1
|
Tai JH, Lee DC, Lin HF, Chao TL, Ruan Y, Cheng YW, Chou YC, Lin YY, Chang SY, Chen PJ, Yeh SH, Wang HY. Tradeoffs between proliferation and transmission in virus evolution- insights from evolutionary and functional analyses of SARS-CoV-2. Virol J 2025; 22:107. [PMID: 40253323 PMCID: PMC12008902 DOI: 10.1186/s12985-025-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
To be successful, a virus must maintain high between-host transmissibility while also effectively adapting within hosts. The impact of these potentially conflicting demands on viral genetic diversity and adaptation remains largely unexplored. These modes of adaptation can induce uncorrelated selection, bring mutations that enhance certain fitness aspects at the expense of others to high freqency, and contribute to the maintenance of genetic variation. The vast wealth of SARS-CoV-2 genetic data gathered from within and across hosts offers an unparalleled opportunity to test the above hypothesis. By analyzing a large set of SARS-CoV-2 sequences (~ 2 million) collected from early 2020 to mid-2021, we found that high frequency mutations within hosts are sometimes detrimental during between-host transmission. This highlights potential inverse selection pressures within- versus between-hosts. We also identified a group of nonsynonymous changes likely maintained by pleiotropy, as their frequencies are significantly higher than neutral expectation, yet they have never experienced clonal expansion. Analyzing one such mutation, spike M1237I, reveals that spike I1237 boosts viral assembly but reduces in vitro transmission, highlighting its pleiotropic effect. Though they make up about 2% of total changes, these types of variants represent 37% of SARS-CoV-2 genetic diversity. These mutations are notably prevalent in the Omicron variant from late 2021, hinting that pleiotropy may promote positive epistasis and new successful variants. Estimates of viral population dynamics, such as population sizes and transmission bottlenecks, assume neutrality of within-host variation. Our demonstration that these changes may affect fitness calls into question the robustness of these estimates.
Collapse
Affiliation(s)
- Jui-Hung Tai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Ding-Chin Lee
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Fu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ya-Wen Cheng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, 10002, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan
- Department of Medical Research, National Taiwan University College of Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, 10002, Taiwan.
| |
Collapse
|
2
|
Rouzine IM. Evolutionary Mechanisms of the Emergence of the Variants of Concern of SARS-CoV-2. Viruses 2025; 17:197. [PMID: 40006952 PMCID: PMC11861269 DOI: 10.3390/v17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The evolutionary origin of the variants of concern (VOCs) of SARS-CoV-2, characterized by a large number of new substitutions and strong changes in virulence and transmission rate, is intensely debated. The leading explanation in the literature is a chronic infection in immunocompromised individuals, where the virus evolves before returning into the main population. The present article reviews less-investigated hypotheses of VOC emergence with transmission between acutely infected hosts, with a focus on the mathematical models of stochastic evolution that have proved to be useful for other viruses, such as HIV and influenza virus. The central message is that understanding the acting factors of VOC evolution requires the framework of stochastic multi-locus evolution models, and that alternative hypotheses can be effectively verified by fitting results of computer simulation to empirical data.
Collapse
Affiliation(s)
- Igor M Rouzine
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| |
Collapse
|
3
|
Furnon W, Cowton VM, De Lorenzo G, Orton R, Herder V, Cantoni D, Ilia G, Mendonca DC, Kerr K, Allan J, Upfold N, Meehan GR, Bakshi S, Das UR, Molina Arias S, McElwee M, Little S, Logan N, Kwok K, Smollett K, Willett BJ, Da Silva Filipe A, Robertson DL, Grove J, Patel AH, Palmarini M. Phenotypic evolution of SARS-CoV-2 spike during the COVID-19 pandemic. Nat Microbiol 2025; 10:77-93. [PMID: 39753670 PMCID: PMC11726466 DOI: 10.1038/s41564-024-01878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025]
Abstract
SARS-CoV-2 variants are mainly defined by mutations in their spike. It is therefore critical to understand how the evolutionary trajectories of spike affect virus phenotypes. So far, it has been challenging to comprehensively compare the many spikes that emerged during the pandemic in a single experimental platform. Here we generated a panel of recombinant viruses carrying different spike proteins from 27 variants circulating between 2020 and 2024 in the same genomic background. We then assessed several of their phenotypic traits both in vitro and in vivo. We found distinct phenotypic trajectories of spike among and between variants circulating before and after the emergence of Omicron variants. Spike of post-Omicron variants maintained enhanced tropism for the nasal epithelium and large airways but displayed, over time, several phenotypic traits typical of the pre-Omicron variants. Hence, spike with phenotypic features of both pre- and post-Omicron variants may continue to emerge in the future.
Collapse
Affiliation(s)
- Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Diogo Correa Mendonca
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Nicole Upfold
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Gavin R Meehan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Siddharth Bakshi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Udeet Ranjan Das
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sergi Molina Arias
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Marion McElwee
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sarah Little
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Kirsty Kwok
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
4
|
Rodríguez-Horta E, Strahan J, Dinner AR, Barton JP. Chronic infections can generate SARS-CoV-2-like bursts of viral evolution without epistasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616878. [PMID: 39416020 PMCID: PMC11482859 DOI: 10.1101/2024.10.06.616878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Multiple SARS-CoV-2 variants have arisen during the first years of the pandemic, often bearing many new mutations. Several explanations have been offered for the surprisingly sudden emergence of multiple mutations that enhance viral fitness, including cryptic transmission, spillover from animal reservoirs, epistasis between mutations, and chronic infections. Here, we simulated pathogen evolution combining within-host replication and between-host transmission. We found that, under certain conditions, chronic infections can lead to SARS-CoV-2-like bursts of mutations even without epistasis. Chronic infections can also increase the global evolutionary rate of a pathogen even in the absence of clear mutational bursts. Overall, our study supports chronic infections as a plausible origin for highly mutated SARS-CoV-2 variants. More generally, we also describe how chronic infections can influence pathogen evolution under different scenarios.
Collapse
Affiliation(s)
- Edwin Rodríguez-Horta
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, Cuba
| | - John Strahan
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Aaron R. Dinner
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - John P. Barton
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
| |
Collapse
|
5
|
Yan Q, Gao X, Liu B, Hou R, He P, Ma Y, Zhang Y, Zhang Y, Li Z, Chen Q, Wang J, Huang X, Liang H, Zheng H, Yao Y, Chen X, Niu X, He J, Chen L, Zhao J, Xiong X. Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on SARS-CoV-2 spike protein and potentially drive the genesis of Omicron variants. Nat Commun 2024; 15:7585. [PMID: 39217172 PMCID: PMC11366018 DOI: 10.1038/s41467-024-51770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Continued evolution of SARS-CoV-2 generates variants to challenge antibody immunity established by infection and vaccination. A connection between population immunity and genesis of virus variants has long been suggested but its molecular basis remains poorly understood. Here, we identify a class of SARS-CoV-2 neutralizing public antibodies defined by their shared usage of VL6-57 light chains. Although heavy chains of diverse genotypes are utilized, convergent HCDR3 rearrangements have been observed among these public antibodies to cooperate with germline VL6-57 LCDRs to target a convergent epitope defined by RBD residues S371-S373-S375. Antibody repertoire analysis identifies that this class of VL6-57 antibodies is present in SARS-CoV-2-naive individuals and is clonally expanded in most COVID-19 patients. We confirm that Omicron-specific substitutions at S371, S373 and S375 mediate escape of antibodies of the VL6-57 class. These findings support that this class of public antibodies constitutes a potential immune pressure promoting the introduction of S371L/F-S373P-S375F in Omicron variants. The results provide further molecular evidence to support that antigenic evolution of SARS-CoV-2 is driven by antibody mediated population immunity.
Collapse
Affiliation(s)
- Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xijie Gao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruitian Hou
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping He
- Guangzhou National Laboratory, Guangzhou, China
| | - Yong Ma
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Jingjing Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiran Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichen Yao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xianying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
6
|
Waman VP, Ashford P, Lam SD, Sen N, Abbasian M, Woodridge L, Goldtzvik Y, Bordin N, Wu J, Sillitoe I, Orengo CA. Predicting human and viral protein variants affecting COVID-19 susceptibility and repurposing therapeutics. Sci Rep 2024; 14:14208. [PMID: 38902252 PMCID: PMC11190248 DOI: 10.1038/s41598-024-61541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
The COVID-19 disease is an ongoing global health concern. Although vaccination provides some protection, people are still susceptible to re-infection. Ostensibly, certain populations or clinical groups may be more vulnerable. Factors causing these differences are unclear and whilst socioeconomic and cultural differences are likely to be important, human genetic factors could influence susceptibility. Experimental studies indicate SARS-CoV-2 uses innate immune suppression as a strategy to speed-up entry and replication into the host cell. Therefore, it is necessary to understand the impact of variants in immunity-associated human proteins on susceptibility to COVID-19. In this work, we analysed missense coding variants in several SARS-CoV-2 proteins and their human protein interactors that could enhance binding affinity to SARS-CoV-2. We curated a dataset of 19 SARS-CoV-2: human protein 3D-complexes, from the experimentally determined structures in the Protein Data Bank and models built using AlphaFold2-multimer, and analysed the impact of missense variants occurring in the protein-protein interface region. We analysed 468 missense variants from human proteins and 212 variants from SARS-CoV-2 proteins and computationally predicted their impacts on binding affinities for the human viral protein complexes. We predicted a total of 26 affinity-enhancing variants from 13 human proteins implicated in increased binding affinity to SARS-CoV-2. These include key-immunity associated genes (TOMM70, ISG15, IFIH1, IFIT2, RPS3, PALS1, NUP98, AXL, ARF6, TRIMM, TRIM25) as well as important spike receptors (KREMEN1, AXL and ACE2). We report both common (e.g., Y13N in IFIH1) and rare variants in these proteins and discuss their likely structural and functional impact, using information on known and predicted functional sites. Potential mechanisms associated with immune suppression implicated by these variants are discussed. Occurrence of certain predicted affinity-enhancing variants should be monitored as they could lead to increased susceptibility and reduced immune response to SARS-CoV-2 infection in individuals/populations carrying them. Our analyses aid in understanding the potential impact of genetic variation in immunity-associated proteins on COVID-19 susceptibility and help guide drug-repurposing strategies.
Collapse
Affiliation(s)
- Vaishali P Waman
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Paul Ashford
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Neeladri Sen
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Mahnaz Abbasian
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Laurel Woodridge
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Yonathan Goldtzvik
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Jiaxin Wu
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Christine A Orengo
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Lucaci AG, Pond SLK. AOC: Analysis of Orthologous Collections - an application for the characterization of natural selection in protein-coding sequences. ARXIV 2024:arXiv:2406.09522v1. [PMID: 38947939 PMCID: PMC11213150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Motivation Modern molecular sequence analysis increasingly relies on automated and robust software tools for interpretation, annotation, and biological insight. The Analysis of Orthologous Collections (AOC) application automates the identification of genomic sites and species/lineages influenced by natural selection in coding sequence analysis. AOC quantifies different types of selection: negative, diversifying or directional positive, or differential selection between groups of branches. We include all steps necessary to go from unaligned homologous sequences to complete results and interactive visualizations that are designed to aid in the useful interpretation and contextualization. Results We are motivated by a desire to make evolutionary analyses as simple as possible, and to close the disparity in the literature between genes which draw a significant amount of interest and those that are largely overlooked and underexplored. We believe that such underappreciated and understudied genetic datasets can hold rich biological information and offer substantial insights into the diverse patterns and processes of evolution, especially if domain experts are able to perform the analyses themselves. Availability and implementation A Snakemake [Mölder et al., 2021] application implementation is publicly available on GitHub at https://github.com/aglucaci/AnalysisOfOrthologousCollections and is accompanied by software documentation and a tutorial.
