1
|
Mahakalkar B, Kumar V, Sudhakaran S, Thakral V, Vats S, Mandlik R, Deshmukh R, Sharma TR, Sonah H. Exploration of advanced omics tools and resources for the improvement of industrial oil crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112367. [PMID: 39746452 DOI: 10.1016/j.plantsci.2024.112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
The rapid advancement in the field of omics approaches plays a crucial role in the development of improved industrial oil crops. Industrial oil crops are important for many sectors like food processing, biofuels, cosmetics, and pharmaceuticals, making them indispensable contributors to global economies and these crops serve as vital elements in a multitude of industrial processes. Significant improvements in genomics have revolutionized the agricultural sector, particularly in the realm of oil crops. Cutting-edge advancements have facilitated the efficient sequencing of genomes for key commercial oil crops. This breakthrough not only enhances our understanding of the genetic makeup of these crops but also empowers breeders with invaluable insights for targeted genetic manipulation and breeding programs. Moreover, integrating transcriptomics with genomic data has assisted in a new era of precision agriculture. This approach provides an in-depth understanding of molecular mechanisms involved in traits of interest, such as oil content, yield potential, and resistance to biotic and abiotic stresses. Proteomics methods are instrumental in deciphering the intricacies of protein structure, interactions, and function, while metabolomics and ionomics shed light on the intricate network of metabolites and ions within biological systems. Each omics discipline offers unique insights, and their integration holds the promise of enriching our understanding and furnishing invaluable insights for enhancing oil crops. This review delves into the efficacy and constraints of various omics approaches in the context of refining industrial oil crops. Moreover, it underscores the importance of multi-omics strategies and explores their convergence with genetic engineering techniques to cultivate superior oil crop varieties.
Collapse
Affiliation(s)
- Badal Mahakalkar
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Virender Kumar
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Vandana Thakral
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Sanskriti Vats
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India; Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej, Frederiksberg C, Denmark
| | - Rushil Mandlik
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India.
| |
Collapse
|
2
|
James M, Masclaux-Daubresse C, Balliau T, Marmagne A, Chardon F, Trouverie J, Etienne P. Multi-scale phenotyping of senescence-related changes in roots of rapeseed in response to nitrate limitation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:312-330. [PMID: 39382543 PMCID: PMC11714756 DOI: 10.1093/jxb/erae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Root senescence remains largely unexplored. In this study, the time-course of the morphological, metabolic, and proteomic changes occurring with root aging were investigated, providing a comprehensive picture of the root senescence program. We found novel senescence-related markers for the characterization of the developmental stage of root tissues. The rapeseed root system is unique in that it consists of the taproot and lateral roots. Our study confirmed that the taproot, which transiently accumulates large quantities of starch and proteins, is specifically dedicated to nutrient storage and remobilization, while the lateral roots are mainly dedicated to nutrient uptake. Proteomic data from the taproot and lateral roots highlighted the different senescence-related events that control nutrient remobilization and nutrient uptake capacities. Both the proteome and enzyme activities revealed senescence-induced proteases and nucleotide catabolic enzymes that deserve attention as they may play important roles in nutrient remobilization efficiency in rapeseed roots. Taking advantage of publicly available transcriptomic and proteomic data on senescent Arabidopsis leaves, we provide a novel lists of senescence-related proteins specific or common to root organs and/or leaves.
Collapse
Affiliation(s)
- Maxence James
- Université de Caen Normandie, INRAE, UMR 950 EVA, SFR Normandie Végétal (FED4277), 14000 Caen, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Jacques Trouverie
- Université de Caen Normandie, INRAE, UMR 950 EVA, SFR Normandie Végétal (FED4277), 14000 Caen, France
| | - Philippe Etienne
- Université de Caen Normandie, INRAE, UMR 950 EVA, SFR Normandie Végétal (FED4277), 14000 Caen, France
| |
Collapse
|
3
|
Coquerel R, Arkoun M, Trouverie J, Bernay B, Laîné P, Etienne P. Ionomic and proteomic changes highlight the effect of silicon supply on the nodules functioning of Trifolium incarnatum L. FRONTIERS IN PLANT SCIENCE 2024; 15:1462149. [PMID: 39568457 PMCID: PMC11576322 DOI: 10.3389/fpls.2024.1462149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Introduction Numerous studies have reported the beneficial effects of silicon (Si) in alleviating biotic or abiotic stresses in many plant species. However, the role of Si in Fabaceae facing environmental stress is poorly documented. The aim of this study is to investigate the effect of Si on physiological traits and nodulation efficiency in Trifolium incarnatum L. Methods Si was supplied (1.7 mM in the form of Na2SiO3) plants inoculated with Rhizobium leguminosarum bv trifolii and plant physiological traits and nodule ionomic and molecular traits were monitored over 25 days. Results Si supply promoted shoot biomass, the quantity of both Si and N in roots and shoots, and the number, biomass and density of nodules and their nitrogenase abundance which contribute to better dinitrogen (N2) fixation. Ionomic analysis of nodules revealed that Si supply increased the amount of several macroelements (potassium, phosphorus and sulfur) and microelements (copper, zinc and molybdenum) known to improve nodulation efficiency and N2 fixation. Finally, comparative proteomic analysis (+Si versus -Si) of nodules highlighted that Si modulated the proteome of both symbionts with 989 and 212 differentially accumulated proteins (DAPs) in the infected host root cells and their symbiont bacteria, respectively. Discussion Among the DAPs, the roles of those involved in nodulation and N2 fixation are discussed. For the first time, this study provides new insights into the effects of Si on both nodular partners and paves the way for a better understanding of the impact of Si on improving nodule function, and more specifically, on the nodules' N2-fixing capacity.
Collapse
Affiliation(s)
- Raphaël Coquerel
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial d'Innovation-Groupe Roullier, Saint-Malo, France
| | - Jacques Trouverie
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| | - Benoit Bernay
- Université de Caen Normandie, Plateforme Proteogen, US EMerode 4206, Caen, France
| | - Philippe Laîné
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| | - Philippe Etienne
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| |
Collapse
|
4
|
Ninkuu V, Zhou Y, Liu H, Sun S, Liu Z, Liu Y, Yang J, Hu M, Guan L, Sun X. Regulation of nitrogen metabolism by COE2 under low sulfur stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112137. [PMID: 38815871 DOI: 10.1016/j.plantsci.2024.112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The interplay between nitrogen and sulfur assimilation synergistically supports and sustains plant growth and development, operating in tandem to ensure coordinated and optimal outcomes. Previously, we characterized Arabidopsis CHLOROPHYLL A/B-BINDING (CAB) overexpression 2 (COE2) mutant, which has a mutation in the NITRIC OXIDE-ASSOCIATED (NOA1) gene and exhibits deficiency in root growth under low nitrogen (LN) stress. This study found that the growth suppression in roots and shoots in coe2 correlates with decreased sensitivity to low sulfur stress treatment compared to the wild-type. Therefore, we examined the regulatory role of COE2 in nitrogen and sulfur interaction by assessing the expression of nitrogen metabolism-related genes in coe2 seedlings under low sulfur stress. Despite the notable upregulation of nitrate reductase genes (NIA1 and NIA2), there was a considerable reduction in nitrogen uptake and utilization, resulting in a substantial growth penalty. Moreover, the elevated expression of miR396 perhaps complemented growth stunting by selectively targeting and curtailing the expression levels of GROWTH REGULATING FACTOR 2 (GRF2), GRF4, and GRF9. This study underscores the vital role of COE2-mediated nitrogen signaling in facilitating seedling growth under sulfur deficiency stress.
Collapse
Affiliation(s)
- Vincent Ninkuu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Hao Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Susu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhixin Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yumeng Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jincheng Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengke Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Liping Guan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China.
| |
Collapse
|
5
|
Zhou T, Wu PJ, Chen JF, Du XQ, Feng YN, Hua YP. Pectin demethylation-mediated cell wall Na + retention positively regulates salt stress tolerance in oilseed rape. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:54. [PMID: 38381205 DOI: 10.1007/s00122-024-04560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Xiao-Qian Du
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Yue CP, Han L, Sun SS, Chen JF, Feng YN, Huang JY, Zhou T, Hua YP. Genome-wide identification of the cation/proton antiporter (CPA) gene family and functional characterization of the key member BnaA05.NHX2 in allotetraploid rapeseed. Gene 2024; 894:148025. [PMID: 38007163 DOI: 10.1016/j.gene.2023.148025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Rapeseed (Brassica napus L.) is susceptible to nutrient stresses during growth and development; however, the CPA (cation proton antiporter) family genes have not been identified in B. napus and their biological functions remain unclear. This study was aimed to identify the molecular characteristics of rapeseed CPAs and their transcriptional responses to multiple nutrient stresses. Through bioinformatics analysis, 117 BnaCPAs, consisting of three subfamilies: Na+/H+ antiporter (NHX), K+ efflux antiporter (KEA), and cation/H+ antiporter (CHX), were identified in the rapeseed genome. Transcriptomic profiling showed that BnaCPAs, particularly BnaNHXs, were transcriptionally responsive to diverse nutrient stresses, including Cd toxicity, K starvation, salt stress, NH4+ toxicity, and low Pi. We found that the salt tolerance of the transgenic rapeseed lines overexpressing BnaA05.NHX2 was significantly higher than that of wild type. Subcellular localization showed that BnaA05.NHX2 was localized on the tonoplast, and TEM combined with X-ray energy spectrum analysis revealed that the vacuolar Na+ concentrations of the BnaA05.NHX2-overexpressing rapeseed plants were significantly higher than those of wild type. The findings of this study will provide insights into the complexity of the BnaCPA family and a valuable resource to explore the in-depth functions of CPAs in B. napus.
Collapse
Affiliation(s)
- Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Liao Han
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Si-Si Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jin-Yong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Tiziani R, Pranter M, Valentinuzzi F, Pii Y, Luigimaria B, Cesco S, Mimmo T. Unraveling plant adaptation to single and combined nutrient deficiencies in a dicotyledonous and a monocotyledonous plant species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111793. [PMID: 37454818 DOI: 10.1016/j.plantsci.2023.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Nutrient deficiencies considerably limit agricultural production worldwide. However, while single deficiencies are widely studied, combined deficiencies are poorly addressed. Hence, the aim of this paper was to study single and combined deficiencies of iron (Fe) and phosphorus (P) in barley (Hordeum vulgare) and tomato (Solanum lycopersicum). Plants were grown in hydroponics and root exudation was measured over the growing period. At harvest, root morphology and root and shoot ionome was assessed. Shoot-to-root-ratio decreased in both species and in all nutrient deficiencies, besides in -Fe tomato. Barley root growth was enhanced in plants subjected to double deficiency behaving similarly to -P, while tomato reduced root morphology parameters in all treatments. To cope with the nutrient deficiency barley exuded mostly chelants, while tomato relied on organic acids. Moreover, tomato exhibited a slight exudation increase over time not detected in barley. Overall, in none of the species the double deficiency caused a substantial increase in root exudation. Multivariate statistics emphasized that all the treatments were significantly different from each other in tomato, while in barley only -Fe was statistically different from the other treatments. Our findings highlight that the response of the studied plants in double deficiencies is not additive but plant specific.
