO2] at Rubisco and total CO2 conductance within lamina, while it was positively correlated with leaf protein across species, regardless of phylogenetic constraint. A simulation analysis shows that the optimal SC/O for maximizing photosynthesis depends on both [CO2] at Rubisco sites and leaf protein per unit leaf area. SC/O is a key parameter along the LES axis and is crucial for maximizing photosynthesis across species and the adaptation of woody plants.
Collapse
Affiliation(s)
- Tsuyoshi Sakata
- Biological Laboratory, Center for Natural Sciences, College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shin Matsuyama
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Kiyosada Kawai
- Forestry Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, 305-8686, Japan
| | - Ko Yasumoto
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Seikoh Sekikawa
- College of Agriculture, Tamagawa University, Machida, 194-8610, Japan
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
10
|
Grebe S, Porcar-Castell A, Riikonen A, Paakkarinen V, Aro EM. Accounting for photosystem I photoinhibition sheds new light on seasonal acclimation strategies of boreal conifers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3973-3992. [PMID: 38572950 PMCID: PMC11233416 DOI: 10.1093/jxb/erae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/30/2024] [Indexed: 04/05/2024]
Abstract
The photosynthetic acclimation of boreal evergreen conifers is controlled by regulatory and photoprotective mechanisms that allow conifers to cope with extreme environmental changes. However, the underlying dynamics of photosystem II (PSII) and photosystem I (PSI) remain unresolved. Here, we investigated the dynamics of PSII and PSI during the spring recovery of photosynthesis in Pinus sylvestris and Picea abies using a combination of chlorophyll a fluorescence, P700 difference absorbance measurements, and quantification of key thylakoid protein abundances. In particular, we derived a new set of PSI quantum yield equations, correcting for the effects of PSI photoinhibition. Using the corrected equations, we found that the seasonal dynamics of PSII and PSI photochemical yields remained largely in balance, despite substantial seasonal changes in the stoichiometry of PSII and PSI core complexes driven by PSI photoinhibition. Similarly, the previously reported seasonal up-regulation of cyclic electron flow was no longer evident, after accounting for PSI photoinhibition. Overall, our results emphasize the importance of considering the dynamics of PSII and PSI to elucidate the seasonal acclimation of photosynthesis in overwintering evergreens. Beyond the scope of conifers, our corrected PSI quantum yields expand the toolkit for future studies aimed at elucidating the dynamic regulation of PSI.
Collapse
Affiliation(s)
- Steffen Grebe
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Optics of Photosynthesis Laboratory, Viikki Plant Science Center, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Viikki Plant Science Center, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Anu Riikonen
- Optics of Photosynthesis Laboratory, Viikki Plant Science Center, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
11
|
Wang X, Shi J. Leaf chlorophyll content is the crucial factor for the temporal and spatial variation of global plants leaf maximum carboxylation rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172280. [PMID: 38593883 DOI: 10.1016/j.scitotenv.2024.172280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Photosynthesis plays an important role in the terrestrial carbon and water cycles which are often studied using terrestrial biosphere models (TBMs). The maximum carboxylation rate at 25 °C (Vcmax25) is a key parameter in the photosynthesis module of TBMs, yet the spatiotemporal distribution of Vcmax25 and the driving mechanism are not fully understood. In this study, Enzyme Kinetics response model, leaf chlorophyll content response model and partial correlation analysis were used to analyze the temporal and spatial changes patterns of atmospheric environment, enzyme dynamic and soil nutrition on Vcmax25 and the driving mechanism, and has made a few useful conclusions: (1) Vcmax25 varies significantly with latitude and between- and within-plant function types (PFTs), which mainly dependent on leaf chlorophyll content (LCC). Under the influence of temperature, the contribution of LCC to the seasonal variation of Vcmax25 is very different among the eight main biomes, with an average contribution of 21 %. (2) The relationship between meteorological variables and Vcmax25 was significant, due to the fact that meteorological variables drive the Rubisco enzyme content that have a significant relationship with Vcmax25, rather than directly acting on Vcmax25. (3) Soil nutrient elements had significant influence on the spatiotemporal variation of Vcmax25 and LCC. The results showed that soil total carbon, soil nitrogen and organic carbon not only affect the temporal and spatial pattern of Vcmax25, but also are the key factors of LCC temporal-spatial variation. These findings provide useful information for better parameterization of Vcmax25 in TBMs.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Jingming Shi
- Shandong Cartographic Institute, Jinan, Shandong Province 250000, China
| |
Collapse
|
12
|
Sargent D, Amthor JS, Stinziano JR, Evans JR, Whitney SM, Bange MP, Tissue DT, Conaty WC, Sharwood RE. The importance of species-specific and temperature-sensitive parameterisation of A/C i models: A case study using cotton (Gossypium hirsutum L.) and the automated 'OptiFitACi' R-package. PLANT, CELL & ENVIRONMENT 2024; 47:1701-1715. [PMID: 38294051 DOI: 10.1111/pce.14800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Leaf gas exchange measurements are an important tool for inferring a plant's photosynthetic biochemistry. In most cases, the responses of photosynthetic CO2 assimilation to variable intercellular CO2 concentrations (A/Ci response curves) are used to model the maximum (potential) rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Vcmax) and the rate of photosynthetic electron transport at a given incident photosynthetically active radiation flux density (PAR; JPAR). The standard Farquhar-von Caemmerer-Berry model is often used with default parameters of Rubisco kinetic values and mesophyll conductance to CO2 (gm) derived from tobacco that may be inapplicable across species. To study the significance of using such parameters for other species, here we measured the temperature responses of key in vitro Rubisco catalytic properties and gm in cotton (Gossypium hirsutum cv. Sicot 71) and derived Vcmax and J2000 (JPAR at 2000 µmol m-2 s-1 PAR) from cotton A/Ci curves incrementally measured at 15°C-40°C using cotton and other species-specific sets of input parameters with our new automated fitting R package 'OptiFitACi'. Notably, parameterisation by a set of tobacco parameters produced unrealistic J2000:Vcmax ratio of <1 at 25°C, two- to three-fold higher estimates of Vcmax above 15°C, up to 2.3-fold higher estimates of J2000 and more variable estimates of Vcmax and J2000, for our cotton data compared to model parameterisation with cotton-derived values. We determined that errors arise when using a gm,25 of 2.3 mol m-2 s-1 MPa-1 or less and Rubisco CO2-affinities in 21% O2 (KC 21%O2) at 25°C outside the range of 46-63 Pa to model A/Ci responses in cotton. We show how the A/Ci modelling capabilities of 'OptiFitACi' serves as a robust, user-friendly, and flexible extension of 'plantecophys' by providing simplified temperature-sensitivity and species-specificity parameterisation capabilities to reduce variability when modelling Vcmax and J2000.
Collapse
Affiliation(s)
- Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- CSIRO Agriculture and Food, Narrabri, New South Wales, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jeffrey S Amthor
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - John R Evans
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael P Bange
- Cotton Seed Distributors Ltd, Wee Waa, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, New South Wales, Australia
| | - Warren C Conaty
- CSIRO Agriculture and Food, Narrabri, New South Wales, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, New South Wales, Australia
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
13
|
Capó-Bauçà S, Iñiguez C, Galmés J. The diversity and coevolution of Rubisco and CO 2 concentrating mechanisms in marine macrophytes. THE NEW PHYTOLOGIST 2024; 241:2353-2365. [PMID: 38197185 DOI: 10.1111/nph.19528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
The kinetic properties of Rubisco, the most important carbon-fixing enzyme, have been assessed in a small fraction of the estimated existing biodiversity of photosynthetic organisms. Until recently, one of the most significant gaps of knowledge in Rubisco kinetics was marine macrophytes, an ecologically relevant group including brown (Ochrophyta), red (Rhodophyta) and green (Chlorophyta) macroalgae and seagrasses (Streptophyta). These organisms express various Rubisco types and predominantly possess CO2 -concentrating mechanisms (CCMs), which facilitate the use of bicarbonate for photosynthesis. Since bicarbonate is the most abundant form of dissolved inorganic carbon in seawater, CCMs allow marine macrophytes to overcome the slow gas diffusion and low CO2 availability in this environment. The present review aims to compile and integrate recent findings on the biochemical diversity of Rubisco and CCMs in the main groups of marine macrophytes. The Rubisco kinetic data provided demonstrate a more relaxed relationship among catalytic parameters than previously reported, uncovering a variability in Rubisco catalysis that has been hidden by a bias in the literature towards terrestrial vascular plants. The compiled data indicate the existence of convergent evolution between Rubisco and biophysical CCMs across the polyphyletic groups of marine macrophytes and suggest a potential role for oxygen in shaping such relationship.