Collapse
Affiliation(s)
- Alexander G Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | |
Collapse
|
8
|
Pavia G, Quirino A, Marascio N, Veneziano C, Longhini F, Bruni A, Garofalo E, Pantanella M, Manno M, Gigliotti S, Giancotti A, Barreca GS, Branda F, Torti C, Rotundo S, Lionello R, La Gamba V, Berardelli L, Gullì SP, Trecarichi EM, Russo A, Palmieri C, De Marco C, Viglietto G, Casu M, Sanna D, Ciccozzi M, Scarpa F, Matera G. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J Med Virol 2024; 96:e29708. [PMID: 38804179 DOI: 10.1002/jmv.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.
Collapse
Affiliation(s)
- Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Andrea Bruni
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Eugenio Garofalo
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Marta Pantanella
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Michele Manno
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Simona Gigliotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Aida Giancotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo Torti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rotundo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Valentina La Gamba
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Lavinia Berardelli
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Sara Palma Gullì
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| |
Collapse
|
9
|
Rojas Chávez RA, Fili M, Han C, Rahman SA, Bicar IGL, Gregory S, Helverson A, Hu G, Darbro BW, Das J, Brown GD, Haim H. Mapping the Evolutionary Space of SARS-CoV-2 Variants to Anticipate Emergence of Subvariants Resistant to COVID-19 Therapeutics. PLoS Comput Biol 2024; 20:e1012215. [PMID: 38857308 PMCID: PMC11192331 DOI: 10.1371/journal.pcbi.1012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/21/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
New sublineages of SARS-CoV-2 variants-of-concern (VOCs) continuously emerge with mutations in the spike glycoprotein. In most cases, the sublineage-defining mutations vary between the VOCs. It is unclear whether these differences reflect lineage-specific likelihoods for mutations at each spike position or the stochastic nature of their appearance. Here we show that SARS-CoV-2 lineages have distinct evolutionary spaces (a probabilistic definition of the sequence states that can be occupied by expanding virus subpopulations). This space can be accurately inferred from the patterns of amino acid variability at the whole-protein level. Robust networks of co-variable sites identify the highest-likelihood mutations in new VOC sublineages and predict remarkably well the emergence of subvariants with resistance mutations to COVID-19 therapeutics. Our studies reveal the contribution of low frequency variant patterns at heterologous sites across the protein to accurate prediction of the changes at each position of interest.
Collapse
Affiliation(s)
| | - Mohammad Fili
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Changze Han
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Syed A. Rahman
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Isaiah G. L. Bicar
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sullivan Gregory
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Annika Helverson
- Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, Iowa, United States of America
| | - Guiping Hu
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Benjamin W. Darbro
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Grant D. Brown
- Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hillel Haim
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
10
|
Zheng X, Yang R, Zhao Y, Zhang Y, Yuan G, Li W, Xiao Z, Dong X, Ma M, Guo Y, Wang W, Zhao X, Yang H, Qiu S, Peng Z, Liu A, Yu S, Zhang Y. Alum/CpG adjuvant promotes immunogenicity of inactivated SARS-CoV-2 Omicron vaccine through enhanced humoral and cellular immunity. Virology 2024; 594:110050. [PMID: 38479071 DOI: 10.1016/j.virol.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The SARS-CoV-2 Omicron variant, which was classified as a variant of concern (VOC) by the World Health Organization on 26 November 2021, has attracted worldwide attention for its high transmissibility and immune evasion ability. The existing COVID-19 vaccine has been shown to be less effective in preventing Omicron variant infection and symptomatic infection, which brings new challenges to vaccine development and application. Here, we evaluated the immunogenicity and safety of an Omicron variant COVID-19 inactivated vaccine containing aluminum and CpG adjuvants in a variety of animal models. The results showed that the vaccine candidate could induce high levels of neutralizing antibodies against the Omicron variant virus and binding antibodies, and significantly promoted cellular immune response. Meanwhile, the vaccine candidate was safe. Therefore, it provided more foundation for the development of aluminum and CpG as a combination adjuvant in human vaccines.
Collapse
Affiliation(s)
- Xiaotong Zheng
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Rong Yang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yuxiu Zhao
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yadan Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Guangying Yuan
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Weidong Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Zhuangzhuang Xiao
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Xiaofei Dong
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Meng Ma
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yancen Guo
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Wei Wang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Xue Zhao
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Hongqiang Yang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Shaoting Qiu
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Zheng Peng
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Ankang Liu
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Shouzhi Yu
- Beijing Institute of Biological Products Company Limited, Beijing, China.
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China; China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
11
|
Costiniuk CT, Lee T, Singer J, Galipeau Y, Arnold C, Langlois MA, Needham J, Jenabian MA, Burchell AN, Samji H, Chambers C, Walmsley S, Ostrowski M, Kovacs C, Tan DHS, Harris M, Hull M, Brumme ZL, Lapointe HR, Brockman MA, Margolese S, Mandarino E, Samarani S, Lebouché B, Angel JB, Routy JP, Cooper CL, Anis AH. Correlates of Breakthrough SARS-CoV-2 Infections in People with HIV: Results from the CIHR CTN 328 Study. Vaccines (Basel) 2024; 12:447. [PMID: 38793698 PMCID: PMC11125718 DOI: 10.3390/vaccines12050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
COVID-19 breakthrough infection (BTI) can occur despite vaccination. Using a multi-centre, prospective, observational Canadian cohort of people with HIV (PWH) receiving ≥2 COVID-19 vaccines, we compared the SARS-CoV-2 spike (S) and receptor-binding domain (RBD)-specific IgG levels 3 and 6 months post second dose, as well as 1 month post third dose, in PWH with and without BTI. BTI was defined as positivity based on self-report measures (data up to last study visit) or IgG data (up to 1 month post dose 3). The self-report measures were based on their symptoms and either a positive PCR or rapid antigen test. The analysis was restricted to persons without previous COVID-19 infection. Persons without BTI remained COVID-19-naïve until ≥3 months following the third dose. Of 289 participants, 92 developed BTI (31.5 infections per 100 person-years). The median days between last vaccination and BTI was 128 (IQR 67, 176), with the most cases occurring between the third and fourth dose (n = 59), corresponding to the Omicron wave. In analyses adjusted for age, sex, race, multimorbidity, hypertension, chronic kidney disease, diabetes and obesity, a lower IgG S/RBD (log10 BAU/mL) at 1 month post dose 3 was significantly associated with BTI, suggesting that a lower IgG level at this time point may predict BTI in this cohort of PWH.
Collapse
Affiliation(s)
- Cecilia T. Costiniuk
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Joel Singer
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
| | - Judy Needham
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2X 1Y4, Canada;
| | - Ann N. Burchell
- Department of Family and Community Medicine, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada;
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada;
| | - Hasina Samji
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (H.S.); (Z.L.B.); (M.A.B.)
- British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Catharine Chambers
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada;
- MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada;
| | - Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
| | - Mario Ostrowski
- Clinical Sciences Division, Department of Immunology, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Colin Kovacs
- Division of Infectious Diseases, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
| | - Darrell H. S. Tan
- MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada;
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Institute of Public Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 3M6, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Mark Hull
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (H.S.); (Z.L.B.); (M.A.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Hope R. Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (H.S.); (Z.L.B.); (M.A.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shari Margolese
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
| | - Enrico Mandarino
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
| | - Suzanne Samarani
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bertrand Lebouché
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3S 1Z1, Canada
| | - Jonathan B. Angel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Jean-Pierre Routy
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Hematology, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Curtis L. Cooper
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Aslam H. Anis
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
12
|
Lijeskić O, Bauman N, Marković M, Srbljanović J, Bobić B, Zlatković Đ, Štajner T. SARS-CoV-2 specific antibody response after an mRNA vaccine as the third dose: Homologous versus heterologous boost. Vaccine 2024; 42:1665-1672. [PMID: 38342717 DOI: 10.1016/j.vaccine.2024.01.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
The aim of this study was to evaluate immunogenicity and longevity of the humoral immune response within six months after the homologous (BNT162b2/BNT162b2) or heterologous (BBIBP-CorV/BNT162b2) third dose, and to assess breakthrough infections among vaccinees during the Omicron wave in Serbia. Serum samples were analyzed at four timepoints: five months after the primary series; three weeks, three months, and six months after the boost. IgG antibodies against the receptor-binding domain of the spike protein were detected using enzyme-linked fluorescence assay. Both homologous (n = 55) and heterologous group (n = 36) showed a highly significant increase in antibody concentrations (p < 0.001) three weeks after the boost. A moderate inverse correlation between the age of recipients and the antibody levels at three weeks post-boost was observed in the homologous group (p = 0.02, r = -0.37), while the same correlation was not significant for heterologous group (p = 0.55, r = -0.15). Heterologous group had significantly higher antibody concentrations than homologous group at three weeks (Median 851.4(IQR 766.6-894.1); 784.3(676.9-847.4); p = 0.03) and three months post-boost (766.6(534.8-798.9); 496.8(361.6-664.0); p < 0.001). However, a significant decline in antibody response over time was noted for both strategies. The overall incidence of breakthrough cases was estimated at 36.36% (20/55) for homologous, and 16.67% (6/36) for heterologous group, but none of them required hospitalization. Although observed incidence in the homologous group was more than double when compared to the heterologous group, this difference was not statistically significant, most likely due to the small sample size. In conclusion, waning immunity after inactivated vaccine can be recovered by BNT162b2 heterologous boost regardless of the age of recipients, and both boost strategies induced potent humoral immune response and protection against severe COVID-19 during the Omicron wave. However, as the observed incidence of breakthrough infections was higher in the homologous group, although non-significant, this finding could indicate an advantage of heterologous approach.
Collapse
Affiliation(s)
- Olivera Lijeskić
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Neda Bauman
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Miloš Marković
- University of Belgrade, Faculty of Medicine, Institute of Microbiology and Immunology, Department of Immunology, 11000 Belgrade, Serbia
| | - Jelena Srbljanović
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Branko Bobić
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Đorđe Zlatković
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia
| | - Tijana Štajner
- University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Excellence for Food- and Vector-borne Zoonoses, Group for Microbiology and Parasitology, 11000 Belgrade, Serbia.
| |
Collapse
|
13
|
Liu Z, Li J, Pei S, Lu Y, Li C, Zhu J, Chen R, Wang D, Sun J, Chen K. An updated review of epidemiological characteristics, immune escape, and therapeutic advances of SARS-CoV-2 Omicron XBB.1.5 and other mutants. Front Cell Infect Microbiol 2023; 13:1297078. [PMID: 38156316 PMCID: PMC10752979 DOI: 10.3389/fcimb.2023.1297078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
The rapid evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the emergence of new variants with different genetic profiles, with important implications for public health. The continued emergence of new variants with unique genetic features and potential changes in biological properties poses significant challenges to public health strategies, vaccine development, and therapeutic interventions. Omicron variants have attracted particular attention due to their rapid spread and numerous mutations in key viral proteins. This review aims to provide an updated and comprehensive assessment of the epidemiological characteristics, immune escape potential, and therapeutic advances of the SARS-CoV-2 Omicron XBB.1.5 variant, as well as other variants.
