1
|
Santana de Cecco B, Grace Falconnier N, Chen W, Go YY, Peak L, Sasaki E, Walsh C, Mitchell MS, Carossino M, Del Piero F. Pathologic and genomic characterization of an outbreak of anthrax-like disease caused by Bacillus tropicus (formerly atypical Bacillus cereus) in red kangaroos ( Macropus rufus). Vet Pathol 2025; 62:332-342. [PMID: 40320846 DOI: 10.1177/03009858241306399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Atypical Bacillus cereus strains (currently classified as Bacillus tropicus) capable of causing anthrax-like disease in humans and animals have emerged in the last 2 decades. These emerging strains are characterized by the acquisition of virulence plasmids pBCXO1 and pBC210, which are homologous to the pXO1 and pXO2 virulence plasmids of Bacillus anthracis, the agent of anthrax. The aim of this study was to describe the gross, histologic, microbiologic, and molecular features of an outbreak of anthrax-like septicemia caused by B. tropicus in red kangaroos (Macropus rufus). Three red kangaroos from a wild animal preserve were found dead with no premonitory clinical signs. No changes in husbandry were reported prior to the outbreak. The peracute disease process was characterized by severe splenomegaly, associated with fibrinonecrotizing splenitis in all affected animals, in addition to segmental suppurative enteritis in 2 kangaroos and cutaneous excoriations, with underlying necrotizing cellulitis and lymphadenitis, in 1 kangaroo. Numerous intralesional, gram-positive and capsulated bacilli were identified as the formerly known B. cereus group via bacteriologic culture. Whole-genome sequencing from one of the bacterial isolates (designated 11844) revealed numerous anthrax-like virulence factors, including the pBCXO1 and pBC210 virulence plasmids. This isolate also had a close phylogenetic relationship with other B. tropicus strains carrying these virulence plasmids, including B. tropicus (formerly B. cereus) G9241. This is the first report of B. tropicus leading to anthrax-like disease in kangaroos. This disease form carries significant public health risks due to potential zoonotic transmission.
Collapse
Affiliation(s)
- Bianca Santana de Cecco
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Naomi Grace Falconnier
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Weiyi Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yun Young Go
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Emi Sasaki
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Christine Walsh
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Maria S Mitchell
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Fabio Del Piero
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
2
|
Parzygnat JL, Crespo R, Fosnaught M, Muyyarrikkandy M, Hull D, Harden L, Thakur S. Megaplasmid Dissemination in Multidrug-Resistant Salmonella Serotypes from Backyard and Commercial Broiler Production Systems in the Southeastern United States. Foodborne Pathog Dis 2025; 22:322-331. [PMID: 38635963 DOI: 10.1089/fpd.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Over the past decade, there has been a rise in U.S. backyard poultry ownership, raising concern for residential area antimicrobial-resistant (AMR) Salmonella contamination. This study aims to lay the groundwork to better understand the persistence of AMR Salmonella in residential broiler production systems and make comparisons with commercial systems. Ten backyard and 10 commercial farms were sampled at three time points across bird production. Both fecal (n = 10) and environmental (soil, n = 5, litter/compost, n = 5, feeder, and waterer swabs, n = 6) samples were collected at each visit on days 10, 31, and 52 of production for backyard farms and days 10, 24, and 38 of production for commercial farms. AMR Salmonella was characterized phenotypically by broth microdilution and genotypically by whole-genome sequencing. Overall, Salmonella was more prevalent in commercial farm samples (52.31%) over backyard farms (19.10%). Kentucky (sequence type (ST) 152) was the most common serotype found in both backyard and commercial farms. Multidrug-resistant (MDR, resistance to ≥3 or more antimicrobial classes) isolates were found in both production systems, while ciprofloxacin- and nalidixic acid-resistant and intermediate isolates were more prevalent in commercial (33%) than backyard samples (1%). Plasmids that have been associated with MDR were found in Kentucky and Infantis isolates, particularly IncFIB(K)_1_Kpn3 megaplasmid (Infantis). Our study emphasizes the need to understand the selection pressures in disseminating megaplasmids in MDR Salmonella in distinct broiler production systems.
Collapse
Affiliation(s)
- Jessica L Parzygnat
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Mary Fosnaught
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Muhammed Muyyarrikkandy
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brooking, South Dakota, USA
| | - Dawn Hull
- Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Lyndy Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Hamed SM, Darwish MM, Monir R, Taweel AA, Ghanem AI, Hanna IN, Amer MA. Providencia pseudovermicola sp. nov.: redefining Providencia vermicola and unveiling multidrug-resistant strains from diabetic foot ulcers in Egypt. BMC Microbiol 2025; 25:238. [PMID: 40269694 PMCID: PMC12016157 DOI: 10.1186/s12866-025-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Providencia species are concerning due to their intrinsic resistance to colistin and tigecycline, complicating the treatment of multidrug-resistant (MDR) infections. METHODS In the current study, two MDR isolates, DFU6 and DFU52T, were recovered from infected diabetic foot ulcers in Egypt in 2024. Following their initial identification as Providencia stuartii using VITEK® 2 and MALDI-TOF-MS, the isolates were subjected to whole-genome sequencing via DNBseq. RESULTS While the 16S rRNA gene showed 100% similarity to that of Providencia vermicola, phylogenomic analysis against the type strains in the TYGS database, including P. vermicola DSM 17385T confirmed that these isolates represent a distinct species within the genus, further supported by overall genome-relatedness indices (ORGIs). This discrepancy prompted us to revise the taxonomy of all published genomes of P. vermicola strains (n = 59) which revealed misidentification of at least 56 strains that are unrelated to the type strain of this species. DFU6 and DFU52T carried novel sequence types (ST29 and ST41, submitted to PubMLST) and harbored multiple resistance genes. Both strains contained the qnrD1 gene on a small, non-mobilizable plasmid. DFU52T possessed a conjugative plasmid encoding blaCMY-6, blaNDM-1, rmtC, aac(6')-Ib10, sul1, aph(3')-Ia, and qacEΔ1. DFU6 carried an ISEcp1-associated blaCTX-M-14, along with aadA, dfrA1, lnuF in a class 2 integron, and armA, msrE, and mphE on a resistance plasmid. Both isolates also featured a pathogenicity island (PAI) integrated into the pheV gene with fimbriae-encoding genes. CONCLUSION Following our reassessment of the taxonomic classification of all P. vermicola strains with published genomes, we propose reclassifying certain strains, including DFU6 and DFU52T, into distinct species for which we propose the name Providencia pseudovermicola sp. nov. We recommend DFU52T (= CCASU-2024-72) as the type strain for the novel species. We also shed light on the public health threat of this novel species as a human pathogen that harbours carbapenem and aminoglycoside resistance genes on mobile genetic elements.
Collapse
Affiliation(s)
- Samira M Hamed
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - Manal M Darwish
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham Monir
- National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - Ahmed Al Taweel
- National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - Ayat I Ghanem
- National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - Ihab N Hanna
- National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - Mai A Amer
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
4
|
Ozoaduche CL, Libisch B, Itoro D, Idemudia IB, Posta K, Olasz F. Antibiotic Resistance and Virulence Determinants of Pseudomonas aeruginosa Isolates Cultured from Hydrocarbon-Contaminated Environmental Samples. Microorganisms 2025; 13:688. [PMID: 40142580 PMCID: PMC11945736 DOI: 10.3390/microorganisms13030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Crude oil and its derivates are among the most important environmental pollutants, where P. aeruginosa strains producing AlkB1 and AlkB2 alkane hydroxylases are often involved in their biodegradation. The aim of this study was to analyze antibiotic resistance and virulence determinants of a P. aeruginosa isolate cultured from a hydrocarbon-contaminated soil sample from Ogoniland, Nigeria, and to compare its characteristics with P. aeruginosa isolates cultured worldwide from hydrocarbon-contaminated environments or from clinical samples. Using the ResFinder reference database, a catB7 chloramphenicol acetyltransferase gene, an ampC-type PDC β-lactamase gene, and an OXA-50 type β-lactamase gene were identified in all P. aeruginosa strains analyzed in this study. In some of these P. aeruginosa strains, loss-of-function mutations were detected in the regulatory genes mexR, nalC, or nalD, predicting an efflux-mediated acquired antibiotic-resistance mechanism. Several P. aeruginosa sequence types that were associated with oil-contaminated environments have also been cultured from human clinical samples worldwide, including sequence types ST532, ST267, ST244, and ST1503. Our findings also indicate that environmental P. aeruginosa may serve as the source of human infections, warranting further studies from a One Health perspective about the application of P. aeruginosa for the in situ bioremediation of hydrocarbon-contaminated sites.
Collapse
Affiliation(s)
- Chioma Lilian Ozoaduche
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (C.L.O.); (K.P.); (F.O.)
- Doctoral School of Biology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Sustainable Environment Development Initiative (SEDI), Benin City 300102, Nigeria
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (C.L.O.); (K.P.); (F.O.)
| | - Daniel Itoro
- Microbiology Research Laboratory, University of Benin, Benin City 300283, Nigeria;
| | | | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (C.L.O.); (K.P.); (F.O.)
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (C.L.O.); (K.P.); (F.O.)
| |
Collapse
|
5
|
An H, Ching XH, Cheah WJ, Lim WL, Ee KY, Chong CS, Lam MQ. Genomic analysis of a halophilic bacterium Nesterenkonia sp. CL21 with ability to produce a diverse group of lignocellulolytic enzymes. Folia Microbiol (Praha) 2025; 70:71-82. [PMID: 38842626 DOI: 10.1007/s12223-024-01178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Halophilic bacteria are extremophiles that thrive in saline environment. Their ability to withstand such harsh conditions makes them an ideal choice for industrial applications such as lignocellulosic biomass degradation. In this study, a halophilic bacterium with the ability to produce extracellular cellulases and hemicellulases, designated as Nesterenkonia sp. CL21, was isolated from mangrove sediment in Tanjung Piai National Park, Malaysia. Thus far, studies on lignocellulolytic enzymes concerning bacterial species under this genus are limited. To gain a comprehensive understanding of its lignocellulose-degrading potential, the whole genome was sequenced using the Illumina NovaSeq 6000 platform. The genome of strain CL21 was assembled into 25 contigs with 3,744,449 bp and a 69.74% GC content and was predicted to contain 3,348 coding genes. Based on taxonomy analysis, strain CL21 shares 73.8 to 82.0% average nucleotide identity with its neighbouring species, below the 95% threshold, indicating its possible status as a distinct species in Nesterenkonia genus. Through in-depth genomic mining, a total of 81 carbohydrate-active enzymes were encoded. Among these, 24 encoded genes were identified to encompass diverse cellulases (GH3), xylanases (GH10, GH11, GH43, GH51, GH127 and CE4), mannanases (GH38 and GH106) and pectinases (PL1, PL9, and PL11). The production of lignocellulolytic enzymes was tested in the presence of several substrates. This study revealed that strain CL21 can produce a diverse array of enzymes which are active at different time points. By combining experimental data with genomic information, the ability of strain CL21 to produce lignocellulolytic enzymes has been elucidated, with potential applications in biorefinery industry.
Collapse
Affiliation(s)
- Hongxuan An
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Xin Huey Ching
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Wai Jun Cheah
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Wei Lun Lim
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Kah Yaw Ee
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Ming Quan Lam
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| |
Collapse
|
6
|
Nowrouzian FL, Lumingkit K, Gio-Batta M, Jaén-Luchoro D, Thordarson T, Elfvin A, Wold AE, Adlerberth I. Tracing Staphylococcus capitis and Staphylococcus epidermidis strains causing septicemia in extremely preterm infants to the skin, mouth, and gut microbiota. Appl Environ Microbiol 2025; 91:e0098024. [PMID: 39692500 PMCID: PMC11784025 DOI: 10.1128/aem.00980-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Coagulase-negative staphylococci (CoNS) comprise about 50 species, some of which cause septicemia in preterm neonates. CoNS establish early on the skin and in the oral and gut microbiota, from where they may spread to the bloodstream. The colonization pattern preceding septicemia is not well-defined. Forty-two extremely preterm neonates (≤28 + 0 gestational weeks) were followed from birth to 2 months with regular sampling and culturing of the skin and oral and gut microbiota. Blood samples were drawn upon clinical suspicion of septicemia and cultured. CoNS species were identified using matrix-assisted laser-desorption ionization time of flight mass spectrometry (MALDI-TOF). Random amplified polymorphic DNA was used for strain typing, and strains were characterized regarding biofilm production and virulence gene carriage. CoNS blood isolates underwent whole genome sequencing. Staphylococcus epidermidis represented 72% of the CoNS isolates on skin or mucous membranes, followed by Staphylococcus capitis (13%) and Staphylococcus haemolyticus (7%). CoNS septicemia was diagnosed in nine infants, yielding 11 septicemia isolates: seven S. capitis and four S. epidermidis, of which nine were further analyzed. The S. capitis septicemia isolates belonged to the NRCS-A clone. Two-thirds of the septicemia strains were traced back to the commensal microbiota. Colonization of the oral cavity by S. capitis was significantly associated with CoNS septicemia development, although the blood-borne S. capitis strains were more commonly found on the skin than in the mouth prior to invasion. Biofilm production was not associated with septicemia. Our results implicate CoNS colonization as a step that precedes septicemia in preterm neonates. Early colonization of the oral cavity by S. capitis may represent a particular risk. IMPORTANCE Septicemia is a major cause of morbidity in preterm infants. Coagulase-negative staphylococci (CoNS) can colonize skin, oral cavity, and intestines and are a common cause of septicemia in this group. The relation between CoNS colonization pattern at the species and strain level and septicemia has scarcely been studied. We mapped colonization of the skin, oral cavity, and intestines by CoNS species in extremely preterm infants and speciated and strain-typed the skin, mucosal, and blood isolates. Two-thirds of the CoNS septicemia blood strains, including a majority of S. capitis strains belonging to the NRCS-A clone, were tracked to the commensal microbiota. We demonstrated that CoNS species differ in their colonization patterns, whereby S. capitis was primarily a skin colonizer. However, its colonization of the oral cavity was enhanced among infants developing septicemia. Our study provides a starting point for further explorations of the relationship between CoNS colonization and septicemia in preterm infants.