Collapse
Affiliation(s)
- Raphael Tiziani
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy.
| | - Marion Pranter
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Fabio Valentinuzzi
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Youry Pii
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Borruso Luigimaria
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Stefano Cesco
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Tanja Mimmo
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy; Competence Centre of Plant Health, Free University of Bolzano, Piazza Universitá 1, 39100 Bolzano, Italy
| |
Collapse
|
8
|
Kostic I, Nikolic N, Milanovic S, Milenkovic I, Pavlovic J, Paravinja A, Nikolic M. Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1265782. [PMID: 37705706 PMCID: PMC10495579 DOI: 10.3389/fpls.2023.1265782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. plurivora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.
Collapse
Affiliation(s)
- Igor Kostic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Nina Nikolic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Slobodan Milanovic
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Ivan Milenkovic
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Jelena Pavlovic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ana Paravinja
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miroslav Nikolic
- Laboratory of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Zhang Z, Wu Z. CO 2 enhances low-nitrogen adaption by promoting amino acid metabolism in Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107864. [PMID: 37402344 DOI: 10.1016/j.plaphy.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Increasing concentrations of atmospheric CO2 are driving climate change and negatively impacting the carbon-nitrogen (C/N) balance in crops, which in turn alters fertilizer use efficiency. In this study, Brassica napus was cultivated under different CO2 and NO3--N concentrations to study the impact of C/N ratio on plant growth. Elevated CO2 enhanced biomass and nitrogen assimilation efficiency under low NO3--N conditions, indicating an adaptation by Brassica napus. Transcriptome and metabolome analyses revealed that elevated CO2 promoted amino acid catabolism under low NO3--N conditions. This study provides new insights into how Brassica napus adapts to environmental change.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Zhimin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
10
|
Hu C, Yan B, Liu Y, Gong C, Zhao M, Qiu R, Tang Y. Differential Effects of Senescence on the Phloem Exports of Cadmium and Zinc from Leaves to Grains in Rice during Grain Filling. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091902. [PMID: 37176960 PMCID: PMC10180549 DOI: 10.3390/plants12091902] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In rice, non-essential toxic cadmium (Cd) and the essential nutrient zinc (Zn) share similar transport pathways, which makes it challenging to differentially regulate the allocation of these elements to the grain. The phloem is the main pathway for the loading of these elements into rice grains. It has long been accepted that tissue senescence makes the nutrients (e.g., Zn) stored in leaves available for further phloem export toward the grain. Whether senescence could drive the phloem export of Cd remains unclear. To this end, the stable isotopes 111Cd and 67Zn were used to trace the phloem export and the subsequent allocation of Cd and Zn from the flag leaves, where senescence was accelerated by spraying abscisic acid. Furthermore, changes upon senescence in the distribution of these elements among the leaf subcellular fractions and in the expression of key transporter genes were investigated. Abscisic acid-induced senescence enhanced the phloem export of Zn but had no impact on that of Cd, which was explained by the significant release of Zn from the chloroplast and cytosol fractions (concentrations decreased by ~50%) but a strong allocation of Cd to the cell wall fraction (concentration increased by ~90%) during senescence. Nevertheless, neither Zn nor Cd concentrations in the grain were affected, since senescence strengthened the sequestration of phloem-exported Zn in the uppermost node, but did not impact that of phloem-exported Cd. This study suggests that the agronomic strategies affecting tissue senescence could be utilized to differentially regulate Cd and Zn allocation in rice during grain filling.
Collapse
Affiliation(s)
- Chengfeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bofang Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yating Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Gong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Man Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
11
|
Lyčka M, Barták M, Helia O, Kopriva S, Moravcová D, Hájek J, Fojt L, Čmelík R, Fajkus J, Fojtová M. Sulfate supplementation affects nutrient and photosynthetic status of Arabidopsis thaliana and Nicotiana tabacum differently under prolonged exposure to cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130527. [PMID: 36495640 DOI: 10.1016/j.jhazmat.2022.130527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Hydroponic experiments were performed to examine the effect of prolonged sulfate limitation combined with cadmium (Cd) exposure in Arabidopsis thaliana and a potential Cd hyperaccumulator, Nicotiana tabacum. Low sulfate treatments (20 and 40 µM MgSO4) and Cd stress (4 µM CdCl2) showed adverse effects on morphology, photosynthetic and biochemical parameters and the nutritional status of both species. For example, Cd stress decreased NO3- root content under 20 µM MgSO4 to approximately 50% compared with respective controls. Interestingly, changes in many measured parameters, such as chlorophyll and carotenoid contents, the concentrations of anions, nutrients and Cd, induced by low sulfate supply, Cd exposure or a combination of both factors, were species-specific. Our data showed opposing effects of Cd exposure on Ca, Fe, Mn, Cu and Zn levels in roots of the studied plants. In A. thaliana, levels of glutathione, phytochelatins and glucosinolates demonstrated their distinct involvement in response to sub-optimal growth conditions and Cd stress. In shoot, the levels of phytochelatins and glucosinolates in the organic sulfur fraction were not dependent on sulfate supply under Cd stress. Altogether, our data showed both common and species-specific features of the complex plant response to prolonged sulfate deprivation and/or Cd exposure.
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislav Kopriva
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Dana Moravcová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Josef Hájek
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Richard Čmelík
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
12
|
Koprivova A, Elkatmis B, Gerlich SC, Trick M, Harper AL, Bancroft I, Kopriva S. Natural Variation in OASC Gene for Mitochondrial O-Acetylserine Thiollyase Affects Sulfate Levels in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 12:35. [PMID: 36616163 PMCID: PMC9824738 DOI: 10.3390/plants12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Sulfur plays a vital role in the primary and secondary metabolism of plants, and carries an important function in a large number of different compounds. Despite this importance, compared to other mineral nutrients, relatively little is known about sulfur sensing and signalling, as well as about the mechanisms controlling sulfur metabolism and homeostasis. Sulfur contents in plants vary largely not only among different species, but also among accessions of the same species. We previously used associative transcriptomics to identify several genes potentially controlling variation in sulfate content in the leaves of Brassica napus, including an OASC gene for mitochondrial O-acetylserine thiollyase (OAS-TL), an enzyme involved in cysteine synthesis. Here, we show that loss of OASC in Arabidopsis thaliana lowers not only sulfate, but also glutathione levels in the leaves. The reduced accumulation is caused by lower sulfate uptake and translocation to the shoots; however, the flux through the pathway is not affected. In addition, we identified a single nucleotide polymorphism in the OASC gene among A. thaliana accessions that is linked to variation in sulfate content. Both genetic and transgenic complementation confirmed that the exchange of arginine at position 81 for lysine in numerous accessions resulted in a less active OASC and a lower sulfate content in the leaves. The mitochondrial isoform of OAS-TL is, thus, after the ATPS1 isoform of sulfurylase and the APR2 form of APS reductase 2, the next metabolic enzyme with a role in regulation of sulfate content in Arabidopsis.
Collapse
Affiliation(s)
- Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Büsra Elkatmis
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Silke C. Gerlich
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Andrea L. Harper
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
13
|
Gui JY, Rao S, Huang X, Liu X, Cheng S, Xu F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158673. [PMID: 36096215 DOI: 10.1016/j.scitotenv.2022.158673] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nutrient imbalance (i.e., deficiency and toxicity) of microelements is an outstanding environmental issue that influences each aspect of ecosystems. Although the crucial roles of microelements in entire lifecycle of plants have been widely acknowledged, the effective control of microelements is still neglected due to the narrow safe margins. Selenium (Se) is an essential element for humans and animals. Although it is not believed to be indispensable for plants, many literatures have reported the significance of Se in terms of the uptake, accumulation, and detoxification of essential microelements in plants. However, most papers only concerned on the antagonistic effect of Se on metal elements in plants and ignored the underlying mechanisms. There is still a lack of systematic review articles to summarize the comprehensive knowledge on the connections between Se and microelements in plants. In this review, we conclude the bidirectional effects of Se on micronutrients in plants, including iron, zinc, copper, manganese, nickel, molybdenum, sodium, chlorine, and boron. The regulatory mechanisms of Se on these micronutrients are also analyzed. Moreover, we further emphasize the role of Se in alleviating element toxicity and adjusting the concentration of micronutrients in plants by altering the soil conditions (e.g., adsorption, pH, and organic matter), promoting microbial activity, participating in vital physiological and metabolic processes, generating element competition, stimulating metal chelation, organelle compartmentalization, and sequestration, improving the antioxidant defense system, and controlling related genes involved in transportation and tolerance. Based on the current understanding of the interaction between Se and these essential elements, future directions for research are suggested.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
14
|
D'Oria A, Courbet G, Billiot B, Jing L, Pluchon S, Arkoun M, Maillard A, Roux CP, Trouverie J, Etienne P, Diquélou S, Ourry A. Drought specifically downregulates mineral nutrition: Plant ionomic content and associated gene expression. PLANT DIRECT 2022; 6:e402. [PMID: 35949952 PMCID: PMC9356223 DOI: 10.1002/pld3.402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 06/02/2023]
Abstract
One of the main limiting factors of plant yield is drought, and while the physiological responses to this environmental stress have been broadly described, research addressing its impact on mineral nutrition is scarce. Brassica napus and Triticum aestivum were subjected to moderate or severe water deficit, and their responses to drought were assessed by functional ionomic analysis, and derived calculation of the net uptake of 20 nutrients. While the uptake of most mineral nutrients decreased, Fe, Zn, Mn, and Mo uptake were impacted earlier and at a larger scale than most physiological parameters assessed (growth, ABA concentration, gas exchanges and photosynthetic activity). Additionally, in B. napus, the patterns of 183 differentially expressed genes in leaves related to the ionome (known ionomic genes, KIGs) or assumed to be involved in transport of a given nutrient were analyzed. This revealed three patterns of gene expression under drought consisting of up (transport of Cl and Co), down (transport of N, P, B, Mo, and Ni), or mixed levels (transport of S, Mg, K, Zn, Fe, Cu, or Mn) of regulation. The three patterns of gene regulations are discussed in relation to specific gene functions, changes of leaf ionomic composition and with consideration of the crosstalks that have been established between elements. It is suggested that the observed reduction in Fe uptake occurred via a specific response to drought, leading indirectly to reduced uptake of Zn and Mn, and these may be taken up by common transporters encoded by genes that were downregulated.