Collapse
Affiliation(s)
- Zongming Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shanshan Pei
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- School of Pharmacy, Beihua University, Jilin, China
| | - Ying Lu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruyi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Di Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingbo Sun
- School of Pharmacy, Beihua University, Jilin, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
14
|
Weber A, Översti S, Kühnert D. Reconstructing relative transmission rates in Bayesian phylodynamics: Two-fold transmission advantage of Omicron in Berlin, Germany during December 2021. Virus Evol 2023; 9:vead070. [PMID: 38107332 PMCID: PMC10725310 DOI: 10.1093/ve/vead070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Phylodynamic methods have lately played a key role in understanding the spread of infectious diseases. During the coronavirus disease (COVID-19) pandemic, large scale genomic surveillance has further increased the potential of dynamic inference from viral genomes. With the continual emergence of novel severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants, explicitly allowing transmission rate differences between simultaneously circulating variants in phylodynamic inference is crucial. In this study, we present and empirically validate an extension to the BEAST2 package birth-death skyline model (BDSKY), BDSKY[Formula: see text], which introduces a scaling factor for the transmission rate between independent, jointly inferred trees. In an extensive simulation study, we show that BDSKY[Formula: see text] robustly infers the relative transmission rates under different epidemic scenarios. Using publicly available genome data of SARS-CoV-2, we apply BDSKY[Formula: see text] to quantify the transmission advantage of the Omicron over the Delta variant in Berlin, Germany. We find the overall transmission rate of Omicron to be scaled by a factor of two with pronounced variation between the individual clusters of each variant. These results quantify the transmission advantage of Omicron over the previously circulating Delta variant, in a crucial period of pre-established non-pharmaceutical interventions. By inferring variant- as well as cluster-specific transmission rate scaling factors, we show the differences in transmission dynamics for each variant. This highlights the importance of incorporating lineage-specific transmission differences in phylodynamic inference.
Collapse
Affiliation(s)
- Ariane Weber
- Transmission, Infection, Diversification & Evolution Group (tide), Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, Jena, Thuringia 07745, Germany
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Saxony 04103, Germany
| | | | - Denise Kühnert
- Transmission, Infection, Diversification & Evolution Group (tide), Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, Jena, Thuringia 07745, Germany
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Saxony 04103, Germany
- Centre for Artificial Intelligence in Public Health Research, Robert Koch Institute, Ludwig-Witthöft-Straße 14, Wildau, Brandenburg 15745, Germany
| |
Collapse
|
15
|
Pezzotti G, Ohgitani E, Fujita Y, Imamura H, Pappone F, Grillo A, Nakashio M, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Inaba T, Tanino Y, Nukui Y, Higasa K, Yasukochi Y, Okuma K, Mazda O. Raman Fingerprints of SARS-CoV-2 Omicron Subvariants: Molecular Roots of Virological Characteristics and Evolutionary Directions. ACS Infect Dis 2023; 9:2226-2251. [PMID: 37850869 PMCID: PMC10644350 DOI: 10.1021/acsinfecdis.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 10/19/2023]
Abstract
The latest RNA genomic mutation of SARS-CoV-2 virus, termed the Omicron variant, has generated a stream of highly contagious and antibody-resistant strains, which in turn led to classifying Omicron as a variant of concern. We systematically collected Raman spectra from six Omicron subvariants available in Japan (i.e., BA.1.18, BA.2, BA.4, BA.5, XE, and BA.2.75) and applied machine-learning algorithms to decrypt their structural characteristics at the molecular scale. Unique Raman fingerprints of sulfur-containing amino acid rotamers, RNA purines and pyrimidines, tyrosine phenol ring configurations, and secondary protein structures clearly differentiated the six Omicron subvariants. These spectral characteristics, which were linked to infectiousness, transmissibility, and propensity for immune evasion, revealed evolutionary motifs to be compared with the outputs of genomic studies. The availability of a Raman "metabolomic snapshot", which was then translated into a barcode to enable a prompt subvariant identification, opened the way to rationalize in real-time SARS-CoV-2 activity and variability. As a proof of concept, we applied the Raman barcode procedure to a nasal swab sample retrieved from a SARS-CoV-2 patient and identified its Omicron subvariant by coupling a commercially available magnetic bead technology with our newly developed Raman analyses.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department
of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department
of Molecular Science and Nanosystems, Ca’
Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Eriko Ohgitani
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yuki Fujita
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Hayata Imamura
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Francesco Pappone
- Department
of Mathematical Science, Politecnico di
Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy
| | - Alfio Grillo
- Department
of Mathematical Science, Politecnico di
Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy
| | - Maiko Nakashio
- Department
of Infection Control & Laboratory Medicine, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Masaharu Shin-Ya
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department
of Microbiology, Kansai Medical University,
School of Medicine, 2-5-1
Shinmachi, Hirakata 573-1010, Osaka Prefecture, Japan
| | - Toshiro Yamamoto
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Tohru Inaba
- Department
of Infection Control & Laboratory Medicine, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yoko Tanino
- Department of Clinical Laboratory, University
Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yoko Nukui
- Department of Clinical Laboratory, University
Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Koichiro Higasa
- Genome Analysis, Institute of Biomedical
Science, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Yoshiki Yasukochi
- Genome Analysis, Institute of Biomedical
Science, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Kazu Okuma
- Department
of Microbiology, Kansai Medical University,
School of Medicine, 2-5-1
Shinmachi, Hirakata 573-1010, Osaka Prefecture, Japan
| | - Osam Mazda
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
16
|
Kimura I, Yamasoba D, Nasser H, Ito H, Zahradnik J, Wu J, Fujita S, Uriu K, Sasaki J, Tamura T, Suzuki R, Deguchi S, Plianchaisuk A, Yoshimatsu K, Kazuma Y, Mitoma S, Schreiber G, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Takaori-Kondo A, Ito J, Shirakawa K, Takayama K, Irie T, Hashiguchi T, Nakagawa S, Fukuhara T, Saito A, Ikeda T, Sato K. Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics. J Virol 2023; 97:e0101123. [PMID: 37796123 PMCID: PMC10781145 DOI: 10.1128/jvi.01011-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.
Collapse
Affiliation(s)
- Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Yamasoba
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Medicine, Kobe University, Kobe, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Jiaqi Wu
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Yasuhiro Kazuma
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuya Mitoma
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) Consortium
MisawaNaoko1KosugiYusuke1PanLin1SuganamiMai1ChibaMika1YoshimuraRyo1YasudaKyoko1IidaKeiko1OhsumiNaomi1StrangeAdam P.1KakuYu1PlianchaisukArnon1GuoZiyi1HinayAlfredo Jr. Amolong1Mendoza TolentinoJarel Elgin1ChenLuo1ShimizuRyo2Monira BegumM. S. T.2TakahashiOtowa2IchiharaKimiko2JonathanMichael2MugitaYuka2SuzukiSaori3SuzukiTateki4KimuraKanako4NakajimaYukari4YajimaHisano4HashimotoRina4WatanabeYukio4SakamotoAyaka4YasuharaNaoko4NagataKayoko4NomuraRyosuke4HorisawaYoshihito4TashiroYusuke4KawaiYugo4ShibataniYuki5NishiuchiTomoko5YoshidaIsao6KawabataRyoko7MatsunoKeita8NaoNaganori9SawaHirofumi9TanakaShinya10TsudaMasumi10WangLei10OdaYoshikata10FerdousZannatul10ShishidoKenji10MotozonoChihiro11ToyodaMako11UenoTakamasa11TabataKaori12Institute of Medical Science, University of Tokyo, Tokyo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, JapanHokkaido University, Sapporo, JapanKyoto University, Kyoto, JapanUniversity of Miyazaki, Miyazaki, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanHiroshima University, Hiroshima, JapanOne Health Research Center, Hokkaido University, Sapporo, JapanInternational Institute for Zoonosis Control, Hokkaido University, Sapporo, JapanHokkaido University, Sapporo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto, JapanKyushu University, Fukuoka, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Medicine, Kobe University, Kobe, Japan
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takashi Irie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
Vardhan S, Sahoo SK. Computational studies on the interaction of Omicron subvariants (BA.1, BA.2, and BA.3) with ACE2 and polyphenols. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:800-815. [PMID: 36606391 DOI: 10.1002/pca.3204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The SARS-CoV-2 Omicron variant BA.2 is spreading widely across the globe. The World Health Organization (WHO) designated BA.2 as a variant of concern due to its high transmission rate and pathogenicity. To elucidate the structural changes caused by mutations, we conducted a comparative analysis of BA.2 with variants BA.1 and BA.3. OBJECTIVE In the present study, we aimed to investigate the interactions of the spike glycoprotein receptor-binding domain (SGp RBD) of Omicron variants BA.1, BA.2, and BA.3 with the human receptor hACE2. Further, a library of 233 polyphenols was screened by molecular docking with the SGp RBDs of Omicron variants BA.1, BA.2, and BA.3. METHODS Protein-protein and protein-ligand molecular docking simulations were performed with AutoDock Vina and the ClusPro 2.0 server, respectively. The protein-ligand interactions were evaluated by BIOVIA Discovery Studio and ChimeraX 1.4. The molecular dynamics simulations for 100 ns were performed using GROMACS 2021. RESULTS Compared to other variants of concern, the structural changes in Omicron caused by mutations at key positions improved its ability to cause infection. Despite multiple mutations, many important polyphenols bind effectively at the RBDs of Omicron variants, with the required pharmacokinetic and ADME features and obeying the Lipinski rule. CONCLUSION Even though Omicron variants have multiple mutations and their transmission rate is relatively high, the computed binding affinities of lead polyphenols like epigallocatechin-3-O-gallate (EGCG) and luteolin-7-O-glucuronide (L7G) indicate that traditional medicines and proper immunity booster diets may be useful in the long-term fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, Gujarat, India
| |
Collapse
|
18
|
Sullivan AT, Rao V, Rockwood T, Gandhi J, Gruzka S, O'Connor L, Wang B, Ragan KB, Zhang DY, Khodakov D. Rapid, tunable, and multiplexed detection of RNA using convective array PCR. Commun Biol 2023; 6:973. [PMID: 37741867 PMCID: PMC10518007 DOI: 10.1038/s42003-023-05346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Detection of RNA targets is typically achieved through RT-qPCR or RNAseq. RT-qPCR is rapid but limited in number and complexity of targets detected, while RNAseq is high-throughput but takes multiple days. We demonstrate simultaneous amplification and detection of 28 distinct RNA targets from a single unsplit purified RNA sample in under 40 minutes using our convective array PCR (caPCR) technology. We integrate tunable strand displacement probes into caPCR to allow detection of RNA species with programmable sequence selectivity for either a single, perfectly matched target sequence or for targets with up to 2 single-nucleotide variants within the probe-binding regions. Tunable probes allow for robust detection of desired RNA species against high homology background sequences and robust detection of RNA species with significant sequence diversity due to community-acquired mutations. As a proof-of-concept, we experimentally demonstrated detection of 7 human coronaviruses and 7 key variants of concern of SARS-CoV-2 in a single assay.
