1
|
Percudani R, De Rito C. Predicting Protein Function in the AI and Big Data Era. Biochemistry 2025. [PMID: 40380914 DOI: 10.1021/acs.biochem.5c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
It is an exciting time for researchers working to link proteins to their functions. Most techniques for extracting functional information from genomic sequences were developed several years ago, with major progress driven by the availability of big data. Now, groundbreaking advances in deep-learning and AI-based methods have enriched protein databases with three-dimensional information and offer the potential to predict biochemical properties and biomolecular interactions, providing key functional insights. This progress is expected to increase the proportion of functionally bright proteins in databases and deepen our understanding of life at the molecular level.
Collapse
Affiliation(s)
- Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Carlo De Rito
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Duchêne DA, Chowdhury AA, Yang J, Iglesias-Carrasco M, Stiller J, Feng S, Bhatt S, Gilbert MTP, Zhang G, Tobias JA, Ho SYW. Drivers of avian genomic change revealed by evolutionary rate decomposition. Nature 2025:10.1038/s41586-025-08777-7. [PMID: 40108459 DOI: 10.1038/s41586-025-08777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Modern birds have diversified into a striking array of forms, behaviours and ecological roles. Analyses of molecular evolutionary rates can reveal the links between genomic and phenotypic change1-4, but disentangling the drivers of rate variation at the whole-genome scale has been difficult. Using comprehensive estimates of traits and evolutionary rates across a family-level phylogeny of birds5,6, we find that genome-wide mutation rates across lineages are predominantly explained by clutch size and generation length, whereas rate variation across genes is driven by the content of guanine and cytosine. Here, to find the subsets of genes and lineages that dominate evolutionary rate variation in birds, we estimated the influence of individual lineages on decomposed axes of gene-specific evolutionary rates. We find that most of the rate variation occurs along recent branches of the tree, associated with present-day families of birds. Additional tests on axes of rate variation show rapid changes in microchromosomes immediately after the Cretaceous-Palaeogene transition. These apparent pulses of evolution are consistent with major changes in the genetic machineries for meiosis, heart performance, and RNA splicing, surveillance and translation, and correlate with the ecological diversity reflected in increased tarsus length. Collectively, our analyses paint a nuanced picture of avian evolution, revealing that the ancestors of the most diverse lineages of birds underwent major genomic changes related to mutation, gene usage and niche expansion in the early Palaeogene period.
Collapse
Affiliation(s)
- David A Duchêne
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jingyi Yang
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Maider Iglesias-Carrasco
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Doñana Biological Station-Spanish Research Council CSIC, Seville, Spain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Shaohong Feng
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
| | - Samir Bhatt
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Natural History, University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Xu X, Jian Y, Huang L, Luo W, Wu B, Feng S, Zhou C, Zhang L. Characterization of avian β-defensin genes in Galliformes reveals widespread evolutionary diversification and distinct evolutionary relationships with infection risk. BMC Genomics 2025; 26:211. [PMID: 40033205 PMCID: PMC11874394 DOI: 10.1186/s12864-025-11390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Avian β-defensins (AvBDs) represent a key family of antimicrobial host defense peptides in birds. Accumulating evidence suggests that the evolutionary trajectory of β-defensin genes is specific to the gene, timescale, and species involved, implying that species-specific ecological and life-history differences drive divergent selective pressures on these genes. However, their evolutionary dynamics, particularly the interactions with ecological factors and life-history traits, remain insufficiently explored. RESULTS Through a comprehensive survey of 25 species spanning all major clades of Galliformes, 354 AvBD genes were identified. Comparative sequence analysis, genomic organization, and phylogenetic studies collectively reveal significant evolutionary diversification characterized by gene duplication, pseudogenization, and gene loss across these species. Notably, chicken AvBD3 exhibits significant differences in its coding regions, while AvBD6 and AvBD7 appear to have copy number variations, with species-specific paralogs of AvBD6 being especially prominent. Moreover, positive selection was more frequently observed in recently diverged gene lineages compared to ancestral ones. Using 70 samples from eight galliform species, the study further identified the prevalence of species-specific amino acid alleles. Phylogenetic comparative analysis demonstrated that the evolution of nine AvBD genes (AvBD2, -4, -5, -8, -9, -10, -11, -12, and -14) is significantly associated with specific ecological factors and life-history characteristics. Additionally, the evolutionary rates of these genes showed distinct relationship with inferred infection risk, likely reflecting the multifunctionality of β-defensins and potential trade-offs between immune defense and other biological functions. CONCLUSIONS This cross-species identification and systematic evolutionary analysis of AvBDs in Galliformes deepen our understanding of the co-evolution of host defense peptides, offering valuable insights into their natural biology and evolution, and paving the way for future applications as alternatives to traditional antibiotics.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- Institute of Ecology, China West Normal University, Nanchong, 637009, P. R. China
| | - Yi Jian
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Lijing Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Wei Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Shaohua Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- Institute of Ecology, China West Normal University, Nanchong, 637009, P. R. China
| | - Long Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China.
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China.