Collapse
Affiliation(s)
- Aurélien D'Oria
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAENINRAECaenFrance
- Laboratoire de Nutrition Végétale, Centre Mondial de l'InnovationLe Groupe RoullierSaint‐MaloFrance
| | - Galatéa Courbet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAENINRAECaenFrance
| | - Bastien Billiot
- Laboratoire de Nutrition Végétale, Centre Mondial de l'InnovationLe Groupe RoullierSaint‐MaloFrance
| | - Lun Jing
- Laboratoire de Nutrition Végétale, Centre Mondial de l'InnovationLe Groupe RoullierSaint‐MaloFrance
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Centre Mondial de l'InnovationLe Groupe RoullierSaint‐MaloFrance
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial de l'InnovationLe Groupe RoullierSaint‐MaloFrance
| | - Anne Maillard
- Laboratoire de Nutrition Végétale, Centre Mondial de l'InnovationLe Groupe RoullierSaint‐MaloFrance
| | | | - Jacques Trouverie
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAENINRAECaenFrance
| | - Philippe Etienne
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAENINRAECaenFrance
| | - Sylvain Diquélou
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAENINRAECaenFrance
| | - Alain Ourry
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAENINRAECaenFrance
| |
Collapse
|
15
|
Gao B, Chai X, Huang Y, Wang X, Han Z, Xu X, Wu T, Zhang X, Wang Y. Siderophore production in
Pseudomonas
sp. strain
SP3
enhances iron acquisition in apple rootstock. J Appl Microbiol 2022; 133:720-732. [DOI: 10.1111/jam.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Beibei Gao
- College of Horticulture China Agricultural University Beijing 100193 P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs China Agricultural University Beijing 100193 P. R. China
| | - Xiaofen Chai
- College of Horticulture China Agricultural University Beijing 100193 P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs China Agricultural University Beijing 100193 P. R. China
| | - Yimei Huang
- College of Horticulture China Agricultural University Beijing 100193 P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs China Agricultural University Beijing 100193 P. R. China
| | - Xiaona Wang
- College of Horticulture China Agricultural University Beijing 100193 P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs China Agricultural University Beijing 100193 P. R. China
| | - Zhenhai Han
- College of Horticulture China Agricultural University Beijing 100193 P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs China Agricultural University Beijing 100193 P. R. China
| | - Xuefeng Xu
- College of Horticulture China Agricultural University Beijing 100193 P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs China Agricultural University Beijing 100193 P. R. China
| | - Ting Wu
- College of Horticulture China Agricultural University Beijing 100193 P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs China Agricultural University Beijing 100193 P. R. China
| | - Xinzhong Zhang
- College of Horticulture China Agricultural University Beijing 100193 P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs China Agricultural University Beijing 100193 P. R. China
| | - Yi Wang
- College of Horticulture China Agricultural University Beijing 100193 P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs China Agricultural University Beijing 100193 P. R. China
| |
Collapse
|
16
|
Huang XY, Hu DW, Zhao FJ. Molybdenum: More than an essential element. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1766-1774. [PMID: 34864981 DOI: 10.1093/jxb/erab534] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Molybdenum (Mo) is an essential element for almost all living organisms. After being taken up into the cells as molybdate, it is incorporated into the molybdenum cofactor, which functions as the active site of several molybdenum-requiring enzymes and thus plays crucial roles in multiple biological processes. The uptake and transport of molybdate is mainly mediated by two types of molybdate transporters. The homeostasis of Mo in plant cells is tightly controlled, and such homeostasis likely plays vital roles in plant adaptation to local environments. Recent evidence suggests that Mo is more than an essential element required for plant growth and development; it is also involved in local adaptation to coastal salinity. In this review, we summarize recent research progress on molybdate uptake and transport, molybdenum homeostasis network in plants, and discuss the potential roles of the molybdate transporter in plant adaptation to their local environment.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Da-Wei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Assunção AGL, Cakmak I, Clemens S, González-Guerrero M, Nawrocki A, Thomine S. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1789-1799. [PMID: 35134869 PMCID: PMC8921004 DOI: 10.1093/jxb/erac014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.
Collapse
Affiliation(s)
- Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440 Bayreuth, Germany
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | | | | |
Collapse
|
18
|
D’Oria A, Jing L, Arkoun M, Pluchon S, Pateyron S, Trouverie J, Etienne P, Diquélou S, Ourry A. Transcriptomic, Metabolomic and Ionomic Analyses Reveal Early Modulation of Leaf Mineral Content in Brassica napus under Mild or Severe Drought. Int J Mol Sci 2022; 23:781. [PMID: 35054964 PMCID: PMC8776245 DOI: 10.3390/ijms23020781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, Brassica napus plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.
Collapse
Affiliation(s)
- Aurélien D’Oria
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Lun Jing
- Plateformes Analytiques de Recherche, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France;
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Jacques Trouverie
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Philippe Etienne
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Sylvain Diquélou
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Alain Ourry
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| |
Collapse
|
19
|
Alamri S, Siddiqui MH, Mukherjee S, Kumar R, Kalaji HM, Irfan M, Minkina T, Rajput VD. Molybdenum-induced endogenous nitric oxide (NO) signaling coordinately enhances resilience through chlorophyll metabolism, osmolyte accumulation and antioxidant system in arsenate stressed-wheat (Triticum aestivum L.) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118268. [PMID: 34610411 DOI: 10.1016/j.envpol.2021.118268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
There is little information available to decipher the interaction between molybdenum (Mo) and nitric oxide (NO) in mitigating arsenic (AsV) stress in plants. The present work highlights the associative role of exogenous Mo and endogenous NO signaling in regulating AsV tolerance in wheat seedlings. Application of Mo (1 μM) on 25-day-old wheat seedlings grown in the presence (5 μM) or absence of AsV stress caused improvement of photosynthetic pigment metabolism, reduction of electrolytic leakage and reactive oxygen species (ROS), and higher accumulation of osmolytes (proline and total soluble sugars). The molybdenum treatment upregulated antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase and glutathione reductase. In addition, the accumulation of nonenzymatic antioxidants (ascorbate and glutathione) was correlated with an increase in ascorbate peroxidase and glutathione reductase activity. The application of cPTIO (endogenous NO scavenger; 100 μM) reversed the Mo-mediated effects, thus indicating that endogenous NO may accompany Mo-induced mitigation of AsV stress. Mo treatment stimulated the accumulation of endogenous NO in the presence of AsV stress. Thus, it is evident that Mo and NO-mediated AsV stress tolerance in wheat seedlings are primarily operative through chlorophyll restoration, osmolytes accumulation, reduced electrolytic leakage, and ROS homeostasis.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
20
|
Comparative Omics Analysis of Brassica napus Roots Subjected to Six Individual Macronutrient Deprivations Reveals Deficiency-Specific Genes and Metabolomic Profiles. Int J Mol Sci 2021; 22:ijms222111679. [PMID: 34769110 PMCID: PMC8584284 DOI: 10.3390/ijms222111679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The early and specific diagnosis of a macronutrient deficiency is challenging when seeking to better manage fertilizer inputs in the context of sustainable agriculture. Consequently, this study explored the potential for transcriptomic and metabolomic analysis of Brassica napus roots to characterize the effects of six individual macronutrient deprivations (N, Mg, P, S, K, and Ca). Our results showed that before any visual phenotypic response, all macronutrient deprivations led to a large modulation of the transcriptome and metabolome involved in various metabolic pathways, and some were common to all macronutrient deprivations. Significantly, comparative transcriptomic analysis allowed the definition of a subset of 3282, 2011, 6325, 1384, 439, and 5157 differentially expressed genes (DEGs) specific to N, Mg, P, S, K, and Ca deprivations, respectively. Surprisingly, gene ontology term enrichment analysis performed on this subset of specific DEGs highlighted biological processes that are common to a number of these macronutrient deprivations, illustrating the complexity of nutrient interactions. In addition, a set of 38 biochemical compounds that discriminated the macronutrient deprivations was identified using a metabolic approach. The opportunity to use these specific DEGs and/or biochemical compounds as potential molecular indicators to diagnose macronutrient deficiency is discussed.
Collapse
|
21
|
Huang X, Cervantes-Avilés P, Li W, Keller AA. Drilling into the Metabolomics to Enhance Insight on Corn and Wheat Responses to Molybdenum Trioxide Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13452-13464. [PMID: 34043337 DOI: 10.1021/acs.est.1c00803] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metabolomics is an emerging tool to understand the potential implications of nanotechnology, particularly for agriculture. Although molybdenum (Mo) is a known plant micronutrient, little is known of its metabolic perturbations. Here, corn and wheat seedlings were exposed to MoO3 nanoparticles (NPs) and the corresponding bioavailable Mo6+ ion at moderate and excessive levels through root exposures. Physiologically, corn was more sensitive to Mo, which accumulated up to 3.63 times more Mo than wheat. In contrast, metabolomics indicated 21 dysregulated metabolites in corn leaves and 53 in wheat leaves. Five more metabolomic pathways were perturbed in wheat leaves compared to corn leaves. In addition to the overall metabolomics analysis, we also analyzed individual metabolite classes (e.g., amino acids, organic acids, etc.), yielding additional dysregulated metabolites in plant tissues: 7 for corn and 7 for wheat. Most of these were amino acids as well as some sugars. Additional significantly dysregulated metabolites (e.g., asparagine, fructose, reduced glutathione, mannose) were identified in both corn and wheat, due to Mo NP exposure, by employing individual metabolite group analysis. Targeted metabolite analysis of individual groups is thus important for finding additional significant metabolites. We demonstrate the value of metabolomics to study early stage plant responses to NP exposure.
Collapse
Affiliation(s)
- Xiangning Huang
- Center for Environmental Implications of Nanotechnology, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Pabel Cervantes-Avilés
- Center for Environmental Implications of Nanotechnology, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Puebla CP 72453, México
| | - Weiwei Li
- Bren School of Environmental Science and Management, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Center for Environmental Implications of Nanotechnology, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Fan X, Zhou X, Chen H, Tang M, Xie X. Cross-Talks Between Macro- and Micronutrient Uptake and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:663477. [PMID: 34721446 PMCID: PMC8555580 DOI: 10.3389/fpls.2021.663477] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
In nature, land plants as sessile organisms are faced with multiple nutrient stresses that often occur simultaneously in soil. Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are five of the essential nutrients that affect plant growth and health. Although these minerals are relatively inaccessible to plants due to their low solubility and relative immobilization, plants have adopted coping mechanisms for survival under multiple nutrient stress conditions. The double interactions between N, Pi, S, Zn, and Fe have long been recognized in plants at the physiological level. However, the molecular mechanisms and signaling pathways underlying these cross-talks in plants remain poorly understood. This review preliminarily examined recent progress and current knowledge of the biochemical and physiological interactions between macro- and micro-mineral nutrients in plants and aimed to focus on the cross-talks between N, Pi, S, Zn, and Fe uptake and homeostasis in plants. More importantly, we further reviewed current studies on the molecular mechanisms underlying the cross-talks between N, Pi, S, Zn, and Fe homeostasis to better understand how these nutrient interactions affect the mineral uptake and signaling in plants. This review serves as a basis for further studies on multiple nutrient stress signaling in plants. Overall, the development of an integrative study of multiple nutrient signaling cross-talks in plants will be of important biological significance and crucial to sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Réthoré E, Jing L, Ali N, Yvin JC, Pluchon S, Hosseini SA. K Deprivation Modulates the Primary Metabolites and Increases Putrescine Concentration in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:681895. [PMID: 34484256 PMCID: PMC8409508 DOI: 10.3389/fpls.2021.681895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
Potassium (K) plays a crucial role in plant growth and development and is involved in different physiological and biochemical functions in plants. Brassica napus needs higher amount of nutrients like nitrogen (N), K, phosphorus (P), sulfur (S), and boron (B) than cereal crops. Previous studies in B. napus are mainly focused on the role of N and S or combined deficiencies. Hence, little is known about the response of B. napus to K deficiency. Here, a physiological, biochemical, and molecular analysis led us to investigate the response of hydroponically grown B. napus plants to K deficiency. The results showed that B. napus was highly sensitive to the lack of K. The lower uptake and translocation of K induced BnaHAK5 expression and significantly declined the growth of B. napus after 14 days of K starvation. The lower availability of K was associated with a decrease in the concentration of both S and N and modulated the genes involved in their uptake and transport. In addition, the lack of K induced an increase in Ca2+ and Mg2+ concentration which led partially to the accumulation of positive charge. Moreover, a decrease in the level of arginine as a positively charged amino acid was observed which was correlated with a substantial increase in the polyamine, putrescine (Put). Furthermore, K deficiency induced the expression of BnaNCED3 as a key gene in abscisic acid (ABA) biosynthetic pathway which was associated with an increase in the levels of ABA. Our findings provided a better understanding of the response of B. napus to K starvation and will be useful for considering the importance of K nutrition in this crop.