Collapse
Affiliation(s)
| | - Vibha Rao
- Torus Biosystems, Inc., Medford, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Herranz M, Buenestado-Serrano S, Martín-Escolano J, Molero-Salinas A, Alonso R, Catalán P, Muñoz P, García de Viedma D, Pérez-Lago L. Alternative molecular and genomic strategies to provide a rapid response to alerts concerning the introduction of new emerging SARS-CoV-2 variants: the Omicron alert. Microbiol Spectr 2023; 11:e0107523. [PMID: 37737624 PMCID: PMC10586716 DOI: 10.1128/spectrum.01075-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/16/2023] [Indexed: 09/23/2023] Open
Abstract
During the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOCs) of particular relevance emerged. Early detection of VOCs entering a country is essential to control spread. The alert triggered by the first suspected case of the Omicron variant in Spain in a traveler arriving from South Africa in November 2021 provided a unique opportunity to evaluate four different methodological strategies tailored to rapid identification of Omicron. The different approaches were designed to respond to the different technical resources available in different settings. First, we used melting probes in RT-PCR to determine the presence of four Omicron signatures (K417N, E484A, P681H, and absence of L452R): three probes showed deviations in temperature (Tm) values relative to the reference codons (E484K-15.8°C, P681H-5.2°C, and L452R-7.2°C) and one maintained the reference value (K417N). The deviation in Tm of P681H suggested the presence of the characteristic Omicron N679K mutation in the probe hybridization region; these data pointed to the presence of Omicron alleles. Second, the presence of 29 of the 33 characteristic single nucleotide polymorphisms (SNPs) in the Omicron variant S-gene was identified by Sanger sequencing of nine amplicons. The final two strategies involved identification of 47 of the 50 non-synonymous and indel mutations attributed to Omicron by rapid nanopore whole genome sequencing (WGS) and by Illumina WGS technology. These strategies enabled us to pre-assign the first Omicron case in Spain with high certainty 2 h after receipt of RNA and to confirm it genomically 3 h later, so that the Public Health authorities could be rapidly notified. IMPORTANCE The study presents different experimental alternatives to identify new variants of concern (VOCs) of SARS-CoV-2 entering a certain population. Early detection of a new VOC is crucial for surveillance and control of spread. The objective is to provide laboratories with tools adapted to their resource capabilities that offer a sufficient level of resolution to rule out, confirm, or pre-assign the presence of a suspected VOC. The study describes four different techniques that were applied simultaneously to the first suspected Omicron case in Spain, highlighting the level of resolution and response time achieved in each case. These techniques are based on the detection of mutations in the S-gene of the virus that can easily adapt to potential emerging variants. The results of the study allow any laboratory to prepare for new alerts of SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Marta Herranz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Sergio Buenestado-Serrano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Escuela de Doctorado, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Javier Martín-Escolano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Andrea Molero-Salinas
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Roberto Alonso
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Pilar Catalán
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Gregorio Marañón Microbiology-ID COVID 19 Study Group
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
20
|
Habib MT, Rahman S, Afrad MH, Howlader AM, Khan MH, Khanam F, Alam AN, Chowdhury EK, Rahman Z, Rahman M, Shirin T, Qadri F. Natural selection shapes the evolution of SARS-CoV-2 Omicron in Bangladesh. Front Genet 2023; 14:1220906. [PMID: 37621704 PMCID: PMC10446972 DOI: 10.3389/fgene.2023.1220906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to give rise to a highly transmissive and immune-escaping variant of concern, known as Omicron. Many aspects of the evolution of SARS-CoV-2 and the driving forces behind the ongoing Omicron outbreaks remain unclear. Substitution at the receptor-binding domain (RBD) in the spike protein is one of the primary strategies of SARS-CoV-2 Omicron to hinder recognition by the host angiotensin-converting enzyme 2 (ACE2) receptor and avoid antibody-dependent defense activation. Here, we scanned for adaptive evolution within the SARS-CoV-2 Omicron genomes reported from Bangladesh in the public database GISAID (www.gisaid.org; dated 2 April 2023). The ratio of the non-synonymous (Ka) to synonymous (Ks) nucleotide substitution rate, denoted as ω, is an indicator of the selection pressure acting on protein-coding genes. A higher proportion of non-synonymous to synonymous substitutions (Ka/Ks or ω > 1) indicates positive selection, while Ka/Ks or ω near zero indicates purifying selection. An equal amount of non-synonymous and synonymous substitutions (Ka/Ks or ω = 1) refers to neutrally evolving sites. We found evidence of adaptive evolution within the spike (S) gene of SARS-CoV-2 Omicron isolated from Bangladesh. In total, 22 codon sites of the S gene displayed a signature of positive selection. The data also highlighted that the receptor-binding motif within the RBD of the spike glycoprotein is a hotspot of adaptive evolution, where many of the codons had ω > 1. Some of these adaptive sites at the RBD of the spike protein are known to be associated with increased viral fitness. The M gene and ORF6 have also experienced positive selection. These results suggest that although purifying selection is the dominant evolutionary force, positive Darwinian selection also plays a vital role in shaping the evolution of SARS-CoV-2 Omicron in Bangladesh.
Collapse
Affiliation(s)
| | - Saikt Rahman
- Institute for Developing Science and Health Initiatives, Dhaka, Bangladesh
| | | | | | | | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ahmed Nawsher Alam
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Emran Kabir Chowdhury
- Department of Biochemistry and Molecular Biochemistry, University of Dhaka, Dhaka, Bangladesh
| | - Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- Institute for Developing Science and Health Initiatives, Dhaka, Bangladesh
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
21
|
Zhiyanov A, Shkurnikov M, Nersisyan A, Hui C, Baranova A, Tonevitsky A. The signature of SARS-CoV-2 evolution reflects selective pressures within human guts. J Med Virol 2023; 95:e28996. [PMID: 37515485 DOI: 10.1002/jmv.28996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
In somatic cells, microRNAs (miRNAs) bind to the genomes of RNA viruses and influence their translation and replication. In London and Berlin samples represented in GISAID database, we traced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and divided these sequenced in two groups, "Ancestral variants" and "Omicrons," and analyzed them through the prism of the tissue-specific binding between host miRNAs and viral messenger RNAs. We demonstrate a significant number of miRNA-binding sites in the NSP4 region of the SARS-CoV-2 genome, with evidence of evolutionary pressure within this region exerted by human intestinal miRNAs. Notably, in infected cells, NSP4 promotes the formation of double-membrane vesicles, which serve as the scaffolds for replication-transcriptional complexes and protect viral RNA from intracellular destruction. In 3 years of selection, the loss of many miRNA-binding sites in general and those within the NSP4 in particular has shaped the SARS-CoV-2 genomes. With that, the descendants of the BA.2 variants were promoted as dominant strains, which define current momentum of the pandemics.
Collapse
Affiliation(s)
- Anton Zhiyanov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Ashot Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Cai Hui
- Department of Nanoengineering, Sun Yat-Sen University, Shenzhen, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
22
|
Wang G, Liu X, Wang K, Gao Y, Li G, Baptista-Hon DT, Yang XH, Xue K, Tai WH, Jiang Z, Cheng L, Fok M, Lau JYN, Yang S, Lu L, Zhang P, Zhang K. Deep-learning-enabled protein-protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution. Nat Med 2023; 29:2007-2018. [PMID: 37524952 DOI: 10.1038/s41591-023-02483-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/28/2023] [Indexed: 08/02/2023]
Abstract
Host-pathogen interactions and pathogen evolution are underpinned by protein-protein interactions between viral and host proteins. An understanding of how viral variants affect protein-protein binding is important for predicting viral-host interactions, such as the emergence of new pathogenic SARS-CoV-2 variants. Here we propose an artificial intelligence-based framework called UniBind, in which proteins are represented as a graph at the residue and atom levels. UniBind integrates protein three-dimensional structure and binding affinity and is capable of multi-task learning for heterogeneous biological data integration. In systematic tests on benchmark datasets and further experimental validation, UniBind effectively and scalably predicted the effects of SARS-CoV-2 spike protein variants on their binding affinities to the human ACE2 receptor, as well as to SARS-CoV-2 neutralizing monoclonal antibodies. Furthermore, in a cross-species analysis, UniBind could be applied to predict host susceptibility to SARS-CoV-2 variants and to predict future viral variant evolutionary trends. This in silico approach has the potential to serve as an early warning system for problematic emerging SARS-CoV-2 variants, as well as to facilitate research on protein-protein interactions in general.
Collapse
Affiliation(s)
- Guangyu Wang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Xiaohong Liu
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- UCL Cancer Institute, University College London, London, UK
| | - Kai Wang
- Department of Big Data and Biomedical Artificial Intelligence, National Biomedical Imaging Center, College of Future Technology, Peking University and Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yuanxu Gao
- Guangzhou National Laboratory, Guangzhou, China
| | - Gen Li
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Daniel T Baptista-Hon
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China
| | - Xiaohong Helena Yang
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Wa Hou Tai
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zeyu Jiang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
| | - Linling Cheng
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China
| | - Manson Fok
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Johnson Yiu-Nam Lau
- Departments of Biology and Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ligong Lu
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China
| | - Ping Zhang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
| | - Kang Zhang
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China.
- Department of Big Data and Biomedical Artificial Intelligence, National Biomedical Imaging Center, College of Future Technology, Peking University and Peking-Tsinghua Center for Life Sciences, Beijing, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China.
| |
Collapse
|
23
|
Fang L, Xu J, Zhao Y, Fan J, Shen J, Liu W, Cao G. The effects of amino acid substitution of spike protein and genomic recombination on the evolution of SARS-CoV-2. Front Microbiol 2023; 14:1228128. [PMID: 37560529 PMCID: PMC10409611 DOI: 10.3389/fmicb.2023.1228128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Over three years' pandemic of 2019 novel coronavirus disease (COVID-19), multiple variants and novel subvariants have emerged successively, outcompeted earlier variants and become predominant. The sequential emergence of variants reflects the evolutionary process of mutation-selection-adaption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amino acid substitution/insertion/deletion in the spike protein causes altered viral antigenicity, transmissibility, and pathogenicity of SARS-CoV-2. Early in the pandemic, D614G mutation conferred virus with advantages over previous variants and increased transmissibility, and it also laid a conservative background for subsequent substantial mutations. The role of genomic recombination in the evolution of SARS-CoV-2 raised increasing concern with the occurrence of novel recombinants such as Deltacron, XBB.1.5, XBB.1.9.1, and XBB.1.16 in the late phase of pandemic. Co-circulation of different variants and co-infection in immunocompromised patients accelerate the emergence of recombinants. Surveillance for SARS-CoV-2 genomic variations, particularly spike protein mutation and recombination, is essential to identify ongoing changes in the viral genome and antigenic epitopes and thus leads to the development of new vaccine strategies and interventions.
Collapse
Affiliation(s)
- Letian Fang
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jie Xu
- Department of Foreign Languages, International Exchange Center for Military Medicine, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Junyan Fan
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jiaying Shen
- School of Medicine, Tongji University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Pekar JE, Lytras S, Ghafari M, Magee AF, Parker E, Havens JL, Katzourakis A, Vasylyeva TI, Suchard MA, Hughes AC, Hughes J, Robertson DL, Dellicour S, Worobey M, Wertheim JO, Lemey P. The recency and geographical origins of the bat viruses ancestral to SARS-CoV and SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548617. [PMID: 37502985 PMCID: PMC10369958 DOI: 10.1101/2023.07.12.548617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.