Collapse
Affiliation(s)
- Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, 07122, Palma, Balearic Islands, Spain
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, 07122, Palma, Balearic Islands, Spain
- Department of Ecology, Faculty of Sciences, University of Malaga, Boulevard Louis Pasteur s/n, 29010, Málaga, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, 07122, Palma, Balearic Islands, Spain
| |
Collapse
|
14
|
Clapero V, Arrivault S, Stitt M. Natural variation in metabolism of the Calvin-Benson cycle. Semin Cell Dev Biol 2024; 155:23-36. [PMID: 36959059 DOI: 10.1016/j.semcdb.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
The Calvin-Benson cycle (CBC) evolved over 2 billion years ago but has been subject to massive selection due to falling atmospheric carbon dioxide, rising atmospheric oxygen and changing nutrient and water availability. In addition, large groups of organisms have evolved carbon-concentrating mechanisms (CCMs) that operate upstream of the CBC. Most previous studies of CBC diversity focused on Rubisco kinetics and regulation. Quantitative metabolite profiling provides a top-down strategy to uncover inter-species diversity in CBC operation. CBC profiles were recently published for twenty species including terrestrial C3 species, terrestrial C4 species that operate a biochemical CCM, and cyanobacteria and green algae that operate different types of biophysical CCM. Distinctive profiles were found for species with different modes of photosynthesis, revealing that evolution of the various CCMs was accompanied by co-evolution of the CBC. Diversity was also found between species that share the same mode of photosynthesis, reflecting lineage-dependent diversity of the CBC. Connectivity analysis uncovers constraints due to pathway and thermodynamic topology, and reveals that cross-species diversity in the CBC is driven by changes in the balance between regulated enzymes and in the balance between the CBC and the light reactions or end-product synthesis.
Collapse
Affiliation(s)
- Vittoria Clapero
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Golm, D-14476 Potsdam, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Golm, D-14476 Potsdam, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Golm, D-14476 Potsdam, Germany
| |
Collapse
|
15
|
Britton D, Layton C, Mundy CN, Brewer EA, Gaitán-Espitia JD, Beardall J, Raven JA, Hurd CL. Cool-edge populations of the kelp Ecklonia radiata under global ocean change scenarios: strong sensitivity to ocean warming but little effect of ocean acidification. Proc Biol Sci 2024; 291:20232253. [PMID: 38228502 DOI: 10.1098/rspb.2023.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
Kelp forests are threatened by ocean warming, yet effects of co-occurring drivers such as CO2 are rarely considered when predicting their performance in the future. In Australia, the kelp Ecklonia radiata forms extensive forests across seawater temperatures of approximately 7-26°C. Cool-edge populations are typically considered more thermally tolerant than their warm-edge counterparts but this ignores the possibility of local adaptation. Moreover, it is unknown whether elevated CO2 can mitigate negative effects of warming. To identify whether elevated CO2 could improve thermal performance of a cool-edge population of E. radiata, we constructed thermal performance curves for growth and photosynthesis, under both current and elevated CO2 (approx. 400 and 1000 µatm). We then modelled annual performance under warming scenarios to highlight thermal susceptibility. Elevated CO2 had minimal effect on growth but increased photosynthesis around the thermal optimum. Thermal optima were approximately 16°C for growth and approximately 18°C for photosynthesis, and modelled performance indicated cool-edge populations may be vulnerable in the future. Our findings demonstrate that elevated CO2 is unlikely to offset negative effects of ocean warming on the kelp E. radiata and highlight the potential susceptibility of cool-edge populations to ocean warming.
Collapse
Affiliation(s)
- Damon Britton
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| | - Cayne Layton
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| | - Craig N Mundy
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| | | | - Juan Diego Gaitán-Espitia
- School of Biological Sciences and the SWIRE Institute of Marine Sciences, The University of Hong-Kong, Hong Kong, People's Republic of China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Climate Change Cluster, University of Technology, Sydney, Ultimo, New South Wales 2007, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| |
Collapse
|
16
|
Walker BJ, Driever SM, Kromdijk J, Lawson T, Busch FA. Tools for Measuring Photosynthesis at Different Scales. Methods Mol Biol 2024; 2790:1-26. [PMID: 38649563 DOI: 10.1007/978-1-0716-3790-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
Affiliation(s)
- Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Florian A Busch
- School of Biosciences and The Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
Scafaro AP, Posch BC, Evans JR, Farquhar GD, Atkin OK. Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. Nat Commun 2023; 14:2820. [PMID: 37198175 DOI: 10.1038/s41467-023-38496-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Net photosynthetic CO2 assimilation rate (An) decreases at leaf temperatures above a relatively mild optimum (Topt) in most higher plants. This decline is often attributed to reduced CO2 conductance, increased CO2 loss from photorespiration and respiration, reduced chloroplast electron transport rate (J), or deactivation of Ribulose-1,5-bisphosphate Carboxylase Oxygenase (Rubisco). However, it is unclear which of these factors can best predict species independent declines in An at high temperature. We show that independent of species, and on a global scale, the observed decline in An with rising temperatures can be effectively accounted for by Rubisco deactivation and declines in J. Our finding that An declines with Rubisco deactivation and J supports a coordinated down-regulation of Rubisco and chloroplast electron transport rates to heat stress. We provide a model that, in the absence of CO2 supply limitations, can predict the response of photosynthesis to short-term increases in leaf temperature.
Collapse
Affiliation(s)
- Andrew P Scafaro
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
- Centre for Entrepreneurial Agri-Technology, Gould Building, Australian National University, Canberra, 2601, Australia.
| | - Bradley C Posch
- Department of Research, Collections and Conservation, Desert Botanical Garden, Phoenix, AZ, USA
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Graham D Farquhar
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Centre for Entrepreneurial Agri-Technology, Gould Building, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
18
|
Steensma AK, Shachar-Hill Y, Walker BJ. The carbon-concentrating mechanism of the extremophilic red microalga Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2023; 156:247-264. [PMID: 36780115 PMCID: PMC10154280 DOI: 10.1007/s11120-023-01000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
Cyanidioschyzon merolae is an extremophilic red microalga which grows in low-pH, high-temperature environments. The basis of C. merolae's environmental resilience is not fully characterized, including whether this alga uses a carbon-concentrating mechanism (CCM). To determine if C. merolae uses a CCM, we measured CO2 uptake parameters using an open-path infra-red gas analyzer and compared them to values expected in the absence of a CCM. These measurements and analysis indicated that C. merolae had the gas-exchange characteristics of a CCM-operating organism: low CO2 compensation point, high affinity for external CO2, and minimized rubisco oxygenation. The biomass δ13C of C. merolae was also consistent with a CCM. The apparent presence of a CCM in C. merolae suggests the use of an unusual mechanism for carbon concentration, as C. merolae is thought to lack a pyrenoid and gas-exchange measurements indicated that C. merolae primarily takes up inorganic carbon as carbon dioxide, rather than bicarbonate. We use homology to known CCM components to propose a model of a pH-gradient-based CCM, and we discuss how this CCM can be further investigated.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Aguiló-Nicolau P, Galmés J, Fais G, Capó-Bauçà S, Cao G, Iñiguez C. Singular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalis. PHOTOSYNTHESIS RESEARCH 2023; 156:231-245. [PMID: 36941458 PMCID: PMC10154277 DOI: 10.1007/s11120-023-01008-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 05/03/2023]
Abstract
Cyanobacteria largely contribute to the biogeochemical carbon cycle fixing ~ 25% of the inorganic carbon on Earth. However, the carbon acquisition and assimilation mechanisms in Cyanobacteria are still underexplored regardless of being of great importance for shedding light on the origins of autotropism on Earth and providing new bioengineering tools for crop yield improvement. Here, we fully characterized these mechanisms from the polyextremophile cyanobacterium Chroococcidiopsis thermalis KOMAREK 1964/111 in comparison with the model cyanobacterial strain, Synechococcus sp. PCC6301. In particular, we analyzed the Rubisco kinetics along with the in vivo photosynthetic CO2 assimilation in response to external dissolved inorganic carbon, the effect of CO2 concentrating mechanism (CCM) inhibitors on net photosynthesis and the anatomical particularities of their carboxysomes when grown under either ambient air (0.04% CO2) or 2.5% CO2-enriched air. Our results show that Rubisco from C. thermalis possess the highest specificity factor and carboxylation efficiency ever reported for Cyanobacteria, which were accompanied by a highly effective CCM, concentrating CO2 around Rubisco more than 140-times the external CO2 levels, when grown under ambient CO2 conditions. Our findings provide new insights into the Rubisco kinetics of Cyanobacteria, suggesting that improved Sc/o values can still be compatible with a fast-catalyzing enzyme. The combination of Rubisco kinetics and CCM effectiveness in C. thermalis relative to other cyanobacterial species might indicate that the co-evolution between Rubisco and CCMs in Cyanobacteria is not as constrained as in other phylogenetic groups.