- Institute of Ecology, China West Normal University, Nanchong, 637009, P. R. China.
| |
Collapse
|
4
|
Zhao Q, Yin Z, Hou Z. Near telomere-to-telomere genome assemblies of Silkie Gallus gallus and Mallard Anas platyrhynchos restored the structure of chromosomes and "missing" genes in birds. J Anim Sci Biotechnol 2025; 16:9. [PMID: 39828703 PMCID: PMC11745021 DOI: 10.1186/s40104-024-01141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/08/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Chickens and ducks are vital sources of animal protein for humans. Recent pangenome studies suggest that a single genome is insufficient to represent the genetic information of a species, highlighting the need for more comprehensive genomes. The bird genome has more than tens of microchromosomes, but comparative genomics, annotations, and the discovery of variations are hindered by inadequate telomere-to-telomere level assemblies. We aim to complete the chicken and duck genomes, recover missing genes, and reveal common and unique chromosomal features between birds. RESULTS The near telomere-to-telomere genomes of Silkie Gallus gallus and Mallard Anas platyrhynchos were successfully assembled via multiple high-coverage complementary technologies, with quality values of 36.65 and 44.17 for Silkie and Mallard, respectively; and BUSCO scores of 96.55% and 96.97% for Silkie and Mallard, respectively; the mapping rates reached over 99.52% for both assembled genomes, these evaluation results ensured high completeness and accuracy. We successfully annotated 20,253 and 19,621 protein-coding genes for Silkie and Mallard, respectively, and assembled gap-free sex chromosomes in Mallard for the first time. Comparative analysis revealed that microchromosomes differ from macrochromosomes in terms of GC content, repetitive sequence abundance, gene density, and levels of 5mC methylation. Different types of arrangements of centromeric repeat sequence centromeres exist in both Silkie and the Mallard genomes, with Mallard centromeres being invaded by CR1. The highly heterochromatic W chromosome, which serves as a refuge for ERVs, contains disproportionately long ERVs. Both Silkie and the Mallard genomes presented relatively high 5mC methylation levels on sex chromosomes and microchromosomes, and the telomeres and centromeres presented significantly higher 5mC methylation levels than the whole genome. Finally, we recovered 325 missing genes via our new genomes and annotated TNFA in Mallard for the first time, revealing conserved protein structures and tissue-specific expression. CONCLUSIONS The near telomere-to-telomere assemblies in Mallard and Silkie, with the first gap-free sex chromosomes in ducks, significantly enhanced our understanding of genetic structures in birds, specifically highlighting the distinctive chromosome features between the chicken and duck genomes. This foundational work also provides a series of newly identified missing genes for further investigation.
Collapse
Affiliation(s)
- Qiangsen Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhongtao Yin
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhuocheng Hou
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Boman J, Qvarnström A, Mugal CF. Regulatory and evolutionary impact of DNA methylation in two songbird species and their naturally occurring F 1 hybrids. BMC Biol 2024; 22:124. [PMID: 38807214 PMCID: PMC11134931 DOI: 10.1186/s12915-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | - Anna Qvarnström
- Department of Ecology and Genetics (IEG), Division of Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
| | - Carina F Mugal
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
- CNRS, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, University of Lyon 1, Villeurbanne, France.
| |
Collapse
|
6
|
Wu S, Dou T, Yuan S, Yan S, Xu Z, Liu Y, Jian Z, Zhao J, Zhao R, Zi X, Gu D, Liu L, Li Q, Wu DD, Jia J, Ge C, Su Z, Wang K. Annotations of four high-quality indigenous chicken genomes identify more than one thousand missing genes in subtelomeric regions and micro-chromosomes with high G/C contents. BMC Genomics 2024; 25:430. [PMID: 38693501 PMCID: PMC11061957 DOI: 10.1186/s12864-024-10316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sisi Yuan
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rouhan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiannian Zi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qihua Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
7
|
Zheng W, Gojobori J, Suh A, Satta Y. Different Host-Endogenous Retrovirus Relationships between Mammals and Birds Reflected in Genome-Wide Evolutionary Interaction Patterns. Genome Biol Evol 2024; 16:evae065. [PMID: 38527852 PMCID: PMC11005779 DOI: 10.1093/gbe/evae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Mammals and birds differ largely in their average endogenous retrovirus loads, namely the proportion of endogenous retrovirus in the genome. The host-endogenous retrovirus relationships, including conflict and co-option, have been hypothesized among the causes of this difference. However, there has not been studies about the genomic evolutionary signal of constant host-endogenous retrovirus interactions in a long-term scale and how such interactions could lead to the endogenous retrovirus load difference. Through a phylogeny-controlled correlation analysis on ∼5,000 genes between the dN/dS ratio of each gene and the load of endogenous retrovirus in 12 mammals and 21 birds, separately, we detected genes that may have evolved in association with endogenous retrovirus loads. Birds have a higher proportion of genes with strong correlation between dN/dS and the endogenous retrovirus load than mammals. Strong evidence of association is found between the dN/dS of the coding gene for leucine-rich repeat-containing protein 23 and endogenous retrovirus load in birds. Gene set enrichment analysis shows that gene silencing rather than immunity and DNA recombination may have a larger contribution to the association between dN/dS and the endogenous retrovirus load for both mammals and birds. The above results together showing different evolutionary patterns between bird and mammal genes can partially explain the apparently lower endogenous retrovirus loads of birds, while gene silencing may be a universal mechanism that plays a remarkable role in the evolutionary interaction between the host and endogenous retrovirus. In summary, our study presents signals that the host genes might have driven or responded to endogenous retrovirus load changes in long-term evolution.