Collapse
Affiliation(s)
- Elise Réthoré
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Lun Jing
- Plateformes Analytiques de Recherche, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Nusrat Ali
- Plateformes Analytiques de Recherche, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Jean-Claude Yvin
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Seyed Abdollah Hosseini
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| |
Collapse
|
24
|
Zhou T, Yue CP, Zhang TY, Liu Y, Huang JY, Hua YP. Integrated ionomic and transcriptomic dissection reveals the core transporter genes responsive to varying cadmium abundances in allotetraploid rapeseed. BMC PLANT BIOLOGY 2021; 21:372. [PMID: 34388971 PMCID: PMC8362225 DOI: 10.1186/s12870-021-03136-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Oilseed rape (B. napus L.) has great potential for phytoremediation of cadmium (Cd)-polluted soils due to its large plant biomass production and strong metal accumulation. Soil properties and the presence of other soluble compounds or ions, cause a heterogeneous distribution of Cd. RESULTS The aim of our study was to reveal the differential responses of B. napus to different Cd abundances. Herein, we found that high Cd (50 μM) severely inhibited the growth of B. napus, which was not repressed by low Cd (0.50 μM) under hydroponic culture system. ICP-MS assays showed that the Cd2+ concentrations in both shoots and roots under 50 μM Cd were over 10 times higher than those under 0.50 μM Cd. Under low Cd, the concentrations of only shoot Ca2+/Mn2+ and root Mn2+ were obviously changed (both reduced); under high Cd, the concentrations of most cations assayed were significantly altered in both shoots and roots except root Ca2+ and Mg2+. High-throughput transcriptomic profiling revealed a total of 18,021 and 1408 differentially expressed genes under high Cd and low Cd conditions, respectively. The biological categories related to the biosynthesis of plant cell wall components and response to external stimulus were over-accumulated under low Cd, whereas the terms involving photosynthesis, nitrogen transport and response, and cellular metal ion homeostasis were highly enriched under high Cd. Differential expression of the transporters responsible for Cd uptake (NRAMPs), transport (IRTs and ZIPs), sequestration (HMAs, ABCs, and CAXs), and detoxification (MTPs, PCR, MTs, and PCSs), and some other essential nutrient transporters were investigated, and gene co-expression network analysis revealed the core members of these Cd transporters. Some Cd transporter genes, especially NRAMPs and IRTs, showed opposite responsive patterns between high Cd and low Cd conditions. CONCLUSIONS Our findings would enrich our understanding of the interaction between essential nutrients and Cd, and might also provide suitable gene resources and important implications for the genetic improvement of plant Cd accumulation and resistance through molecular engineering of these core genes under varying Cd abundances in soils.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Tian-yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
25
|
Zhou T, Yue CP, Liu Y, Zhang TY, Huang JY, Hua YP. Multiomics reveal pivotal roles of sodium translocation and compartmentation in regulating salinity resistance in allotetraploid rapeseed. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5687-5708. [PMID: 33989425 DOI: 10.1093/jxb/erab215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/12/2021] [Indexed: 05/20/2023]
Abstract
The large size and complexity of the allotetraploid rapeseed (Brassica napus) genome present huge challenges for understanding salinity resistance in this important crop. In this study, we identified two rapeseed genotypes with significantly different degrees of salinity resistance and examined the underlying mechanisms using an integrated analysis of phenomics, ionomics, genomics, and transcriptomics. Under salinity, a higher accumulation of osmoregulation substances and better root-system architecture was observed in the resistant genotype, H159, than in the sensitive one, L339. A lower shoot Na+ concentration and a higher root vacuolar Na+ concentration indicated lower root-to-shoot translocation and higher compartmentation in H159 than in L339. Whole-genome re-sequencing (WGRS) and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in abiotic stress responses and ion transport. Combining ionomics with transcriptomics identified plasma membrane-localized BnaC2.HKT1;1 and tonoplast-localized BnaC5.NHX2 as the central factors regulating differential root xylem unloading and vacuolar sequestration of Na+ between the two genotypes. Identification of polymorphisms by WGRS and PCR revealed two polymorphic MYB-binding sites in the promoter regions that might determine the differential gene expression of BnaC2.HKT1;1 and BnaC5.NHX2. Our multiomics approach thus identified core transporters involved in Na+ translocation and compartmentation that regulate salinity resistance in rapeseed. Our results may provide elite gene resources for the improvement of salinity resistance in this crop, and our multiomics approach can be applied to other similar studies.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
D’Oria A, Courbet G, Lornac A, Pluchon S, Arkoun M, Maillard A, Etienne P, Diquélou S, Ourry A. Specificity and Plasticity of the Functional Ionome of Brassica napus and Triticum aestivum Exposed to Micronutrient or Beneficial Nutrient Deprivation and Predictive Sensitivity of the Ionomic Signatures. FRONTIERS IN PLANT SCIENCE 2021; 12:641678. [PMID: 33643368 PMCID: PMC7902711 DOI: 10.3389/fpls.2021.641678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 06/02/2023]
Abstract
The specific variation in the functional ionome was studied in Brassica napus and Triticum aestivum plants subjected to micronutrient or beneficial mineral nutrient deprivation. Effects of these deprivations were compared to those of macronutrient deprivation. In order to identify early events, plants were harvested after 22 days, i.e., before any significant reduction in growth relative to control plants. Root uptake, tissue concentrations and relative root nutrient contents were analyzed revealing numerous interactions with respect to the 20 elements quantified. The assessment of the functional ionome under individual mineral nutrient deficiency allows the identification of a large number of interactions between elements, although it is not totally exhaustive, and gives access to specific ionomic signatures that discriminate among deficiencies in N, P, S, K, Ca, Mn, Fe, Zn, Na, Si, and Se in both species, plus Mg, Cl, Cu, and Mo in wheat. Ionome modifications and components of ionomic signatures are discussed in relation to well-known mechanisms that may explain crosstalks between mineral nutrients, such as between Na and K, V, Se, Mo and S or Fe, Zn and Cu. More surprisingly, when deprived of beneficial nutrients such as Na, Si, Co, or Se, the plant ionome was strongly modified while these beneficial nutrients contributed greatly to the leaf ionomic signature of most mineral deficiencies.
Collapse
Affiliation(s)
- Aurélien D’Oria
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation, Le Groupe Roullier, Saint-Malo, France
| | - Galatéa Courbet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| | - Aurélia Lornac
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation, Le Groupe Roullier, Saint-Malo, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation, Le Groupe Roullier, Saint-Malo, France
| | - Anne Maillard
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation, Le Groupe Roullier, Saint-Malo, France
| | - Philippe Etienne
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| | - Sylvain Diquélou
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| | - Alain Ourry
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| |
Collapse
|
27
|
Courbet G, D’Oria A, Lornac A, Diquélou S, Pluchon S, Arkoun M, Koprivova A, Kopriva S, Etienne P, Ourry A. Specificity and Plasticity of the Functional Ionome of Brassica napus and Triticum aestivum Subjected to Macronutrient Deprivation. FRONTIERS IN PLANT SCIENCE 2021; 12:641648. [PMID: 33613614 PMCID: PMC7891181 DOI: 10.3389/fpls.2021.641648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
The composition of the functional ionome was studied in Brassica napus and Triticum aestivum with respect to the response of 20 elements under macronutrient deprivation. Analysis of relative root contents showed that some nutrients, such as Fe, Ni, Cu, Na, V, and Co, were largely sequestered in roots. After 10 days of deprivation of each one of these 6 macronutrients, plant growth was similar to control plants, and this was probably the result of remobilization from roots (Mg and Ca) or old leaves (N, P, K, S). Some tissue concentrations and net nutrient uptakes into roots were either decreased or increased, revealing multiple interactions (93 in wheat, 66 in oilseed rape) that were common to both species (48) or were species specific. While some interactions have been previously described (increased uptake of Na under K deficiency; or increased uptake of Mo and Se under S deficiency), a number of new interactions were found and some key mechanisms underlying their action have been proposed from analysis of Arabidopsis mutants. For example, nitrate uptake seemed to be functionally linked to Na(influx, while the uptake of vanadium was probably mediated by sulfate transporters whose expression was stimulated during S deprivation.