Collapse
Affiliation(s)
- Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Spyros Lytras
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors contributed equally
| | - Mahan Ghafari
- Department of Biology, University of Oxford, Oxford, UK
| | - Andrew F Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Tetyana I Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong
- China Biodiversity Green Development Foundation, Beijing, China
| | - Joseph Hughes
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - David L Robertson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors jointly supervised the work
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- These authors jointly supervised the work
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- These authors jointly supervised the work
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| |
Collapse
|
25
|
Lubin JH, Markosian C, Balamurugan D, Ma MT, Chen CH, Liu D, Pasqualini R, Arap W, Burley SK, Khare SD. Modeling of ACE2 and antibodies bound to SARS-CoV-2 provides insights into infectivity and immune evasion. JCI Insight 2023; 8:e168296. [PMID: 37261904 PMCID: PMC10371346 DOI: 10.1172/jci.insight.168296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Given the COVID-19 pandemic, there is interest in understanding ligand-receptor features and targeted antibody-binding attributes against emerging SARS-CoV-2 variants. Here, we developed a large-scale structure-based pipeline for analysis of protein-protein interactions regulating SARS-CoV-2 immune evasion. First, we generated computed structural models of the Spike protein of 3 SARS-CoV-2 variants (B.1.1.529, BA.2.12.1, and BA.5) bound either to a native receptor (ACE2) or to a large panel of targeted ligands (n = 282), which included neutralizing or therapeutic monoclonal antibodies. Moreover, by using the Barnes classification, we noted an overall loss of interfacial interactions (with gain of new interactions in certain cases) at the receptor-binding domain (RBD) mediated by substituted residues for neutralizing complexes in classes 1 and 2, whereas less destabilization was observed for classes 3 and 4. Finally, an experimental validation of predicted weakened therapeutic antibody binding was performed in a cell-based assay. Compared with the original Omicron variant (B.1.1.529), derivative variants featured progressive destabilization of antibody-RBD interfaces mediated by a larger set of substituted residues, thereby providing a molecular basis for immune evasion. This approach and findings provide a framework for rapidly and efficiently generating structural models for SARS-CoV-2 variants bound to ligands of mechanistic and therapeutic value.
Collapse
Affiliation(s)
- Joseph H. Lubin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Christopher Markosian
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - D. Balamurugan
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Department of Radiology
| | - Minh T. Ma
- Department of Pathology, Immunology, and Laboratory Medicine
- Center for Immunity and Inflammation, and
| | - Chih-Hsiung Chen
- Department of Pathology, Immunology, and Laboratory Medicine
- Center for Immunity and Inflammation, and
| | - Dongfang Liu
- Department of Pathology, Immunology, and Laboratory Medicine
- Center for Immunity and Inflammation, and
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Stephen K. Burley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- RCSB Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- RCSB Protein Data Bank, San Diego Supercomputer Center, UCSD, La Jolla, California, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sagar D. Khare
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
26
|
Lucaci AG, Zehr JD, Enard D, Thornton JW, Kosakovsky Pond SL. Evolutionary Shortcuts via Multinucleotide Substitutions and Their Impact on Natural Selection Analyses. Mol Biol Evol 2023; 40:msad150. [PMID: 37395787 PMCID: PMC10336034 DOI: 10.1093/molbev/msad150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
Inference and interpretation of evolutionary processes, in particular of the types and targets of natural selection affecting coding sequences, are critically influenced by the assumptions built into statistical models and tests. If certain aspects of the substitution process (even when they are not of direct interest) are presumed absent or are modeled with too crude of a simplification, estimates of key model parameters can become biased, often systematically, and lead to poor statistical performance. Previous work established that failing to accommodate multinucleotide (or multihit, MH) substitutions strongly biases dN/dS-based inference towards false-positive inferences of diversifying episodic selection, as does failing to model variation in the rate of synonymous substitution (SRV) among sites. Here, we develop an integrated analytical framework and software tools to simultaneously incorporate these sources of evolutionary complexity into selection analyses. We found that both MH and SRV are ubiquitous in empirical alignments, and incorporating them has a strong effect on whether or not positive selection is detected (1.4-fold reduction) and on the distributions of inferred evolutionary rates. With simulation studies, we show that this effect is not attributable to reduced statistical power caused by using a more complex model. After a detailed examination of 21 benchmark alignments and a new high-resolution analysis showing which parts of the alignment provide support for positive selection, we show that MH substitutions occurring along shorter branches in the tree explain a significant fraction of discrepant results in selection detection. Our results add to the growing body of literature which examines decades-old modeling assumptions (including MH) and finds them to be problematic for comparative genomic data analysis. Because multinucleotide substitutions have a significant impact on natural selection detection even at the level of an entire gene, we recommend that selection analyses of this type consider their inclusion as a matter of routine. To facilitate this procedure, we developed, implemented, and benchmarked a simple and well-performing model testing selection detection framework able to screen an alignment for positive selection with two biologically important confounding processes: site-to-site synonymous rate variation, and multinucleotide instantaneous substitutions.
Collapse
Affiliation(s)
- Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - Jordan D Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Joseph W Thornton
- Department of Human Genetics, University of Chicago, Chicago, Illinois
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
27
|
Klink GV, Danilenko D, Komissarov AB, Yolshin N, Shneider O, Shcherbak S, Nabieva E, Shvyrev N, Konovalova N, Zheltukhina A, Fadeev A, Komissarova K, Ksenafontov A, Musaeva T, Eder V, Pisareva M, Nekrasov P, Shchur V, Bazykin GA, Lioznov D. An Early SARS-CoV-2 Omicron Outbreak in a Dormitory in Saint Petersburg, Russia. Viruses 2023; 15:1415. [PMID: 37515103 PMCID: PMC10385080 DOI: 10.3390/v15071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 rapidly spread worldwide in late 2021-early 2022, displacing the previously prevalent Delta variant. Before 16 December 2021, community transmission had already been observed in tens of countries globally. However, in Russia, the majority of reported cases at that time had been sporadic and associated with travel. Here, we report an Omicron outbreak at a student dormitory in Saint Petersburg between 16-29 December 2021, which was the earliest known instance of a large-scale community transmission in Russia. Out of the 465 sampled residents of the dormitory, 180 (38.7%) tested PCR-positive. Among the 118 residents for whom the variant had been tested by whole-genome sequencing, 111 (94.1%) were found to carry the Omicron variant. Among these 111 residents, 60 (54.1%) were vaccinated or had reported a previous infection of COVID-19. Phylogenetic analysis confirmed that the outbreak was caused by a single introduction of the BA.1.1 sub-lineage of the Omicron variant. The dormitory-derived clade constituted a significant proportion of BA.1.1 samples in Saint Petersburg and has spread to other regions of Russia and even to other countries. The rapid spread of the Omicron variant in a population with preexisting immunity to previous variants underlines its propensity for immune evasion.
Collapse
Affiliation(s)
- Galya V Klink
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Daria Danilenko
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Andrey B Komissarov
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Nikita Yolshin
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Olga Shneider
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
- City Hospital #40, 197706 Saint-Petersburg, Russia
| | | | - Elena Nabieva
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Nikita Shvyrev
- International Laboratory of Statistical and Computational Genomics, HSE University, 101000 Moscow, Russia
| | - Nadezhda Konovalova
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Alyona Zheltukhina
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Artem Fadeev
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Kseniya Komissarova
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Andrey Ksenafontov
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Tamila Musaeva
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Veronika Eder
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Maria Pisareva
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Petr Nekrasov
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Vladimir Shchur
- International Laboratory of Statistical and Computational Genomics, HSE University, 101000 Moscow, Russia
| | - Georgii A Bazykin
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
- Skolkovo Institute of Science and Technology (Skoltech), 121205 Moscow, Russia
| | - Dmitry Lioznov
- Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
- First Pavlov State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
28
|
Cheng Y, Ji C, Zhou HY, Zheng H, Wu A. Web Resources for SARS-CoV-2 Genomic Database, Annotation, Analysis and Variant Tracking. Viruses 2023; 15:1158. [PMID: 37243244 PMCID: PMC10222785 DOI: 10.3390/v15051158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The SARS-CoV-2 genomic data continue to grow, providing valuable information for researchers and public health officials. Genomic analysis of these data sheds light on the transmission and evolution of the virus. To aid in SARS-CoV-2 genomic analysis, many web resources have been developed to store, collate, analyze, and visualize the genomic data. This review summarizes web resources used for the SARS-CoV-2 genomic epidemiology, covering data management and sharing, genomic annotation, analysis, and variant tracking. The challenges and further expectations for these web resources are also discussed. Finally, we highlight the importance and need for continued development and improvement of related web resources to effectively track the spread and understand the evolution of the virus.
Collapse
Affiliation(s)
- Yexiao Cheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Chengyang Ji
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| |
Collapse
|
29
|
Ito J, Suzuki R, Uriu K, Itakura Y, Zahradnik J, Kimura KT, Deguchi S, Wang L, Lytras S, Tamura T, Kida I, Nasser H, Shofa M, Begum MM, Tsuda M, Oda Y, Suzuki T, Sasaki J, Sasaki-Tabata K, Fujita S, Yoshimatsu K, Ito H, Nao N, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Yamamoto Y, Nagamoto T, Kuramochi J, Schreiber G, Saito A, Matsuno K, Takayama K, Hashiguchi T, Tanaka S, Fukuhara T, Ikeda T, Sato K. Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nat Commun 2023; 14:2671. [PMID: 37169744 PMCID: PMC10175283 DOI: 10.1038/s41467-023-38188-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.
Collapse
Affiliation(s)
- Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Kanako Terakado Kimura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Spyros Lytras
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Izumi Kida
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mst Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kaori Sasaki-Tabata
- Department of Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: HU-IVReD, Hokkaido University, Sapporo, Japan
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | | | | | - Jin Kuramochi
- Interpark Kuramochi Clinic, Utsunomiya, Japan
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: HU-IVReD, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
30
|
Paulino-Ramírez R, López P, Mueses S, Cuevas P, Jabier M, Rivera-Amill V. Genomic Surveillance of SARS-CoV-2 Variants in the Dominican Republic and Emergence of a Local Lineage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085503. [PMID: 37107785 PMCID: PMC10138544 DOI: 10.3390/ijerph20085503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus that evolves over time, leading to new variants. In the current study, we assessed the genomic epidemiology of SARS-CoV-2 in the Dominican Republic. A total of 1149 SARS-CoV-2 complete genome nucleotide sequences from samples collected between March 2020 and mid-February 2022 in the Dominican Republic were obtained from the Global Initiative on Sharing All Influenza Data (GISAID) database. Phylogenetic relationships and evolution rates were analyzed using the maximum likelihood method and the Bayesian Markov chain Monte Carlo (MCMC) approach. The genotyping details (lineages) were obtained using the Pangolin web application. In addition, the web tools Coronapp, and Genome Detective Viral Tools, among others, were used to monitor epidemiological characteristics. Our results show that the most frequent non-synonymous mutation over the study period was D614G. Of the 1149 samples, 870 (75.74%) were classified into 8 relevant variants according to Pangolin/Scorpio. The first Variants Being Monitored (VBM) were detected in December 2020. Meanwhile, in 2021, the variants of concern Delta and Omicron were identified. The mean mutation rate was estimated to be 1.5523 × 10-3 (95% HPD: 1.2358 × 10-3, 1.8635 × 10-3) nucleotide substitutions per site. We also report the emergence of an autochthonous SARS-CoV-2 lineage, B.1.575.2, that circulated from October 2021 to January 2022, in co-circulation with the variants of concern Delta and Omicron. The impact of B.1.575.2 in the Dominican Republic was minimal, but it then expanded rapidly in Spain. A better understanding of viral evolution and genomic surveillance data will help to inform strategies to mitigate the impact on public health.