Collapse
Affiliation(s)
- Wanjing Zheng
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Gojobori
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| | - Alexander Suh
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala 75236, Sweden
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, UK
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| |
Collapse
|
8
|
Stuart KC, Johnson RN, Major RE, Atsawawaranunt K, Ewart KM, Rollins LA, Santure AW, Whibley A. The genome of a globally invasive passerine, the common myna, Acridotheres tristis. DNA Res 2024; 31:dsae005. [PMID: 38366840 PMCID: PMC10917472 DOI: 10.1093/dnares/dsae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
In an era of global climate change, biodiversity conservation is receiving increased attention. Conservation efforts are greatly aided by genetic tools and approaches, which seek to understand patterns of genetic diversity and how they impact species health and their ability to persist under future climate regimes. Invasive species offer vital model systems in which to investigate questions regarding adaptive potential, with a particular focus on how changes in genetic diversity and effective population size interact with novel selection regimes. The common myna (Acridotheres tristis) is a globally invasive passerine and is an excellent model species for research both into the persistence of low-diversity populations and the mechanisms of biological invasion. To underpin research on the invasion genetics of this species, we present the genome assembly of the common myna. We describe the genomic landscape of this species, including genome wide allelic diversity, methylation, repeats, and recombination rate, as well as an examination of gene family evolution. Finally, we use demographic analysis to identify that some native regions underwent a dramatic population increase between the two most recent periods of glaciation, and reveal artefactual impacts of genetic bottlenecks on demographic analysis.
Collapse
Affiliation(s)
- Katarina C Stuart
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Rebecca N Johnson
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Richard E Major
- Australian Museum Research Institute, Australian Museum, Sydney, Australia
| | | | - Kyle M Ewart
- Australian Museum Research Institute, Australian Museum, Sydney, Australia
- School of Life and Environmental Sciences,University of Sydney, Sydney, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| |
Collapse
|
9
|
Zhu F, Yin ZT, Zhao QS, Sun YX, Jie YC, Smith J, Yang YZ, Burt DW, Hincke M, Zhang ZD, Yuan MD, Kaufman J, Sun CJ, Li JY, Shao LW, Yang N, Hou ZC. A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes. Commun Biol 2023; 6:1233. [PMID: 38057566 PMCID: PMC10700341 DOI: 10.1038/s42003-023-05619-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yu-Chen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yu-Ze Yang
- Beijing General Station of Animal Husbandry, 100101, Beijing, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Zi-Ding Zhang
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Meng-Di Yuan
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Cong-Jiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jun-Ying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Li-Wa Shao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Sozzoni M, Ferrer Obiol J, Formenti G, Tigano A, Paris JR, Balacco JR, Jain N, Tilley T, Collins J, Sims Y, Wood J, Benowitz-Fredericks ZM, Field KA, Seyoum E, Gatt MC, Léandri-Breton DJ, Nakajima C, Whelan S, Gianfranceschi L, Hatch SA, Elliott KH, Shoji A, Cecere JG, Jarvis ED, Pilastro A, Rubolini D. A Chromosome-Level Reference Genome for the Black-Legged Kittiwake (Rissa tridactyla), a Declining Circumpolar Seabird. Genome Biol Evol 2023; 15:evad153. [PMID: 37590950 PMCID: PMC10457150 DOI: 10.1093/gbe/evad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.
Collapse
Affiliation(s)
- Marcella Sozzoni
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Joan Ferrer Obiol
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Anna Tigano
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jennifer R Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Nivesh Jain
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Tatiana Tilley
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Joanna Collins
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Jonathan Wood
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Kenneth A Field
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Eyuel Seyoum
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Marie Claire Gatt
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Don-Jean Léandri-Breton
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- Centre d’Études Biologiques de Chizé (CEBC), UMR 7372 - CNRS & Université de La Rochelle, Villiers-en-Bois, France
| | - Chinatsu Nakajima
- Department of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
| | - Shannon Whelan
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, Alaska, USA
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Akiko Shoji
- Department of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
| | | | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Water Research Institute, IRSA-CNR, Brugherio, Monza and Brianza, Italy
| |
Collapse
|
11
|
Hara Y, Kuraku S. The impact of local genomic properties on the evolutionary fate of genes. eLife 2023; 12:82290. [PMID: 37223962 DOI: 10.7554/elife.82290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Functionally indispensable genes are likely to be retained and otherwise to be lost during evolution. This evolutionary fate of a gene can also be affected by factors independent of gene dispensability, including the mutability of genomic positions, but such features have not been examined well. To uncover the genomic features associated with gene loss, we investigated the characteristics of genomic regions where genes have been independently lost in multiple lineages. With a comprehensive scan of gene phylogenies of vertebrates with a careful inspection of evolutionary gene losses, we identified 813 human genes whose orthologs were lost in multiple mammalian lineages: designated 'elusive genes.' These elusive genes were located in genomic regions with rapid nucleotide substitution, high GC content, and high gene density. A comparison of the orthologous regions of such elusive genes across vertebrates revealed that these features had been established before the radiation of the extant vertebrates approximately 500 million years ago. The association of human elusive genes with transcriptomic and epigenomic characteristics illuminated that the genomic regions containing such genes were subject to repressive transcriptional regulation. Thus, the heterogeneous genomic features driving gene fates toward loss have been in place and may sometimes have relaxed the functional indispensability of such genes. This study sheds light on the complex interplay between gene function and local genomic properties in shaping gene evolution that has persisted since the vertebrate ancestor.