Collapse
Affiliation(s)
- Galatéa Courbet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, INRAE, Normandie Université, UNICAEN, Caen, France
| | - Aurélien D’Oria
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, INRAE, Normandie Université, UNICAEN, Caen, France
| | - Aurélia Lornac
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, INRAE, Normandie Université, UNICAEN, Caen, France
| | - Sylvain Diquélou
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, INRAE, Normandie Université, UNICAEN, Caen, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier Le groupe Roullier, Saint Malo, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier Le groupe Roullier, Saint Malo, France
| | - Anna Koprivova
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Philippe Etienne
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, INRAE, Normandie Université, UNICAEN, Caen, France
| | - Alain Ourry
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, INRAE, Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
28
|
Wang W, Zou J, White PJ, Ding G, Li Y, Xu F, Shi L. Identification of QTLs associated with potassium use efficiency and underlying candidate genes by whole-genome resequencing of two parental lines in Brassica napus. Genomics 2021; 113:755-768. [PMID: 33516850 DOI: 10.1016/j.ygeno.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Breeding crops that acquire and/or utilize potassium (K) more effectively could reduce the use of K fertilizers. Sixteen traits affecting K use efficiency (KUE) at the seedling stage were investigated in a B. napus double haploid population grown at an optimal K supply (OK) and a low K supply (LK) in a hydroponic culture system. In total, 50 and 62 QTLs associated with these traits were identified at OK and LK, respectively. A total of 25 orthologues of 23 Arabidopsis genes regulating K transport were identified in the confidence intervals of nine QTLs impacting shoot dry weight at LK, and 22 of these showed variations in coding sequences and/or exhibited significant differences in mRNA abundances in roots at LK between the two parental lines. This study provided insights to the genetic basis of KUE in B. napus, which will accelerate the breeding of K-efficient rapeseed cultivars by marker-assisted selection.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Philip J White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Saudi Arabia
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yalin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Feng YN, Cui JQ, Zhou T, Liu Y, Yue CP, Huang JY, Hua YP. Comprehensive dissection into morpho-physiologic responses, ionomic homeostasis, and transcriptomic profiling reveals the systematic resistance of allotetraploid rapeseed to salinity. BMC PLANT BIOLOGY 2020; 20:534. [PMID: 33228523 PMCID: PMC7685620 DOI: 10.1186/s12870-020-02734-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/09/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Salinity severely inhibit crop growth, yield, and quality worldwide. Allotetraploid rapeseed (Brassica napus L.), a major glycophyte oil crop, is susceptible to salinity. Understanding the physiological and molecular strategies of rapeseed salinity resistance is a promising and cost-effective strategy for developing highly resistant cultivars. RESULTS First, early leaf senescence was identified and root system growth was inhibited in rapeseed plants under severe salinity conditions. Electron microscopic analysis revealed that 200 mM NaCl induced fewer leaf trichomes and stoma, cell plasmolysis, and chloroplast degradation. Primary and secondary metabolite assays showed that salinity led to an obviously increased anthocyanin, osmoregulatory substances, abscisic acid, jasmonic acid, pectin, cellulose, reactive oxygen species, and antioxidant activity, and resulted in markedly decreased photosynthetic pigments, indoleacetic acid, cytokinin, gibberellin, and lignin. ICP-MS assisted ionomics showed that salinity significantly constrained the absorption of essential elements, including the nitrogen, phosphorus, potassium, calcium, magnesium, iron, mangnese, copper, zinc, and boron nutrients, and induced the increase in the sodium/potassium ratio. Genome-wide transcriptomics revealed that the differentially expressed genes were involved mainly in photosynthesis, stimulus response, hormone signal biosynthesis/transduction, and nutrient transport under salinity. CONCLUSIONS The high-resolution salt-responsive gene expression profiling helped the efficient characterization of central members regulating plant salinity resistance. These findings might enhance integrated comprehensive understanding of the morpho-physiologic and molecular responses to salinity and provide elite genetic resources for the genetic modification of salinity-resistant crop species.
Collapse
Affiliation(s)
- Ying-na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jia-qian Cui
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
30
|
Genome-Wide Differential DNA Methylation and miRNA Expression Profiling Reveals Epigenetic Regulatory Mechanisms Underlying Nitrogen-Limitation-Triggered Adaptation and Use Efficiency Enhancement in Allotetraploid Rapeseed. Int J Mol Sci 2020; 21:ijms21228453. [PMID: 33182819 PMCID: PMC7697602 DOI: 10.3390/ijms21228453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022] Open
Abstract
Improving crop nitrogen (N) limitation adaptation (NLA) is a core approach to enhance N use efficiency (NUE) and reduce N fertilizer application. Rapeseed has a high demand for N nutrients for optimal plant growth and seed production, but it exhibits low NUE. Epigenetic modification, such as DNA methylation and modification from small RNAs, is key to plant adaptive responses to various stresses. However, epigenetic regulatory mechanisms underlying NLA and NUE remain elusive in allotetraploid B. napus. In this study, we identified overaccumulated carbohydrate, and improved primary and lateral roots in rapeseed plants under N limitation, which resulted in decreased plant nitrate concentrations, enhanced root-to-shoot N translocation, and increased NUE. Transcriptomics and RT-qPCR assays revealed that N limitation induced the expression of NRT1.1, NRT1.5, NRT1.7, NRT2.1/NAR2.1, and Gln1;1, and repressed the transcriptional levels of CLCa, NRT1.8, and NIA1. High-resolution whole genome bisulfite sequencing characterized 5094 differentially methylated genes involving ubiquitin-mediated proteolysis, N recycling, and phytohormone metabolism under N limitation. Hypermethylation/hypomethylation in promoter regions or gene bodies of some key N-metabolism genes might be involved in their transcriptional regulation by N limitation. Genome-wide miRNA sequencing identified 224 N limitation-responsive differentially expressed miRNAs regulating leaf development, amino acid metabolism, and plant hormone signal transduction. Furthermore, degradome sequencing and RT-qPCR assays revealed the miR827-NLA pathway regulating limited N-induced leaf senescence as well as the miR171-SCL6 and miR160-ARF17 pathways regulating root growth under N deficiency. Our study provides a comprehensive insight into the epigenetic regulatory mechanisms underlying rapeseed NLA, and it will be helpful for genetic engineering of NUE in crop species through epigenetic modification of some N metabolism-associated genes.
Collapse
|
31
|
Zhang Y, Ye X, Zhang X, Huang W, Zhao H. Natural Variations and Dynamic Changes of Nitrogen Indices throughout Growing Seasons for Twenty Tea Plant ( Camellia sinensis) Varieties. PLANTS 2020; 9:plants9101333. [PMID: 33050287 PMCID: PMC7599643 DOI: 10.3390/plants9101333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
Tea (Camellia sinensis (L.) O. Kuntze) leaves are harvested multiple times annually accompanied by a large amount of nitrogen (N) removed. Therefore, tea plantations are characterized by high requirements of N. This study aimed to assess the variations of N-level, apparent N remobilization efficiency (ANRE), and N utilization efficiency (NUtE) and their dynamic changes during growing seasons for twenty tea varieties. The N-level was highest in the one bud with two leaves as the youngest category, followed by mature leaves attached to green-red stems, and then by aging leaves attached to grey stems. The dynamic N-level presented different profiles of “S”-, “U”-, and “S-like”-shape in the three categories of leaves during the growing seasons. Here, specifically defined ANRE indicated N fluxes in a specific category of leaves, showing that sources and sinks alternate during the period of two consecutive rounds of growth. The dynamic of averaged NUtE followed an “S”-shape. The results revealed annual rhythms and physiological characters related with N indices, which were variety dependent and closely related with the amount of N requirements at proper time. An optimized NUtE is a complex character determined by the combination of tea plantation management and breeding practices to achieve sustainable development with economic benefit.
Collapse
Affiliation(s)
- Yange Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University. Wuhan 430070, China; (Y.Z.); (X.Z.); (W.H.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangsheng Ye
- College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xinwan Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University. Wuhan 430070, China; (Y.Z.); (X.Z.); (W.H.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University. Wuhan 430070, China; (Y.Z.); (X.Z.); (W.H.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University. Wuhan 430070, China; (Y.Z.); (X.Z.); (W.H.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
32
|
Tong J, Walk TC, Han P, Chen L, Shen X, Li Y, Gu C, Xie L, Hu X, Liao X, Qin L. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses. BMC PLANT BIOLOGY 2020; 20:464. [PMID: 33036562 PMCID: PMC7547492 DOI: 10.1186/s12870-020-02648-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/14/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND High-affinity nitrate transporter 2 (NRT2) genes have been implicated in nitrate absorption and remobilization under nitrogen (N) starvation stress in many plant species, yet little is known about this gene family respond to various stresses often occurs in the production of rapeseed (Brassica napus L.). RESULTS This report details identification of 17 NRT2 gene family members in rapeseed, as well as, assessment of their expression profiles using RNA-seq analysis and qRT-PCR assays. In this study, all BnNRT2.1 members, BnNRT2.2a and BnNRT2.4a were specifically expressed in root tissues, while BnNRT2.7a and BnNRT2.7b were mainly expressed in aerial parts, including as the predominantly expressed NRT2 genes detected in seeds. This pattern of shoot NRT expression, along with homology to an Arabidopsis NRT expressed in seeds, strongly suggests that both BnNRT2.7 genes play roles in seed nitrate accumulation. Another rapeseed NRT, BnNRT2.5 s, exhibited intermediate expression, with transcripts detected in both shoot and root tissues. Functionality of BnNRT2s genes was further outlined by testing for adaptive responses in expression to exposure to a series of environmental stresses, including N, phosphorus (P) or potassium (K) deficiency, waterlogging and drought. In these tests, most NRT2 gene members were up-regulated by N starvation and restricted by the other stresses tested herein. In contrast to this overall trend, transcription of BnNRT2.1a was up-regulated under waterlogging and K deficiency stress, and BnNRT2.5 s was up-regulated in roots subjected to waterlogging. Furthermore, the mRNA levels of BnNRT2.7 s were enhanced under both waterlogging stress and P or K deficiency conditions. These results suggest that these three BnNRT2 genes might participate in crosstalk among different stress response pathways. CONCLUSIONS The results presented here outline a diverse set of NRT2 genes present in the rapeseed genome that collectively carry out specific functions throughout rapeseed development, while also responding not just to N deficiency, but also to several other stresses. Targeting of individual BnNRT2 members that coordinate rapeseed nitrate uptake and transport in response to cues from multiple stress response pathways could significantly expand the genetic resources available for improving rapeseed resistance to environmental stresses.
Collapse
Affiliation(s)
- Jiafeng Tong
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | | | - Peipei Han
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Institute of Agriculture Science in Jiangsu Coastal Area, Yancheng, 224002, P. R. China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xinjie Shen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Yinshui Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Chiming Gu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Lihua Xie
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Xiaojia Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Xing Liao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China.
| | - Lu Qin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China.
| |
Collapse
|
33
|
Nakayama S, Sugano SS, Hirokawa H, Mori IC, Daimon H, Kimura S, Fukao Y. Manganese Treatment Alleviates Zinc Deficiency Symptoms in Arabidopsis Seedlings. PLANT & CELL PHYSIOLOGY 2020; 61:1711-1723. [PMID: 32678906 DOI: 10.1093/pcp/pcaa094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 05/09/2023]
Abstract
Plant phenotypes caused by mineral deficiencies differ depending on growth conditions. We recently reported that the growth of Arabidopsis thaliana was severely inhibited on MGRL-based zinc (Zn)-deficient medium but not on Murashige-Skoog-based Zn-deficient medium. Here, we explored the underlying reason for the phenotypic differences in Arabidopsis grown on the different media. The root growth and chlorophyll contents reduced by Zn deficiency were rescued by the addition of extra manganese (Mn) during short-term growth (10 or 14 d). However, this treatment did not affect the growth recovery after long-term growth (38 d). To investigate the reason for plant recovery from Zn deficiency, we performed the RNA-seq analysis of the roots grown on the Zn-basal medium and the Zn-depleted medium with/without additional Mn. Principal component analysis of the RNA-seq data showed that the gene expression patterns of plants on the Zn-basal medium were similar to those on the Zn-depleted medium with Mn, whereas those on the Zn-depleted medium without Mn were different from the others. The expression of several transcription factors and reactive oxygen species (ROS)-related genes was upregulated in only plants on the Zn-depleted medium without Mn. Consistent with the gene expression data, ROS accumulation in the roots grown on this medium was higher than those grown in other conditions. These results suggest that plants accumulate ROS and reduce their biomass under undesirable growth conditions, such as Zn depletion. Taken together, this study shows that the addition of extra Mn to the Zn-depleted medium induces transcriptional changes in ROS-related genes, thereby alleviating short-term growth inhibition due to Zn deficiency.