Collapse
Affiliation(s)
- Robert Paulino-Ramírez
- Instituto de Medicina Tropical y Salud Global, Universidad Iberoamericana, Research Hub, Santo Domingo 22333, Dominican Republic
- Correspondence:
| | - Pablo López
- RCMI Center for Research Resources, Ponce Research Institute, Ponce, PR 00716-2348, USA (V.R.-A.)
| | - Sayira Mueses
- Instituto de Medicina Tropical y Salud Global, Universidad Iberoamericana, Research Hub, Santo Domingo 22333, Dominican Republic
| | - Paula Cuevas
- Instituto de Medicina Tropical y Salud Global, Universidad Iberoamericana, Research Hub, Santo Domingo 22333, Dominican Republic
| | - Maridania Jabier
- Instituto de Medicina Tropical y Salud Global, Universidad Iberoamericana, Research Hub, Santo Domingo 22333, Dominican Republic
- Servicio Nacional de Salud (SNS), Ministry of Health, Santo Domingo 10201, Dominican Republic
| | - Vanessa Rivera-Amill
- RCMI Center for Research Resources, Ponce Research Institute, Ponce, PR 00716-2348, USA (V.R.-A.)
- Basic Sciences Department, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716-2348, USA
| |
Collapse
|
31
|
Verkhivker G, Alshahrani M, Gupta G. Coarse-Grained Molecular Simulations and Ensemble-Based Mutational Profiling of Protein Stability in the Different Functional Forms of the SARS-CoV-2 Spike Trimers: Balancing Stability and Adaptability in BA.1, BA.2 and BA.2.75 Variants. Int J Mol Sci 2023; 24:ijms24076642. [PMID: 37047615 PMCID: PMC10094791 DOI: 10.3390/ijms24076642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable among these variants. A systematic mutational scanning of the inter-protomer interfaces in the spike trimers revealed a group of conserved structural stability hotspots that play a key role in the modulation of functional dynamics and are also involved in the inter-protomer couplings through local contacts and interaction networks with the Omicron mutational sites. The results of mutational scanning provided evidence that BA.2.75 trimers are more stable than BA.2 and comparable in stability to the BA.1 variant. Using dynamic network modeling of the S Omicron BA.1, BA.2, and BA.2.75 trimers, we showed that the key network mediators of allosteric interactions are associated with the major stability hotspots that are interconnected along potential communication pathways. The network analysis of the BA.1, BA.2, and BA.2.75 trimers suggested that the increased thermodynamic stability of the BA.2.75 variant may be linked with the organization and modularity of the residue interaction network that allows for allosteric communications between structural stability hotspots and Omicron mutational sites. This study provided a plausible rationale for a mechanism in which Omicron mutations may evolve by targeting vulnerable sites of conformational adaptability to elicit immune escape while maintaining their control on balancing protein stability and functional fitness through robust allosteric communications with the stability hotspots.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
32
|
Cotten M, Phan MV. Evolution of increased positive charge on the SARS-CoV-2 spike protein may be adaptation to human transmission. iScience 2023; 26:106230. [PMID: 36845032 PMCID: PMC9937996 DOI: 10.1016/j.isci.2023.106230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and infect individuals. The exterior surface of the SARS-CoV-2 virion is dominated by the spike protein, and the current work examined spike protein biochemical features that have changed during the 3 years in which SARS-CoV-2 has infected humans. Our analysis identified a striking change in spike protein charge, from -8.3 in the original Lineage A and B viruses to -1.26 in most of the current Omicron viruses. We conclude that in addition to immune selection pressure, the evolution of SARS-CoV-2 has also altered viral spike protein biochemical properties, which may influence virion survival and promote transmission. Future vaccine and therapeutic development should also exploit and target these biochemical properties.
Collapse
Affiliation(s)
- Matthew Cotten
- Medical Research Council–University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
- UK Medical Research Council–Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51- 59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda, UK
| | - My V.T. Phan
- UK Medical Research Council–Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51- 59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda, UK
| |
Collapse
|
33
|
Zehr JD, Kosakovsky Pond SL, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic feline coronavirus phenotypes. Virus Evol 2023; 9:vead019. [PMID: 37038392 PMCID: PMC10082545 DOI: 10.1093/ve/vead019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Feline coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed feline enteric coronavirus [FECV]), with around 12 per cent developing into deadly feline infectious peritonitis (FIP; feline infectious peritonitis virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV- and FECV-specific signals of positive selection. We analyzed full-length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site (FCS) and the other within the fusion domain of Spike. We also found fifteen sites subject to positive selection associated with FIPV within Spike, eleven of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were fourteen sites (twelve novel sites) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 FCS and adjacent to C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype and included twenty-four positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV-wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that it is unlikely to be one singular 'switch' mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas 78352, France
| | - Ximena A Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laura B Goodman
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Tomaszewski T, Ali MA, Caetano-Anollés K, Caetano-Anollés G. Seasonal effects decouple SARS-CoV-2 haplotypes worldwide. F1000Res 2023; 12:267. [PMID: 37069849 PMCID: PMC10105261 DOI: 10.12688/f1000research.131522.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Variants of concern (VOCs) have been replacing each other during the still rampant COVID-19 pandemic. As a result, SARS-CoV-2 populations have evolved increasingly intricate constellations of mutations that often enhance transmissibility, disease severity, and other epidemiological characteristics. The origin and evolution of these constellations remain puzzling. Methods: Here we study the evolution of VOCs at the proteome level by analyzing about 12 million genomic sequences retrieved from GISAID on July 23, 2022. A total 183,276 mutations were identified and filtered with a relevancy heuristic. The prevalence of haplotypes and free-standing mutations was then tracked monthly in various latitude corridors of the world. Results: A chronology of 22 haplotypes defined three phases driven by protein flexibility-rigidity, environmental sensing, and immune escape. A network of haplotypes illustrated the recruitment and coalescence of mutations into major VOC constellations and seasonal effects of decoupling and loss. Protein interaction networks mediated by haplotypes predicted communications impacting the structure and function of proteins, showing the increasingly central role of molecular interactions involving the spike (S), nucleocapsid (N), and membrane (M) proteins. Haplotype markers either affected fusogenic regions while spreading along the sequence of the S-protein or clustered around binding domains. Modeling of protein structure with AlphaFold2 showed that VOC Omicron and one of its haplotypes were major contributors to the distortion of the M-protein endodomain, which behaves as a receptor of other structural proteins during virion assembly. Remarkably, VOC constellations acted cooperatively to balance the more extreme effects of individual haplotypes. Conclusions: Our study uncovers seasonal patterns of emergence and diversification occurring amid a highly dynamic evolutionary landscape of bursts and waves. The mapping of genetically-linked mutations to structures that sense environmental change with powerful ab initio modeling tools demonstrates the potential of deep-learning for COVID-19 predictive intelligence and therapeutic intervention.
Collapse
Affiliation(s)
- Tre Tomaszewski
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Muhammad Asif Ali
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | - Gustavo Caetano-Anollés
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- C. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
35
|
Agajanian S, Alshahrani M, Bai F, Tao P, Verkhivker GM. Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches. J Chem Inf Model 2023; 63:1413-1428. [PMID: 36827465 PMCID: PMC11162550 DOI: 10.1021/acs.jcim.2c01634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.
Collapse
Affiliation(s)
- Steve Agajanian
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology and Information Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Gennady M Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
36
|
Roe TL, Brady T, Schuko N, Nguyen A, Beloor J, Guest JD, Aksyuk AA, Tuffy KM, Zhang T, Streicher K, Kelly EJ, Kijak GH. Molecular Characterization of AZD7442 (Tixagevimab-Cilgavimab) Neutralization of SARS-CoV-2 Omicron Subvariants. Microbiol Spectr 2023; 11:e0033323. [PMID: 36877050 PMCID: PMC10100701 DOI: 10.1128/spectrum.00333-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Therapeutic anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (MAbs) provide immunosuppressed and vulnerable populations with prophylactic and treatment interventions against coronavirus disease 2019 (COVID-19). AZD7442 (tixagevimab-cilgavimab) is a combination of extended-half-life neutralizing MAbs that bind to distinct epitopes on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The Omicron variant of concern carries mutations at >35 positions in the spike protein and has undergone further genetic diversification since its emergence in November 2021. Here, we characterize the in vitro neutralization activity of AZD7442 toward major viral subvariants circulating worldwide during the first 9 months of the Omicron wave. BA.2 and its derived subvariants showed the highest susceptibility to AZD7442, while BA.1 and BA.1.1 showed a lower susceptibility. BA.4/BA.5 had a susceptibility level intermediate between BA.1 and BA.2. Mutagenesis of parental Omicron subvariant spike proteins was performed to establish a molecular model to describe the underlying determinants of neutralization by AZD7442 and its component MAbs. The concurrent mutation of residues at positions 446 and 493, located in the tixagevimab and cilgavimab binding sites, was sufficient to enhance in vitro susceptibility of BA.1 to AZD7442 and its component MAbs to levels similar to the Wuhan-Hu-1+D614G virus. AZD7442 maintained neutralization activity against all Omicron subvariants tested up to and including BA.5. The evolving nature of the SARS-CoV-2 pandemic warrants continuing real-time molecular surveillance and assessment of in vitro activity of MAbs used in prophylaxis against and the treatment of COVID-19. IMPORTANCE MAbs are key therapeutic options for COVID-19 prophylaxis and treatment in immunosuppressed and vulnerable populations. Due to the emergence of SARS-CoV-2 variants, including Omicron, it is vital to ensure that neutralization is maintained for MAb-based interventions. We studied the in vitro neutralization of AZD7442 (tixagevimab-cilgavimab), a cocktail of two long-acting MAbs targeting the SARS-CoV-2 spike protein, toward Omicron subvariants circulating from November 2021 to July 2022. AZD7442 neutralized major Omicron subvariants up to and including BA.5. The mechanism of action responsible for the lower in vitro susceptibility of BA.1 to AZD7442 was investigated using in vitro mutagenesis and molecular modeling. A combination of mutations at two spike protein positions, namely, 446 and 493, was sufficient to enhance BA.1 susceptibility to AZD7442 to levels similar to the Wuhan-Hu-1+D614G ancestral virus. The evolving nature of the SARS-CoV-2 pandemic warrants continuing real-time global molecular surveillance and mechanistic studies of therapeutic MAbs for COVID-19.