Collapse
Affiliation(s)
- Pere Aguiló-Nicolau
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, INAGEA, Ctra. Valldemossa km. 7.5, 07122, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, INAGEA, Ctra. Valldemossa km. 7.5, 07122, Palma, Balearic Islands, Spain.
| | - Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering, University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, INAGEA, Ctra. Valldemossa km. 7.5, 07122, Palma, Balearic Islands, Spain
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering, University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| | - Concepción Iñiguez
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, INAGEA, Ctra. Valldemossa km. 7.5, 07122, Palma, Balearic Islands, Spain
| |
Collapse
|
20
|
Li M, Young JN. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2023; 156:205-215. [PMID: 36881356 PMCID: PMC10154264 DOI: 10.1007/s11120-023-01004-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 05/03/2023]
Abstract
Marine diatoms are key primary producers across diverse habitats in the global ocean. Diatoms rely on a biophysical carbon concentrating mechanism (CCM) to supply high concentrations of CO2 around their carboxylating enzyme, RuBisCO. The necessity and energetic cost of the CCM are likely to be highly sensitive to temperature, as temperature impacts CO2 concentration, diffusivity, and the kinetics of CCM components. Here, we used membrane inlet mass spectrometry (MIMS) and modeling to capture temperature regulation of the CCM in the diatom Phaeodactylum tricornutum (Pt). We found that enhanced carbon fixation rates by Pt at elevated temperatures were accompanied by increased CCM activity capable of maintaining RuBisCO close to CO2 saturation but that the mechanism varied. At 10 and 18 °C, diffusion of CO2 into the cell, driven by Pt's 'chloroplast pump' was the major inorganic carbon source. However, at 18 °C, upregulation of the chloroplast pump enhanced (while retaining the proportion of) both diffusive CO2 and active HCO3- uptake into the cytosol, and significantly increased chloroplast HCO3- concentrations. In contrast, at 25 °C, compared to 18 °C, the chloroplast pump had only a slight increase in activity. While diffusive uptake of CO2 into the cell remained constant, active HCO3- uptake across the cell membrane increased resulting in Pt depending equally on both CO2 and HCO3- as inorganic carbon sources. Despite changes in the CCM, the overall rate of active carbon transport remained double that of carbon fixation across all temperatures tested. The implication of the energetic cost of the Pt CCM in response to increasing temperatures was discussed.
Collapse
Affiliation(s)
- Meng Li
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Jodi N Young
- School of Oceanography, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Sulaiman HY, Liu B, Abiola YO, Kaurilind E, Niinemets Ü. Impact of heat priming on heat shock responses in Origanum vulgare: Enhanced foliage photosynthetic tolerance and biphasic emissions of volatiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:567-579. [PMID: 36774912 DOI: 10.1016/j.plaphy.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Climate change enhances the frequency of heatwaves that negatively affect photosynthesis and can alter constitutive volatile emissions and elicit emissions of stress volatiles, but how pre-exposure to mildly warmer temperatures affects plant physiological responses to subsequent severe heat episodes remains unclear, especially for aromatic plants with high and complex volatile defenses. We studied the impact of heat shock (45 °C/5 min) applied alone and after exposure to moderate heat stress (35 °C/1 h, priming) on foliage photosynthesis and volatile emissions in the aromatic plant Origanum vulgare through 72 h recovery period. Heat stress decreased photosynthesis rates and stomatal conductance, whereas the reductions in photosynthesis were primarily due to non-stomatal factors. In non-primed plants, heat shock-induced reductions in photosynthetic activity were the greatest, but photosynthetic activity completely recovered by the end of the experiment. In primed plants, a certain inhibition of photosynthetic activity remained, suggesting a sustained priming effect. Heat shock enhanced the emissions of volatiles including lipoxygenase pathway volatiles, long-chained fatty acid-derived compounds, mono- and sesquiterpenes, geranylgeranyl diphosphate pathway volatiles, and benzenoids, whereas different heat treatments resulted in unique emission blends. In non-primed plants, stress-elicited emissions recovered at 72 h. In primed plants, volatile emissions were multiphasic, the first phase, between 0.5 and 10 h, reflected the primary stress response, whereas the secondary rise, between 24 and 72 h, indicated activations of different defense metabolic pathways. Our results demonstrate that exposure to mild heat leads to a sustained physiological stress memory that enhances plant resistance to subsequent severe heat stress episodes.
Collapse
Affiliation(s)
- Hassan Yusuf Sulaiman
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
| | - Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
| | - Yusuph Olawale Abiola
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
22
|
Cavanagh AP, Slattery R, Kubien DS. Temperature-induced changes in Arabidopsis Rubisco activity and isoform expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:651-663. [PMID: 36124740 PMCID: PMC9833042 DOI: 10.1093/jxb/erac379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/16/2022] [Indexed: 06/06/2023]
Abstract
In many plant species, expression of the nuclear encoded Rubisco small subunit (SSu) varies with environmental changes, but the functional role of any changes in expression remains unclear. In this study, we investigated the impact of differential expression of Rubisco SSu isoforms on carbon assimilation in Arabidopsis. Using plants grown at contrasting temperatures (10 °C and 30 °C), we confirm the previously reported temperature response of the four RbcS genes and extend this to protein expression, finding that warm-grown plants produce Rubisco containing ~65% SSu-B and cold-grown plants produce Rubisco with ~65% SSu-A as a proportion of the total pool of subunits. We find that these changes in isoform concentration are associated with kinetic changes to Rubisco in vitro: warm-grown plants produce a Rubisco having greater CO2 affinity (i.e. higher SC/O and lower KC) but lower kcatCO2 at warm measurement temperatures. Although warm-grown plants produce 38% less Rubisco than cold-grown plants on a leaf area basis, warm-grown plants can maintain similar rates of photosynthesis to cold-grown plants at ambient CO2 and 30 °C, indicating that the carboxylation capacity of warm-grown Rubisco is enhanced at warmer measurement temperatures, and is able to compensate for the lower Rubisco content in warm-grown plants. This association between SSu isoform expression and maintenance of Rubisco activity at high temperature suggests that SSu isoform expression could impact the temperature response of C3 photosynthesis.