Collapse
Affiliation(s)
- Forough L. Nowrouzian
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kirth Lumingkit
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thordur Thordarson
- Institute of Clinical Science, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anders Elfvin
- Institute of Clinical Science, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Agnes E. Wold
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Adlerberth
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
He Y, Dykes GE, Kanrar S, Liu Y, Gunther NW, Counihan KL, Lee J, Capobianco JA. Comparative Genomic Analysis of Campylobacter Plasmids Identified in Food Isolates. Microorganisms 2025; 13:206. [PMID: 39858976 PMCID: PMC11768034 DOI: 10.3390/microorganisms13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Campylobacter is one of the leading bacterial causes of gastroenteritis worldwide. It frequently contaminates poultry and other raw meat products, which are the primary sources of Campylobacter infections in humans. Plasmids, known as important mobile genetic elements, often carry genes for antibiotic resistance, virulence, and self-mobilization. They serve as the main vectors for transferring genetic material and spreading resistance and virulence among bacteria. In this study, we identified 34 new plasmids from 43 C. jejuni and C. coli strains isolated from retail meat using long-read and short-read genome sequencing. Pangenomic analysis of the plasmid assemblies and reference plasmids from GenBank revealed five distinct groups, namely, pTet, pVir, mega plasmids (>80 kb), mid plasmids (~30 kb), and small plasmids (<6 kb). Pangenomic analysis identified the core and accessory genes in each group, indicating a high degree of genetic similarity within groups and substantial diversity between the groups. The pTet plasmids were linked to tetracycline resistance phenotypes in host strains. The mega plasmids carry multiple genes (e.g., aph(3')-III, type IV and VI secretion systems, and type II toxin-antitoxin systems) important for plasmid mobilization, virulence, antibiotic resistance, and the persistence of Campylobacter. Together, the identification and comprehensive genetic characterization of new plasmids from Campylobacter food isolates contributes to understanding the mechanisms of gene transfer, particularly the spread of genetic determinants of virulence and antibiotic resistance in this important pathogen.
Collapse
Affiliation(s)
- Yiping He
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Gretchen Elizabeth Dykes
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Siddhartha Kanrar
- Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - Yanhong Liu
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Nereus W. Gunther
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Katrina L. Counihan
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Joe Lee
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Joseph A. Capobianco
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| |
Collapse
|
8
|
Egyir B, Owusu-Nyantakyi C, Bortey A, Rabbi Amuasi G, Owusu FA, Boateng W, Ahmed H, Danso JK, Oclu AAG, Mohktar Q, Tetteh-Ocloo G, Amegbletor H, Fosu K, Tetteh FKM, Asante-Sefa S, Deberu ON, Osei KM, Twasam J, Kodom S, Gyinae E, Sampah J, Dzifa Dayie N, Obeng-Nkrumah N, Mills-Pappoe WA, Boateng G, Nilsson P, Bonful HA, Adu B, Hendriksen RS. Whole genome sequencing revealed high proportions of ST152 MRSA among clinical Staphylococcus aureus isolates from ten hospitals in Ghana. mSphere 2024; 9:e0044624. [PMID: 39565128 DOI: 10.1128/msphere.00446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Previous studies in Ghana indicated low prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and predominance of ST152 methicillin-susceptible S. aureus (MSSA) among clinical isolates. ST152 MRSA clones are associated with severe infections and epidemics. Using whole genome sequencing (WGS), 159 S. aureus isolated from clinical sources (wound, blood, urine, ear, abscess, umbilical cord, eye, vaginal samples, and others) from 10 hospitals across Ghana were investigated. mecA (gene for methicillin resistance) was detected in 38% of the isolates. Panton-Valentine leucocidin toxin (PVL) gene occurred in 65% isolates, with 84% of the MRSA's harboring the PVL gene. ST152 was the major clone, with 74% harboring the mecA gene. Other MRSA clones detected were ST5, ST5204, ST852, and ST1. MSSA clones included ST3249, ST152, ST5, ST1, and ST8. Twenty-three genes encoding resistance to 12 antimicrobial classes were observed with blaZ (97%) being the most prevalent. Other predominant resistance genes included tetK (46%), cat (42%), and dfrG (36%) encoding resistance for tetracyclines, phenicols, and diaminopyrimidine, respectively. Virulence genes for enterotoxins, biofilms, toxic-shock-syndrome toxins, hemolysins, and leukotoxins were also detected. Phylogenetic analysis revealed a shift in the dominant clone from MSSA ST152 to MRSA ST152 over the past decade. The study provides valuable insights into the genomic content of S. aureus from clinical sources in Ghana. The finding of ST152 MRSA in high numbers suggests a shifting epidemiological landscape of these pathogens and continuous surveillance using robust tools like WGS is needed to monitor the rise and spread of these epidemic clones in the country.IMPORTANCESince its emergence in 1959, MRSA has been a significant public health concern, causing infections in both clinical and community settings. Patients with MRSA-related infections experience higher mortality rates due to its ability to evade antimicrobials and immune defenses. In Ghana, understanding the molecular epidemiology of MRSA has been hindered by the lack of appropriate laboratory infrastructure and the limited capacity for molecular data analysis. This study, the largest genomic study of S. aureus in Ghana, addresses this gap by utilizing whole genome sequencing to examine the diversity of circulating S. aureus strains from 10 hospitals. Our findings highlight the predominance of pandemic clones, particularly ST152, and the notable transition of ST152 MSSA to ST152 MRSA over the past decade. The findings from this study supports AMR surveillance efforts in Ghana and emphasize the importance of implementing genomic surveillance using WGS to comprehensively monitor the rise and spread of multi-drug-resitant organisms such as MRSA in the country.
Collapse
Affiliation(s)
- Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christian Owusu-Nyantakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Alfred Bortey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Grebstad Rabbi Amuasi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Felicia Amoa Owusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - William Boateng
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hawawu Ahmed
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Justice Kwesi Danso
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Agnes Akosua Gyamaah Oclu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Quaneeta Mohktar
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | | | | | | | - Solomon Asante-Sefa
- Sekondi Public Health Laboratory, Effia Nkwanta Regional Hospital, Takoradi, Ghana
| | | | | | | | | | | | | | - Nicholas Dzifa Dayie
- Department of Medical Microbiology, University of Ghana Medical School, Korle-Bu, Ghana
| | - Noah Obeng-Nkrumah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | | | | | - Pernille Nilsson
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Harriet Affran Bonful
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Rene S Hendriksen
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Tuttobene MR, Arango Gil BS, Di Venanzio G, Mariscotti JF, Sieira R, Feldman MF, Ramirez MS, García Véscovi E. Unraveling the role of UilS, a urea-induced acyl-homoserine lactonase that enhances Serratia marcescens fitness, interbacterial competition, and urinary tract infection. mBio 2024; 15:e0250524. [PMID: 39475236 PMCID: PMC11633161 DOI: 10.1128/mbio.02505-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
Serratia marcescens, a member of the Enterobacteriaceae family, is an opportunistic human pathogen and a frequent cause of urinary tract infections. Clinical isolates often exhibit resistance to multiple antibiotics, posing challenges for successful treatment. Understanding its pathogenic mechanisms is crucial for elucidating new potential targets to develop effective therapeutic interventions and manage S. marcescens infections. This work identifies urea-induced lactonase of Serratia (UilS), a lactonase encoded in the S. marcescens RM66262 strain isolated from a patient with a urinary tract infection. The study explores the bacterium's response to urea, a major component of urine, and its impact on uilS expression. We found that UilS degrades acyl-homoserine lactones (AHL) autoinducers traditionally associated with quorum sensing mechanisms. Surprisingly, UilS is able to degrade self and non-self AHL, exhibiting quorum-quenching activity toward Pseudomonas aeruginosa. We found that LuxR regulates uilS expression that is enhanced in the presence of AHL. In addition, urea-dependent induction of UilS expression is controlled by the transcriptional response regulator CpxR. UilS confers fitness advantage to S. marcescens, especially in the presence of urea, emphasizing the adaptive plasticity of strains to modulate gene expression based on environmental signals and population density. We also discovered a novel bacterial killing capacity of S. marcescens that involves UilS, indicating its importance in the interspecies interaction of Serratia. Finally, we found that a uilS mutant strain displays attenuated colonization in a mouse model of catheter-associated urinary tract infection. uilS is present in clinical but absent in environmental isolates, suggesting an evolutionary adaptation to host-specific selective pressures. IMPORTANCE This work reveals the acyl-homoserine lactonase urea-induced lactonase of Serratia as a novel virulence factor of Serratia marcescens, unraveling a potential target to develop antimicrobial strategies and shedding light on the complex regulatory network governing pathogenicity and adaptation to host environments.
Collapse
Affiliation(s)
- Marisel R. Tuttobene
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Brayan S. Arango Gil
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Javier F. Mariscotti
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir—IIBBA CONICET, Buenos Aires, Argentina
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - María Soledad Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
10
|
Martinez K, Stillson PT, Ravenscraft A. Inferior Caballeronia symbiont lacks conserved symbiosis genes. Microb Genom 2024; 10:001333. [PMID: 39680049 PMCID: PMC11893276 DOI: 10.1099/mgen.0.001333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024] Open
Abstract
Pentatomomorphan bugs can form symbiotic associations with bacteria belonging to the supergenus Burkholderia sensu lato. This relationship has become a model for understanding environmental symbiont acquisition. Host insects can utilize various symbiont strains from across Burkholderia sensu lato; however, host colonization success and benefits conferred vary by bacterial clade. Therefore, we conducted a meta-analysis aimed at identifying candidate genes that underpin beneficial symbioses within this system. We scanned the entire Burkholderiaceae family for the presence of 17 colonization-associated genes, as well as 88 candidate genes that are differentially expressed during symbiosis. There was no difference in the distribution of the 17 colonization-associated genes between symbiotic (Caballeronia and insect-associated plant beneficial and environmental clade) and non-symbiotic lineages; however, there was a higher prevalence of the 88 candidate genes in the insect symbiont lineages. We subsequently analysed the genomes of nine symbiotic Caballeronia species that confer varying fitness benefits to their insect hosts. One symbiont species was significantly worse, one was significantly better and the remaining seven were intermediate in terms of conferred host fitness benefits. We found that species possessing a higher number of the candidate genes conferred faster host development time. Furthermore, we identified two candidate genes that were missing in the least beneficial species but present in the other eight, suggesting that these genes may be important in modulating symbiont quality. Our study suggests that the mechanisms required for host colonization are broadly distributed across Burkholderiaceae, but the genes that determine symbiont quality are more prevalent in insect-associated species. This work helps to identify genes that influence this highly specialized yet diverse symbiosis between Pentatomomorphan insects and Burkholderiaceae bacteria.
Collapse
Affiliation(s)
- Kaisy Martinez
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| | - Patrick T. Stillson
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| | - Alison Ravenscraft
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
11
|
Hadfield R, Mulford T, Fisher ML, Borgmeier A, Ardon DA, Suchomel AD, Fomekong-Lontchi J, Sutherland L, Huie M, Lupiyaningdyah P, Nichols S, Fei Lin Y, Anantaprayoon N, Leavitt SD. Imperiled wanderlust lichens in steppe habitats of western North America comprise geographically structured mycobiont lineages and a reversal to sexual reproduction within this asexual clade. Mol Phylogenet Evol 2024; 201:108212. [PMID: 39384122 DOI: 10.1016/j.ympev.2024.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The northern North American Cordillera is a globally significant center of endemism. In western North America, imperiled arid steppe habitats support a number of unique species, including several endemic lichens. However, processes driving diversification and endemism in this region remain unclear. In this study, we investigate diversity and phylogeography of the threatened wanderlust lichens (mycobiont = Rhizoplaca species) which occur unattached on calcareous soils in steppe habitats. Wanderlust lichens comprise three species of lichen-forming fungi (LFF) - Rhizoplaca arbuscula, R. haydenii, and R. idahoensis (endangered, IUCN Red List) - which occur in fragmented populations in Idaho and Wyoming, with more limited populations in southern Montana and northern Utah. These lichens reproduce almost exclusively via large, asexual vegetative propagules. Here, our aims were to (i) assess the evolutionary origin of this group and identify phylogeographic structure, (ii) infer ancestral geographic distributions for lineages within this clade, and (iii) use species distribution modeling to better understand the distribution of contemporary populations. Using a genome-skimming approach, we generated a 19.1Mb alignment, spanning ca. half of the complete LFF genome, from specimens collected throughout the entire range of wanderlust lichens. Based on this phylogeny, we investigated phylogeographic patterns using RASP. Finally, we used MaxEnt to estimate species distribution models for R. arbuscula and R. haydenii. We inferred a highly structured topology, with clades corresponding to distinct geographic regions and morphologies collected throughout the group's distribution. We found that R. robusta, a sexually reproducing taxon, is clearly nested within the vagrant Rhizoplaca clade. Phylogeographic analyses suggest that both dispersal and vicariance played significant roles throughout the evolutionary history of the vagrant Rhizoplaca clade, with most of the dispersal events originating from the Salmon Basin in eastern Idaho - the center of diversity for this group. Despite the fact that wanderlust lichens are dispersal limited due to large, unspecialized vegetative propagules, we inferred multiple dispersal events crossing the Continental Divide. Comparing herbarium records with species distribution models suggests that wanderlust lichens don't fully occupy the areas of highest distribution probability. In fact, documented records often occur in areas predicted to be only marginally suitable. These data suggest a potential mismatch between contemporary habitats outside of the center of diversity in eastern Idaho with the most suitable habitat, adding to the vulnerability of this imperiled complex of endemic lichens.