Collapse
Affiliation(s)
- Tiffany L. Roe
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Tyler Brady
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Nicolette Schuko
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Amy Nguyen
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jagadish Beloor
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Johnathan D. Guest
- Virology and Vaccine Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Anastasia A. Aksyuk
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Kevin M. Tuffy
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Tianhui Zhang
- Data Sciences and Quantitative Biology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Katie Streicher
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Elizabeth J. Kelly
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Gustavo H. Kijak
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
37
|
Miropolskaya N, Kozlov M, Petushkov I, Prostova M, Pupov D, Esyunina D, Kochetkov S, Kulbachinskiy A. Effects of natural polymorphisms in SARS-CoV-2 RNA-dependent RNA polymerase on its activity and sensitivity to inhibitors in vitro. Biochimie 2023; 206:81-88. [PMID: 36252889 PMCID: PMC9568283 DOI: 10.1016/j.biochi.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12. Structural mapping of these mutations suggests that some of them may affect the interactions of nsp12 with its cofactors nsp7/nsp8 as well as with RNA substrates. We have obtained several mutations of these types and demonstrated that some of them decrease specific activity of RdRp in vitro, possibly by changing RdRp assembly and/or its interactions with RNA. Therefore, natural polymorphisms in RdRp may potentially affect viral replication. Furthermore, we have synthesized a series of polyphenol and diketoacid derivatives based on previously studied inhibitors of hepatitis C virus RdRp and found that several of them can inhibit SARS-CoV-2 RdRp. Tested mutations in RdRp do not have strong effects on the efficiency of inhibition. Further development of more efficient non-nucleoside inhibitors of SARS-CoV-2 RdRp should take into account the existence of multiple polymorphic variants of RdRp.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Maxim Kozlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Maria Prostova
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
38
|
Neverov AD, Fedonin G, Popova A, Bykova D, Bazykin G. Coordinated evolution at amino acid sites of SARS-CoV-2 spike. eLife 2023; 12:e82516. [PMID: 36752391 PMCID: PMC9908078 DOI: 10.7554/elife.82516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/15/2023] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 has adapted in a stepwise manner, with multiple beneficial mutations accumulating in a rapid succession at origins of VOCs, and the reasons for this are unclear. Here, we searched for coordinated evolution of amino acid sites in the spike protein of SARS-CoV-2. Specifically, we searched for concordantly evolving site pairs (CSPs) for which changes at one site were rapidly followed by changes at the other site in the same lineage. We detected 46 sites which formed 45 CSP. Sites in CSP were closer to each other in the protein structure than random pairs, indicating that concordant evolution has a functional basis. Notably, site pairs carrying lineage defining mutations of the four VOCs that circulated before May 2021 are enriched in CSPs. For the Alpha VOC, the enrichment is detected even if Alpha sequences are removed from analysis, indicating that VOC origin could have been facilitated by positive epistasis. Additionally, we detected nine discordantly evolving pairs of sites where mutations at one site unexpectedly rarely occurred on the background of a specific allele at another site, for example on the background of wild-type D at site 614 (four pairs) or derived Y at site 501 (three pairs). Our findings hint that positive epistasis between accumulating mutations could have delayed the assembly of advantageous combinations of mutations comprising at least some of the VOCs.
Collapse
Affiliation(s)
- Alexey Dmitrievich Neverov
- HSE UniversityMoscowRussian Federation
- Central Research Institute for EpidemiologyMoscowRussian Federation
| | - Gennady Fedonin
- Central Research Institute for EpidemiologyMoscowRussian Federation
- Moscow Institute of Physics and Technology (National Research University)MoscowRussian Federation
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of SciencesMoscowRussian Federation
| | - Anfisa Popova
- Central Research Institute for EpidemiologyMoscowRussian Federation
| | - Daria Bykova
- Central Research Institute for EpidemiologyMoscowRussian Federation
- Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Georgii Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of SciencesMoscowRussian Federation
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
| |
Collapse
|
39
|
Alam MS. Insight into SARS-CoV-2 Omicron variant immune escape possibility and variant independent potential therapeutic opportunities. Heliyon 2023; 9:e13285. [PMID: 36744070 PMCID: PMC9886571 DOI: 10.1016/j.heliyon.2023.e13285] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The Omicron, the latest variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected in November 2021 in Botswana, South Africa. Compared to other variants of SARS-CoV-2, the Omicron is the most highly mutated, with 50 mutations throughout the genome, most of which are in the spike (S) protein. These mutations may help the Omicron to evade host immunity against the vaccine. Epidemiological studies suggest that Omicron is highly infectious and spreads rapidly, but causes significantly less severe disease than the wild-type strain and the other variants of SARS-CoV-2. With the increased transmissibility and a higher rate of re-infection, Omicron has now become a dominant variant worldwide and is predicted to be able to evade vaccine-induced immunity. Several clinical studies using plasma samples from individuals receiving two doses of US Food and Drugs Administration (FDA)-approved COVID-19 vaccines have shown reduced humoral immune response against Omicron infection, but T cell-mediated immunity was well preserved. In fact, T cell-mediated immunity protects against severe disease, and thus the disease caused by Omicron remains mild. In this review, I surveyed the current status of Omicron variant mutations and mechanisms of immune response in the context of immune escape from COVID-19 vaccines. I also discuss the potential implications of therapeutic opportunities that are independent of SARS-CoV-2 variants, including Omicron. A better understanding of vaccine-induced immune responses and variant-independent therapeutic interventions that include potent antiviral, antioxidant, and anti-cytokine activities may pave the way to reducing Omicron-related COVID-19 complications, severity, and mortality. Collectively, these insights point to potential research gaps and will aid in the development of new-generation COVID-19 vaccines and antiviral drugs to combat Omicron, its sublineages, or upcoming new variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
40
|
Abstract
The COVID-19 pandemic has been accompanied by SARS-CoV-2 evolution and emergence of viral variants that have far exceeded initial expectations. Five major variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) have emerged, each having both unique and overlapping amino acid substitutions that have affected transmissibility, disease severity, and susceptibility to natural or vaccine-induced immune responses and monoclonal antibodies. Several of the more recent variants appear to have evolved properties of immune evasion, particularly in cases of prolonged infection. Tracking of existing variants and surveillance for new variants are critical for an effective pandemic response.
Collapse
Affiliation(s)
- Jana L Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; , ,
| | - Ghady Haidar
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; , ,
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; , ,
| |
Collapse
|
41
|
Pather S, Muik A, Rizzi R, Mensa F. Clinical development of variant-adapted BNT162b2 COVID-19 vaccines: the early Omicron era. Expert Rev Vaccines 2023; 22:650-661. [PMID: 37417000 DOI: 10.1080/14760584.2023.2232851] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION The Omicron BA.1 variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and subsequent sub-lineages exhibit partial escape from neutralizing antibodies elicited by vaccines containing or encoding wild-type spike protein. In response to the emergence of Omicron sub-lineages, variant-adapted vaccines that contain or encode for Omicron spike protein components have been developed. AREAS COVERED This review presents currently available clinical immunogenicity and safety data on Omicron variant-adapted versions of the BNT162b2 messenger RNA (mRNA) vaccine and summarizes the expected mechanism of action, and rationale for development, of these vaccines. In addition, challenges encountered during development and regulatory approval are discussed. EXPERT OPINION Omicron-adapted BNT162b2 vaccines provide a wider breadth and potentially more durable protection against Omicron sub-lineages and antigenically aligned variants when compared with the original vaccine. As SARS-CoV-2 continues to evolve, further vaccine updates may be required. To facilitate this, a globally harmonized regulatory process for the transition to updated vaccines is needed. Next-generation vaccine approaches may provide broader protection against future variants.
Collapse
|
42
|
Lozano-Rodríguez R, Avendaño-Ortíz J, Terrón V, Montalbán-Hernández K, Casalvilla-Dueñas J, Bergón-Gutiérrez M, Mata-Martínez P, Martín-Quirós A, García-Garrido MÁ, del Balzo-Castillo Á, Peinado M, Gómez L, Llorente-Fernández I, Martín-Miguel G, Herrero-Benito C, López-Morejón L, Vela-Olmo C, Cubillos-Zapata C, López-Collazo E, del Fresno C. mRNA-1273 boost after BNT162b2 vaccination generates comparable SARS-CoV-2-specific functional responses in naïve and COVID-19-recovered individuals. Front Immunol 2023; 14:1136029. [PMID: 37153580 PMCID: PMC10160618 DOI: 10.3389/fimmu.2023.1136029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction COVID-19 vaccines based on mRNA have represented a revolution in the biomedical research field. The initial two-dose vaccination schedule generates potent humoral and cellular responses, with a massive protective effect against severe COVID-19 and death. Months after this vaccination, levels of antibodies against SARS-CoV-2 waned, and this promoted the recommendation of a third vaccination dose. Methods We have performed an integral and longitudinal study of the immunological responses triggered by the booster mRNA-1273 vaccination, in a cohort of health workers previously vaccinated with two doses of the BNT162b2 vaccine at University Hospital La Paz located in Madrid, Spain. Circulating humoral responses and SARS-CoV-2-specific cellular reactions, after ex vivo restimulation of both T and B cells (cytokines production, proliferation, class switching), have been analyzed. Importantly, all along these studies, the analyses have been performed comparing naïve and subjects recovered from COVID-19, addressing the influence of a previous infection by SARS-CoV-2. Furthermore, as the injection of the third vaccination dose was contemporary to the rise of the Omicron BA.1 variant of concern, T- and B-cell-mediated cellular responses have been comparatively analyzed in response to this variant. Results All these analyses indicated that differential responses to vaccination due to a previous SARS-CoV-2 infection were balanced following the boost. The increase in circulating humoral responses due to this booster dropped after 6 months, whereas T-cell-mediated responses were more stable along the time. Finally, all the analyzed immunological features were dampened in response to the Omicron variant of concern, particularly late after the booster vaccination. Conclusion This work represents a follow-up longitudinal study for almost 1.5 years, analyzing in an integral manner the immunological responses triggered by the prime-boost mRNA-based vaccination schedule against COVID-19.
Collapse
Affiliation(s)
- Roberto Lozano-Rodríguez
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - José Avendaño-Ortíz
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Verónica Terrón
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Karla Montalbán-Hernández
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - José Casalvilla-Dueñas
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Marta Bergón-Gutiérrez
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Pablo Mata-Martínez
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Alejandro Martín-Quirós
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Miguel Ángel García-Garrido
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Álvaro del Balzo-Castillo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - María Peinado
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Laura Gómez
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | - Gema Martín-Miguel
- Pediatric Intensive Care Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Carmen Herrero-Benito
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | | | - Carolina Cubillos-Zapata
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Eduardo López-Collazo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Respiratory Diseases (CIBERES), Madrid, Spain
- *Correspondence: Eduardo López-Collazo, ; Carlos del Fresno,
| | - Carlos del Fresno
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- *Correspondence: Eduardo López-Collazo, ; Carlos del Fresno,
| |
Collapse
|
43
|
The SARS-CoV-2 spike S375F mutation characterizes the Omicron BA.1 variant. iScience 2022; 25:105720. [PMID: 36507224 PMCID: PMC9719929 DOI: 10.1016/j.isci.2022.105720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have revealed the unique virological characteristics of Omicron, particularly those of its spike protein, such as less cleavage efficacy in cells, reduced ACE2 binding affinity, and poor fusogenicity. However, it remains unclear which mutation(s) determine these three virological characteristics of Omicron spike. Here, we show that these characteristics of the Omicron spike protein are determined by its receptor-binding domain. Of interest, molecular phylogenetic analysis revealed that acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidated that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue of another protomer in the spike trimer, conferring the attenuated cleavage efficiency and fusogenicity of Omicron spike. Our data shed light on the evolutionary events underlying the emergence of Omicron at the molecular level.