Collapse
Affiliation(s)
- Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
12
|
Zimova M, Weeks BC, Willard DE, Giery ST, Jirinec V, Burner RC, Winger BM. Body size predicts the rate of contemporary morphological change in birds. Proc Natl Acad Sci U S A 2023; 120:e2206971120. [PMID: 37155909 PMCID: PMC10193942 DOI: 10.1073/pnas.2206971120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/04/2023] [Indexed: 05/10/2023] Open
Abstract
Variation in evolutionary rates among species is a defining characteristic of the tree of life and may be an important predictor of species' capacities to adapt to rapid environmental change. It is broadly assumed that generation length is an important determinant of microevolutionary rates, and body size is often used as a proxy for generation length. However, body size has myriad biological correlates that could affect evolutionary rates independently from generation length. We leverage two large, independently collected datasets on recent morphological change in birds (52 migratory species breeding in North America and 77 South American resident species) to test how body size and generation length are related to the rates of contemporary morphological change. Both datasets show that birds have declined in body size and increased in wing length over the past 40 y. We found, in both systems, a consistent pattern wherein smaller species declined proportionally faster in body size and increased proportionally faster in wing length. By contrast, generation length explained less variation in evolutionary rates than did body size. Although the mechanisms warrant further investigation, our study demonstrates that body size is an important predictor of contemporary variation in morphological rates of change. Given the correlations between body size and a breadth of morphological, physiological, and ecological traits predicted to mediate phenotypic responses to environmental change, the relationship between body size and rates of phenotypic change should be considered when testing hypotheses about variation in adaptive responses to climate change.
Collapse
Affiliation(s)
- Marketa Zimova
- Department of Biology, Appalachian State University, Boone, NC 28608
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 49109
| | - Brian C Weeks
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 49109
| | - David E Willard
- Gantz Family Collection Center, The Field Museum, Chicago, IL 60605
| | - Sean T Giery
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Vitek Jirinec
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia, Manaus AM 69067-375, Brazil
- Integral Ecology Research Center, Blue Lake, CA 95525
| | - Ryan C Burner
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603
| | - Benjamin M Winger
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Abe T, Kaneko M, Kiyonari H. A reverse genetic approach in geckos with the CRISPR/Cas9 system by oocyte microinjection. Dev Biol 2023; 497:26-32. [PMID: 36868446 DOI: 10.1016/j.ydbio.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
Reptiles are important model organisms in developmental and evolutionary biology, but are used less widely than other amniotes such as mouse and chicken. One of the main reasons for this is that has proven difficult to conduct CRISPR/Cas9-mediated genome editing in many reptile species despite the widespread use of this technology in other taxa. Certain features of reptile reproductive systems make it difficult to access one-cell or early-stage zygotes, which represents a key impediment to gene editing techniques. Recently, Rasys and colleagues reported a genome editing method using oocyte microinjection that allowed them to produce genome-edited Anolis lizards. This method opened a new avenue to reverse genetics studies in reptiles. In the present article, we report the development of a related method for genome editing in the Madagascar ground gecko (Paroedura picta), a well-established experimental model, and describe the generation of Tyr and Fgf10 gene-knockout geckos in the F0 generation.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
14
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
15
|
Wang F, Guo Y, Liu Z, Wang Q, Jiang Y, Zhao G. New insights into the novel sequences of the chicken pan-genome by liquid chip. J Anim Sci 2022; 100:6759641. [PMID: 36223424 PMCID: PMC9733507 DOI: 10.1093/jas/skac336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence indicates that the missing sequences and genes in the chicken reference genome are involved in many crucial biological pathways, including metabolism and immunity. The low detection rate of novel sequences by resequencing hindered the acquisition of these sequences and the exploration of the relationship between new genes and economic traits. To improve the capture ratio of novel sequences, a 48K liquid chip including 25K from the reference sequence and 23K from the novel sequence was designed. The assay was tested on a panel of 218 animals from 5 chicken breeds. The average capture ratio of the reference sequence was 99.55%, and the average sequencing depth of the target sites was approximately 187X, indicating a good performance and successful application of liquid chips in farm animals. For the target region in the novel sequence, the average capture ratio was 33.15% and the average sequencing depth of target sites was approximately 60X, both of which were higher than that of resequencing. However, the different capture ratios and capture regions among varieties and individuals proved the difficulty of capturing these regions with complex structures. After genotyping, GWAS showed variations in novel sequences potentially relevant to immune-related traits. For example, a SNP close to the differentiation of lymphocyte-related gene IGHV3-23-like was associated with the H/L ratio. These results suggest that targeted capture sequencing is a preferred method to capture these sequences with complex structures and genes potentially associated with immune-related traits.
Collapse
Affiliation(s)
| | | | | | - Qiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | | |
Collapse
|
16
|
Kim J, Lee C, Ko BJ, Yoo DA, Won S, Phillippy AM, Fedrigo O, Zhang G, Howe K, Wood J, Durbin R, Formenti G, Brown S, Cantin L, Mello CV, Cho S, Rhie A, Kim H, Jarvis ED. False gene and chromosome losses in genome assemblies caused by GC content variation and repeats. Genome Biol 2022; 23:204. [PMID: 36167554 PMCID: PMC9516821 DOI: 10.1186/s13059-022-02765-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many short-read genome assemblies have been found to be incomplete and contain mis-assemblies. The Vertebrate Genomes Project has been producing new reference genome assemblies with an emphasis on being as complete and error-free as possible, which requires utilizing long reads, long-range scaffolding data, new assembly algorithms, and manual curation. A more thorough evaluation of the recent references relative to prior assemblies can provide a detailed overview of the types and magnitude of improvements. RESULTS Here we evaluate new vertebrate genome references relative to the previous assemblies for the same species and, in two cases, the same individuals, including a mammal (platypus), two birds (zebra finch, Anna's hummingbird), and a fish (climbing perch). We find that up to 11% of genomic sequence is entirely missing in the previous assemblies. In the Vertebrate Genomes Project zebra finch assembly, we identify eight new GC- and repeat-rich micro-chromosomes with high gene density. The impact of missing sequences is biased towards GC-rich 5'-proximal promoters and 5' exon regions of protein-coding genes and long non-coding RNAs. Between 26 and 60% of genes include structural or sequence errors that could lead to misunderstanding of their function when using the previous genome assemblies. CONCLUSIONS Our findings reveal novel regulatory landscapes and protein coding sequences that have been greatly underestimated in previous assemblies and are now present in the Vertebrate Genomes Project reference genomes.