Collapse
Affiliation(s)
- Robert Hadfield
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| | - Teagan Mulford
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| | - Makani L Fisher
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Abigail Borgmeier
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Diego A Ardon
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Andrew D Suchomel
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Judicaël Fomekong-Lontchi
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| | - Laura Sutherland
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| | - Madison Huie
- Department of Plant and Wildlife Science, Brigham Young University, Provo, UT 84602, USA
| | - Pungki Lupiyaningdyah
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| | - Sierra Nichols
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ying Fei Lin
- Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA; Department of Plant and Wildlife Science, Brigham Young University, Provo, UT 84602, USA
| | | | - Steven D Leavitt
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
12
|
de Oliveira VF, de Britto-Costa LF, de Aragão GL, Scaccia N, Mamana AC, Côrtes MF, de Oliveira MS, de Melo Tavares B, Manuli ER, Leal FE, de Oliveira Xavier GT, Grespan RMZ, Sequeira CCR, Nunes FLS, Dropa M, Martone-Rocha S, Razzolini MTP, Sabino EC, Padoveze MC, Holmes A, Costa SF, Levin AS. Colonisation by multidrug-resistant organisms in health workers in primary care: narrow spectrum oral antimicrobials are a risk factor. Eur J Clin Microbiol Infect Dis 2024; 43:2323-2333. [PMID: 39320520 DOI: 10.1007/s10096-024-04953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Limited information exists on carriage of multidrug-resistant organisms (MDRO) by health workers (HWs) in primary care settings. This study aims to determine the prevalence of MDRO carriage among HWs in primary care and to identify associated risk factors. METHODS A cross-sectional study was conducted across all 12 primary care units in São Caetano do Sul-SP, Brazil, from October to December 2023. Self-collected samples (nasal, oropharyngeal, and inguinal) were obtained. Environment cultures (potable water, sewage and stream water) were evaluated. Stenotrophomonas maltophilia isolates (human and environmental) were typed. RESULTS The study included 265/288 (92%) of HWs in primary care teams, mostly women with a median age of 47 years (IQR 38-57); 78% had no comorbidities. MDRO colonisation was found in 8.7% (23 HWs). The following bacteria were found: S. maltophilia (n = 9; 3.4%) in inguinal swabs; methicillin-resistant Staphylococcus aureus (n = 8; 3%) from all sites; extended-spectrum ß-lactamase-producing bacteria (n = 5; 2%) in inguinal swabs; and vancomycin-resistant enterococci in an inguinal swab (n = 1; 0.4%). Previous antibiotic use was significantly associated with MDRO colonisation (OR 2.91, 95% CI 1.19-7.09, p = 0.018), mainly narrow spectrum oral beta-lactams and macrolides. S. malthophilia was polyclonal and human and environmental isolates differed. CONCLUSION Colonisation by MRSA, VRE, and ESBL-producing bacteria was low; however, 4% were surprisingly colonized by polyclonal S. maltophilia. This pathogen may also suggest using narrow-spectrum rather than the expected broad-spectrum antimicrobials. Antibiotic use was the only risk factor found, mainly with oral narrow-spectrum drugs.
Collapse
Affiliation(s)
- Vítor Falcão de Oliveira
- Division of Infectious Diseases, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | | | | | - Nazareno Scaccia
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Mamana
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marina Farrel Côrtes
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maura Salaroli de Oliveira
- Division of Infectious Diseases, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno de Melo Tavares
- Division of Infectious Diseases, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Erika Regina Manuli
- Division of Infectious Diseases, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Departamento de Pesquisa Clínica E Inovação Em Saúde, Universidade Municipal de São Caetano Do Sul, Sao Paulo, Brazil
| | - Fábio Eudes Leal
- Departamento de Pesquisa Clínica E Inovação Em Saúde, Universidade Municipal de São Caetano Do Sul, Sao Paulo, Brazil
- Divisão de Pesquisa Clínica (DIPETEC), Instituto Nacional Do Câncer, Rio de Janeiro, Brazil
| | | | - Regina Maura Zetone Grespan
- Departamento de Pesquisa Clínica E Inovação Em Saúde, Universidade Municipal de São Caetano Do Sul, Sao Paulo, Brazil
| | - Cibele Cristine Remondes Sequeira
- Municipal Health Department, Primary Health System, Sao Caetano Do Sul, Sao Paulo, Brazil
- Departamento de Pesquisa Clínica E Inovação Em Saúde, Universidade Municipal de São Caetano Do Sul, Sao Paulo, Brazil
| | - Fatima L S Nunes
- Laboratory for Informatics Applications in Health, School of Arts, Humanities and Science, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Milena Dropa
- School of Public Health, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Ester Cerdeira Sabino
- Division of Infectious Diseases, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Departamento de Pesquisa Clínica E Inovação Em Saúde, Universidade Municipal de São Caetano Do Sul, Sao Paulo, Brazil
| | | | - Alison Holmes
- University of Liverpool and Imperial College London, London, UK
| | - Silvia F Costa
- Division of Infectious Diseases, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Anna S Levin
- Division of Infectious Diseases, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
Zakaria MR, Vodovnik M, Zorec M, Liew KJ, Tokiman L, Chong CS. A description of Joostella sp. strain CR20 with potential biotechnological applications. Antonie Van Leeuwenhoek 2024; 118:38. [PMID: 39613983 DOI: 10.1007/s10482-024-02045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
The underexplored halophilic genus Joostella within the Flavobacteriaceae family consists of only two species, both of which have received little attention for their potential biotechnological applications. In this study, we report the isolation and characterisation of a novel halophilic bacterium, strain CR20, using a genomic approach to investigate its biotechnological potential. Analysis of the 16S rRNA gene revealed that strain CR20 shares 97.5% and 96.2% sequence similarity with Joostella marina DSM 19592 T and Joostella atrarenae M1-2 T, respectively. Strain CR20 exhibited average nucleotide identity and digital DNA-DNA hybridisation values of 76.8-79.1% and 20.8-22.8%, respectively, with Joostella spp., which fall below the species delineation thresholds. Additionally, strain CR20 demonstrated average amino acid identity and percentage of conserved proteins values of 81.3-84.0% and 71.7-75.3%, respectively, with Joostella spp., above the genus delineation thresholds. Meanwhile, the average amino acid identity and percentage of conserved proteins values of strain CR20 against Galbibacter spp. are 73.9-80.0% and 61.3-72.3%, respectively, also above the genus delineation thresholds. These findings indicated strain CR20 has a close relationship with both genera. Chemotaxonomic analysis of strain CR20 identified predominant fatty acids, including iso-C17:0 3OH (25.3%), iso-C15:0 (14%), and C16:1 ω6c/C16:1 ω7c (12.2%). The assembled genome comprises 62 contigs, with a size of approximately 3,168,727 bp and a G + C content of 35.1%. Among 2,804 predicted genes, 2,559 were classified into 25 COG functional groups. A total of 68 genes with potential industrial applications were identified, including 1 β-mannanase, 2 β-xylosidases, 1 polysaccharide deacetylase, 4 other hemicellulases, 6 β-glucosidases, 25 proteases, and 29 phosphate-solubilising enzymes. Hydrolytic assays confirmed that strain CR20 produces these enzymes extracellularly. These findings highlight strain CR20 has potential for industrial applications.
Collapse
Affiliation(s)
- Muhammad Ramziuddin Zakaria
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Maša Vodovnik
- Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maša Zorec
- Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Lili Tokiman
- Johor National Parks Corporation, Kota Iskandar, 79575, Iskandar Puteri, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
14
|
Tantry M, Shaw T, Rao S, Mukhopadhyay C, Tellapragada C, Kalwaje Eshwara V. Heterogeneity and Genomic Plasticity of Acinetobacter baumannii and Acinetobacter nosocomialis Isolates Recovered from Clinical Samples in India. Curr Microbiol 2024; 81:415. [PMID: 39425793 DOI: 10.1007/s00284-024-03942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Acinetobacter baumannii and Acinetobacter nosocomialis are the imperious pathogens in the intensive care units. We aimed to explore the genomic features of these pathogens to understand the factors influencing their plasticity. Using next-generation sequencing, two carbapenem-resistant A. baumannii (AbaBS-3, AbaETR-4) isolates and a pan-susceptible A. nosocomialis (AbaAS-5) isolate were characterised. All genomes exhibited 94% similarity with a degree of heterogeneity. AbaBS-3 and AbaETR-4 harboured antibiotic resistance gene (ARG) repertoire to most antibiotic classes. Carbapenem resistance was due to blaOXA-23 and blaOXA-66 besides the antibiotic efflux pumps. Diverse mobile genetic elements (MGE), insertion sequences (IS), prophages and virulence determinants with a plethora of stress response genes were identified in all three genomes. Class-1 integron in AbaETR-4, encoded genes that confer resistance to aminoglycosides, phenicol, sulfonamides and disinfectants. Substitutions in LpxACD and PmrCAB of AbaETR-4 confirmed the colistin resistance in vitro. Novel mutations in piuA, responsible for transporting cefiderocol, were found in AbaBS-3 and AbaETR-4. Plasmids carrying toxin-antitoxin systems, ARGs and ISs were present in these genomes. All three genomes harboured diverse protein secretion systems, virulence determinants related to immune evasion, adherence, biofilm formation and iron acquisition systems. AbaAS-5 exclusively harboured serine protease pkf, and CpaA substrate of type-II secretion system but lacked the acinetobactin-iron acquisition system. Our work delivers a holistic genome characterization of A. baumannii, coupled with a trailblazing attempt to study A. nosocomialis from India. The presence of ARGs and potential virulence factors interspersed with MGE is a cause for concern, depicting the dynamic adaptability mediated by genetic recombination.
Collapse
Affiliation(s)
- Manasa Tantry
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tushar Shaw
- Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore, 560054, India
| | - Shwethapriya Rao
- Department of Critical Care, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 14183, Stockholm, Sweden
| | - Vandana Kalwaje Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
15
|
Hall MB, Wick RR, Judd LM, Nguyen AN, Steinig EJ, Xie O, Davies M, Seemann T, Stinear TP, Coin L. Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data. eLife 2024; 13:RP98300. [PMID: 39388235 PMCID: PMC11466455 DOI: 10.7554/elife.98300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accuracy of Illumina sequencing, especially when applied to ONT's super-high accuracy model. ONT's superior performance is attributed to its ability to overcome Illumina's errors, which often arise from difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of high-performing variant callers with ONT's super-high accuracy data mitigates ONT's traditional errors in homopolymers. We also investigated the impact of read depth on variant calling, demonstrating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT sequencing, combined with advanced variant calling algorithms, to replace traditional short-read sequencing methods in bacterial genomics, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Michael B Hall
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Ryan R Wick
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - Louise M Judd
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - An N Nguyen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Eike J Steinig
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Ouli Xie
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Monash Infectious Diseases, Monash HealthMelbourneAustralia
| | - Mark Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - Lachlan Coin
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
16
|
Yap PSX, Yeo LF, Teh CSJ, Dhanoa A, Phipps ME. Plasmid-Mediated Co-Occurrence of mcr-1.1 in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Isolated From the Indigenous Seminomadic Community in Malaysia. Transbound Emerg Dis 2024; 2024:9223696. [PMID: 40303148 PMCID: PMC12017022 DOI: 10.1155/2024/9223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/07/2024] [Accepted: 08/24/2024] [Indexed: 05/02/2025]
Abstract
The growing prevalence of commensal antibiotic resistant Escherichia coli poses a significant concern for the global spread of antibiotic resistance. Stool samples (n = 35) from a seminomadic indigenous community in Malaysia, the Jehai, were screened for multidrug-resistant bacteria, specifically the extended-spectrum β-lactamase (ESBL) producers. Subsequently, whole-genome sequencing was used to provide genomic insights into eight ESBL-producing E. coli that colonised eight individuals. The ESBL E. coli isolates carry resistance genes from various antibiotic classes such as the β-lactams (bla TEM, bla CTX-M-15 and bla CTX-M-55), quinolones (gyrA, qnrS and qnrS1) and aminoglycosides (aph(3')-Ia, aph(6)-Id and aac(3)-IId). Three concerning convergence of ESBL, colistin and metal resistance determinants, with three plasmids from H-type lineage harbouring bla CTX-M and mcr-1.1 genes were identified. Using the Oxford Nanopore Technology (ONT) Native Barcoding Kit (SQK-NBD114.24) in conjunction with the R10.4.1 flow cell, which achieved an average read accuracy (Q > 10) of 99.84%, we further characterised the mcr-1.1-bearing plasmids, ranging in size from 25 to 28 kb, from three strains of E. coli. This report represents the first whole genome analysis of multidrug-resistant bacteria, specifically those resistant to colistin, found within the indigenous population in Malaysia. It strongly indicates that the pertinent issue of colistin resistance in the country is far more significant than previously estimated.
Collapse
Affiliation(s)
- Polly Soo Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Selangor, Malaysia
| | - Li-Fang Yeo
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Selangor, Malaysia
- Cancer Research Malaysia, Sime Darby Medical Centre Subang Jaya, 2nd Floor, Outpatient Centre, Subang Jaya 47500, Selangor, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya 50603, Kuala Lumpur, Malaysia
| | - Amreeta Dhanoa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Selangor, Malaysia
| | - Maude Elvira Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
17
|
Ndhlovu GON, Javkar KG, Matuvhunye T, Ngondoh F, Jamrozy D, Bentley S, Shittu AO, Dube FS. Investigating genomic diversity of Staphylococcus aureus associated with pediatric atopic dermatitis in South Africa. Front Microbiol 2024; 15:1422902. [PMID: 39224215 PMCID: PMC11366657 DOI: 10.3389/fmicb.2024.1422902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Importance Staphylococcus aureus frequently colonizes the skin and nose of patients with atopic dermatitis (AD), a disease associated with skin barrier dysfunction and chronic cutaneous inflammation. Published genomic studies on AD-associated S. aureus in pediatric populations in sub-Saharan Africa are limited. Objectives To investigate the phenotypic and genomic diversity of S. aureus in children with and without AD during early childhood. Data setting and participants A cross-sectional study of 220 children (aged 9-38 months) with AD (cases) and without AD (controls) from Cape Town and Umtata, South Africa. Main outcomes and measures S. aureus phenotypic and genomic diversity were investigated using whole-genome sequencing, antibiotic susceptibility testing and biofilm microtiter assay. Results Of the 124 S. aureus isolates recovered from 220 children, 96 isolates (79 cases and 17 controls) with high-quality sequences were analyzed. Isolates from cases showed greater phenotypic resistance to gentamicin (10%), rifampicin (4%), chloramphenicol (4%), and exhibited multidrug resistance (9%) than in controls. Furthermore, the isolates from cases formed stronger biofilms than those from controls (76% vs. 35%, p = 0.001), but showed no dominance of any virulence factor gene or mobile genetic elements. There was no significant difference in the distribution of immune evasion cluster types between cases and controls. However, IEC type G was identified only among cases. Conclusion and relevance AD-associated S. aureus has phenotypic and genetic features that are important for successful pathogenic colonization and survival. Further studies are needed to assess the pathological implications of colonization of various S. aureus lineages in vivo to elucidate their pathological contribution to AD pathogenesis and pathophysiology.