Collapse
Affiliation(s)
| | - Rebecca Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David S Kubien
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
23
|
Tang J, Zhou H, Jiang Y, Yao D, Waleron KF, Du LM, Daroch M. Characterization of a novel thermophilic cyanobacterium within Trichocoleusaceae, Trichothermofontia sichuanensis gen. et sp. nov., and its CO 2-concentrating mechanism. Front Microbiol 2023; 14:1111809. [PMID: 37180226 PMCID: PMC10172474 DOI: 10.3389/fmicb.2023.1111809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Thermophiles from extreme thermal environments have shown tremendous potential regarding ecological and biotechnological applications. Nevertheless, thermophilic cyanobacteria remain largely untapped and are rarely characterized. Herein, a polyphasic approach was used to characterize a thermophilic strain, PKUAC-SCTB231 (hereafter B231), isolated from a hot spring (pH 6.62, 55.5°C) in Zhonggu village, China. The analyses of 16S rRNA phylogeny, secondary structures of 16S-23S ITS and morphology strongly supported strain B231 as a novel genus within Trichocoleusaceae. Phylogenomic inference and three genome-based indices further verified the genus delineation. Based on the botanical code, the isolate is herein delineated as Trichothermofontia sichuanensis gen. et sp. nov., a genus closely related to a validly described genus Trichocoleus. In addition, our results suggest that Pinocchia currently classified to belong to the family Leptolyngbyaceae may require revision and assignment to the family Trichocoleusaceae. Furthermore, the complete genome of Trichothermofontia B231 facilitated the elucidation of the genetic basis regarding genes related to its carbon-concentrating mechanism (CCM). The strain belongs to β-cyanobacteria according to its β-carboxysome shell protein and 1B form of Ribulose bisphosphate Carboxylase-Oxygenase (RubisCO). Compared to other thermophilic strains, strain B231contains a relatively low diversity of bicarbonate transporters (only BicA for HCO3- transport) but a higher abundance of different types of carbonic anhydrase (CA), β-CA (ccaA) and γ-CA (ccmM). The BCT1 transporter consistently possessed by freshwater cyanobacteria was absent in strain B231. Similar situation was occasionally observed in freshwater thermal Thermoleptolyngbya and Thermosynechococcus strains. Moreover, strain B231 shows a similar composition of carboxysome shell proteins (ccmK1-4, ccmL, -M, -N, -O, and -P) to mesophilic cyanobacteria, the diversity of which was higher than many thermophilic strains lacking at least one of the four ccmK genes. The genomic distribution of CCM-related genes suggests that the expression of some components is regulated as an operon and others in an independently controlled satellite locus. The current study also offers fundamental information for future taxogenomics, ecogenomics and geogenomic studies on distribution and significance of thermophilic cyanobacteria in the global ecosystem.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Krzysztof F. Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy Medical University of Gdańsk, Gdańsk, Poland
| | - Lian-Ming Du
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- *Correspondence: Maurycy Daroch,
| |
Collapse
|
24
|
Shoman NY, Akimov AI. Features of Temperature Adaptation of Phaeodactylum tricornutum, Nitzschia sp., and Skeletonema costatum (Bacillariophyceae) under Different Light Conditions. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 506:256-263. [PMID: 36301433 DOI: 10.1134/s0012496622050155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 06/16/2023]
Abstract
Two types of possible adaptive response of the photosynthetic apparatus of diatoms to the changes in growth temperature conditions are shown. The first type is a temperature-dependent change in the content of chlorophyll in the cell, aimed at matching the rates of light and dark reactions of photosynthesis (noted in Phaeodactylum tricornutum and Nitzschia sp. 3). At the limiting light intensity, a temperature decrease from 20 to 5°C leads to an increase in the initial slope of light dependence of the C/Chl ratio; under the optimal light conditions at a temperature decrease from 20 to 10°C and from 10 to 5°C, the C/Chl ratio increases 1.5-fold in both species. The second type of response to the changes in growth temperature conditions was observed in Skeletonema costatum, for which the chlorophyll content in the cell does not depend on the temperature in the range of 10-20°C. The adaptation of the photosynthetic apparatus in this case probably occurs due to the changes in the activity of enzyme systems and in the rate of enzyme processes. The potential productivity of all studied species of algae at 10°C, calculated as the increase in biomass per unit of chlorophyll per day, does not differ significantly. Under the conditions of light inhibition, a temperature decrease leads to a progressive decrease in the content of chlorophyll in the cells of all algal species under study due to a decrease in the rate of pigment synthesis against the background of its intense photooxidation.
Collapse
Affiliation(s)
- N Yu Shoman
- Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, 299011, Sevastopol, Russia.
| | - A I Akimov
- Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, 299011, Sevastopol, Russia
| |
Collapse
|
25
|
Garen JC, Branch HA, Borrego I, Blonder B, Stinziano JR, Michaletz ST. Gas exchange analysers exhibit large measurement error driven by internal thermal gradients. THE NEW PHYTOLOGIST 2022; 236:369-384. [PMID: 35762843 DOI: 10.1111/nph.18347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Portable gas exchange analysers provide critical data for understanding plant-atmosphere carbon and water fluxes, and for parameterising Earth system models that forecast climate change effects and feedbacks. We characterised temperature measurement errors in the Li-Cor LI-6400XT and LI-6800, and estimated downstream errors in derived quantities, including stomatal conductance (gsw ) and leaf intercellular CO2 concentration (Ci ). The LI-6400XT exhibited air temperature errors (differences between reported air temperature and air temperature measured near the leaf) up to 7.2°C, leaf temperature errors up to 5.3°C, and relative errors in gsw and Ci that increased as temperatures departed from ambient. This caused errors in leaf-to-air temperature relationships, assimilation-temperature curves and CO2 response curves. Temperature dependencies of maximum Rubisco carboxylation rate (Vcmax ) and maximum RuBP regeneration rate (Jmax ) showed errors of 12% and 35%, respectively. These errors are likely to be idiosyncratic and may differ among machines and environmental conditions. The LI-6800 exhibited much smaller errors. Earth system model predictions may be erroneous, as much of their parametrisation data were measured on the LI-6400XT system, depending on the methods used. We make recommendations for minimising errors and correcting data in the LI-6400XT. We also recommend transitioning to the LI-6800 for future data collection.
Collapse
Affiliation(s)
- Josef C Garen
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Haley A Branch
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Isaac Borrego
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin Blonder
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | | | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
26
|
Maberly SC, Stott A, Gontero B. The differential ability of two species of seagrass to use carbon dioxide and bicarbonate and their modelled response to rising concentrations of inorganic carbon. FRONTIERS IN PLANT SCIENCE 2022; 13:936716. [PMID: 36388529 PMCID: PMC9648567 DOI: 10.3389/fpls.2022.936716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Seagrass meadows are one of the most productive ecosystems on the planet, but their photosynthesis rate may be limited by carbon dioxide but mitigated by exploiting the high concentration of bicarbonate in the ocean using different active processes. Seagrasses are declining worldwide at an accelerating rate because of numerous anthropogenic pressures. However, rising ocean concentrations of dissolved inorganic carbon, caused by increases in atmospheric carbon dioxide, may benefit seagrass photosynthesis. Here we compare the ability of two seagrass from the Mediterranean Sea, Posidonia oceanica (L.) Delile and Zostera marina L., to use carbon dioxide and bicarbonate at light saturation, and model how increasing concentrations of inorganic carbon affect their photosynthesis rate. pH-drift measurements confirmed that both species were able to use bicarbonate in addition to carbon dioxide, but that Z. marina was more effective than P. oceanica. Kinetic experiments showed that, compared to Z. marina, P. oceanica had a seven-fold higher affinity for carbon dioxide and a 1.6-fold higher affinity for bicarbonate. However, the maximal rate of bicarbonate uptake in Z. marina was 2.1-fold higher than in P. oceanica. In equilibrium with 410 ppm carbon dioxide in the atmosphere, the modelled rates of photosynthesis by Z. marina were slightly higher than P. oceanica, less carbon limited and depended on bicarbonate to a greater extent. This greater reliance by Z. marina is consistent with its less depleted 13C content compared to P. oceanica. Modelled photosynthesis suggests that both species would depend on bicarbonate alone at an atmospheric carbon dioxide partial pressure of 280 ppm. P. oceanica was projected to benefit more than Z. marina with increasing atmospheric carbon dioxide partial pressures, and at the highest carbon dioxide scenario of 1135 ppm, would have higher rates of photosynthesis and be more saturated by inorganic carbon than Z. marina. In both species, the proportional reliance on bicarbonate declined markedly as carbon dioxide concentrations increased and in P. oceanica carbon dioxide would become the major source of inorganic carbon.
Collapse
Affiliation(s)
| | - Andrew W. Stott
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
27
|
Capó-Bauçà S, Iñiguez C, Aguiló-Nicolau P, Galmés J. Correlative adaptation between Rubisco and CO 2-concentrating mechanisms in seagrasses. NATURE PLANTS 2022; 8:706-716. [PMID: 35729266 DOI: 10.1038/s41477-022-01171-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2022] [Indexed: 05/19/2023]
Abstract
Submerged angiosperms sustain some of the most productive and diverse ecosystems worldwide. However, their carbon acquisition and assimilation mechanisms remain poorly explored, missing an important step in the evolution of photosynthesis during the colonization of aquatic environments by angiosperms. Here we reveal a convergent kinetic adaptation of Rubisco in phylogenetically distant seagrass species that share catalytic efficiencies and CO2 and O2 affinities up to three times lower than those observed in phylogenetically closer angiosperms from terrestrial, freshwater and brackish-water habitats. This Rubisco kinetic convergence was found to correlate with the effectiveness of seagrass CO2-concentrating mechanisms (CCMs), which probably evolved in response to the constant CO2 limitation in marine environments. The observed Rubisco kinetic adaptation in seagrasses more closely resembles that seen in eukaryotic algae operating CCMs rather than that reported in terrestrial C4 plants. Our results thus demonstrate a general pattern of co-evolution between Rubisco function and biophysical CCM effectiveness that traverses distantly related aquatic lineages.