Collapse
|
44
|
Šimičić P, Židovec-Lepej S. A Glimpse on the Evolution of RNA Viruses: Implications and Lessons from SARS-CoV-2. Viruses 2022; 15:1. [PMID: 36680042 PMCID: PMC9866536 DOI: 10.3390/v15010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
RNA viruses are characterised by extremely high genetic variability due to fast replication, large population size, low fidelity, and (usually) a lack of proofreading mechanisms of RNA polymerases leading to high mutation rates. Furthermore, viral recombination and reassortment may act as a significant evolutionary force among viruses contributing to greater genetic diversity than obtainable by mutation alone. The above-mentioned properties allow for the rapid evolution of RNA viruses, which may result in difficulties in viral eradication, changes in virulence and pathogenicity, and lead to events such as cross-species transmissions, which are matters of great interest in the light of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemics. In this review, we aim to explore the molecular mechanisms of the variability of viral RNA genomes, emphasising the evolutionary trajectory of SARS-CoV-2 and its variants. Furthermore, the causes and consequences of coronavirus variation are explored, along with theories on the origin of human coronaviruses and features of emergent RNA viruses in general. Finally, we summarise the current knowledge on the circulating variants of concern and highlight the many unknowns regarding SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
| | - Snježana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| |
Collapse
|
45
|
Neher RA. Contributions of adaptation and purifying selection to SARS-CoV-2 evolution. Virus Evol 2022; 8:veac113. [PMID: 37593203 PMCID: PMC10431346 DOI: 10.1093/ve/veac113] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/30/2022] [Accepted: 12/05/2022] [Indexed: 08/19/2023] Open
Abstract
Continued evolution and adaptation of SARS-CoV-2 has led to more transmissible and immune-evasive variants with profound impacts on the course of the pandemic. Here I analyze the evolution of the virus over 2.5 years since its emergence and estimate the rates of evolution for synonymous and non-synonymous changes separately for evolution within clades-well-defined monophyletic groups with gradual evolution-and for the pandemic overall. The rate of synonymous mutation is found to be around 6 changes per year. Synonymous rates within variants vary little from variant to variant and are compatible with the overall rate of 7 changes per year (or [Formula: see text] per year and codon). In contrast, the rate at which variants accumulate amino acid changes (non-synonymous mutations) was initially around 12-16 changes per year, but in 2021 and 2022 it dropped to 6-9 changes per year. The overall rate of non-synonymous evolution, that is across variants, is estimated to be about 26 amino acid changes per year (or [Formula: see text] per year and codon). This strong acceleration of the overall rate compared to within clade evolution indicates that the evolutionary process that gave rise to the different variants is qualitatively different from that in typical transmission chains and likely dominated by adaptive evolution. I further quantify the spectrum of mutations and purifying selection in different SARS-CoV-2 proteins and show that the massive global sampling of SARS-CoV-2 is sufficient to estimate site-specific fitness costs across the entire genome. Many accessory proteins evolve under limited evolutionary constraints with little short-term purifying selection. About half of the mutations in other proteins are strongly deleterious.
Collapse
Affiliation(s)
- Richard A Neher
- Biozentrum, University of Basel, Spitalstrasse 41, Basel
4053, Switzerland
- Swiss Institute of Bioinformatics, Spitalstrasse 41, Basel
4053, Switzerland
| |
Collapse
|
46
|
Tzou PL, Tao K, Sahoo MK, Kosakovsky Pond SL, Pinsky BA, Shafer RW. Sierra SARS-CoV-2 sequence and antiviral resistance analysis program. J Clin Virol 2022; 157:105323. [PMID: 36334368 PMCID: PMC9595491 DOI: 10.1016/j.jcv.2022.105323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Although most laboratories are capable of employing established protocols to perform full-genome SARS-CoV-2 sequencing, many are unable to assess sequence quality, select appropriate mutation-detection thresholds, or report on the potential clinical significance of mutations in the targets of antiviral therapy METHODS: We describe the technical aspects and benchmark the performance of Sierra SARS-CoV-2, a program designed to perform these functions on user-submitted FASTQ and FASTA sequence files and lists of Spike mutations. Sierra SARS-CoV-2 indicates which sequences contain an unexpectedly large number of unusual mutations and which mutations are associated with reduced susceptibility to clinical stage mAbs, the RdRP inhibitor remdesivir, or the Mpro inhibitor nirmatrelvir RESULTS: To assess the performance of Sierra SARS-CoV-2 on FASTQ files, we applied it to 600 representative FASTQ sequences and compared the results to the COVID-19 EDGE program. To assess its performance on FASTA files, we applied it to nearly one million representative FASTA sequences and compared the results to the GISAID mutation annotation. To assess its performance on mutations lists, we applied it to 13,578 distinct Spike RBD mutation patterns and showed that exactly or partially matching annotations were available for 88% of patterns CONCLUSION: Sierra SARS-CoV-2 leverages previously published data to improve the quality control of submitted viral genomic data and to provide functional annotation on the impact of mutations in the targets of antiviral SARS-CoV-2 therapy. The program can be found at https://covdb.stanford.edu/sierra/sars2/ and its source code at https://github.com/hivdb/sierra-sars2.
Collapse
Affiliation(s)
- Philip L Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Benjamin A Pinsky
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
47
|
Xiong D, Zhang X, Yu J, Wei H. Distribution of intra-host variations and mutations in the genomes of SARS-CoV-2 and their implications on detection and therapeutics. MedComm (Beijing) 2022; 3:e186. [PMID: 36474856 PMCID: PMC9717708 DOI: 10.1002/mco2.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
The ongoing circulation of SARS-CoV-2 variants of concern (VOCs) has caused global concerns, because VOCs could escape current vaccines, antiviral drugs, and diagnosis. Analyzing mutations and intra-host diversities in different and widespread VOCs can provide important insights to virus adaptive evolution and validity of vaccines, antiviral drugs, and diagnosis. In this study, by analyzing 1744 high-throughput sequencing data for intra-host single-nucleotide variations (iSNVs) and 3,668,205 genome sequences for mutations in different VOCs, it was found that Omicron variant is still evolving at high speed, especially having high iSNVs frequency in its S and N genes. The efficacies of antibodies or detection primers targeting these two genes are at high risks to be invalid. Instead, highly conserved regions such as NSP8 gene could be better therapeutic and detection targets. Furthermore, mutations in later VOCs could be traced to the minor alleles in the previous variant samples such as Alpha and Delta in different countries. Finally, it was found that mutations C14408T in RdRp and A18163G in NSP14 gene might be associated with the higher genetic diversity in Omicron. Our findings not only contribute to understanding the adaptive evolution of SARS-CoV-2 VOCs, but also provide useful information for both drugs and diagnostic kits development.
Collapse
Affiliation(s)
- Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoxu Zhang
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
48
|
Gao X, Fan L, Zheng B, Li H, Wang J, Zhang L, Li J, Zhu F. Binding and neutralizing abilities of antibodies towards SARS-CoV-2 S2 domain. Hum Vaccin Immunother 2022; 18:2055373. [PMID: 35417303 PMCID: PMC9225664 DOI: 10.1080/21645515.2022.2055373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants have been reported to be resistant to several neutralizing antibodies (NAbs) targeting Receptor Binding Domain (RBD) and N Terminal Domain (NTD) of spike (S) protein and thus inducing immune escape. However, fewer studies were carried out to investigate the neutralizing ability of S2-specific antibodies. In this research, 10 monoclonal antibodies (mAbs) targeting SARS-CoV-2 S2 subunit were generated from Coronavirus Disease 2019 (COVID-19) convalescent patients by phage display technology and molecular cloning technology. The binding activity of these S2-mAbs toward SARS-CoV-2 S, SARS-CoV-2 S2, SARS-CoV-2 RBD, SARS-CoV-2 NTD, severe acute respiratory syndrome coronavirus (SARS-CoV) S, SARS-CoV S2 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) S proteins were evaluated by enzyme-linked immunosorbent assay (ELISA). Their neutralizing potency toward SARS-CoV-2 wild-type (WT), B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.1.1 and B.1.621 variants were determined by pseudo-virus-based neutralization assay. Results showed that S2E7-mAb had cross-activity to S or S2 proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, while with limited neutralizing activity to pseudo-viruses of SARS-CoV-2 WT and variants. It is undeniable that the binding and neutralizing activities of the S2-targeting mAbs are significantly weaker than the previously reported antibodies targeting RBD and NTD, but our study may provide some evidences for understanding immune protection and identifying targets for vaccine design based on the conserved S2 subunit.
Collapse
Affiliation(s)
- Xingsu Gao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Linlin Fan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Binyang Zheng
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Haoze Li
- Vazyme Biotech Co, Ltd., Nanjing, PR China
| | - Jiwei Wang
- Vazyme Biotech Co, Ltd., Nanjing, PR China
| | - Li Zhang
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Jingxin Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Fengcai Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, PR China
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| |
Collapse
|
49
|
Smith CA, Ashby B. Antigenic evolution of SARS-CoV-2 in immunocompromised hosts. Evol Med Public Health 2022; 11:90-100. [PMID: 37007166 PMCID: PMC10061940 DOI: 10.1093/emph/eoac037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES/AIMS Prolonged infections of immunocompromised individuals have been proposed as a crucial source of new variants of SARS-CoV-2 during the COVID-19 pandemic. In principle, sustained within-host antigenic evolution in immunocompromised hosts could allow novel immune escape variants to emerge more rapidly, but little is known about how and when immunocompromised hosts play a critical role in pathogen evolution. MATERIALS AND METHODS Here, we use a simple mathematical model to understand the effects of immunocompromised hosts on the emergence of immune escape variants in the presence and absence of epistasis. CONCLUSIONS We show that when the pathogen does not have to cross a fitness valley for immune escape to occur (no epistasis), immunocompromised individuals have no qualitative effect on antigenic evolution (although they may accelerate immune escape if within-host evolutionary dynamics are faster in immunocompromised individuals). But if a fitness valley exists between immune escape variants at the between-host level (epistasis), then persistent infections of immunocompromised individuals allow mutations to accumulate, therefore, facilitating rather than simply speeding up antigenic evolution. Our results suggest that better genomic surveillance of infected immunocompromised individuals and better global health equality, including improving access to vaccines and treatments for individuals who are immunocompromised (especially in lower- and middle-income countries), may be crucial to preventing the emergence of future immune escape variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Cameron A Smith
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
- Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK
- Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
50
|
Lucaci AG, Zehr JD, Shank SD, Bouvier D, Ostrovsky A, Mei H, Nekrutenko A, Martin DP, Kosakovsky Pond SL. RASCL: Rapid Assessment of Selection in CLades through molecular sequence analysis. PLoS One 2022; 17:e0275623. [PMID: 36322581 PMCID: PMC9629619 DOI: 10.1371/journal.pone.0275623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
An important unmet need revealed by the COVID-19 pandemic is the near-real-time identification of potentially fitness-altering mutations within rapidly growing SARS-CoV-2 lineages. Although powerful molecular sequence analysis methods are available to detect and characterize patterns of natural selection within modestly sized gene-sequence datasets, the computational complexity of these methods and their sensitivity to sequencing errors render them effectively inapplicable in large-scale genomic surveillance contexts. Motivated by the need to analyze new lineage evolution in near-real time using large numbers of genomes, we developed the Rapid Assessment of Selection within CLades (RASCL) pipeline. RASCL applies state of the art phylogenetic comparative methods to evaluate selective processes acting at individual codon sites and across whole genes. RASCL is scalable and produces automatically updated regular lineage-specific selection analysis reports: even for lineages that include tens or hundreds of thousands of sampled genome sequences. Key to this performance is (i) generation of automatically subsampled high quality datasets of gene/ORF sequences drawn from a selected "query" viral lineage; (ii) contextualization of these query sequences in codon alignments that include high-quality "background" sequences representative of global SARS-CoV-2 diversity; and (iii) the extensive parallelization of a suite of computationally intensive selection analysis tests. Within hours of being deployed to analyze a novel rapidly growing lineage of interest, RASCL will begin yielding JavaScript Object Notation (JSON)-formatted reports that can be either imported into third-party analysis software or explored in standard web-browsers using the premade RASCL interactive data visualization dashboard. By enabling the rapid detection of genome sites evolving under different selective regimes, RASCL is well-suited for near-real-time monitoring of the population-level selective processes that will likely underlie the emergence of future variants of concern in measurably evolving pathogens with extensive genomic surveillance.
Collapse
Affiliation(s)
- Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jordan D. Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Stephen D. Shank
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Dave Bouvier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Alexander Ostrovsky
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | - Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Darren P. Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|