Collapse
Affiliation(s)
- Juwan Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong Ahn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York City, USA
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | | | | | - Richard Durbin
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York City, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA
| | - Samara Brown
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA
| | - Lindsey Cantin
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- eGnome, Inc, Seoul, Republic of Korea.
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York City, USA.
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
17
|
Annotations of novel antennae-expressed genes in male Glossina morsitans morsitans tsetse flies. PLoS One 2022; 17:e0273543. [PMID: 36037171 PMCID: PMC9423656 DOI: 10.1371/journal.pone.0273543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Tsetse flies use antennal expressed genes to navigate their environment. While most canonical genes associated with chemoreception are annotated, potential gaps with important antennal genes are uncharacterized in Glossina morsitans morsitans. We generated antennae-specific transcriptomes from adult male G. m. morsitans flies fed/unfed on bloodmeal and/or exposed to an attractant (ε-nonalactone), a repellant (δ-nonalactone) or paraffin diluent. Using bioinformatics approach, we mapped raw reads onto G. m. morsitans gene-set from VectorBase and collected un-mapped reads (constituting the gaps in annotation). We de novo assembled these reads (un-mapped) into transcript and identified corresponding genes of the transcripts in G. m. morsitans gene-set and protein homologs in UniProt protein database to further annotate the gaps. We predicted potential protein-coding gene regions associated with these transcripts in G. m. morsitans genome, annotated/curated these genes and identified their putative annotated orthologs/homologs in Drosophila melanogaster, Musca domestica or Anopheles gambiae genomes. We finally evaluated differential expression of the novel genes in relation to odor exposures relative to no-odor control (unfed flies). About 45.21% of the sequenced reads had no corresponding transcripts within G. m. morsitans gene-set, corresponding to the gap in existing annotation of the tsetse fly genome. The total reads assembled into 72,428 unique transcripts, most (74.43%) of which had no corresponding genes in the UniProt database. We annotated/curated 592 genes from these transcripts, among which 202 were novel while 390 were improvements of existing genes in the G. m. morsitans genome. Among the novel genes, 94 had orthologs in D. melanogaster, M. domestica or An. gambiae while 88 had homologs in UniProt. These orthologs were putatively associated with oxidative regulation, protein synthesis, transcriptional and/or translational regulation, detoxification and metal ion binding, thus providing insight into their specific roles in antennal physiological processes in male G. m. morsitans. A novel gene (GMOY014237.R1396) was differentially expressed in response to the attractant. We thus established significant gaps in G. m. morsitans genome annotation and identified novel male antennae-expressed genes in the genome, among which > 53% (108) are potentially G. m. morsitans specific.
Collapse
|
18
|
Genomic insights into the secondary aquatic transition of penguins. Nat Commun 2022; 13:3912. [PMID: 35853876 PMCID: PMC9296559 DOI: 10.1038/s41467-022-31508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth. This study examines the tempo and drivers of penguin diversification by combining genomes from all extant and recently extinct penguin lineages, stratigraphic data from fossil penguins and morphological and biogeographic data from all extant and extinct species. Together, these datasets provide new insights into the genetic basis and evolution of adaptations in penguins.
Collapse
|
19
|
Sweazea KL. Revisiting glucose regulation in birds - A negative model of diabetes complications. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110778. [PMID: 35817273 DOI: 10.1016/j.cbpb.2022.110778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
Abstract
Birds naturally have blood glucose concentrations that are nearly double levels measured for mammals of similar body size and studies have shown that birds are resistant to insulin-mediated glucose uptake into tissues. While a combination of high blood glucose and insulin resistance is associated with diabetes-related pathologies in mammals, birds do not develop such complications. Moreover, studies have shown that birds are resistant to oxidative stress and protein glycation and in fact, live longer than similar-sized mammals. This review seeks to explore how birds regulate blood glucose as well as various theories that might explain their apparent resistance to insulin-mediated glucose uptake and adaptations that enable them to thrive in a state of relative hyperglycemia.