Collapse
Affiliation(s)
- Gillian O. N. Ndhlovu
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kiran G. Javkar
- Department of Computer Science, University of Maryland, College Park, MD, United States
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD, United States
| | - Takudzwa Matuvhunye
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Froodia Ngondoh
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephen Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Adebayo O. Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun, Nigeria
- Institute of Medical Microbiology, University Hospital Munster, Munster, Germany
| | - Felix S. Dube
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Middlebrook EA, Katani R, Fair JM. OrthoPhyl-streamlining large-scale, orthology-based phylogenomic studies of bacteria at broad evolutionary scales. G3 (BETHESDA, MD.) 2024; 14:jkae119. [PMID: 38839049 PMCID: PMC11304591 DOI: 10.1093/g3journal/jkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large-scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity-spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use cases: E. coli/Shigella, Brucella/Ochrobactrum and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| | - Robab Katani
- 401 Huck Life Sciences Building, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeanne M Fair
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| |
Collapse
|
19
|
Parzygnat JL, Dunn RR, Koci MD, Crespo R, Harden L, Thakur S. Fluoroquinolone-resistant Campylobacter in backyard and commercial broiler production systems in the United States. JAC Antimicrob Resist 2024; 6:dlae102. [PMID: 38974944 PMCID: PMC11227224 DOI: 10.1093/jacamr/dlae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Objectives Campylobacter spp. are one of the leading foodborne pathogens in the world, and chickens are a known reservoir. This is significant considering broiler chicken is the top consumed meat worldwide. In the USA, backyard poultry production is increasing, but little research has been done to investigate prevalence and antimicrobial resistance associated with Campylobacter in these environments. Methods Our study encompasses a farm-to-genome approach to identify Campylobacter and investigate its antimicrobial resistance phenotypically and genotypically. We travelled to 10 backyard and 10 integrated commercial broiler farms to follow a flock throughout production. We sampled at days 10, 31 and 52 for backyard and 10, 24 and 38 for commercial farms. Bird faecal (n = 10) and various environmental samples (soil n = 5, litter/compost n = 5, and feeder and waterer swabs n = 6) were collected at each visit and processed for Campylobacter. Results Our results show a higher prevalence of Campylobacter in samples from backyard farms (21.9%) compared to commercial (12.2%). Most of our isolates were identified as C. jejuni (70.8%) and the remainder as C. coli (29.2%). Antimicrobial susceptibility testing reveals phenotypic resistance to ciprofloxacin (40.2%), an important treatment drug for Campylobacter infection, and tetracycline (46.6%). A higher proportion of resistance was found in C. jejuni isolates and commercial farms. Whole-genome sequencing revealed resistance genes, such as tet(O) and gyrA_T86I point mutation, that may confer resistance. Conclusion Overall, our research emphasizes the need for interventions to curb prevalence of resistant Campylobacter spp. on broiler production systems.
Collapse
Affiliation(s)
- Jessica L Parzygnat
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Matthew D Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Rocio Crespo
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Lyndy Harden
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| |
Collapse
|
20
|
Lowe M, Strasheim W, Chan WY, Perovic O. Bacterial and Genetic Features of Raw Retail Pork Meat: Integrative Analysis of Antibiotic Susceptibility, Whole-Genome Sequencing, and Metagenomics. Antibiotics (Basel) 2024; 13:700. [PMID: 39200000 PMCID: PMC11350697 DOI: 10.3390/antibiotics13080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The global antibiotic resistance crisis, driven by overuse and misuse of antibiotics, is multifaceted. This study aimed to assess the microbiological and genetic characteristics of raw retail pork meat through various methods, including the isolation, antibiotic susceptibility testing (AST), whole-genome sequencing (WGS) of selected indicator bacteria, antibiotic residue testing, and metagenomic sequencing. Samples were purchased from 10 pre-selected retail stores in Gauteng, South Africa. The samples were aseptically separated, with portions sent to an external laboratory for isolating indicator bacteria and testing for antibiotic residues. Identification of the isolated bacteria was reconfirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). AST was performed using the Microscan Walkaway system (Beckman Coulter, Brea, CA, USA). WGS and metagenomic sequencing were performed using the Illumina NextSeq 550 instrument (San Diego, CA, USA). The isolated E. coli and E. faecalis exhibited minimal phenotypic resistance, with WGS revealing the presence of tetracycline resistance genes. Both the isolated bacteria and meat samples harboured tetracycline resistance genes and the antibiotic residue concentrations were within acceptable limits for human consumption. In the metagenomic context, most identified bacteria were of food/meat spoilage and environmental origin. The resistome analysis primarily indicated beta-lactam, tetracycline and multidrug resistance genes. Further research is needed to understand the broader implications of these findings on environmental health and antibiotic resistance.
Collapse
Affiliation(s)
- Michelle Lowe
- Centre for Healthcare Association Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (M.L.); (W.S.)
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2193, South Africa
| | - Wilhelmina Strasheim
- Centre for Healthcare Association Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (M.L.); (W.S.)
| | - Wai Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Olga Perovic
- Centre for Healthcare Association Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (M.L.); (W.S.)
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
21
|
Hatrongjit R, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Boueroy P, Akeda Y, Okada K, Iida T, Hamada S, Kerdsin A. Genomic analysis of carbapenem- and colistin-resistant Klebsiella pneumoniae complex harbouring mcr-8 and mcr-9 from individuals in Thailand. Sci Rep 2024; 14:16836. [PMID: 39039157 PMCID: PMC11263567 DOI: 10.1038/s41598-024-67838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
The surge in mobile colistin-resistant genes (mcr) has become an increasing public health concern, especially in carbapenem-resistant Enterobacterales (CRE). Prospective surveillance was conducted to explore the genomic characteristics of clinical CRE isolates harbouring mcr in 2015-2020. In this study, we aimed to examine the genomic characteristics and phonotypes of mcr-8 and mcr-9 harbouring carbapenem-resistant K. pneumoniae complex (CRKpnC). Polymerase chain reaction test and genome analysis identified CRKpnC strain AMR20201034 as K. pneumoniae (CRKP) ST147 and strain AMR20200784 as K. quasipneumoniae (CRKQ) ST476, harbouring mcr-8 and mcr-9, respectively. CRKQ exhibited substitutions in chromosomal-mediated colistin resistance genes (pmrB, pmrC, ramA, and lpxM), while CRKP showed two substitutions in crrB, pmrB, pmrC, lpxM and lapB. Both species showed resistance to colistin, with minimal inhibitory concentrations of 8 µg/ml for mcr-8-carrying CRKP isolate and 32 µg/ml for mcr-9-carrying CRKQ isolate. In addition, CRKP harbouring mcr-8 carried blaNDM, while CRKQ harbouring mcr-9 carried blaIMP, conferring carbapenem resistance. Analysis of plasmid replicon types carrying mcr-8 and mcr-9 showed FIA-FII (96,575 bp) and FIB-HI1B (287,118 bp), respectively. In contrast with the plasmid carrying the carbapenemase genes, the CRKQ carried blaIMP-14 on an IncC plasmid, while the CRKP harboured blaNDM-1 on an FIB plasmid. This finding provides a comprehensive insight into another mcr-carrying CRE from patients in Thailand. The other antimicrobial-resistant genes in the CRKP were blaCTX-M-15, blaSHV-11, blaOXA-1, aac(6')-Ib-cr, aph(3')-VI, ARR-3, qnrS1, oqxA, oqxB, sul1, catB3, fosA, and qacE, while those detected in CRKQ were blaOKP-B-15, qnrA1, oqxA, oqxB, sul1, fosA, and qacE. This observation highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harbouring CRE and the need for rational drug use in all sectors.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | | - Kazuhisa Okada
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tetsuya Iida
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| |
Collapse
|
22
|
Gandham P, Vadla N, Saji A, Srinivas V, Ruperao P, Selvanayagam S, Saxena RK, Rathore A, Gopalakrishnan S, Thakur V. Genome assembly, comparative genomics, and identification of genes/pathways underlying plant growth-promoting traits of an actinobacterial strain, Amycolatopsis sp. (BCA-696). Sci Rep 2024; 14:15934. [PMID: 38987320 PMCID: PMC11237095 DOI: 10.1038/s41598-024-66835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
The draft genome sequence of an agriculturally important actinobacterial species Amycolatopsis sp. BCA-696 was developed and characterized in this study. Amycolatopsis BCA-696 is known for its biocontrol properties against charcoal rot and also for plant growth-promotion (PGP) in several crop species. The next-generation sequencing (NGS)-based draft genome of Amycolatopsis sp. BCA-696 comprised of ~ 9.05 Mb linear chromosome with 68.75% GC content. In total, 8716 protein-coding sequences and 61 RNA-coding sequences were predicted in the genome. This newly developed genome sequence has been also characterized for biosynthetic gene clusters (BGCs) and biosynthetic pathways. Furthermore, we have also reported that the Amycolatopsis sp. BCA-696 produces the glycopeptide antibiotic vancomycin that inhibits the growth of pathogenic gram-positive bacteria. A comparative analysis of the BCA-696 genome with publicly available closely related genomes of 14 strains of Amycolatopsis has also been conducted. The comparative analysis has identified a total of 4733 core and 466 unique orthologous genes present in the BCA-696 genome The unique genes present in BCA-696 was enriched with antibiotic biosynthesis and resistance functions. Genome assembly of the BCA-696 has also provided genes involved in key pathways related to PGP and biocontrol traits such as siderophores, chitinase, and cellulase production.
Collapse
Affiliation(s)
- Prasad Gandham
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Nandini Vadla
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Angeo Saji
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Vadlamudi Srinivas
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pradeep Ruperao
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- Excellence in Breeding, International Maize and Wheat Improvement Center (CIMMYT), Hyderabad, India.
| | - Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania.
| | - Vivek Thakur
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
23
|
Irgang R, Saldarriaga-Córdoba M, Poblete-Morales M, Avendaño-Herrera R. Flavobacterium facile sp. nov., isolated from water system of Atlantic salmon ( Salmo salar) fry cultured in Chile. Int J Syst Evol Microbiol 2024; 74:006468. [PMID: 39058544 PMCID: PMC11281480 DOI: 10.1099/ijsem.0.006468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Strain T-12T, an orange, Gram-stain-negative, non-motile, rod-shaped strain, was isolated in November 2013 from water samples collected from an Atlantic salmon (Salmo salar) fry culturing system at a fish farm in Chile. Phylogenetic analysis based on 16S rRNA sequences (1394 bp) revealed that strain T-12T belonged to the genus Flavobacterium, showing close relationships to Flavobacterium bernardetii F-372T (99.48 %) and Flavobacterium terrigena DS-20T (98.50 %). The genome size of strain T-12T was 3.28 Mb, with a G+C content of 31.1 mol%. Genome comparisons aligned strain T-12T with Flavobacterium bernardetii F-372T (GCA_011305415) and Flavobacterium terrigena DSM 17934T (GCA_900108955). The highest digital DNA-DNA hybridization (dDDH) values were 42.6 % with F. bernardetii F-372T (GCA_011305415) and 33.9 % with F. terrigena DSM 17934T (GCA_900108955). Pairwise average nucleotide identity (ANI) calculations were below the species cutoff, with the best results with F. bernardetii F-372T being: ANIb, 90.33 %; ANIm, 91.85 %; and TETRA, 0.997 %. These dDDH and ANI results confirm that strain T-12T represents a new species. The major fatty acids were iso-C15 : 0 and C15 : 1ω6с. Detected polar lipids included phospholipids (n=2), aminophospholipid (n=1), aminolipid (n=1) and unidentified lipids (n=2). The predominant respiratory quinone was menaquinone MK7 (80 %) followed by MK-6 (20 %). Phenotypic, chemotaxonomic, and genomic data support the classification of strain T-12T (=CECT 30410T=RGM 3222T) as representing a novel species of Flavobacterium, for which the name Flavobacterium facile sp. nov. is proposed.
Collapse
Affiliation(s)
- Rute Irgang
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
| | - Mónica Saldarriaga-Córdoba
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Escuela de Medicina Veterinaria & Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O´Higgins, Santiago, Chile
| | - Matías Poblete-Morales
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Valparaíso, Chile
| |
Collapse
|
24
|
Park Y, Min J, Kim B, Park W. Pedobacter faecalis sp. nov., isolated from the faeces of eland, Taurotragus oryx. Int J Syst Evol Microbiol 2024; 74. [PMID: 39016544 DOI: 10.1099/ijsem.0.006454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Strain ELA7T, a novel Gram-negative, non-motile bacterium with a white pigment and rod-shaped morphology, was isolated from the faeces of an eland at Seoul Grand Park, a zoo in the Republic of Korea. The novel bacterial strain grew optimally in R2A medium under the following conditions: 0 % (w/v) NaCl, pH 8.0, and 34 °C. Based on phylogenetic analyses using 16S rRNA gene sequencing, strain ELA7T was found to have the closest relatedness to Pedobacter ginsengisoli Gsoil 104T (97.8 %), P. frigoris RP-3-15T (97.2 %), P. humi THG S15-2T (97.0 %), P. seoulensis THG-G12T (97.0 %), and P. foliorum LMG 31463T (96.9 %). The genome size and genomic DNA G+C content of strain ELA7T were 3.63 Mbp and 46.5 %, respectively. A whole genome-level comparison of strain ELA7T with P. ginsengisoli Gsoil 104T, P. frigoris RP-3-15T, P. africanus DSM 12126T, and P. psychroterrae RP-1-14T revealed average nucleotide identity values of 72.0, 71.8, 71.9, and 71.6 %, respectively. The major fatty acids were summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and MK-7 was the predominant respiratory quinone. The major polar lipids of strain ELA7T were phosphatidylethanolamine, sphingolipid, unidentified aminolipid, unidentified phosphoglycolipid, unidentified glycolipid, and eight unidentified lipids. Considering our chemotaxonomic, genotypic, and phenotypic findings, strain ELA7T (=KACC 23137T=JCM 36003T) is identified as representing a novel species within the genus Pedobacter, for which the name Pedobacter faecalis sp. nov. is proposed.