Collapse
Affiliation(s)
- Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Spain
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Spain.
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Spain
| |
Collapse
|
28
|
Blasini DE, Koepke DF, Bush SE, Allan GJ, Gehring CA, Whitham TG, Day TA, Hultine KR. Tradeoffs between leaf cooling and hydraulic safety in a dominant arid land riparian tree species. PLANT, CELL & ENVIRONMENT 2022; 45:1664-1681. [PMID: 35147232 DOI: 10.1111/pce.14292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Leaf carbon gain optimization in hot environments requires balancing leaf thermoregulation with avoiding excessive water loss via transpiration and hydraulic failure. The tradeoffs between leaf thermoregulation and transpirational water loss can determine the ecological consequences of heat waves that are increasing in frequency and intensity. We evaluated leaf thermoregulation strategies in warm- (>40°C maximum summer temperature) and cool-adapted (<40°C maximum summer temperature) genotypes of the foundation tree species, Populus fremontii, using a common garden near the mid-elevational point of its distribution. We measured leaf temperatures and assessed three modes of leaf thermoregulation: leaf morphology, midday canopy stomatal conductance and stomatal sensitivity to vapour pressure deficit. Data were used to parameterize a leaf energy balance model to estimate contrasts in midday leaf temperature in warm- and cool-adapted genotypes. Warm-adapted genotypes had 39% smaller leaves and 38% higher midday stomatal conductance, reflecting a 3.8°C cooler mean leaf temperature than cool-adapted genotypes. Leaf temperatures modelled over the warmest months were on average 1.1°C cooler in warm- relative to cool-adapted genotypes. Results show that plants adapted to warm environments are predisposed to tightly regulate leaf temperatures during heat waves, potentially at an increased risk of hydraulic failure.
Collapse
Affiliation(s)
- Davis E Blasini
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Dan F Koepke
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, USA
| | - Susan E Bush
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, USA
| | - Gerard J Allan
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Catherine A Gehring
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas G Whitham
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas A Day
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, USA
| |
Collapse
|
29
|
Tang J, Zhou H, Yao D, Riaz S, You D, Klepacz-Smółka A, Daroch M. Comparative Genomic Analysis Revealed Distinct Molecular Components and Organization of CO 2-Concentrating Mechanism in Thermophilic Cyanobacteria. Front Microbiol 2022; 13:876272. [PMID: 35602029 PMCID: PMC9120777 DOI: 10.3389/fmicb.2022.876272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Cyanobacteria evolved an inorganic carbon-concentrating mechanism (CCM) to perform effective oxygenic photosynthesis and prevent photorespiratory carbon losses. This process facilitates the acclimation of cyanobacteria to various habitats, particularly in CO2-limited environments. To date, there is limited information on the CCM of thermophilic cyanobacteria whose habitats limit the solubility of inorganic carbon. Here, genome-based approaches were used to identify the molecular components of CCM in 17 well-described thermophilic cyanobacteria. These cyanobacteria were from the genus Leptodesmis, Leptolyngbya, Leptothermofonsia, Thermoleptolyngbya, Thermostichus, and Thermosynechococcus. All the strains belong to β-cyanobacteria based on their β-carboxysome shell proteins with 1B form of Rubisco. The diversity in the Ci uptake systems and carboxysome composition of these thermophiles were analyzed based on their genomic information. For Ci uptake systems, two CO2 uptake systems (NDH-13 and NDH-14) and BicA for HCO3– transport were present in all the thermophilic cyanobacteria, while most strains did not have the Na+/HCO3– Sbt symporter and HCO3– transporter BCT1 were absent in four strains. As for carboxysome, the β-carboxysomal shell protein, ccmK2, was absent only in Thermoleptolyngbya strains, whereas ccmK3/K4 were absent in all Thermostichus and Thermosynechococcus strains. Besides, all Thermostichus and Thermosynechococcus strains lacked carboxysomal β-CA, ccaA, the carbonic anhydrase activity of which may be replaced by ccmM proteins as indicated by comparative domain analysis. The genomic distribution of CCM-related genes was different among the thermophiles, suggesting probably distinct expression regulation. Overall, the comparative genomic analysis revealed distinct molecular components and organization of CCM in thermophilic cyanobacteria. These findings provided insights into the CCM components of thermophilic cyanobacteria and fundamental knowledge for further research regarding photosynthetic improvement and biomass yield of thermophilic cyanobacteria with biotechnological potentials.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Sadaf Riaz
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Anna Klepacz-Smółka
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
30
|
Abstract
A small subset of marine microbial enzymes and surface transporters have a disproportionately important influence on the cycling of carbon and nutrients in the global ocean. As a result, they largely determine marine biological productivity and have been the focus of considerable research attention from microbial oceanographers. Like all biological catalysts, the activity of these keystone biomolecules is subject to control by temperature and pH, leaving the crucial ecosystem functions they support potentially vulnerable to anthropogenic environmental change. We summarize and discuss both consensus and conflicting evidence on the effects of sea surface warming and ocean acidification for five of these critical enzymes [carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), nitrogenase, nitrate reductase, and ammonia monooxygenase] and one important transporter (proteorhodopsin). Finally, we forecast how the responses of these few but essential biocatalysts to ongoing global change processes may ultimately help to shape the microbial communities and biogeochemical cycles of the future greenhouse ocean.
Collapse
Affiliation(s)
- David A Hutchins
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA;
| | - Sergio A Sañudo-Wilhelmy
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA;
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA;
| |
Collapse
|
31
|
Iñiguez C, Niinemets Ü, Mark K, Galmés J. Analyzing the causes of method-to-method variability among Rubisco kinetic traits: from the first to the current measurements. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7846-7862. [PMID: 34329386 DOI: 10.1093/jxb/erab356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Due to the importance of Rubisco in the biosphere, its kinetic parameters have been measured by different methodologies in a large number of studies over the last 60 years. These parameters are essential to characterize the natural diversity in the catalytic properties of the enzyme and they are also required for photosynthesis and cross-scale crop modeling. The present compilation of Rubisco kinetic parameters in model species revealed a wide intraspecific laboratory-to-laboratory variability, which was partially solved by making corrections to account for differences in the assay buffer composition and in the acidity constant of dissolved CO2, as well as for differences in the CO2 and O2 solubilities. Part of the intraspecific variability was also related to the different analytical methodologies used. For instance, significant differences were found between the two main methods for the determination of the specificity factor (Sc/o), and also between Rubisco quantification methods, Rubisco purification versus crude extracts, and single-point versus CO2 curve measurements for the carboxylation turnover rate (kcatc) determination. Causes of the intraspecific laboratory-to-laboratory variability for Rubisco catalytic traits are discussed. This study provides a normalized kinetic dataset for model species to be used by the scientific community. Corrections and recommendations are also provided to reduce measurement variability, allowing the comparison of kinetic data obtained in different laboratories using different assay conditions.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
- Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Kristiina Mark
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
32
|
Tcherkez G, Farquhar GD. Rubisco catalytic adaptation is mostly driven by photosynthetic conditions - Not by phylogenetic constraints. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153554. [PMID: 34749030 DOI: 10.1016/j.jplph.2021.153554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The prevalence of phylogenetic constraints in Rubisco evolution has been emphasised recently by (Bouvier et al., 2021), who argued that phylogenetic inheritance limits Rubisco adaptation much more than the biochemical trade-off between specificity, CO2 affinity and turn-over. In this Opinion, we have critically examined how a phylogenetic signal can be computed with Rubisco kinetic properties and phylogenetic trees, and we arrive at a different conclusion. In particular, Rubisco's adaptation is partly driven by C4 vs. C3 photosynthetic conditions in Angiosperms, apparent phylogenetic signals being mostly due to either homoplasy, computation artefacts or the use of nearly identical sister species. While phylogenetic inheritance of an ancestral enzyme form probably has some role in Rubisco's adaptation landscape, it is a minor player, at least compared to microenvironmental conditions such as CO2 and O2 concentrations.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Institut de Recherche and Horticulture et Semences, INRAe Angers, Université D'Angers, 42 Rue Georges Morel, 49070, Beaucouzé, France; Research School of Biology, ANU College of Science, Australian National University, 2601, Canberra ACT, Australia.