Collapse
|
20
|
Li M, Sun C, Xu N, Bian P, Tian X, Wang X, Wang Y, Jia X, Heller R, Wang M, Wang F, Dai X, Luo R, Guo Y, Wang X, Yang P, Hu D, Liu Z, Fu W, Zhang S, Li X, Wen C, Lan F, Siddiki AZ, Suwannapoom C, Zhao X, Nie Q, Hu X, Jiang Y, Yang N. De Novo Assembly of 20 Chicken Genomes Reveals the Undetectable Phenomenon for Thousands of Core Genes on Microchromosomes and Subtelomeric Regions. Mol Biol Evol 2022; 39:msac066. [PMID: 35325213 PMCID: PMC9021737 DOI: 10.1093/molbev/msac066] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The gene numbers and evolutionary rates of birds were assumed to be much lower than those of mammals, which is in sharp contrast to the huge species number and morphological diversity of birds. It is, therefore, necessary to construct a complete avian genome and analyze its evolution. We constructed a chicken pan-genome from 20 de novo assembled genomes with high sequencing depth, and identified 1,335 protein-coding genes and 3,011 long noncoding RNAs not found in GRCg6a. The majority of these novel genes were detected across most individuals of the examined transcriptomes but were seldomly measured in each of the DNA sequencing data regardless of Illumina or PacBio technology. Furthermore, different from previous pan-genome models, most of these novel genes were overrepresented on chromosomal subtelomeric regions and microchromosomes, surrounded by extremely high proportions of tandem repeats, which strongly blocks DNA sequencing. These hidden genes were proved to be shared by all chicken genomes, included many housekeeping genes, and enriched in immune pathways. Comparative genomics revealed the novel genes had 3-fold elevated substitution rates than known ones, updating the knowledge about evolutionary rates in birds. Our study provides a framework for constructing a better chicken genome, which will contribute toward the understanding of avian evolution and the improvement of poultry breeding.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Naiyi Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaomeng Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuzhe Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, Beijing 100193, China
| | - Xinzheng Jia
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Mingshan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Rongsong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangnan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Dexiang Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhenyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shunjin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaochang Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Amam Zonaed Siddiki
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong 4202, Bangladesh
| | | | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Center for Functional Genomics, Institute of Future Agriculture, Northwest A&F University, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Pinto BJ, Keating SE, Nielsen SV, Scantlebury DP, Daza JD, Gamble T. Chromosome-Level Genome Assembly Reveals Dynamic Sex Chromosomes in Neotropical Leaf-Litter Geckos (Sphaerodactylidae: Sphaerodactylus). J Hered 2022; 113:272-287. [PMID: 35363859 PMCID: PMC9270867 DOI: 10.1093/jhered/esac016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Sex determination is a critical element of successful vertebrate development, suggesting that sex chromosome systems might be evolutionarily stable across lineages. For example, mammals and birds have maintained conserved sex chromosome systems over long evolutionary time periods. Other vertebrates, in contrast, have undergone frequent sex chromosome transitions, which is even more amazing considering we still know comparatively little across large swaths of their respective phylogenies. One reptile group in particular, the gecko lizards (infraorder Gekkota), shows an exceptional lability with regard to sex chromosome transitions and may possess the majority of transitions within squamates (lizards and snakes). However, detailed genomic and cytogenetic information about sex chromosomes is lacking for most gecko species, leaving large gaps in our understanding of the evolutionary processes at play. To address this, we assembled a chromosome-level genome for a gecko (Sphaerodactylidae: Sphaerodactylus) and used this assembly to search for sex chromosomes among six closely related species using a variety of genomic data, including whole-genome re-sequencing, RADseq, and RNAseq. Previous work has identified XY systems in two species of Sphaerodactylus geckos. We expand upon that work to identify between two and four sex chromosome cis-transitions (XY to a new XY) within the genus. Interestingly, we confirmed two different linkage groups as XY sex chromosome systems that were previously unknown to act as sex chromosomes in tetrapods (syntenic with Gallus chromosome 3 and Gallus chromosomes 18/30/33), further highlighting a unique and fascinating trend that most linkage groups have the potential to act as sex chromosomes in squamates.
Collapse
Affiliation(s)
- Brendan J Pinto
- Address correspondence to B. J. Pinto at the address above, or e-mail:
| | - Shannon E Keating
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Stuart V Nielsen
- Department of Biological Sciences, Louisiana State University in Shreveport, Shreveport, LA 71115, USA,Division of Herpetology, Florida Museum of Natural History, Gainesville, FL 32611, USA
| | | | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - Tony Gamble
- Milwaukee Public Museum, Milwaukee, WI 53233, USA,Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA,Bell Museum of Natural History, University of Minnesota, St Paul, MN 55455, USA
| |
Collapse
|
22
|
Westerdahl H, Mellinger S, Sigeman H, Kutschera VE, Proux-Wéra E, Lundberg M, Weissensteiner M, Churcher A, Bunikis I, Hansson B, Wolf JBW, Strandh M. The genomic architecture of the passerine MHC region: high repeat content and contrasting evolutionary histories of single copy and tandemly duplicated MHC genes. Mol Ecol Resour 2022; 22:2379-2395. [PMID: 35348299 DOI: 10.1111/1755-0998.13614] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
The Major Histocompatibility Complex (MHC) is of central importance to the immune system, and an optimal MHC diversity is believed to maximize pathogen elimination. Birds show substantial variation in MHC diversity, ranging from few genes in most bird orders to very many genes in passerines. Our understanding of the evolutionary trajectories of the MHC in passerines is hampered by lack of data on genomic organization. Therefore, we assemble and annotate the MHC genomic region of the great reed warbler (Acrocephalus arundinaceus), using long-read sequencing and optical mapping. The MHC region is large (>5.5Mb), characterized by structural changes compared to hitherto investigated bird orders and shows higher repeat content than the genome average. These features were supported by analyses in three additional passerines. MHC genes in passerines are found in two different chromosomal arrangements, either as single copy MHC genes located among non-MHC genes, or as tandemly duplicated tightly linked MHC genes. Some single copy MHC genes are old and putative orthologs among species. In contrast tandemly duplicated MHC genes are monophyletic within species and have evolved by simultaneous gene duplication of several MHC genes. Structural differences in the MHC genomic region among bird orders seem substantial compared to mammals and have possibly been fuelled by clade-specific immune system adaptations. Our study provides methodological guidance in characterizing complex genomic regions, constitutes a resource for MHC research in birds, and calls for a revision of the general belief that avian MHC has a conserved gene order and small size compared to mammals.