Collapse
Affiliation(s)
- Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bitnara Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
25
|
Chin HS, Ravi Varadharajulu N, Lin ZH, Chen WY, Zhang ZH, Arumugam S, Lai CY, Yu SSF. Isolation, molecular identification, and genomic analysis of Mangrovibacter phragmitis strain ASIOC01 from activated sludge harboring the bioremediation prowess of glycerol and organic pollutants in high-salinity. Front Microbiol 2024; 15:1415723. [PMID: 38983623 PMCID: PMC11231211 DOI: 10.3389/fmicb.2024.1415723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
The physiological and genotypic characteristics of Mangrovibacter (MGB) remain largely unexplored, including their distribution and abundance within ecosystems. M. phragmitis (MPH) ASIOC01 was successfully isolated from activated sludge (AS), which was pre-enriched by adding 1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol as carbon sources. The new isolate, MPH ASIOC01, exhibited resilience in a medium containing sodium chloride concentration up to 11% (with optimal growth observed at 3%) and effectively utilizing glycerol as their sole carbon source. However, species delimitation of MGBs remains challenging due to high 16S rRNA sequence similarity (greater than 99% ANI) among different MGBs. In contrast, among the housekeeping gene discrepancies, the tryptophan synthase beta chain gene can serve as a robust marker for fast species delimitation among MGBs. Furthermore, the complete genome of MPH ASIOC01 was fully sequenced and circlized as a single contig using the PacBio HiFi sequencing method. Comparative genomics revealed genes potentially associated with various phenotypic features of MGBs, such as nitrogen-fixing, phosphate-solubilizing, cellulose-digesting, Cr-reducing, and salt tolerance. Computational analysis suggested that MPH ASIOC01 may have undergone horizontal gene transfer events, possibly contributing unique traits such as antibiotic resistance. Finally, our findings also disclosed that the introduction of MPH ASIOC01 into AS can assist in the remediation of wastewater chemical oxygen demand, which was evaluated using gas chromatograph-mass spectrometry. To the best of our knowledge, this study offers the most comprehensive understanding of the phenotypic and genotypic features of MGBs to date.
Collapse
Affiliation(s)
- Hong Soon Chin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Narendrakumar Ravi Varadharajulu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Zhi-Han Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Zong-Han Zhang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung City, Taiwan
| | | | - Ching-Yen Lai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Steve S.-F. Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
26
|
Feodorova VA, Zaitsev SS, Khizhnyakova MA, Lavrukhin MS, Saltykov YV, Zaberezhny AD, Larionova OS. Complete genome of the Listeria monocytogenes strain AUF, used as a live listeriosis veterinary vaccine. Sci Data 2024; 11:643. [PMID: 38886393 PMCID: PMC11183264 DOI: 10.1038/s41597-024-03440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Listeria monocytogenes (Lm) is a highly pathogenic bacterium that can cause listeriosis, a relatively rare food-borne infectious disease that affects farm, domestic, wild animals and humans as well. The infected livestock is the frequent sources of Lm. Vaccination is one of the methods of controlling listeriosis in target farm animals to prevent Lm-associated food contamination. Here we report the complete sequence of the Lm strain AUF attenuated from a fully-virulent Lm strain by ultraviolet irradiation, successfully used since the 1960s as a live whole-cell veterinary vaccine. The de novo assembled genome consists of a circular chromosome of 2,942,932 bp length, including more than 2,800 CDSs, 17 pseudogenes, 5 antibiotic resistance genes, and 56/92 virulence genes. Two wild Lm strains, the EGD and the 10403S that is also used in cancer Immunotherapy, were the closest homologs for the Lm strain AUF. Although all three strains belonged to different sequence types (ST), namely ST12, ST85, and ST1538, they were placed in the same genetic lineage II, CC7.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
| | - Sergey S Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Mariya A Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Maxim S Lavrukhin
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Yury V Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Alexey D Zaberezhny
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow, Russia
| | - Olga S Larionova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| |
Collapse
|
27
|
Mavroidi A, Froukala E, Tsakris A. Comparative Genomics of an Emerging Multidrug-Resistant blaNDM-Carrying ST182 Lineage in Enterobacter cloacae Complex. Antibiotics (Basel) 2024; 13:535. [PMID: 38927201 PMCID: PMC11200890 DOI: 10.3390/antibiotics13060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Enterobacter cloacae, E. hormaechei and related subspecies remain the most clinically relevant among the Enterobacter cloacae complex (ECC). Carbapenemase-producing ECC strains are increasingly identified in hospital-acquired infections and usually belong to four main multilocus sequence types (MLST STs) named ST114, ST93, ST90 and ST78. Instead, ST182 has been sporadically reported among E. hormaechei strains, and recently, outbreaks of blaNDM-producing ST182 clonal strains have emerged. Herein, we aimed to investigate the presence of ST182 and explore its evolution and modes of blaNDM acquisition. METHODS A phylogenetic analysis of 646 MLST STs identified among 4685 E. hormaechei whole-genome sequencing (WGS) assemblies deposited in public repositories was performed, as well as an in silico comparative and phylogenomic analyses for 55 WGS assemblies of ST182. blaNDM-harboring contigs were also compared to published plasmid sequences. RESULTS ST182 E. hormaechei strains were recovered from patients on five continents during 2011-2021. They were divided into three major genomic clusters, comprising a separate clonal complex with six other STs. In 30 out of 55 ST182 WGS assemblies, blaNDM-harboring structures were identified that were similar to the plasmids predominant in Gram-negative bacteria, harboring resistance genes to multiple antibiotic classes and virulence genes. No associations between the genomic clusters and the country/continent of isolation or the presence and the plasmid types of the blaNDM-harboring contigs were observed. CONCLUSIONS Our findings show that ST182 E. hormaechei strains have been identified in the past decade worldwide; 54.5% of them carried diverse blaNDM genetic structures, suggesting recent acquisition of the blaNDM alleles. Thus, blaNDM-harboring ST182 is an emerging multidrug-resistant and virulent lineage in ECC strains that requires close monitoring.
Collapse
Affiliation(s)
- Angeliki Mavroidi
- Department of Microbiology, Faculty of Medicine, General University Hospital of Patras, 26504 Patras, Greece;
| | - Elisavet Froukala
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece;
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece;
| |
Collapse
|
28
|
Parzygnat JL, Crespo R, Koci MD, Dunn RR, Harden L, Fosnaught M, Thakur S. Widespread prevalence of plasmid-mediated blaCTX-M type extended-spectrum beta-lactamase Escherichia coli in backyard broiler production systems in the United States. PLoS One 2024; 19:e0304599. [PMID: 38829840 PMCID: PMC11146730 DOI: 10.1371/journal.pone.0304599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Extended-spectrum beta-lactamase (ESBL) Escherichia coli (E. coli) is an emerging pathogen of high concern given its resistance to extended-spectrum cephalosporins. Broiler chicken, which is the number one consumed meat in the United States and worldwide, can be a reservoir of ESBL E. coli. Backyard poultry ownership is on the rise in the United States, yet there is little research investigating prevalence of ESBL E. coli in this setting. This study aims to identify the prevalence and antimicrobial resistance profiles (phenotypically and genotypically) of ESBL E. coli in some backyard and commercial broiler farms in the U.S. For this study ten backyard and ten commercial farms were visited at three time-points across flock production. Fecal (n = 10), litter/compost (n = 5), soil (n = 5), and swabs of feeders and waterers (n = 6) were collected at each visit and processed for E. coli. Assessment of ESBL phenotype was determined through using disk diffusion with 3rd generation cephalosporins, cefotaxime and ceftazidime, and that with clavulanic acid. Broth microdilution and whole genome sequencing were used to investigate both phenotypic and genotypic resistance profiles, respectively. ESBL E. coli was more prevalent in backyard farms with 12.95% of samples testing positive whereas 0.77% of commercial farm samples were positive. All isolates contained a blaCTX-M gene, the dominant variant being blaCTX-M-1, and its presence was entirely due to plasmids. Our study confirms concerns of growing resistance to fourth generation cephalosporin, cefepime, as roughly half (51.4%) of all isolates were found to be susceptible dose-dependent and few were resistant. Resistance to non-beta lactams, gentamicin and ciprofloxacin, was also detected in our samples. Our study identifies prevalence of blaCTX-M type ESBL E. coli in U.S. backyard broiler farms, emphasizing the need for interventions for food and production safety.
Collapse
Affiliation(s)
- Jessica L. Parzygnat
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States of America
| | - Rocio Crespo
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States of America
| | - Matthew D. Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States of America
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Lyndy Harden
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States of America
| | - Mary Fosnaught
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States of America
| |
Collapse
|
29
|
Shipman A, Tian M. Combined Use of Phenotype-Based and Genome-Informed Approaches Identified a Unique Fusarium oxysporum f. sp. cubense Isolate in Hawaii. PHYTOPATHOLOGY 2024; 114:1305-1319. [PMID: 38038692 DOI: 10.1094/phyto-07-23-0257-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is a serious disease that threatens banana production worldwide. It is a long-standing problem in Hawaii, but previously, there was little knowledge of the causal pathogen. We isolated a strain of Foc, named Foc-UH, from a field experiencing the disease epidemic in Hawaii. Infection assays of a diverse panel of 26 banana clones, including varieties used for differentiating pathogen races and fruit production, revealed that Foc-UH has a race 1 pathogenic phenotype with an intermediate race 2 virulence and revealed the differential resistance of varieties to infection. Separate phylogenetic analyses using the barcoding regions of three nuclear genes, seven complete nuclear genes, and single-nucleotide polymorphisms within conserved whole-genome protein coding sequences placed Foc-UH into recently proposed taxonomic frameworks relevant to Foc and the F. oxysporum species complex. Screening of the 99.7% complete draft genome identified five secreted in xylem (SIX) gene homologs: SIX1d, SIX1f, SIX9a, SIX9b, and SIX13a. This profile is similar to that of several race 1 isolates except for the absence of SIX4 and SIX6. Foc-UH was morphologically dissimilar to the nearest related isolates. Altogether, this study identified a unique isolate that causes banana Fusarium wilt, which represents the first characterization of the causal pathogen in Hawaii. The findings and genomic resources generated in this study are expected to guide banana breeding and cultivar deployment in Hawaii and beyond and contribute to further understanding of the pathogenicity and evolutionary systematics of Foc.
Collapse
Affiliation(s)
- Aaron Shipman
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Miaoying Tian
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| |
Collapse
|
30
|
Carpenter SCD, Bogdanove AJ, Abbot B, Stajich JE, Uehling JK, Lovett B, Kasson MT, Carter ME. Prevalence and diversity of TAL effector-like proteins in fungal endosymbiotic Mycetohabitans spp. Microb Genom 2024; 10:001261. [PMID: 38860878 PMCID: PMC11261895 DOI: 10.1099/mgen.0.001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Endofungal Mycetohabitans (formerly Burkholderia) spp. rely on a type III secretion system to deliver mostly unidentified effector proteins when colonizing their host fungus, Rhizopus microsporus. The one known secreted effector family from Mycetohabitans consists of homologues of transcription activator-like (TAL) effectors, which are used by plant pathogenic Xanthomonas and Ralstonia spp. to activate host genes that promote disease. These 'Burkholderia TAL-like (Btl)' proteins bind corresponding specific DNA sequences in a predictable manner, but their genomic target(s) and impact on transcription in the fungus are unknown. Recent phenotyping of Btl mutants of two Mycetohabitans strains revealed that the single Btl in one Mycetohabitans endofungorum strain enhances fungal membrane stress tolerance, while others in a Mycetohabitans rhizoxinica strain promote bacterial colonization of the fungus. The phenotypic diversity underscores the need to assess the sequence diversity and, given that sequence diversity translates to DNA targeting specificity, the functional diversity of Btl proteins. Using a dual approach to maximize capture of Btl protein sequences for our analysis, we sequenced and assembled nine Mycetohabitans spp. genomes using long-read PacBio technology and also mined available short-read Illumina fungal-bacterial metagenomes. We show that btl genes are present across diverse Mycetohabitans strains from Mucoromycota fungal hosts yet vary in sequences and predicted DNA binding specificity. Phylogenetic analysis revealed distinct clades of Btl proteins and suggested that Mycetohabitans might contain more species than previously recognized. Within our data set, Btl proteins were more conserved across M. rhizoxinica strains than across M. endofungorum, but there was also evidence of greater overall strain diversity within the latter clade. Overall, the results suggest that Btl proteins contribute to bacterial-fungal symbioses in myriad ways.
Collapse
Affiliation(s)
- Sara C. D. Carpenter
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Adam J. Bogdanove
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Bhuwan Abbot
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Jessie K. Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333, USA
| | - Brian Lovett
- Emerging Pests and Pathogens Research Unit, USDA-ARS, Ithaca, NY 14850, USA
| | - Matt T. Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Morgan E. Carter
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- CIPHER Center, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
31
|
Mavroidi A, Katsiaflaka A, Petinaki E, Froukala E, Papadopoulos D, Vrioni G, Tsakris A. M1 UKStreptococcus pyogenes causing community-acquired pneumonia, pleural empyema and streptococcal toxic shock syndrome. J Glob Antimicrob Resist 2024; 37:185-189. [PMID: 38552876 DOI: 10.1016/j.jgar.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 05/14/2024] Open
Abstract
OBJECTIVES Streptococcus pyogenes causes superficial infections but can also cause deep-seated infections and toxin-mediated diseases. In the present study, phylogenetic and in silico prediction analyses were performed on an antimicrobial resistant M1UKS. pyogenes strain causing severe clinical manifestations during the current surge of invasive group A Streptococcus (iGAS) disease. METHODS A 40-year-old patient was admitted to the hospital with fever, chest pain and fatigue. Based on the clinical and laboratory findings, a diagnosis of sepsis with disseminated intravascular coagulation, community-acquired pneumonia, pleural empyema and streptococcal toxic shock syndrome was made. Microbial identification was performed by multiplex PCR and conventional culturing. Furthermore, antimicrobial susceptibility testing, whole genome sequencing, phylogenomic analysis and in silico prediction analysis of antimicrobial resistance genes and virulence factors were performed. RESULTS S. pyogenes isolates were detected in pleural fluid and sputum of the patient. Both isolates belonged to the M1UK lineage of the emm1/ST28 clone, being closely related with an M1UK GAS strain from Australia. They exhibited resistance to erythromycin and clindamycin and susceptibility-increased exposure to levofloxacin and carried genes encoding for protein homologues of antibiotic efflux pumps. Moreover, several virulence factors, and a previously described single-nucleotide polymorphism in the 5' transcriptional leader sequence of the ssrA gene, which enhances expression of SpeA, were detected. CONCLUSIONS The present antimicrobial-resistant M1UKS. pyogenes strain represents the first report of this emerging lineage associated with such manifestations of iGAS disease.