| | - Graham D Farquhar
- Research School of Biology, ANU College of Science, Australian National University, 2601, Canberra ACT, Australia
| |
Collapse
|
33
|
Harrison SP, Cramer W, Franklin O, Prentice IC, Wang H, Brännström Å, de Boer H, Dieckmann U, Joshi J, Keenan TF, Lavergne A, Manzoni S, Mengoli G, Morfopoulos C, Peñuelas J, Pietsch S, Rebel KT, Ryu Y, Smith NG, Stocker BD, Wright IJ. Eco-evolutionary optimality as a means to improve vegetation and land-surface models. THE NEW PHYTOLOGIST 2021; 231:2125-2141. [PMID: 34131932 DOI: 10.1111/nph.17558] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
Collapse
Affiliation(s)
- Sandy P Harrison
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Wolfgang Cramer
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, Aix-en-Provence Cedex 04, F-13545, France
| | - Oskar Franklin
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Iain Colin Prentice
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Åke Brännström
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, 901 87, Sweden
| | - Hugo de Boer
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Ulf Dieckmann
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, 240-0193, Japan
| | - Jaideep Joshi
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Aliénor Lavergne
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Giulia Mengoli
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Catherine Morfopoulos
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Josep Peñuelas
- CSIC, Global Ecology, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Valles, Barcelona, Catalonia, 08193, Spain
| | - Stephan Pietsch
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- BOKU - University of Life Sciences and Natural Resources, Gregor-Medel-Strasse 33, Vienna, 1180, Austria
| | - Karin T Rebel
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX, 79409, USA
| | - Benjamin D Stocker
- Department of Environmental System Science, ETH, Universitätstrasse 2, Zürich, CH-8092, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zrcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
34
|
Abstract
Photorespiration results in a large amount of leaf photosynthesis consumption. However, there are few studies on the response of photorespiration to multi-factors. In this study, a machine learning model for the photorespiration rate of cucumber leaves’ response to multi-factors was established. It provides a theoretical basis for studies related to photorespiration. Machine learning models of different methods were designed and compared. The photorespiration rate was expressed as the difference between the photosynthetic rate at 2% O2 and 21% O2 concentrations. The results show that the XGBoost models had the best fit performance with an explained variance score of 0.970 for both photosynthetic rate datasets measured using air and 2% O2, with mean absolute errors of 0.327 and 0.181, root mean square errors of 1.607 and 1.469, respectively, and coefficients of determination of 0.970 for both. In addition, this study indicates the importance of the features of temperature, humidity and the physiological status of the leaves for predicted results of photorespiration. The model established in this study performed well, with high accuracy and generalization ability. As a preferable exploration of the research on photorespiration rate simulation, it has theoretical significance and application prospects.
Collapse
|
35
|
Osei-Bonsu I, McClain AM, Walker BJ, Sharkey TD, Kramer DM. The roles of photorespiration and alternative electron acceptors in the responses of photosynthesis to elevated temperatures in cowpea. PLANT, CELL & ENVIRONMENT 2021; 44:2290-2307. [PMID: 33555066 PMCID: PMC11176259 DOI: 10.1111/pce.14026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 05/02/2023]
Abstract
We explored the effects, on photosynthesis in cowpea (Vigna unguiculata) seedlings, of high temperature and light-environmental stresses that often co-occur under field conditions and can have greater impact on photosynthesis than either by itself. We observed contrasting responses in the light and carbon assimilatory reactions, whereby in high temperature, the light reactions were stimulated while CO2 assimilation was substantially reduced. There were two striking observations. Firstly, the primary quinone acceptor (QA ), a measure of the regulatory balance of the light reactions, became more oxidized with increasing temperature, suggesting increased electron sink capacity, despite the reduced CO2 fixation. Secondly, a strong, O2 -dependent inactivation of assimilation capacity, consistent with down-regulation of rubisco under these conditions. The dependence of these effects on CO2 , O2 and light led us to conclude that both photorespiration and an alternative electron acceptor supported increased electron flow, and thus provided photoprotection under these conditions. Further experiments showed that the increased electron flow was maintained by rapid rates of PSII repair, particularly at combined high light and temperature. Overall, the results suggest that photodamage to the light reactions can be avoided under high light and temperatures by increasing electron sink strength, even when assimilation is strongly suppressed.
Collapse
Affiliation(s)
- Isaac Osei-Bonsu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Horticulture Division, CSIR-Crops Research Institute, Kumasi, Ghana
| | - Alan M McClain
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
36
|
Lin MT, Orr DJ, Worrall D, Parry MAJ, Carmo-Silva E, Hanson MR. A procedure to introduce point mutations into the Rubisco large subunit gene in wild-type plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:876-887. [PMID: 33576096 DOI: 10.1111/tpj.15196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/22/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic inefficiencies limit the productivity and sustainability of crop production and the resilience of agriculture to future societal and environmental challenges. Rubisco is a key target for improvement as it plays a central role in carbon fixation during photosynthesis and is remarkably inefficient. Introduction of mutations to the chloroplast-encoded Rubisco large subunit rbcL is of particular interest for improving the catalytic activity and efficiency of the enzyme. However, manipulation of rbcL is hampered by its location in the plastome, with many species recalcitrant to plastome transformation, and by the plastid's efficient repair system, which can prevent effective maintenance of mutations introduced with homologous recombination. Here we present a system where the introduction of a number of silent mutations into rbcL within the model plant Nicotiana tabacum facilitates simplified screening via additional restriction enzyme sites. This system was used to successfully generate a range of transplastomic lines from wild-type N. tabacum with stable point mutations within rbcL in 40% of the transformants, allowing assessment of the effect of these mutations on Rubisco assembly and activity. With further optimization the approach offers a viable way forward for mutagenic testing of Rubisco function in planta within tobacco and modification of rbcL in other crops where chloroplast transformation is feasible. The transformation strategy could also be applied to introduce point mutations in other chloroplast-encoded genes.
Collapse
Affiliation(s)
- Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
37
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
38
|
Degen GE, Orr DJ, Carmo-Silva E. Heat-induced changes in the abundance of wheat Rubisco activase isoforms. THE NEW PHYTOLOGIST 2021; 229:1298-1311. [PMID: 32964463 DOI: 10.1111/nph.16937] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 05/24/2023]
Abstract
The Triticum aestivum (wheat) genome encodes three isoforms of Rubisco activase (Rca) differing in thermostability, which could be exploited to improve the resilience of this crop to global warming. We hypothesized that elevated temperatures would cause an increase in the relative abundance of heat-stable Rca1β. Wheat plants were grown at 25° C : 18°C (day : night) and exposed to heat stress (38° C : 22°C) for up to 5 d at pre-anthesis. Carbon (C) assimilation, Rubisco activity, CA1Pase activity, transcripts of Rca1β, Rca2β, and Rca2α, and the quantities of the corresponding protein products were measured during and after heat stress. The transcript of Rca1β increased 40-fold in 4 h at elevated temperatures and returned to the original level after 4 h upon return of plants to control temperatures. Rca1β comprised up to 2% of the total Rca protein in unstressed leaves but increased three-fold in leaves exposed to elevated temperatures for 5 d and remained high at 4 h after heat stress. These results show that elevated temperatures cause rapid changes in Rca gene expression and adaptive changes in Rca isoform abundance. The improved understanding of the regulation of C assimilation under heat stress will inform efforts to improve wheat productivity and climate resilience.