Collapse
Affiliation(s)
- Sayuri Nakayama
- Graduate School of Life Science, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Shigeo S Sugano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566 Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Haruna Hirokawa
- Graduate School of Life Science, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Hiroyuki Daimon
- Faculty of Agriculture, Ryukoku University, Yokotani, Ohe, Seta, Ohtsu, Shiga, 520-2194 Japan
| | - Sachie Kimura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| |
Collapse
|
34
|
Wang W, Ding G, White PJ, Wang M, Zou J, Xu F, Hammond JP, Shi L. Genetic dissection of the shoot and root ionomes of Brassica napus grown with contrasting phosphate supplies. ANNALS OF BOTANY 2020; 126:119-140. [PMID: 32221530 PMCID: PMC7304470 DOI: 10.1093/aob/mcaa055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/26/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Mineral elements have many essential and beneficial functions in plants. Phosphorus (P) deficiency can result in changes in the ionomes of plant organs. The aims of this study were to characterize the effects of P supply on the ionomes of shoots and roots, and to identify chromosomal quantitative trait loci (QTLs) for shoot and root ionomic traits, as well as those affecting the partitioning of mineral elements between shoot and root in Brassica napus grown with contrasting P supplies. METHODS Shoot and root concentrations of 11 mineral elements (B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES) in a Brassica napus double haploid population grown at an optimal (OP) and a low phosphorus supply (LP) in an agar system. Shoot, root and plant contents, and the partitioning of mineral elements between shoot and root were calculated. KEY RESULTS The tissue concentrations of B, Ca, Cu, K, Mg, Mn, Na, P and Zn were reduced by P starvation, while the concentration of Fe was increased by P starvation in the BnaTNDH population. A total of 133 and 123 QTLs for shoot and root ionomic traits were identified at OP and LP, respectively. A major QTL cluster on chromosome C07 had a significant effect on shoot Mg and S concentrations at LP and was narrowed down to a 2.1 Mb region using an advanced backcross population. CONCLUSIONS The tissue concentration and partitioning of each mineral element was affected differently by P starvation. There was a significant difference in mineral element composition between shoots and roots. Identification of the genes underlying these QTLs will enhance our understanding of processes affecting the uptake and partitioning of mineral elements in Brassica napus.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Philip J White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - Meng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Silicon Regulates Source to Sink Metabolic Homeostasis and Promotes Growth of Rice Plants Under Sulfur Deficiency. Int J Mol Sci 2020; 21:ijms21103677. [PMID: 32456188 PMCID: PMC7279143 DOI: 10.3390/ijms21103677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/01/2022] Open
Abstract
Being an essential macroelement, sulfur (S) is pivotal for plant growth and development, and acute deficiency in this element leads to yield penalty. Since the last decade, strong evidence has reported the regulatory function of silicon (Si) in mitigating plant nutrient deficiency due to its significant diverse benefits on plant growth. However, the role of Si application in alleviating the negative impact of S deficiency is still obscure. In the present study, an attempt was undertaken to decipher the role of Si application on the metabolism of rice plants under S deficiency. The results showed a distinct transcriptomic and metabolic regulation in rice plants treated with Si under both short and long-term S deficiencies. The expression of Si transporters OsLsi1 and OsLsi2 was reduced under long-term deficiency, and the decrease was more pronounced when Si was provided. The expression of OsLsi6, which is involved in xylem loading of Si to shoots, was decreased under short-term S stress and remained unchanged in response to long-term stress. Moreover, the expression of S transporters OsSULTR tended to decrease by Si supply under short-term S deficiency but not under prolonged S stress. Si supply also reduced the level of almost all the metabolites in shoots of S-deficient plants, while it increased their level in the roots. The levels of stress-responsive hormones ABA, SA, and JA-lle were also decreased in shoots by Si application. Overall, our finding reveals the regulatory role of Si in modulating the metabolic homeostasis under S-deficient condition.
Collapse
|
36
|
Global Landscapes of the Na+/H+ Antiporter (NHX) Family Members Uncover their Potential Roles in Regulating the Rapeseed Resistance to Salt Stress. Int J Mol Sci 2020; 21:ijms21103429. [PMID: 32408717 PMCID: PMC7279160 DOI: 10.3390/ijms21103429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Soil salinity is a main abiotic stress in agriculture worldwide. The Na+/H+ antiporters (NHXs) play pivotal roles in intracellular Na+ excretion and vacuolar Na+ compartmentalization, which are important for plant salt stress resistance (SSR). However, few systematic analyses of NHXs has been reported in allotetraploid rapeseed so far. Here, a total of 18 full-length NHX homologs, representing seven subgroups (NHX1-NHX8 without NHX5), were identified in the rapeseed genome (AnAnCnCn). Number variations of BnaNHXs might indicate their significantly differential roles in the regulation of rapeseed SSR. BnaNHXs were phylogenetically divided into three evolutionary clades, and the members in the same subgroups had similar physiochemical characteristics, gene/protein structures, and conserved Na+ transport motifs. Darwin´s evolutionary pressure analysis suggested that BnaNHXs suffered from strong purifying selection. The cis-element analysis revealed the differential transcriptional regulation of NHXs between the model Arabidopsis and B. napus. Differential expression of BnaNHXs under salt stress, different nitrogen forms (ammonium and nitrate), and low phosphate indicated their potential involvement in the regulation of rapeseed SSR. Global landscapes of BnaNHXs will give an integrated understanding of their family evolution and molecular features, which will provide elite gene resources for the genetic improvement of plant SSR through regulating the NHX-mediated Na+ transport.
Collapse
|
37
|
Zhou T, Yue CP, Huang JY, Cui JQ, Liu Y, Wang WM, Tian C, Hua YP. Genome-wide identification of the amino acid permease genes and molecular characterization of their transcriptional responses to various nutrient stresses in allotetraploid rapeseed. BMC PLANT BIOLOGY 2020; 20:151. [PMID: 32268885 PMCID: PMC7140331 DOI: 10.1186/s12870-020-02367-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/26/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Nitrogen (N), referred to as a "life element", is a macronutrient essential for optimal plant growth and yield production. Amino acid (AA) permease (AAP) genes play pivotal roles in root import, long-distance translocation, remobilization of organic amide-N from source organs to sinks, and other environmental stress responses. However, few systematic analyses of AAPs have been reported in Brassica napus so far. RESULTS In this study, we identified a total of 34 full-length AAP genes representing eight subgroups (AAP1-8) from the allotetraploid rapeseed genome (AnAnCnCn, 2n = 4x = 38). Great differences in the homolog number among the BnaAAP subgroups might indicate their significant differential roles in the growth and development of rapeseed plants. The BnaAAPs were phylogenetically divided into three evolutionary clades, and the members in the same subgroups had similar physiochemical characteristics, gene/protein structures, and conserved AA transport motifs. Darwin's evolutionary analysis suggested that BnaAAPs were subjected to strong purifying selection pressure. Cis-element analysis showed potential differential transcriptional regulation of AAPs between the model Arabidopsis and B. napus. Differential expression of BnaAAPs under nitrate limitation, ammonium excess, phosphate shortage, boron deficiency, cadmium toxicity, and salt stress conditions indicated their potential involvement in diverse nutrient stress responses. CONCLUSIONS The genome-wide identification of BnaAAPs will provide a comprehensive insight into their family evolution and AAP-mediated AA transport under diverse abiotic stresses. The molecular characterization of core AAPs can provide elite gene resources and contribute to the genetic improvement of crop stress resistance through the modulation of AA transport.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Jia-qian Cui
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Wen-ming Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Chuang Tian
- Sinochem Modern Agricultural Platform, Changchun, 130000 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| |
Collapse
|
38
|
Lurthy T, Cantat C, Jeudy C, Declerck P, Gallardo K, Barraud C, Leroy F, Ourry A, Lemanceau P, Salon C, Mazurier S. Impact of Bacterial Siderophores on Iron Status and Ionome in Pea. FRONTIERS IN PLANT SCIENCE 2020; 11:730. [PMID: 32595663 PMCID: PMC7304161 DOI: 10.3389/fpls.2020.00730] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/07/2020] [Indexed: 05/03/2023]
Abstract
Including more grain legumes in cropping systems is important for the development of agroecological practices and the diversification of protein sources for human and animal consumption. Grain legume yield and quality is impacted by abiotic stresses resulting from fluctuating availabilities in essential nutrients such as iron deficiency chlorosis (IDC). Promoting plant iron nutrition could mitigate IDC that currently impedes legume cultivation in calcareous soils, and increase the iron content of legume seeds and its bioavailability. There is growing evidence that plant microbiota contribute to plant iron nutrition and might account for variations in the sensitivity of pea cultivars to iron deficiency and in fine to seed nutritional quality. Pyoverdine (pvd) siderophores synthesized by pseudomonads have been shown to promote iron nutrition in various plant species (Arabidopsis, clover and grasses). This study aimed to investigate the impact of three distinct ferripyoverdines (Fe-pvds) on iron status and the ionome of two pea cultivars (cv.) differing in their tolerance to IDC, (cv. S) being susceptible and (cv. T) tolerant. One pvd came from a pseudomonad strain isolated from the rhizosphere of cv. T (pvd1T), one from cv. S (pvd2S), and the third from a reference strain C7R12 (pvdC7R12). The results indicated that Fe-pvds differently impacted pea iron status and ionome, and that this impact varied both according to the pvd and the cultivar. Plant iron concentration was more increased by Fe-pvds in cv. T than in cv. S. Iron allocation within the plant was impacted by Fe-pvds in cv. T. Furthermore, Fe-pvds had the greatest favorable impact on iron nutrition in the cultivar from which the producing strain originated. This study evidences the impact of bacterial siderophores on pea iron status and pea ionome composition, and shows that this impact varies with the siderophore and host-plant cultivar, thereby emphasizing the specificity of these plant-microorganisms interactions. Our results support the possible contribution of pyoverdine-producing pseudomonads to differences in tolerance to IDC between pea cultivars. Indeed, the tolerant cv. T, as compared to the susceptible cv. S, benefited from bacterial siderophores for its iron nutrition to a greater extent.