Collapse
Affiliation(s)
- Angeliki Mavroidi
- Department of Microbiology, University Hospital of Patras, Patras, Greece
| | - Anna Katsiaflaka
- Department of Microbiology, General Hospital of Larissa, Larissa, Greece
| | - Efthymia Petinaki
- Department of Microbiology, Medical School University of Thessaly, Larissa, Greece
| | - Elisavet Froukala
- Department of Microbiology, Medical School University of Athens, Athens, Greece
| | | | - Georgia Vrioni
- Department of Microbiology, Medical School University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School University of Athens, Athens, Greece.
| |
Collapse
|
32
|
Rick JA, Brock CD, Lewanski AL, Golcher-Benavides J, Wagner CE. Reference Genome Choice and Filtering Thresholds Jointly Influence Phylogenomic Analyses. Syst Biol 2024; 73:76-101. [PMID: 37881861 DOI: 10.1093/sysbio/syad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Molecular phylogenies are a cornerstone of modern comparative biology and are commonly employed to investigate a range of biological phenomena, such as diversification rates, patterns in trait evolution, biogeography, and community assembly. Recent work has demonstrated that significant biases may be introduced into downstream phylogenetic analyses from processing genomic data; however, it remains unclear whether there are interactions among bioinformatic parameters or biases introduced through the choice of reference genome for sequence alignment and variant calling. We address these knowledge gaps by employing a combination of simulated and empirical data sets to investigate the extent to which the choice of reference genome in upstream bioinformatic processing of genomic data influences phylogenetic inference, as well as the way that reference genome choice interacts with bioinformatic filtering choices and phylogenetic inference method. We demonstrate that more stringent minor allele filters bias inferred trees away from the true species tree topology, and that these biased trees tend to be more imbalanced and have a higher center of gravity than the true trees. We find the greatest topological accuracy when filtering sites for minor allele count (MAC) >3-4 in our 51-taxa data sets, while tree center of gravity was closest to the true value when filtering for sites with MAC >1-2. In contrast, filtering for missing data increased accuracy in the inferred topologies; however, this effect was small in comparison to the effect of minor allele filters and may be undesirable due to a subsequent mutation spectrum distortion. The bias introduced by these filters differs based on the reference genome used in short read alignment, providing further support that choosing a reference genome for alignment is an important bioinformatic decision with implications for downstream analyses. These results demonstrate that attributes of the study system and dataset (and their interaction) add important nuance for how best to assemble and filter short-read genomic data for phylogenetic inference.
Collapse
Affiliation(s)
- Jessica A Rick
- School of Natural Resources & the Environment, University of Arizona, Tucson, AZ 85719, USA
| | - Chad D Brock
- Department of Biological Sciences, Tarleton State University, Stephenville, TX 76401, USA
| | - Alexander L Lewanski
- Department of Integrative Biology and W.K. Kellogg Biological Station, Michigan State University, East Lansing, MI 48824, USA
| | - Jimena Golcher-Benavides
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
| | - Catherine E Wagner
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82071, USA
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
33
|
Wang D, Ji X, Jiang B, Yuan Y, Liang B, Sun S, Zhu L, Liu J, Guo X, Yin Y, Sun Y. Prevalence of Antibiotic Resistance and Virulence Genes in Escherichia coli Carried by Migratory Birds on the Inner Mongolia Plateau of Northern China from 2018 to 2023. Microorganisms 2024; 12:1076. [PMID: 38930458 PMCID: PMC11205581 DOI: 10.3390/microorganisms12061076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Antibiotic resistance in bacteria is an urgent global threat to public health. Migratory birds can acquire antibiotic-resistant and pathogenic bacteria from the environment or through contact with each other and spread them over long distances. The objectives of this study were to explore the relationship between migratory birds and the transmission of drug-resistant pathogenic Escherichia coli. (2) Methods: Faeces and swab samples from migratory birds were collected for isolating E. coli on the Inner Mongolia Plateau of northern China from 2018 to 2023. The resistant phenotypes and spectra of isolates were determined using a BD Phoenix 100 System. Conjugation assays were performed on extended-spectrum β-lactamase (ESBL)-producing strains, and the genomes of multidrug-resistant (MDR) and ESBL-producing isolates were sequenced and analysed. (3) Results: Overall, 179 isolates were antibiotic-resistant, with 49.7% MDR and 14.0% ESBL. Plasmids were successfully transferred from 32% of ESBL-producing strains. Genome sequencing analysis of 91 MDR E. coli strains identified 57 acquired resistance genes of 13 classes, and extraintestinal pathogenic E. coli and avian pathogenic E. coli accounted for 26.4% and 9.9%, respectively. There were 52 serotypes and 54 sequence types (STs), including ST48 (4.4%), ST69 (4.4%), ST131 (2.2%) and ST10 (2.2%). The international high-risk clonal strains ST131 and ST10 primarily carried blaCTX-M-27 and blaTEM-176. (4) Conclusions: There is a high prevalence of multidrug-resistant virulent E. coli in migratory birds on the Inner Mongolian Plateau. This indicates a risk of intercontinental transmission from migratory birds to livestock and humans.
Collapse
Affiliation(s)
- Danhong Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
| | - Xue Ji
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Bowen Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Yue Yuan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Bing Liang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Shiwen Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Lingwei Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Xuejun Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Yang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| |
Collapse
|
34
|
Hinz A, Amado A, Kassen R, Bank C, Wong A. Unpredictability of the Fitness Effects of Antimicrobial Resistance Mutations Across Environments in Escherichia coli. Mol Biol Evol 2024; 41:msae086. [PMID: 38709811 PMCID: PMC11110942 DOI: 10.1093/molbev/msae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
The evolution of antimicrobial resistance (AMR) in bacteria is a major public health concern, and antibiotic restriction is often implemented to reduce the spread of resistance. These measures rely on the existence of deleterious fitness effects (i.e. costs) imposed by AMR mutations during growth in the absence of antibiotics. According to this assumption, resistant strains will be outcompeted by susceptible strains that do not pay the cost during the period of restriction. The fitness effects of AMR mutations are generally studied in laboratory reference strains grown in standard growth environments; however, the genetic and environmental context can influence the magnitude and direction of a mutation's fitness effects. In this study, we measure how three sources of variation impact the fitness effects of Escherichia coli AMR mutations: the type of resistance mutation, the genetic background of the host, and the growth environment. We demonstrate that while AMR mutations are generally costly in antibiotic-free environments, their fitness effects vary widely and depend on complex interactions between the mutation, genetic background, and environment. We test the ability of the Rough Mount Fuji fitness landscape model to reproduce the empirical data in simulation. We identify model parameters that reasonably capture the variation in fitness effects due to genetic variation. However, the model fails to accommodate the observed variation when considering multiple growth environments. Overall, this study reveals a wealth of variation in the fitness effects of resistance mutations owing to genetic background and environmental conditions, which will ultimately impact their persistence in natural populations.
Collapse
Affiliation(s)
- Aaron Hinz
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - André Amado
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Division of Theoretical Ecology and Evolution, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Evolutionary Dynamics Group, Gulbenkian Science Institute, Oeiras, Portugal
| | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Claudia Bank
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Division of Theoretical Ecology and Evolution, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Evolutionary Dynamics Group, Gulbenkian Science Institute, Oeiras, Portugal
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
35
|
Baltrus DA, Carter M, Clark M, Smith C, Spraker J, Inderbitzin P, Arnold AE. Luteibacter mycovicinus sp. nov., a yellow-pigmented gammaproteobacterium found as an endohyphal symbiont of endophytic Ascomycota. Int J Syst Evol Microbiol 2024; 74:006240. [PMID: 38695275 PMCID: PMC11165876 DOI: 10.1099/ijsem.0.006240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024] Open
Abstract
We isolated and described a yellow-pigmented strain of bacteria (strain 9143T), originally characterized as an endohyphal inhabitant of an endophytic fungus in the Ascomycota. Although the full-length sequence of its 16S rRNA gene displays 99 % similarity to Luteibacter pinisoli, genomic hybridization demonstrated <30 % genomic similarity between 9143T and its closest named relatives, further supported by average nucleotide identity results. This and related endohyphal strains form a well-supported clade separate from L. pinisoli and other validly named species including the most closely related Luteibacter rhizovicinus. The name Luteibacter mycovicinus sp. nov. is proposed, with type strain 9143T (isolate DBL433), for which a genome has been sequenced and is publicly available from the American Type Culture Collection (ATCC TSD-257T) and from the Leibniz Institute DSMZ (DSM 112764T). The type strain reliably forms yellow colonies across diverse media and growth conditions (lysogeny broth agar, King's Medium B, potato dextrose agar, trypticase soy agar and Reasoner's 2A (R2A) agar). It forms colonies readily at 27 °C on agar with a pH of 6-8, and on salt (NaCl) concentrations up to 2 %. It lacks the ability to utilize sulphate as a sulphur source and thus only forms colonies on minimal media if supplemented with alternative sulphur sources. It is catalase-positive and oxidase-negative. Although it exhibits a single polar flagellum, motility was only clearly visible on R2A agar. Its host range and close relatives, which share the endohyphal lifestyle, are discussed.
Collapse
Affiliation(s)
- David A. Baltrus
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Morgan Carter
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Meara Clark
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Caitlin Smith
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Joseph Spraker
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | | | - A. Elizabeth Arnold
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
36
|
Wu C, Xiong L, Liao Q, Zhang W, Xiao Y, Xie Y. Clinical manifestations, antimicrobial resistance and genomic feature analysis of multidrug-resistant Elizabethkingia strains. Ann Clin Microbiol Antimicrob 2024; 23:32. [PMID: 38600542 PMCID: PMC11007976 DOI: 10.1186/s12941-024-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Elizabethkingia is emerging as an opportunistic pathogen in humans. The aim of this study was to investigate the clinical epidemiology, antimicrobial susceptibility, virulence factors, and genome features of Elizabethkingia spp. METHODS Clinical data from 71 patients who were diagnosed with Elizabethkingia-induced pneumonia and bacteremia between August 2019 and September 2021 were analyzed. Whole-genome sequencing was performed on seven isolates, and the results were compared with a dataset of 83 available Elizabethkingia genomes. Genomic features, Kyoto Encyclopedia of Genes and Genomes (KEGG) results and clusters of orthologous groups (COGs) were analyzed. RESULTS The mean age of the patients was 56.9 ± 20.7 years, and the in-hospital mortality rate was 29.6% (21/71). Elizabethkingia strains were obtained mainly from intensive care units (36.6%, 26/71) and emergency departments (32.4%, 23/71). The majority of the strains were isolated from respiratory tract specimens (85.9%, 61/71). All patients had a history of broad-spectrum antimicrobial exposure. Hospitalization for invasive mechanical ventilation or catheter insertion was found to be a risk factor for infection. The isolates displayed a high rate of resistance to cephalosporins and carbapenems, but all were susceptible to minocycline and colistin. Genomic analysis identified five β-lactamase genes (blaGOB, blaBlaB, blaCME, blaOXA, and blaTEM) responsible for β-lactam resistance and virulence genes involved in stress adaptation (ureB/G, katA/B, and clpP), adherence (groEL, tufA, and htpB) and immune modulation (gmd, tviB, cps4J, wbtIL, cap8E/D/G, and rfbC). Functional analysis of the COGs revealed that "metabolism" constituted the largest category within the core genome, while "information storage and processing" was predominant in both the accessory and unique genomes. The unique genes in our 7 strains were mostly enriched in KEGG pathways related to microRNAs in cancer, drug resistance (β-lactam and vancomycin), ABC transporters, biological metabolism and biosynthesis, and nucleotide excision repair mechanisms. CONCLUSION The Elizabethkingia genus exhibits multidrug resistance and carries carbapenemase genes. This study presents a comparative genomic analysis of Elizabethkingia, providing knowledge that facilitates a better understanding of this microorganism.
Collapse
Affiliation(s)
- Chongyang Wu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Xiong
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanfeng Liao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weili Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
37
|
Chen JZ, Kwong Z, Gerardo NM, Vega NM. Ecological drift during colonization drives within-host and between-host heterogeneity in an animal-associated symbiont. PLoS Biol 2024; 22:e3002304. [PMID: 38662791 PMCID: PMC11075893 DOI: 10.1371/journal.pbio.3002304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/07/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Specialized host-microbe symbioses canonically show greater diversity than expected from simple models, both at the population level and within individual hosts. To understand how this heterogeneity arises, we utilize the squash bug, Anasa tristis, and its bacterial symbionts in the genus Caballeronia. We modulate symbiont bottleneck size and inoculum composition during colonization to demonstrate the significance of ecological drift, the noisy fluctuations in community composition due to demographic stochasticity. Consistent with predictions from the neutral theory of biodiversity, we found that ecological drift alone can account for heterogeneity in symbiont community composition between hosts, even when 2 strains are nearly genetically identical. When acting on competing strains, ecological drift can maintain symbiont genetic diversity among different hosts by stochastically determining the dominant strain within each host. Finally, ecological drift mediates heterogeneity in isogenic symbiont populations even within a single host, along a consistent gradient running the anterior-posterior axis of the symbiotic organ. Our results demonstrate that symbiont population structure across scales does not necessarily require host-mediated selection, as it can emerge as a result of ecological drift acting on both isogenic and unrelated competitors. Our findings illuminate the processes that might affect symbiont transmission, coinfection, and population structure in nature, which can drive the evolution of host-microbe symbioses and microbe-microbe interactions within host-associated microbiomes.