Collapse
Affiliation(s)
- Gustaf E Degen
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | |
Collapse
|
39
|
von Caemmerer S. Rubisco carboxylase/oxygenase: From the enzyme to the globe: A gas exchange perspective. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153240. [PMID: 32707452 DOI: 10.1016/j.jplph.2020.153240] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 05/28/2023]
Abstract
Rubisco is the primary carboxylase of the photosynthetic process, the most abundant enzyme in the biosphere, and also one of the best-characterized enzymes. Rubisco also functions as an oxygenase, a discovery made 50 years ago by Bill Ogren. Carboxylation of ribulose bisphosphate (RuBP) is the first step of the photosynthetic carbon reduction cycle and leads to the assimilation of CO2, whereas the oxygenase activity necessitates the recycling of phosphoglycolate through the photorespiratory carbon oxidation cycle with concomitant loss of CO2. Since the discovery of Rubisco's dual function, the biochemical properties of Rubisco have underpinned the mechanistic mathematical models of photosynthetic CO2 fixation which link Rubisco kinetic properties to gas exchange of leaves. This has allowed assessments of global CO2 exchange and predictions of how Rubisco has and will shape the environmental responses of crop and global photosynthesis in future climates. Rubisco's biochemical properties, including its slow catalytic turnover and poor affinity for CO2, constrain crop growth and therefore improving its activity and regulation and minimising photorespiration are key targets for crop improvement.
Collapse
Affiliation(s)
- Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia.
| |
Collapse
|
40
|
Goudet MMM, Orr DJ, Melkonian M, Müller KH, Meyer MT, Carmo-Silva E, Griffiths H. Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae. THE NEW PHYTOLOGIST 2020; 227:810-823. [PMID: 32249430 DOI: 10.1111/nph.16577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 05/19/2023]
Abstract
Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated. For six streptophyte algae, Rubisco catalytic properties, affinity for CO2 uptake (K0.5 ), carbon isotope discrimination (δ13 C) and pyrenoid morphology were compared. The length of the βA-βB loop in RbcS provided a phylogenetic marker discriminating chlorophyte from streptophyte green algae. Rubisco kinetic properties in streptophyte algae have responded to the extent of inducible CCM activity, as indicated by changes in inorganic carbon uptake affinity, δ13 C and pyrenoid ultrastructure between high and low CO2 conditions for growth. We conclude that the Rubisco catalytic properties found in streptophyte algae have coevolved and reflect the strength of any CCM or degree of pyrenoid leakiness, and limitations to inorganic carbon in the aquatic habitat, whereas Rubisco in extant land plants reflects more recent selective pressures associated with improved diffusive supply of the terrestrial environment.
Collapse
Affiliation(s)
- Myriam M M Goudet
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, 50674, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Moritz T Meyer
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | | | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
41
|
Capó-Bauçà S, Font-Carrascosa M, Ribas-Carbó M, Pavlovič A, Galmés J. Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes × ventrata. ANNALS OF BOTANY 2020; 126:25-37. [PMID: 32173732 PMCID: PMC7304475 DOI: 10.1093/aob/mcaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 03/10/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants can enhance photosynthetic efficiency in response to prey nutrient uptake, but the underlying mechanisms of increased photosynthesis are largely unknown. Here we investigated photosynthesis in the pitcher plant Nepenthes × ventrata in response to different prey-derived and root mineral nutrition to reveal photosynthetic constrains. METHODS Nutrient-stressed plants were irrigated with full inorganic solution or fed with four different insects: wasps, ants, beetles or flies. Full dissection of photosynthetic traits was achieved by means of gas exchange, chlorophyll fluorescence and immunodetection of photosynthesis-related proteins. Leaf biochemical and anatomical parameters together with mineral composition, nitrogen and carbon isotopic discrimination of leaves and insects were also analysed. KEY RESULTS Mesophyll diffusion was the major photosynthetic limitation for nutrient-stressed Nepenthes × ventrata, while biochemistry was the major photosynthetic limitation after nutrient application. The better nutrient status of insect-fed and root-fertilized treatments increased chlorophyll, pigment-protein complexes and Rubisco content. As a result, both photochemical and carboxylation potential were enhanced, increasing carbon assimilation. Different nutrient application affected growth, and root-fertilized treatment led to the investment of more biomass in leaves instead of pitchers. CONCLUSIONS The study resolved a 35-year-old hypothesis that carnivorous plants increase photosynthetic assimilation via the investment of prey-derived nitrogen in the photosynthetic apparatus. The equilibrium between biochemical and mesophyll limitations of photosynthesis is strongly affected by the nutrient treatment.
Collapse
Affiliation(s)
- Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears–INAGEA, Palma, Balearic Islands, Spain
| | - Marcel Font-Carrascosa
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears–INAGEA, Palma, Balearic Islands, Spain
| | - Miquel Ribas-Carbó
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears–INAGEA, Palma, Balearic Islands, Spain
| | - Andrej Pavlovič
- Department of Biophysics, Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů, CZ, Czech Republic
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears–INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
42
|
Dusenge ME, Madhavji S, Way DA. Contrasting acclimation responses to elevated CO 2 and warming between an evergreen and a deciduous boreal conifer. GLOBAL CHANGE BIOLOGY 2020; 26:3639-3657. [PMID: 32181545 DOI: 10.1111/gcb.15084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 05/27/2023]
Abstract
Rising atmospheric carbon dioxide (CO2 ) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA ) increased and maximum photosynthetic rates declined in warm-grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax , and of electron transport, Jmax ) was reduced in warm-grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ , respectively) and the thermal optimum for Jmax . In both species, the ToptA was positively correlated with both EaV and EaJ , but negatively correlated with the ratio of Jmax /Vcmax . Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ ) show no response to elevated CO2 .
Collapse
Affiliation(s)
- Mirindi E Dusenge
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sasha Madhavji
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
43
|
Peng Y, Bloomfield KJ, Prentice IC. A theory of plant function helps to explain leaf-trait and productivity responses to elevation. THE NEW PHYTOLOGIST 2020; 226:1274-1284. [PMID: 31971253 DOI: 10.1111/nph.16447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Several publications have examined leaf-trait and carbon-cycling shifts along an Amazon-Andes transect spanning 3.5 km in elevation and 16°C in mean annual temperature. Photosynthetic capacity was previously shown to increase as temperature declines with increasing elevation, counteracting enzyme-kinetic effects. Primary production declines, nonetheless, due to decreasing light availability. We aimed to predict leaf-trait and production gradients from first principles, using published data to test an emerging theory whereby photosynthetic traits and primary production depend on optimal acclimation and/or adaptation to environment. We re-analysed published data for 210 species at 25 sites, fitting linear relationships to elevation for both predicted and observed photosynthetic traits and primary production. Declining leaf-internal/ambient CO2 ratio (χ) and increasing carboxylation (Vcmax ) and electron-transport (Jmax ) capacities with increasing elevation were predicted. Increases in leaf nitrogen content with elevation were explained by increasing Vcmax and leaf mass-per-area. Leaf and soil phosphorus covaried, but after controlling for elevation, no nutrient metric accounted for any additional variance in photosynthetic traits. Primary production was predicted to decline with elevation. This analysis unifies leaf and ecosystem observations in a common theoretical framework. The insensitivity of primary production to temperature is shown to emerge as a consequence of the optimisation of photosynthetic traits.
Collapse
Affiliation(s)
- Yunke Peng
- Masters Programme in Ecosystems and Environmental Change, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Keith J Bloomfield
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Iain Colin Prentice
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
44
|
Wang H, Atkin OK, Keenan TF, Smith NG, Wright IJ, Bloomfield KJ, Kattge J, Reich PB, Prentice IC. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. GLOBAL CHANGE BIOLOGY 2020; 26:2573-2583. [PMID: 32091184 DOI: 10.1111/gcb.14980] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Plant respiration is an important contributor to the proposed positive global carbon-cycle feedback to climate change. However, as a major component, leaf mitochondrial ('dark') respiration (Rd ) differs among species adapted to contrasting environments and is known to acclimate to sustained changes in temperature. No accepted theory explains these phenomena or predicts its magnitude. Here we propose that the acclimation of Rd follows an optimal behaviour related to the need to maintain long-term average photosynthetic capacity (Vcmax ) so that available environmental resources can be most efficiently used for photosynthesis. To test this hypothesis, we extend photosynthetic co-ordination theory to predict the acclimation of Rd to growth temperature via a link to Vcmax , and compare predictions to a global set of measurements from 112 sites spanning all terrestrial biomes. This extended co-ordination theory predicts that field-measured Rd and Vcmax accessed at growth temperature (Rd,tg and Vcmax,tg ) should increase by 3.7% and 5.5% per degree increase in growth temperature. These acclimated responses to growth temperature are less steep than the corresponding instantaneous responses, which increase 8.1% and 9.9% per degree of measurement temperature for Rd and Vcmax respectively. Data-fitted responses proof indistinguishable from the values predicted by our theory, and smaller than the instantaneous responses. Theory and data are also shown to agree that the basal rates of both Rd and Vcmax assessed at 25°C (Rd,25 and Vcmax,25 ) decline by ~4.4% per degree increase in growth temperature. These results provide a parsimonious general theory for Rd acclimation to temperature that is simpler-and potentially more reliable-than the plant functional type-based leaf respiration schemes currently employed in most ecosystem and land-surface models.