Collapse
Affiliation(s)
- Tristan Lurthy
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Cécile Cantat
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Christian Jeudy
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Catherine Barraud
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Fanny Leroy
- Normandie Université, UNICAEN, PLATIN’, Esplanade de la Paix, Caen, France
| | - Alain Ourry
- Normandie Université, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen, France
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- *Correspondence: Sylvie Mazurier,
| |
Collapse
|
39
|
Zhang ZH, Zhou T, Tang TJ, Song HX, Guan CY, Huang JY, Hua YP. A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5437-5455. [PMID: 31232451 PMCID: PMC6793439 DOI: 10.1093/jxb/erz295] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/13/2019] [Indexed: 05/04/2023]
Abstract
Oilseed rape (Brassica napus) has great potential for phytoremediation of cadmium (Cd)-polluted soils due to its large plant biomass production and strong metal accumulation. Enhanced plant Cd resistance (PCR) is a crucial prerequisite for phytoremediation through hyper-accumulation of excess Cd. However, the complexity of the allotetraploid genome of rapeseed hinders our understanding of PCR. To explore rapeseed Cd-resistance mechanisms, we examined two genotypes, 'ZS11' (Cd-resistant) and 'W10' (Cd-sensitive), that exhibit contrasting PCR while having similar tissue Cd concentrations, and characterized their different fingerprints in terms of plant morphophysiology (electron microscopy), ion abundance (inductively coupled plasma mass spectrometry), DNA variation (whole-genome resequencing), transcriptomics (high-throughput mRNA sequencing), and metabolomics (ultra-high performance liquid chromatography-mass spectrometry). Fine isolation of cell components combined with ionomics revealed that more Cd accumulated in the shoot vacuoles and root pectins of the resistant genotype than in the sensitive one. Genome and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in pectin modification, ion binding, and compartmentalization. Transcriptomics-assisted gene co-expression networks characterized BnaCn.ABCC3 and BnaA8.PME3 as the central members involved in the determination of rapeseed PCR. High-resolution metabolic profiles revealed greater accumulation of shoot Cd chelates, and stronger biosynthesis and higher demethylation of root pectins in the resistant genotype than in the sensitive one. Our comprehensive examination using a multiomics approach has greatly improved our understanding of the role of subcellular reallocation of Cd in the determination of PCR.
Collapse
Affiliation(s)
- Zhen-Hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Ting Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Tian-Jiao Tang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Hai-Xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Chun-Yun Guan
- National Center of Oilseed Crop Improvement, Hunan Branch, Changsha, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Peng Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Correspondence:
| |
Collapse
|
40
|
Zhang S, Tang D, Korpelainen H, Li C. Metabolic and physiological analyses reveal that Populus cathayana males adopt an energy-saving strategy to cope with phosphorus deficiency. TREE PHYSIOLOGY 2019; 39:1630-1645. [PMID: 31237332 DOI: 10.1093/treephys/tpz074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 05/27/2023]
Abstract
Dioecious trees have evolved sex-specific adaptation strategies to cope with inorganic phosphorus (Pi) limitation. Yet, little is known about the effects of Pi limitation on plant metabolism, particularly in dioecious woody plants. To identify potential gender-specific metabolites appearing in response to Pi limitation in poplars, we studied the metabolic and ionomic responses in the roots and leaves of Populus cathayana Rehd males and females exposed to a 60-day period of Pi deficiency. Besides significant decreases in phosphorus contents in both Pi-deficient roots and leaves, the calcium level decreased significantly and the sulfur content increased significantly in Pi-deficient male roots, while the zinc and ferrum contents increased significantly in Pi-deficient female roots. Inorganic P deficiency caused a smaller change in the abscisic acid content, but a significant increase in the jasmonic acid content was detected in both leaves and roots. Salicylic acid significantly decreased under Pi deficiency in male leaves and female roots. Changes were found in phospholipids and phosphorylated metabolites (e.g., fructose-6-phosphate, glycerol-3-phosphate, glucose-6-phosphate, phosphoric acid and inositol-1-phosphate) in roots and leaves. Both P. cathayana males and females relied on inorganic pyrophosphate-dependent but not on Pi-dependent glycolysis under Pi-deficient conditions. Sex-specific metabolites in leaves were primarily in the category of primary metabolites (e.g., amino acids), while in roots primarily in the category of secondary metabolites (e.g., organic acids) and sugars. The metabolome analysis revealed that sexually different pathways occurred mainly in amino acid metabolism, and the tissue-related differences were in the shikimate pathway and glycolysis. We observed changes in carbon flow, reduced root biomass and increased amino acid contents in P. cathayana males but not in females, which indicated that males have adopted an energy-saving strategy to adapt to Pi deficiency. Thus, this study provides new insights into sex-specific metabolic responses to Pi deficiency.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Duoteng Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Finland
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
41
|
Courbet G, Gallardo K, Vigani G, Brunel-Muguet S, Trouverie J, Salon C, Ourry A. Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4183-4196. [PMID: 31055598 DOI: 10.1093/jxb/erz214] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/29/2019] [Indexed: 05/02/2023]
Abstract
A complete understanding of ionome homeostasis requires a thorough investigation of the dynamics of the nutrient networks in plants. This review focuses on the complexity of interactions occurring between S and other nutrients, and these are addressed at the level of the whole plant, the individual tissues, and the cellular compartments. With regards to macronutrients, S deficiency mainly acts by reducing plant growth, which in turn restricts the root uptake of, for example, N, K, and Mg. Conversely, deficiencies in N, K, or Mg reduce uptake of S. TOR (target of rapamycin) protein kinase, whose involvement in the co-regulation of C/N and S metabolism has recently been unravelled, provides a clue to understanding the links between S and plant growth. In legumes, the original crosstalk between N and S can be found at the level of nodules, which show high requirements for S, and hence specifically express a number of sulfate transporters. With regards to micronutrients, except for Fe, their uptake can be increased under S deficiency through various mechanisms. One of these results from the broad specificity of root sulfate transporters that are up-regulated during S deficiency, which can also take up some molybdate and selenate. A second mechanism is linked to the large accumulation of sulfate in the leaf vacuoles, with its reduced osmotic contribution under S deficiency being compensated for by an increase in Cl uptake and accumulation. A third group of broader mechanisms that can explain at least some of the interactions between S and micronutrients concerns metabolic networks where several nutrients are essential, such as the synthesis of the Mo co-factor needed by some essential enzymes, which requires S, Fe, Zn and Cu for its synthesis, and the synthesis and regulation of Fe-S clusters. Finally, we briefly review recent developments in the modelling of S responses in crops (allocation amongst plant parts and distribution of mineral versus organic forms) in order to provide perspectives on prediction-based approaches that take into account the interactions with other minerals such as N.
Collapse
Affiliation(s)
- Galatéa Courbet
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Sophie Brunel-Muguet
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| | - Jacques Trouverie
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Alain Ourry
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| |
Collapse
|
42
|
Calcium Application Enhances Drought Stress Tolerance in Sugar Beet and Promotes Plant Biomass and Beetroot Sucrose Concentration. Int J Mol Sci 2019; 20:ijms20153777. [PMID: 31382384 PMCID: PMC6696248 DOI: 10.3390/ijms20153777] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance.
Collapse
|
43
|
Wu Z, Luo J, Han Y, Hua Y, Guan C, Zhang Z. Low Nitrogen Enhances Nitrogen Use Efficiency by Triggering NO 3- Uptake and Its Long-Distance Translocation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6736-6747. [PMID: 31184154 DOI: 10.1021/acs.jafc.9b02491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nitrogen is essential for plant growth and crop productivity; however, nitrogen use efficiency (NUE) decreases with increasing N supply, resulting in a waste of resources. Molecular mechanisms underlying low-nitrogen (LN)-mediated enhancement of NUE are not clear. We used high-NUE Brassica napus genotype H (Xiangyou 15), low-NUE B. napus genotype L (814), and Arabidopsis mutant aux1 to elucidate the mechanism underlying the changes in NUE under different rates of N fertilizer application. NUE of B. napus increased under LN, which enhanced N uptake ability by regulating root system architecture and plasma membrane H+-ATPase activity; AUX1 was involved in this process. Additionally, BnNRT1.5 was upregulated and BnNRT1.8 was downregulated under LN, whereby more N was transferred to the shoot through enhanced N transport. Observed changes in photosynthesis under LN were associated with N assimilation efficiency. Our study provides new insights into the mechanisms of plant adaptation to the environment.
Collapse
Affiliation(s)
- Zhimin Wu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| | - Jinsong Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| | - Yongliang Han
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| | - Yingpeng Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| | - Chunyun Guan
- National Center of Oilseed Crops Improvement , Hunan Branch, Changsha , Hunan 410128 , People's Republic of China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| |
Collapse
|
44
|
Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations. SUSTAINABILITY 2019. [DOI: 10.3390/su11102787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long-term agricultural sustainability is dependent in part on our capacity to provide productive, nutritious crops that minimize the negative impacts of agriculture on the landscape. Perennial grains within an agroforestry context offers one solution: These plants produce large root systems that reduce soil erosion and simultaneously have the potential to produce nutrients to combat malnutrition. However, nutrient compositions of wild, perennial, herbaceous species, such as those related to the common bean (Phaseolus vulgaris) are not well known. In this study, seed ion and amino acid concentrations of perennial and annual Phaseolus species were quantified using ionomics and mass spectrometry. No statistical difference was observed for Zn, toxic ions (e.g., As) or essential amino acid concentrations (except threonine) between perennial and annual Phaseolus species. However, differences were observed for some nutritionally important ions. For example, Ca, Cu, Fe, Mg, Mn, and P concentrations were higher in annual species; further, ion and amino acid concentrations appear to be largely independent of each other. These results suggest variability in ion and amino acid concentrations exist in Phaseolus. As new crop candidates are considered for ecological services, nutritional quality should be optimized to maximize nutrient output of sustainable food crops.
Collapse
|
45
|
Li S, Courbet G, Ourry A, Ainsworth EA. Elevated Ozone Concentration Reduces Photosynthetic Carbon Gain but Does Not Alter Leaf Structural Traits, Nutrient Composition or Biomass in Switchgrass. PLANTS 2019; 8:plants8040085. [PMID: 30987071 PMCID: PMC6524373 DOI: 10.3390/plants8040085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
Elevated tropospheric ozone concentration (O₃) increases oxidative stress in vegetation and threatens the stability of crop production. Current O₃ pollution in the United States is estimated to decrease the yields of maize (Zea mays) up to 10%, however, many bioenergy feedstocks including switchgrass (Panicum virgatum) have not been studied for response to O₃ stress. Using Free Air Concentration Enrichment (FACE) technology, we investigated the impacts of elevated O₃ (~100 nmol mol-1) on leaf photosynthetic traits and capacity, chlorophyll fluorescence, the Ball⁻Woodrow⁻Berry (BWB) relationship, respiration, leaf structure, biomass and nutrient composition of switchgrass. Elevated O₃ concentration reduced net CO₂ assimilation rate (A), stomatal conductance (gs), and maximum CO₂ saturated photosynthetic capacity (Vmax), but did not affect other functional and structural traits in switchgrass or the macro- (except potassium) and micronutrient content of leaves. These results suggest that switchgrass exhibits a greater O₃ tolerance than maize, and provide important fundamental data for evaluating the yield stability of a bioenergy feedstock crop and for exploring O₃ sensitivity among bioenergy feedstocks.