Collapse
Affiliation(s)
- Jason Z. Chen
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Zeeyong Kwong
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Nicole M. Gerardo
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Nic M. Vega
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
38
|
Park Y, Min J, Kim W, Park W. Kaistella rhinocerotis sp. nov., isolated from the faeces of rhinoceros and reclassification of Chryseobacterium faecale as Kaistella faecalis comb. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38602466 DOI: 10.1099/ijsem.0.006338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Strain Ran72T, a novel Gram-stain-negative, obligately aerobic, non-motile, and rod-shaped bacterium, was isolated from the faeces of the rhinoceros species Ceratotherium simum. The novel bacterial strain grew optimally in Reasoner's 2A medium under the following conditions: 0 % (w/v) NaCl, pH 7.5, and 30 °C. Based on phylogenetic analysis using 16S rRNA gene sequencing, strain Ran72T was found to be most closely related to Chryseobacterium faecale F4T (98.4 %), Kaistella soli DKR-2T (98.0 %), and Kaistella haifensis H38T (97.4 %). A comprehensive genome-level comparison between strain Ran72T with C. faecale F4T, K. soli DKR-2T, and K. haifensis H38T revealed average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values of ≤74.9, ≤19.3, and ≤78.7 %, respectively. The major fatty acids were anteiso-C15 : 0 (22.3 %), with MK-6 being the predominant respiratory quinone. The major polar lipids of strain Ran72T were phosphatidylethanolamine, four unidentified aminolipids, and two unidentified lipids. Based on our chemotaxonomic, genotypic, and phenotype characterizations, strain Ran72T was identified as representing a novel species in the genus Kaistella, for which the name Kaistella rhinocerotis sp. nov. is proposed, with the type strain Ran72T (=KACC 23136T=JCM 36038T). Based on the outcomes of our phylogenomic study, Chryseobacterium faecale should be reclassified under the genus Kaistella as Kaistella faecalis comb. nov.
Collapse
Affiliation(s)
- Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
39
|
Avendaño-Herrera R, Saldarriga-Córdoba M, Poblete-Morales M, Irgang R. Flavobacterium psychraquaticum sp. nov., isolated from water system of Atlantic salmon ( Salmo salar) smolts cultured in Chile. Int J Syst Evol Microbiol 2024; 74. [PMID: 38563675 DOI: 10.1099/ijsem.0.006309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Strain LB-N7T, a novel Gram-negative, orange, translucent, gliding, rod-shaped bacterium, was isolated from water samples collected from an open system of Atlantic salmon (Salmo salar) smolts in a fish farm in Chile during a flavobacterial infection outbreak in 2015. Phylogenetic analysis based on 16S rRNA sequences (1337 bp) revealed that strain LB-N7T belongs to the genus Flavobacterium and is closely related to the type strains Flavobacterium ardleyense A2-1T (98.8 %) and Flavobacterium cucumis R2A45-3T (96.75 %). The genome size of strain LB-N7T was 2.93 Mb with a DNA G+C content 32.6 mol%. Genome comparisons grouped strain LB-N7T with Flavobacterium cheniae NJ-26T, Flavobacterium odoriferum HXWNR29T, Flavobacterium lacisediminis TH16-21T and Flavobacterium celericrescens TWA-26T. The calculated digital DNA-DNA hybridization values between strain LB-N7T and the closest related Flavobacterium strains were 23.3 % and the average nucleotide identity values ranged from 71.52 to 79.39 %. Menaquinone MK-6 was the predominant respiratory quinone, followed by MK-7. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The primary polar lipids detected included nine unidentified lipids, two amounts of aminopospholipid and phospholipids, and a smaller amount of aminolipid. Phenotypic, genomic, and chemotaxonomic data suggest that strain LB-N7T (=CECT 30406T=RGM 3221T) represents as a novel bacterial species, for which the name Flavobacterium psychraquaticum sp. nov. is proposed.
Collapse
Affiliation(s)
- Ruben Avendaño-Herrera
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Mónica Saldarriga-Córdoba
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Matías Poblete-Morales
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Viña del Mar, Chile
| | - Rute Irgang
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
| |
Collapse
|
40
|
Prusokiene A, Boonham N, Fox A, Howard TP. Mottle: Accurate pairwise substitution distance at high divergence through the exploitation of short-read mappers and gradient descent. PLoS One 2024; 19:e0298834. [PMID: 38512939 PMCID: PMC10956839 DOI: 10.1371/journal.pone.0298834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
Current tools for estimating the substitution distance between two related sequences struggle to remain accurate at a high divergence. Difficulties at distant homologies, such as false seeding and over-alignment, create a high barrier for the development of a stable estimator. This is especially true for viral genomes, which carry a high rate of mutation, small size, and sparse taxonomy. Developing an accurate substitution distance measure would help to elucidate the relationship between highly divergent sequences, interrogate their evolutionary history, and better facilitate the discovery of new viral genomes. To tackle these problems, we propose an approach that uses short-read mappers to create whole-genome maps, and gradient descent to isolate the homologous fraction and calculate the final distance value. We implement this approach as Mottle. With the use of simulated and biological sequences, Mottle was able to remain stable to 0.66-0.96 substitutions per base pair and identify viral outgroup genomes with 95% accuracy at the family-order level. Our results indicate that Mottle performs as well as existing programs in identifying taxonomic relationships, with more accurate numerical estimation of genomic distance over greater divergences. By contrast, one limitation is a reduced numerical accuracy at low divergences, and on genomes where insertions and deletions are uncommon, when compared to alternative approaches. We propose that Mottle may therefore be of particular interest in the study of viruses, viral relationships, and notably for viral discovery platforms, helping in benchmarking of homology search tools and defining the limits of taxonomic classification methods. The code for Mottle is available at https://github.com/tphoward/Mottle_Repo.
Collapse
Affiliation(s)
- Alisa Prusokiene
- Faculty of Science, Agriculture and Engineering, School of Natural and Environmental Sciences, Newcastle University, United Kingdom
| | - Neil Boonham
- Faculty of Science, Agriculture and Engineering, School of Natural and Environmental Sciences, Newcastle University, United Kingdom
| | - Adrian Fox
- Faculty of Science, Agriculture and Engineering, School of Natural and Environmental Sciences, Newcastle University, United Kingdom
- Fera Ltd., Biotech Campus, York, United Kingdom
| | - Thomas P. Howard
- Faculty of Science, Agriculture and Engineering, School of Natural and Environmental Sciences, Newcastle University, United Kingdom
| |
Collapse
|
41
|
Colombi E, Bertels F, Doulcier G, McConnell E, Pichugina T, Sohn KH, Straub C, McCann HC, Rainey PB. Rapid dissemination of host metabolism-manipulating genes via integrative and conjugative elements. Proc Natl Acad Sci U S A 2024; 121:e2309263121. [PMID: 38457521 PMCID: PMC10945833 DOI: 10.1073/pnas.2309263121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024] Open
Abstract
Integrative and conjugative elements (ICEs) are self-transmissible mobile elements that transfer functional genetic units across broad phylogenetic distances. Accessory genes shuttled by ICEs can make significant contributions to bacterial fitness. Most ICEs characterized to date encode readily observable phenotypes contributing to symbiosis, pathogenicity, and antimicrobial resistance, yet the majority of ICEs carry genes of unknown function. Recent observations of rapid acquisition of ICEs in a pandemic lineage of Pseudomonas syringae pv. actinidae led to investigation of the structural and functional diversity of these elements. Fifty-three unique ICE types were identified across the P. syringae species complex. Together they form a distinct family of ICEs (PsICEs) that share a distant relationship to ICEs found in Pseudomonas aeruginosa. PsICEs are defined by conserved backbone genes punctuated by an array of accessory cargo genes, are highly recombinogenic, and display distinct evolutionary histories compared to their bacterial hosts. The most common cargo is a recently disseminated 16-kb mobile genetic element designated Tn6212. Deletion of Tn6212 did not alter pathogen growth in planta, but mutants displayed fitness defects when grown on tricarboxylic acid (TCA) cycle intermediates. RNA-seq analysis of a set of nested deletion mutants showed that a Tn6212-encoded LysR regulator has global effects on chromosomal gene expression. We show that Tn6212 responds to preferred carbon sources and manipulates bacterial metabolism to maximize growth.
Collapse
Affiliation(s)
- Elena Colombi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Guilhem Doulcier
- Laboratoire Biophysique et Évolution, Institut Chemie Biologie Innovation, École Supérieure de Physique et de Chemie Industrielles de la Ville de Paris, Université Paris Science et Lettres, Centre National de al Reserche Scientifique, Paris 75005, France
| | - Ellen McConnell
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Tatyana Pichugina
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Kee Hoon Sohn
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Christina Straub
- Health and Environment, Institute of Environmental Science and Research, Auckland 1025, New Zealand
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Honour C McCann
- Plant Pathogen Evolution Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Laboratoire Biophysique et Évolution, Institut Chemie Biologie Innovation, École Supérieure de Physique et de Chemie Industrielles de la Ville de Paris, Université Paris Science et Lettres, Centre National de al Reserche Scientifique, Paris 75005, France
| |
Collapse
|
42
|
Pan H, Wei L, Zhao H, Xiao Y, Li Z, Ding H. Perception of the Biocontrol Potential and Palmitic Acid Biosynthesis Pathway of Bacillus subtilis H2 through Merging Genome Mining with Chemical Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4834-4848. [PMID: 38401001 DOI: 10.1021/acs.jafc.3c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Bacillus has been widely studied for its potential to protect plants from pathogens. Here, we report the whole genome sequence of Bacillus subtilis H2, which was isolated from the tea garden soil of Guiyang Forest Park. Strain H2 showed a broad spectrum of antagonistic activities against many plant fungal pathogens and bacteria pathogens, including the rice blast fungus Magnaporthe oryzae, and showed a good field control effect against rice blast. The complete genome of B. subtilis H2 contained a 4,160,635-bp circular chromosome, with an average G + C content of 43.78%. Through the genome mining of strain H2, we identified 7 known antimicrobial compound biosynthetic gene clusters (BGCs) including sporulation killing factor, surfactin, bacillaene, fengycin, bacillibactin, subtilosin A, and bacilysin. Palmitic acid (PA), a secondary metabolite, was detected and identified in the H2 strain through genome mining analysis and gas chromatography-mass spectrometry (GC-MS). Additionally, we propose, for the first time, that the type II fatty acid synthesis (FAS) pathway in Bacillus is responsible for PA biosynthesis. This finding was confirmed by studying the antimicrobial activity of PA and conducting reverse transcription-quantitative polymerase chain reaction (RT-qPCR) experiments. We also identified numerous genes associated with plant-bacteria interactions in the H2 genome, including more than 94 colonization-related genes, more than 34 antimicrobial genes, and more than 13 plant growth-promoting genes. These findings contribute to our understanding of the biocontrol mechanisms of B. subtilis H2 and have potential applications in crop disease control.
Collapse
Affiliation(s)
- Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Longfeng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Hao Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang 550004, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Haixia Ding
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
43
|
Torres DE, Kramer HM, Tracanna V, Fiorin GL, Cook DE, Seidl MF, Thomma BPHJ. Implications of the three-dimensional chromatin organization for genome evolution in a fungal plant pathogen. Nat Commun 2024; 15:1701. [PMID: 38402218 PMCID: PMC10894299 DOI: 10.1038/s41467-024-45884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
The spatial organization of eukaryotic genomes is linked to their biological functions, although it is not clear how this impacts the overall evolution of a genome. Here, we uncover the three-dimensional (3D) genome organization of the phytopathogen Verticillium dahliae, known to possess distinct genomic regions, designated adaptive genomic regions (AGRs), enriched in transposable elements and genes that mediate host infection. Short-range DNA interactions form clear topologically associating domains (TADs) with gene-rich boundaries that show reduced levels of gene expression and reduced genomic variation. Intriguingly, TADs are less clearly insulated in AGRs than in the core genome. At a global scale, the genome contains bipartite long-range interactions, particularly enriched for AGRs and more generally containing segmental duplications. Notably, the patterns observed for V. dahliae are also present in other Verticillium species. Thus, our analysis links 3D genome organization to evolutionary features conserved throughout the Verticillium genus.
Collapse
Affiliation(s)
- David E Torres
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Vittorio Tracanna
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Gabriel L Fiorin
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - David E Cook
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Manhattan, KS, USA
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
44
|
Kim HS, Kim JS, Suh MK, Eom MK, Do HE, Lee JH, Park SH, Kang SW, Lee DH, Yoon H, Lee JH, Lee JS. Gordonibacter faecis sp. nov., producing urolithin C from ellagic acid, isolated from feces of healthy Korean subjects. Arch Microbiol 2024; 206:108. [PMID: 38368591 DOI: 10.1007/s00203-024-03844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
A Gram-stain-positive, anaerobic, motile, and short rod-shaped bacterium, designated KGMB12511T, was isolated from the feces of healthy Koreansubjects. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain KGMB12511T was closely related to Gordonibacter pamelaeae 7-10-1-bT (95.2%). The draft genome of KGMB12511T comprised 33 contigs and 2,744 protein-coding genes. The DNA G + C content was 59.9% based on whole-genome sequences. The major cellular fatty acids (>10%) of strain KGMB12511T were C18:1 cis9, C18:1 cis9 DMA (dimethylacetal), and C16:0 DMA. The predominant polar lipids included a diphosphatydilglycerol, four glycolipids, and an unidentified phospholipid. The major respiratory quinones were menaquinone 6 (MK-6) and monomethylmenaquinone 6 (MMK-6). Furthermore, HPLC analysis demonstrated the ability of strain KGMB12511T to convert ellagic acid into urolithin. Based on a comprehensive analysis of phenotypic, chemotaxonomic, and phylogenetic data, strain KGMB12511T represents a novel species in the genus Gordonibacter. The type strain is KGMB12511T (= KCTC 25343T = NBRC 116190T).