Collapse
Affiliation(s)
- Han Wang
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, China
- Joint Centre for Global Change Studies, Tsinghua University, Beijing, China
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Trevor F Keenan
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Jena, Germany
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - I Colin Prentice
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, China
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
45
|
Fernández-Marín B, Gulías J, Figueroa CM, Iñiguez C, Clemente-Moreno MJ, Nunes-Nesi A, Fernie AR, Cavieres LA, Bravo LA, García-Plazaola JI, Gago J. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:979-1000. [PMID: 31953876 DOI: 10.1111/tpj.14694] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water-limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs ), mesophyll conductance (gm ) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin-Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole-plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna, Tenerife, 38200, Spain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Carlos M Figueroa
- UNL, CONICET, FBCB, Instituto de Agrobiotecnología del Litoral, 3000, Santa Fe, Argentina
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany
| | - Lohengrin A Cavieres
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Lab. de Fisiología y Biología Molecular Vegetal, Dpt. de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| |
Collapse
|
46
|
Iñiguez C, Capó-Bauçà S, Niinemets Ü, Stoll H, Aguiló-Nicolau P, Galmés J. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO 2 concentrating mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:897-918. [PMID: 31820505 DOI: 10.1111/tpj.14643] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
RuBisCO-catalyzed CO2 fixation is the main source of organic carbon in the biosphere. This enzyme is present in all domains of life in different forms (III, II, and I) and its origin goes back to 3500 Mya, when the atmosphere was anoxygenic. However, the RuBisCO active site also catalyzes oxygenation of ribulose 1,5-bisphosphate, therefore, the development of oxygenic photosynthesis and the subsequent oxygen-rich atmosphere promoted the appearance of CO2 concentrating mechanisms (CCMs) and/or the evolution of a more CO2 -specific RuBisCO enzyme. The wide variability in RuBisCO kinetic traits of extant organisms reveals a history of adaptation to the prevailing CO2 /O2 concentrations and the thermal environment throughout evolution. Notable differences in the kinetic parameters are found among the different forms of RuBisCO, but the differences are also associated with the presence and type of CCMs within each form, indicative of co-evolution of RuBisCO and CCMs. Trade-offs between RuBisCO kinetic traits vary among the RuBisCO forms and also among phylogenetic groups within the same form. These results suggest that different biochemical and structural constraints have operated on each type of RuBisCO during evolution, probably reflecting different environmental selective pressures. In a similar way, variations in carbon isotopic fractionation of the enzyme point to significant differences in its relationship to the CO2 specificity among different RuBisCO forms. A deeper knowledge of the natural variability of RuBisCO catalytic traits and the chemical mechanism of RuBisCO carboxylation and oxygenation reactions raises the possibility of finding unrevealed landscapes in RuBisCO evolution.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Heather Stoll
- Department of Earth Sciences, ETH Zürich, Sonnegstrasse 5, 8092, Zürich, Switzerland
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
47
|
Busch FA. Photorespiration in the context of Rubisco biochemistry, CO 2 diffusion and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:919-939. [PMID: 31910295 DOI: 10.1111/tpj.14674] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/11/2023]
Abstract
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
48
|
Knauer J, Zaehle S, De Kauwe MG, Haverd V, Reichstein M, Sun Y. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:858-873. [PMID: 31659806 DOI: 10.1111/tpj.14587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 05/08/2023]
Abstract
The CO2 transfer conductance within plant leaves (mesophyll conductance, gm ) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm , which comprises the re-adjustment of photosynthetic parameters and a model describing the variation of gm in dependence of environmental conditions. An explicit representation of gm causes changes in the response of photosynthesis to environmental factors, foremost leaf temperature, and ambient CO2 concentration, which are most pronounced when gm is small. These changes in leaf-level photosynthesis translate into a stronger climate and CO2 response of gross primary productivity (GPP) and transpiration at the global scale. The results from two independent studies show consistent latitudinal patterns of these effects with biggest differences in GPP in the boreal zone (up to ~15%). Transpiration and evapotranspiration show spatially similar, but attenuated, changes compared with GPP. These changes are indirect effects of gm caused by the assumed strong coupling between stomatal conductance and photosynthesis in current LSMs. Key uncertainties in these simulations are the variation of gm with light and the robustness of its temperature response across plant types and growth conditions. Future research activities focusing on the response of gm to environmental factors and its relation to other plant traits have the potential to improve the representation of photosynthesis in LSMs and to better understand its present and future role in the Earth system.
Collapse
Affiliation(s)
- Jürgen Knauer
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Sönke Zaehle
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes and the Climate Change Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
| | - Markus Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
49
|
Variation in Responses of Photosynthesis and Apparent Rubisco Kinetics to Temperature in Three Soybean Cultivars. PLANTS 2019; 8:plants8110443. [PMID: 31652868 PMCID: PMC6918163 DOI: 10.3390/plants8110443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Recent in vivo assays of the responses of Rubisco to temperature in C3 plants have revealed substantial diversity. Three cultivars of soybean (Glycine max L. Merr.), Holt, Fiskeby V, and Spencer, were grown in indoor chambers at 15, 20, and 25 °C. Leaf photosynthesis was measured over the range of 15 to 30 °C, deliberately avoiding higher temperatures which may cause deactivation of Rubisco, in order to test for differences in temperature responses of photosynthesis, and to investigate in vivo Rubisco kinetic characteristics responsible for any differences observed. The three cultivars differed in the optimum temperature for photosynthesis (from 15 to 30 °C) at 400 μmol mol−1 external CO2 concentration when grown at 15 °C, and in the shapes of the response curves when grown at 25 °C. The apparent activation energy of the maximum carboxylation rate of Rubisco differed substantially between cultivars at all growth temperatures, as well as changing with growth temperature in two of the cultivars. The activation energy ranged from 58 to 84 kJ mol−1, compared with the value of 64 kJ mol−1 used in many photosynthesis models. Much less variation in temperature responses occurred in photosynthesis measured at nearly saturating CO2 levels, suggesting more diversity in Rubisco than in electron transport thermal properties among these soybean cultivars.
Collapse
|
50
|
Zhou H, Akçay E, Helliker BR. Estimating C 4 photosynthesis parameters by fitting intensive A/C i curves. PHOTOSYNTHESIS RESEARCH 2019; 141:181-194. [PMID: 30758752 DOI: 10.1007/s11120-019-00619-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Measurements of photosynthetic assimilation rate as a function of intercellular CO2 (A/Ci curves) are widely used to estimate photosynthetic parameters for C3 species, yet few parameters have been reported for C4 plants, because of a lack of estimation methods. Here, we extend the framework of widely used estimation methods for C3 plants to build estimation tools by exclusively fitting intensive A/Ci curves (6-8 more sampling points) for C4 using three versions of photosynthesis models with different assumptions about carbonic anhydrase processes and ATP distribution. We use simulation analysis, out of sample tests, existing in vitro measurements and chlorophyll-fluorescence measurements to validate the new estimation methods. Of the five/six photosynthetic parameters obtained, sensitivity analyses show that maximal-Rubisco-carboxylation-rate, electron-transport-rate, maximal-PEP-carboxylation-rate, and carbonic-anhydrase were robust to variation in the input parameters, while day respiration and mesophyll conductance varied. Our method provides a way to estimate carbonic anhydrase activity, a new parameter, from A/Ci curves, yet also shows that models that do not explicitly consider carbonic anhydrase yield approximate results. The two photosynthesis models, differing in whether ATP could freely transport between RuBP and PEP regeneration processes yielded consistent results under high light, but they may diverge under low light intensities. Modeling results show selection for Rubisco of low specificity and high catalytic rate, low leakage of bundle sheath, and high PEPC affinity, which may further increase C4 efficiency.
Collapse
Affiliation(s)
- Haoran Zhou
- Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA.
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA
| | - Brent R Helliker
- Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA
| |
Collapse
|