Collapse
Affiliation(s)
- Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Samantha Mellinger
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Hanna Sigeman
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | - Estelle Proux-Wéra
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | - Max Lundberg
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Matthias Weissensteiner
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Allison Churcher
- National Bioinformatics Infrastructure Sweden, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Science for Life Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, SE-752 37, Uppsala, Sweden
| | - Bengt Hansson
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Maria Strandh
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| |
Collapse
|
23
|
Burkhardt NB, Elleder D, Schusser B, Krchlíková V, Göbel TW, Härtle S, Kaspers B. The Discovery of Chicken Foxp3 Demands Redefinition of Avian Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1128-1138. [PMID: 35173035 DOI: 10.4049/jimmunol.2000301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Since the publication of the first chicken genome sequence, we have encountered genes playing key roles in mammalian immunology, but being seemingly absent in birds. One of those was, until recently, Foxp3, the master transcription factor of regulatory T cells in mammals. Therefore, avian regulatory T cell research is still poorly standardized. In this study we identify a chicken ortholog of Foxp3 We prove sequence homology with known mammalian and sauropsid sequences, but also reveal differences in major domains. Expression profiling shows an association of Foxp3 and CD25 expression levels in CD4+CD25+ peripheral T cells and identifies a CD4-CD25+Foxp3high subset of thymic lymphocytes that likely represents yet undescribed avian regulatory T precursor cells. We conclude that Foxp3 is existent in chickens and that it shares certain functional characteristics with its mammalian ortholog. Nevertheless, pathways for regulatory T cell development and Foxp3 function are likely to differ between mammals and birds. The identification and characterization of chicken Foxp3 will help to define avian regulatory T cells and to analyze their functional properties and thereby advance the field of avian immunology.
Collapse
Affiliation(s)
- Nina B Burkhardt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | - Benjamin Schusser
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Veronika Krchlíková
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | - Thomas W Göbel
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sonja Härtle
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Bernd Kaspers
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany;
| |
Collapse
|
24
|
Huang Z, De O Furo I, Liu J, Peona V, Gomes AJB, Cen W, Huang H, Zhang Y, Chen D, Xue T, Zhang Q, Yue Z, Wang Q, Yu L, Chen Y, Suh A, de Oliveira EHC, Xu L. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat Commun 2022; 13:944. [PMID: 35177601 PMCID: PMC8854603 DOI: 10.1038/s41467-022-28585-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The karyotype of most birds has remained considerably stable during more than 100 million years' evolution, except for some groups, such as parrots. The evolutionary processes and underlying genetic mechanism of chromosomal rearrangements in parrots, however, are poorly understood. Here, using chromosome-level assemblies of four parrot genomes, we uncover frequent chromosome fusions and fissions, with most of them occurring independently among lineages. The increased activities of chromosomal rearrangements in parrots are likely associated with parrot-specific loss of two genes, ALC1 and PARP3, that have known functions in the repair of double-strand breaks and maintenance of genome stability. We further find that the fusion of the ZW sex chromosomes and chromosome 11 has created a pair of neo-sex chromosomes in the ancestor of parrots, and the chromosome 25 has been further added to the sex chromosomes in monk parakeet. Together, the combination of our genomic and cytogenetic analyses characterizes the complex evolutionary history of chromosomal rearrangements and sex chromosomes in parrots.
Collapse
Affiliation(s)
- Zhen Huang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Ivanete De O Furo
- Universidade Federal Rural da Amazônia (UFRA) Laboratório de Reprodução Animal (LABRAC), Parauapebas, PA, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Jing Liu
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Valentina Peona
- Department of Organismal Biology, Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | | | - Wan Cen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Hao Huang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Duo Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Ting Xue
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Qiujin Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics; International Cancer Center; and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, China
| | - Quanxi Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
| | - Lingyu Yu
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
| | - Alexander Suh
- Department of Organismal Biology, Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, Organisms and the Environment, University of East Anglia, Norwich, UK
| | - Edivaldo H C de Oliveira
- Programa de Pós-graduação em Genética e Biologia Molecular, PPGBM, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Luohao Xu
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
25
|
Luzuriaga-Neira AR, Alvarez-Ponce D. Rates of Protein Evolution across the Marsupial Phylogeny: Heterogeneity and Link to Life-History Traits. Genome Biol Evol 2022; 14:evab277. [PMID: 34894228 PMCID: PMC8759560 DOI: 10.1093/gbe/evab277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Despite the importance of effective population size (Ne) in evolutionary and conservation biology, it remains unclear what factors have an impact on this quantity. The Nearly Neutral Theory of Molecular Evolution predicts a faster accumulation of deleterious mutations (and thus a higher dN/dS ratio) in populations with small Ne; thus, measuring dN/dS ratios in different groups/species can provide insight into their Ne. Here, we used an exome data set of 1,550 loci from 45 species of marsupials representing 18 of the 22 extant families, to estimate dN/dS ratios across the different branches and families of the marsupial phylogeny. We found a considerable heterogeneity in dN/dS ratios among families and species, which suggests significant differences in their Ne. Furthermore, our multivariate analyses of several life-history traits showed that dN/dS ratios (and thus Ne) are affected by body weight, body length, and weaning age.