Collapse
Affiliation(s)
- Shuai Li
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Galatéa Courbet
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Université Caen Normandie, 14032 Caen Cedex 5, France; (G.C.); (A.O.)
| | - Alain Ourry
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Université Caen Normandie, 14032 Caen Cedex 5, France; (G.C.); (A.O.)
| | - Elizabeth A. Ainsworth
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
46
|
Sha Z, Watanabe T, Chu Q, Oka N, Osaki M, Shinano T. A Reduced Phosphorus Application Rate Using a Mycorrhizal Plant as the Preceding Crop Maintains Soybean Seeds' Nutritional Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:32-42. [PMID: 30525606 DOI: 10.1021/acs.jafc.8b05288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We tested whether introducing an arbuscular mycorrhizal fungi (AMF)-host plant with a reduced P application rate could maintain soybean seeds' nutrient quality. The dynamic variation of 14 nutrients was analyzed in source and sink organs during the seed-filling stage. The AMF-host and non-AMF-host plants, sunflower and mustard, were grown as preceding crops (PCs). Soybeans, the succeeding crops, were planted with three different phosphorus levels, namely, 0, 50, and 150 kg P2O5 ha-1. The results showed that the AMF-host PC with a reduced P application rate maintained the seed's yield and nutrients quality. During the seed-filling stage, the AMF-host PC with a reduced P application rate increased the uptake of most nutrients compared to the non-AMF-host PC, and improved the remobilization efficiency of all nutrients except Mn, Fe, and Se, compared to the optimal P application rate. These results could help improve the utilization efficiency of P fertilizers and protect soybeans' nutritional value.
Collapse
Affiliation(s)
- Zhimin Sha
- Graduate School of Agriculture and Biology , Shanghai Jiaotong University , 200240 , Shanghai , China
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
| | - Toshihiro Watanabe
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
| | - Qingnan Chu
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
- Institute of Agricultural Resources and Environment , Jiangsu Academy of Agricultural Sciences , Nanjing , 210014 , China
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham NG2500F , U.K
| | - Norikuni Oka
- Hokkaido Agricultural Research Center/NARO , Sapporo , 062-8555 , Japan
| | - Mitsuru Osaki
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
| | - Takuro Shinano
- Tohoku Agricultural Research Center/NARO , Fukushima , 960-2156 , Japan
| |
Collapse
|
47
|
Liao Q, Zhou T, Yao JY, Han QF, Song HX, Guan CY, Hua YP, Zhang ZH. Genome-scale characterization of the vacuole nitrate transporter Chloride Channel (CLC) genes and their transcriptional responses to diverse nutrient stresses in allotetraploid rapeseed. PLoS One 2018; 13:e0208648. [PMID: 30571734 PMCID: PMC6301700 DOI: 10.1371/journal.pone.0208648] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
The Chloride Channel (CLC) gene family is reported to be involved in vacuolar nitrate (NO3-) transport. Nitrate distribution to the cytoplasm is beneficial for enhancing NO3- assimilation and plays an important role in the regulation of nitrogen (N) use efficiency (NUE). In this study, genomic information, high-throughput transcriptional profiles, and gene co-expression analysis were integrated to identify the CLCs (BnaCLCs) in Brassica napus. The decreased NO3- concentration in the clca-2 mutant up-regulated the activities of nitrate reductase and glutamine synthetase, contributing to increase N assimilation and higher NUE in Arabidopsis thaliana. The genome-wide identification of 22BnaCLC genes experienced strong purifying selection. Segmental duplication was the major driving force in the expansion of the BnaCLC gene family. The most abundant cis-acting regulatory elements in the gene promoters, including DNA-binding One Zinc Finger, W-box, MYB, and GATA-box, might be involved in the transcriptional regulation of BnaCLCs expression. High-throughput transcriptional profiles and quantitative real-time PCR results showed that BnaCLCs responded differentially to distinct NO3- regimes. Transcriptomics-assisted gene co-expression network analysis identified BnaA7.CLCa-3 as the core member of the BnaCLC family, and this gene might play a central role in vacuolar NO3- transport in crops. The BnaCLC members also showed distinct expression patterns under phosphate depletion and cadmium toxicity. Taken together, our results provide comprehensive insights into the vacuolar BnaCLCs and establish baseline information for future studies on BnaCLCs-mediated vacuolar NO3- storage and its effect on NUE.
Collapse
Affiliation(s)
- Qiong Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Ting Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Jun-yue Yao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Qing-fen Han
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Hai-xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Chun-yun Guan
- National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Ying-peng Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- * E-mail: (ZHZ); (YPH)
| | - Zhen-hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- * E-mail: (ZHZ); (YPH)
| |
Collapse
|
48
|
Zhang ZH, Zhou T, Liao Q, Yao JY, Liang GH, Song HX, Guan CY, Hua YP. Integrated physiologic, genomic and transcriptomic strategies involving the adaptation of allotetraploid rapeseed to nitrogen limitation. BMC PLANT BIOLOGY 2018; 18:322. [PMID: 30509163 PMCID: PMC6278020 DOI: 10.1186/s12870-018-1507-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/26/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nitrogen (N) is a macronutrient that is essential for optimal plant growth and seed yield. Allotetraploid rapeseed (AnAnCnCn, 2n = 4x = 38) has a higher requirement for N fertilizers whereas exhibiting a lower N use efficiency (NUE) than cereal crops. N limitation adaptation (NLA) is pivotal for enhancing crop NUE and reducing N fertilizer use in yield production. Therefore, revealing the genetic and molecular mechanisms underlying NLA is urgent for the genetic improvement of NUE in rapeseed and other crop species with complex genomes. RESULTS In this study, we integrated physiologic, genomic and transcriptomic analyses to comprehensively characterize the adaptive strategies of oilseed rape to N limitation stresses. Under N limitations, we detected accumulated anthocyanin, reduced nitrate (NO3-) and total N concentrations, and enhanced glutamine synthetase activity in the N-starved rapeseed plants. High-throughput transcriptomics revealed that the pathways associated with N metabolism and carbon fixation were highly over-represented. The expression of the genes that were involved in efficient N uptake, translocation, remobilization and assimilation was significantly altered. Genome-wide identification and molecular characterization of the microR827-NLA1-NRT1.7 regulatory circuit indicated the crucial role of the ubiquitin-mediated post-translational pathway in the regulation of rapeseed NLA. Transcriptional analysis of the module genes revealed their significant functional divergence in response to N limitations between allotetraploid rapeseed and the model Arabidopsis. Association analysis in a rapeseed panel comprising 102 genotypes revealed that BnaC5.NLA1 expression was closely correlated with the rapeseed low-N tolerance. CONCLUSIONS We identified the physiologic and genome-wide transcriptional responses of oilseed rape to N limitation stresses, and characterized the global members of the BnamiR827-BnaNLA1s-BnaNRT1.7s regulatory circuit. The transcriptomics-assisted gene co-expression network analysis accelerates the rapid identification of central members within large gene families of plant species with complex genomes. These findings would enhance our comprehensive understanding of the physiologic responses, genomic adaptation and transcriptomic alterations of oilseed rape to N limitations and provide central gene resources for the genetic improvement of crop NLA and NUE.
Collapse
Affiliation(s)
- Zhen-hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Ting Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Qiong Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Jun-yue Yao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Gui-hong Liang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Hai-xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Chun-yun Guan
- National Center of Oilseed Crop Improvement, Hunan Branch, Changsha, China
| | - Ying-peng Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| |
Collapse
|
49
|
Genomics-Assisted Identification and Characterization of the Genetic Variants Underlying Differential Nitrogen Use Efficiencies in Allotetraploid Rapeseed Genotypes. G3-GENES GENOMES GENETICS 2018; 8:2757-2771. [PMID: 29967053 PMCID: PMC6071586 DOI: 10.1534/g3.118.200481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitrogen (N) is a non-mineral macronutrient essential for plant growth and development. Oilseed rape (AnAnCnCn, 2n = 4x = 38) has a high requirement for N nutrients whereas showing the lowest N use efficiency (NUE) among crops. The mechanisms underlying NUE regulation in Brassica napus remain unclear because of genome complexity. In this study, we performed high-depth and -coverage whole-genome re-sequencing (WGS) of an N-efficient (higher NUE) genotype “XY15” and an N-inefficient (lower NUE) genotype “814” of rapeseed. More than 687 million 150-bp paired-end reads were generated, which provided about 93% coverage and 50× depth of the rapeseed genome. Applying stringent parameters, we identified a total of 1,449,157 single-nucleotide polymorphisms (SNPs), 335,228 InDels, 175,602 structure variations (SVs) and 86,280 copy number variations (CNVs) between the N-efficient and -inefficient genotypes. The largest proportion of various DNA polymorphisms occurred in the inter-genic regions. Unlike CNVs, the SNP/InDel and SV polymorphisms showed variation bias of the An and Cn subgenomes, respectively. Gene ontology analysis showed the genetic variants were mapped onto the genes involving N compound transport and ATPase complex metabolism, but not including N assimilation-related genes. On basis of identification of N-starvation responsive genes through high-throughput expression profiling, we also mapped these variants onto some key NUE-regulating genes, and validated their significantly differential expression between the N-efficient and -inefficient genotypes through qRT-PCR assays. Our data provide genome-wide high resolution DNA variants underlying NUE divergence in allotetraploid rapeseed genotypes, which would expedite the effective identification and functional validation of key NUE-regulating genes through genomics-assisted improvement of crop nutrient efficiency.
Collapse
|
50
|
Neugebauer K, Broadley MR, El-Serehy HA, George TS, McNicol JW, Moraes MF, White PJ. Variation in the angiosperm ionome. PHYSIOLOGIA PLANTARUM 2018; 163:306-322. [PMID: 29412469 DOI: 10.1111/ppl.12700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 05/06/2023]
Abstract
The ionome is defined as the elemental composition of a subcellular structure, cell, tissue, organ or organism. The subset of the ionome comprising mineral nutrients is termed the functional ionome. A 'standard functional ionome' of leaves of an 'average' angiosperm, defined as the nutrient composition of leaves when growth is not limited by mineral nutrients, is presented and can be used to compare the effects of environment and genetics on plant nutrition. The leaf ionome of a plant is influenced by interactions between its environment and genetics. Examples of the effects of the environment on the leaf ionome are presented and the consequences of nutrient deficiencies on the leaf ionome are described. The physiological reasons for (1) allometric relationships between leaf nitrogen and phosphorus concentrations and (2) linear relationships between leaf calcium and magnesium concentrations are explained. It is noted that strong phylogenetic effects on the mineral composition of leaves of angiosperm species are observed even when sampled from diverse environments. The evolutionary origins of traits including (1) the small calcium concentrations of Poales leaves, (2) the large magnesium concentrations of Caryophyllales leaves and (3) the large sulphur concentrations of Brassicales leaves are traced using phylogenetic relationships among angiosperm orders, families and genera. The rare evolution of hyperaccumulation of toxic elements in leaves of angiosperms is also described. Consequences of variation in the leaf ionome for ecology, mineral cycling in the environment, strategies for phytoremediation of contaminated land, sustainable agriculture and the nutrition of livestock and humans are discussed.
Collapse
Affiliation(s)
- Konrad Neugebauer
- Ecological Science Group, The James Hutton Institute, Dundee, DD2 5DA, UK
- Plant and Crop Sciences Division, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Martin R Broadley
- Plant and Crop Sciences Division, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Hamed A El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Timothy S George
- Ecological Science Group, The James Hutton Institute, Dundee, DD2 5DA, UK
| | | | - Milton F Moraes
- Graduate Program of Tropical Agriculture, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Philip J White
- Ecological Science Group, The James Hutton Institute, Dundee, DD2 5DA, UK
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|