Collapse
Affiliation(s)
- Han Sol Kim
- Korean Collection for Type Cultures, (KCTC), Korea Research Institute of Bioscience and Biotechnology, (KRIBB), 181 Ipsin-Gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, (KCTC), Korea Research Institute of Bioscience and Biotechnology, (KRIBB), 181 Ipsin-Gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Min Kuk Suh
- Korean Collection for Type Cultures, (KCTC), Korea Research Institute of Bioscience and Biotechnology, (KRIBB), 181 Ipsin-Gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Mi Kyung Eom
- Korean Collection for Type Cultures, (KCTC), Korea Research Institute of Bioscience and Biotechnology, (KRIBB), 181 Ipsin-Gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Hyo Eun Do
- Korean Collection for Type Cultures, (KCTC), Korea Research Institute of Bioscience and Biotechnology, (KRIBB), 181 Ipsin-Gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, (KCTC), Korea Research Institute of Bioscience and Biotechnology, (KRIBB), 181 Ipsin-Gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, (KCTC), Korea Research Institute of Bioscience and Biotechnology, (KRIBB), 181 Ipsin-Gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Se Won Kang
- Korean Collection for Type Cultures, (KCTC), Korea Research Institute of Bioscience and Biotechnology, (KRIBB), 181 Ipsin-Gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Dong Ho Lee
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyuk Yoon
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Je Hee Lee
- CJ Bioscience, Inc., 14 Sejong-Daero, Jung-Gu, Seoul, 04527, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, (KCTC), Korea Research Institute of Bioscience and Biotechnology, (KRIBB), 181 Ipsin-Gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
45
|
Petushkova E, Khasimov M, Mayorova E, Delegan Y, Frantsuzova E, Bogun A, Galkina E, Tsygankov A. The Complete Genome of a Novel Typical Species Thiocapsa bogorovii and Analysis of Its Central Metabolic Pathways. Microorganisms 2024; 12:391. [PMID: 38399794 PMCID: PMC10892978 DOI: 10.3390/microorganisms12020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The purple sulfur bacterium Thiocapsa roseopersicina BBS is interesting from both fundamental and practical points of view. It possesses a thermostable HydSL hydrogenase, which is involved in the reaction of reversible hydrogen activation and a unique reaction of sulfur reduction to hydrogen sulfide. It is a very promising enzyme for enzymatic hydrogenase electrodes. There are speculations that HydSL hydrogenase of purple bacteria is closely related to sulfur metabolism, but confirmation is required. For that, the full genome sequence is necessary. Here, we sequenced and assembled the complete genome of this bacterium. The analysis of the obtained whole genome, through an integrative approach that comprised estimating the Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (DDH) parameters, allowed for validation of the systematic position of T. roseopersicina as T. bogorovii BBS. For the first time, we have assembled the whole genome of this typical strain of a new bacterial species and carried out its functional description against another purple sulfur bacterium: Allochromatium vinosum DSM 180T. We refined the automatic annotation of the whole genome of the bacteria T. bogorovii BBS and localized the genomic positions of several studied genes, including those involved in sulfur metabolism and genes encoding the enzymes required for the TCA and glyoxylate cycles and other central metabolic pathways. Eleven additional genes coding proteins involved in pigment biosynthesis was found.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Makhmadyusuf Khasimov
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Ekaterina Mayorova
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Elena Galkina
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia;
| | - Anatoly Tsygankov
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| |
Collapse
|
46
|
Rodrigues SH, Nunes GD, Soares GG, Ferreira RL, Damas MSF, Laprega PM, Shilling RE, Campos LC, da Costa AS, Malavazi I, da Cunha AF, Pranchevicius MCDS. First report of coexistence of blaKPC-2 and blaNDM-1 in carbapenem-resistant clinical isolates of Klebsiella aerogenes in Brazil. Front Microbiol 2024; 15:1352851. [PMID: 38426065 PMCID: PMC10903355 DOI: 10.3389/fmicb.2024.1352851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Klebsiella aerogenes is an important opportunistic pathogen with the potential to develop resistance against last-line antibiotics, such as carbapenems, limiting the treatment options. Here, we investigated the antibiotic resistance profiles of 10 K. aerogenes strains isolated from patient samples in the intensive-care unit of a Brazilian tertiary hospital using conventional PCR and a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. All isolates were completely resistant to β-lactam antibiotics, including ertapenem, imipenem, and meropenem with differencing levels of resistance to aminoglycosides, quinolones, and tigecycline also observed. Half of the strains studied were classified as multidrug-resistant. The carbapenemase-producing isolates carried many genes of interest including: β-lactams (blaNDM-1, blaKPC-2, blaTEM-1, blaCTX-M-1 group, blaOXA-1 group and blaSHVvariants in 20-80% of the strains), aminoglycoside resistance genes [aac(6')-Ib and aph(3')-VI, 70 and 80%], a fluoroquinolone resistance gene (qnrS, 80%), a sulfonamide resistance gene (sul-2, 80%) and a multidrug efflux system transporter (mdtK, 70%) while all strains carried the efflux pumps Acr (subunit A) and tolC. Moreover, we performed a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. The draft genome assembly of the CRK317 had a total length of 5,462,831 bp and a GC content of 54.8%. The chromosome was found to contain many essential genes. In silico analysis identified many genes associated with resistance phenotypes, including β-lactamases (blaOXA-9, blaTEM-1, blaNDM-1, blaCTX-M-15, blaAmpC-1, blaAmpC-2), the bleomycin resistance gene (bleMBL), an erythromycin resistance methylase (ermC), aminoglycoside-modifying enzymes [aac(6')-Ib, aadA/ant(3")-Ia, aph(3')-VI], a sulfonamide resistance enzyme (sul-2), a chloramphenicol acetyltransferase (catA-like), a plasmid-mediated quinolone resistance protein (qnrS1), a glutathione transferase (fosA), PEtN transferases (eptA, eptB) and a glycosyltransferase (arnT). We also detected 22 genomic islands, eight families of insertion sequences, two putative integrative and conjugative elements with a type IV secretion system, and eight prophage regions. This suggests the significant involvement of these genetic structures in the dissemination of antibiotic resistance. The results of our study show that the emergence of carbapenemase-producing K. aerogenes, co-harboring blaKPC-2 and blaNDM-1, is a worrying phenomenon which highlights the importance of developing strategies to detect, prevent, and control the spread of these microorganisms.
Collapse
Affiliation(s)
- Saulo Henrique Rodrigues
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Dantas Nunes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gabriela Guerrera Soares
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|
47
|
Chopjitt P, Boueroy P, Morita M, Iida T, Akeda Y, Hamada S, Kerdsin A. Genetic characterization of multidrug-resistant Escherichia coli harboring colistin-resistant gene isolated from food animals in food supply chain. Front Cell Infect Microbiol 2024; 14:1289134. [PMID: 38384304 PMCID: PMC10880773 DOI: 10.3389/fcimb.2024.1289134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
Colistin is widely used for the prophylaxis and treatment of infectious disease in humans and livestock. However, the global food chain may actively promote the dissemination of colistin-resistant bacteria in the world. Mobile colistin-resistant (mcr) genes have spread globally, in both communities and hospitals. This study sought to genomically characterize mcr-mediated colistin resistance in 16 Escherichia coli strains isolated from retail meat samples using whole genome sequencing with short-read and long-read platforms. To assess colistin resistance and the transferability of mcr genes, antimicrobial susceptibility testing and conjugation experiments were conducted. Among the 16 isolates, 11 contained mcr-1, whereas three carried mcr-3 and two contained mcr-1 and mcr-3. All isolates had minimum inhibitory concentration (MIC) for colistin in the range 1-64 μg/mL. Notably, 15 out of the 16 isolates demonstrated successful transfer of mcr genes via conjugation, indicative of their presence on plasmids. In contrast, the KK3 strain did not exhibit such transferability. Replicon types of mcr-1-containing plasmids included IncI2 and IncX4, while IncFIB, IncFII, and IncP1 contained mcr-3. Another single strain carried mcr-1.1 on IncX4 and mcr-3.5 on IncP1. Notably, one isolate contained mcr-1.1 located on a chromosome and carrying mcr-3.1 on the IncFIB plasmid. The chromosomal location of the mcr gene may ensure a steady spread of resistance in the absence of selective pressure. Retail meat products may act as critical reservoirs of plasmid-mediated colistin resistance that has been transmitted to humans.
Collapse
Affiliation(s)
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Iida
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sihigeyuki Hamada
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| |
Collapse
|
48
|
Do HE, Ha YB, Kim JS, Suh MK, Kim HS, Eom MK, Lee JH, Park SH, Kang SW, Lee DH, Yoon H, Lee JH, Lee JS. Phocaeicola acetigenes sp. nov., producing acetic acid and iso-butyric acid, isolated faeces from a healthy human. Antonie Van Leeuwenhoek 2024; 117:30. [PMID: 38302626 DOI: 10.1007/s10482-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
An obligately anaerobic, non-motile, Gram-stain-negative, and rod-shaped strain KGMB11183T was isolated from the feces of healthy Koreans. The growth of strain KGMB11183T occurred at 30-45 °C (optimum 37 °C), at pH 6-9 (optimum pH 7), and in the presence of 0-0.5% NaCl (optimum 0%). Strain KGMB11183T showed 16S rRNA gene sequence similarities of 95.4% and 94.2% to the closest recognized species, Phocaeicola plebeius M12T, and Phocaeicola faecicola AGMB03916T. Phylogenetic analysis showed that strain KGMB11183T is a member of the genus Phocaeiocla. The major end products of fermentation are acetic acid and isobutyric acid. The major cellular fatty acids (> 10%) of this isolate were C18:1 cis 9, anteiso-C15:0, and summed feature 11 (iso-C17:0 3-OH and/or C18:2 DMA). The assembled draft genome sequences of strain KGMB11183T consisted of 3,215,271 bp with a DNA G + C content of 41.4%. According to genomic analysis, strain KGMB11183T has a number of genes that produce acetic acid. The genome of strain KGMB11183T encoded the starch utilization system (Sus) operon, SusCDEF suggesting that strain uses many complex polysaccharides that cannot be digested by humans. Based on the physiological, chemotaxonomic, phenotypic, and phylogenetic data, strain KGMB11183T is regarded a novel species of the genus Phocaeicola. The type strain is KGMB11183T (= KCTC 25284T = JCM 35696T).
Collapse
Affiliation(s)
- Hyo Eun Do
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Young Bong Ha
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Min Kuk Suh
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Han Sol Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Mi Kyung Eom
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Se Won Kang
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Dong Ho Lee
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-Gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyuk Yoon
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-Gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Je Hee Lee
- CJ Bioscience, Inc., 14 Sejong-Daero, Jung-gu, Seoul, 04527, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
49
|
Mondol SM, Islam I, Islam MR, Shakil SK, Rakhi NN, Mustary JF, Amiruzzaman, Gomes DJ, Shahjalal HM, Rahaman MM. Genomic landscape of NDM-1 producing multidrug-resistant Providencia stuartii causing burn wound infections in Bangladesh. Sci Rep 2024; 14:2246. [PMID: 38278862 PMCID: PMC10817959 DOI: 10.1038/s41598-024-51819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The increasing antimicrobial resistance in Providencia stuartii (P. stuartii) worldwide, particularly concerning for immunocompromised and burn patients, has raised concern in Bangladesh, where the significance of this infectious opportunistic pathogen had been previously overlooked, prompting a need for investigation. The two strains of P. stuartii (P. stuartii SHNIBPS63 and P. stuartii SHNIBPS71) isolated from wound swab of two critically injured burn patients were found to be multidrug-resistant and P. stuartii SHNIBPS63 showed resistance to all the 22 antibiotics tested as well as revealed the co-existence of blaVEB-6 (Class A), blaNDM-1 (Class B), blaOXA-10 (Class D) beta lactamase genes. Complete resistance to carbapenems through the production of NDM-1, is indicative of an alarming situation as carbapenems are considered to be the last line antibiotic to combat this pathogen. Both isolates displayed strong biofilm-forming abilities and exhibited resistance to copper, zinc, and iron, in addition to carrying multiple genes associated with metal resistance and the formation of biofilms. The study also encompassed a pangenome analysis utilizing a dataset of eighty-six publicly available P. stuartii genomes (n = 86), revealing evidence of an open or expanding pangenome for P. stuartii. Also, an extensive genome-wide analysis of all the P. stuartii genomes revealed a concerning global prevalence of diverse antimicrobial resistance genes, with a particular alarm raised over the abundance of carbapenem resistance gene blaNDM-1. Additionally, this study highlighted the notable genetic diversity within P. stuartii, significant informations about phylogenomic relationships and ancestry, as well as potential for cross-species transmission, raising important implications for public health and microbial adaptation across different environments.
Collapse
Affiliation(s)
| | - Israt Islam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahriar Kabir Shakil
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | | | - Jannatul Ferdous Mustary
- Microbiology Department, Sheikh Hasina National Institute of Burn and Plastic Surgery, Dhaka, 1000, Bangladesh
| | - Amiruzzaman
- Department of Medicine, Sir Salimullah Medical College, Dhaka, 1000, Bangladesh
| | - Donald James Gomes
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hussain Md Shahjalal
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Mizanur Rahaman
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
50
|
Chopjitt P, Boueroy P, Jenjaroenpun P, Wongsurawat T, Hatrongjit R, Kerdsin A, Sunthamala N. Genomic characterization of vancomycin-resistant Enterococcus faecium clonal complex 17 isolated from urine in tertiary hospitals in Northeastern Thailand. Front Microbiol 2024; 14:1278835. [PMID: 38312503 PMCID: PMC10834742 DOI: 10.3389/fmicb.2023.1278835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/31/2023] [Indexed: 02/06/2024] Open
Abstract
Vancomycin-resistant Enterococci (VREs) have increasingly become a major nosocomial pathogen worldwide, earning high-priority category from the World Health Organization (WHO) due to their antibiotic resistance. Among VREs, vancomycin-resistant Enterococcus faecium (VREfm) is particularly concerning, frequently isolated and resistant to many antibiotics used in hospital-acquired infections. This study investigated VREfm isolates from rural tertiary hospitals in Northeastern Thailand based both antibiotic susceptibility testing and whole-genome sequencing. All isolates showed resistance to vancomycin, ampicillin, erythromycin, tetracycline, ciprofloxacin, norfloxacin, and rifampin. Nitrofurantoin and tigecycline resistance were also observed in nearly all isolates. Conversely, all isolates remained susceptible to chloramphenicol, daptomycin, and linezolid. Genomic characterization revealed that all VREfm isolates belonged to clonal complex 17 (CC17), primarily consisting of sequence type (ST) 80, followed by ST17, ST761, and ST117. Additionally, all isolates harbored numerous antimicrobial-resistant genes, including vanA, tet(L), tet(M), aac(6')-li, ant(6)-Ia, aph(3')-III, aac(6')-aph(2″), aph(2″)-la, ant(9)-la, erm(B), msr(C), erm(T), erm(A), fosB, dfrG, and cfr(B). Notably, all isolates contained virulence genes, for collagen adhesin (acm) and cell wall adhesin (efafm), while hylEfm (glycosyl hydrolase) was detected in VREfm ST80. This study provided important information for understanding the genomic features of VREfm isolated from urine.
Collapse
Affiliation(s)
- Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Thailand
| |
Collapse
|