Collapse
|
26
|
Recurrent erosion of COA1/MITRAC15 exemplifies conditional gene dispensability in oxidative phosphorylation. Sci Rep 2021; 11:24437. [PMID: 34952909 PMCID: PMC8709867 DOI: 10.1038/s41598-021-04077-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle fibers rely upon either oxidative phosphorylation or the glycolytic pathway with much less reliance on oxidative phosphorylation to achieve muscular contractions that power mechanical movements. Species with energy-intensive adaptive traits that require sudden bursts of energy have a greater dependency on glycolytic fibers. Glycolytic fibers have decreased reliance on OXPHOS and lower mitochondrial content compared to oxidative fibers. Hence, we hypothesized that gene loss might have occurred within the OXPHOS pathway in lineages that largely depend on glycolytic fibers. The protein encoded by the COA1/MITRAC15 gene with conserved orthologs found in budding yeast to humans promotes mitochondrial translation. We show that gene disrupting mutations have accumulated within the COA1 gene in the cheetah, several species of galliform birds, and rodents. The genomic region containing COA1 is a well-established evolutionary breakpoint region in mammals. Careful inspection of genome assemblies of closely related species of rodents and marsupials suggests two independent COA1 gene loss events co-occurring with chromosomal rearrangements. Besides recurrent gene loss events, we document changes in COA1 exon structure in primates and felids. The detailed evolutionary history presented in this study reveals the intricate link between skeletal muscle fiber composition and the occasional dispensability of the chaperone-like role of the COA1 gene.
Collapse
|
27
|
Sin SYW, Cloutier A, Nevitt G, Edwards SV. Olfactory receptor subgenome and expression in a highly olfactory procellariiform seabird. Genetics 2021; 220:6458329. [PMID: 34888634 DOI: 10.1093/genetics/iyab210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Procellariiform seabirds rely on their sense of smell for foraging and homing. Both genomes and transcriptomes yield important clues about how olfactory receptor (OR) subgenomes are shaped by natural and sexual selection, yet no transcriptomes have been made of any olfactory epithelium of any bird species thus far. Here we assembled a high-quality genome and nasal epithelium transcriptome of the Leach's storm-petrel (Oceanodroma leucorhoa) to extensively characterize their OR repertoire. Using a depth-of-coverage-assisted counting method, we estimated over 160 intact OR genes (∼500 including OR fragments). This method reveals the highest number of intact OR genes and the lowest proportion of pseudogenes compared to other waterbirds studied, and suggests that rates of OR gene duplication vary between major clades of birds, with particularly high rates in passerines. OR expression patterns reveal two OR genes (OR6-6 and OR5-11) highly expressed in adults, and four OR genes (OR14-14, OR14-12, OR10-2, and OR14-9) differentially expressed between age classes of storm-petrels. All four genes differentially expressed between age classes were more highly expressed in chicks compared to adults, suggesting that ORs genes may exhibit ontogenetic specializations. Three highly differentially expressed OR genes also had high copy number ratios, suggesting that expression variation may be linked to copy number in the genome. We provide better estimates of OR gene number by using a copy number-assisted counting method, and document ontogenetic changes in OR gene expression that may be linked to olfactory specialization. These results provide valuable insight into the expression, development, and macroevolution of olfaction in seabirds.
Collapse
Affiliation(s)
- Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.,School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gabrielle Nevitt
- Department of Neurobiology, Physiology and Behavior and the Graduate Group in Ecology, University of California, Davis, CA 95616, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Bravo GA, Schmitt CJ, Edwards SV. What Have We Learned from the First 500 Avian Genomes? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-085928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - C. Jonathan Schmitt
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| |
Collapse
|
29
|
Zhu F, Yin ZT, Wang Z, Smith J, Zhang F, Martin F, Ogeh D, Hincke M, Lin FB, Burt DW, Zhou ZK, Hou SS, Zhao QS, Li XQ, Ding SR, Li GS, Yang FX, Hao JP, Zhang Z, Lu LZ, Yang N, Hou ZC. Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication. Nat Commun 2021; 12:5932. [PMID: 34635656 PMCID: PMC8505442 DOI: 10.1038/s41467-021-26272-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/21/2021] [Indexed: 01/23/2023] Open
Abstract
Domestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds. We obtain the entire genomic sequences for the C-type lectin (CTL) family members that regulate eggshell biomineralization. Our population and comparative genomics analyses provide more than 36 million sequence variants between duck populations. Furthermore, a mutant cell line allows confirmation of the predicted anti-adipogenic function of NR2F2 in the duck, and uncovered mutations specific to Pekin duck that potentially affect adipose deposition. Our study provides insights into avian evolution and the genetics of oviparity, and will be a rich resource for the future genetic improvement of commercial traits in the duck.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zheng Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Fang-Bing Lin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zheng-Kui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Shui-Sheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Si-Ran Ding
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Guan-Sheng Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fang-Xi Yang
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Jing-Pin Hao
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
30
|
Huttener R, Thorrez L, Veld TI, Granvik M, Van Lommel L, Waelkens E, Derua R, Lemaire K, Goyvaerts L, De Coster S, Buyse J, Schuit F. Sequencing refractory regions in bird genomes are hotspots for accelerated protein evolution. BMC Ecol Evol 2021; 21:176. [PMID: 34537008 PMCID: PMC8449477 DOI: 10.1186/s12862-021-01905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Background Approximately 1000 protein encoding genes common for vertebrates are still unannotated in avian genomes. Are these genes evolutionary lost or are they not yet found for technical reasons? Using genome landscapes as a tool to visualize large-scale regional effects of genome evolution, we reexamined this question. Results On basis of gene annotation in non-avian vertebrate genomes, we established a list of 15,135 common vertebrate genes. Of these, 1026 were not found in any of eight examined bird genomes. Visualizing regional genome effects by our sliding window approach showed that the majority of these "missing" genes can be clustered to 14 regions of the human reference genome. In these clusters, an additional 1517 genes (often gene fragments) were underrepresented in bird genomes. The clusters of “missing” genes coincided with regions of very high GC content, particularly in avian genomes, making them “hidden” because of incomplete sequencing. Moreover, proteins encoded by genes in these sequencing refractory regions showed signs of accelerated protein evolution. As a proof of principle for this idea we experimentally characterized the mRNA and protein products of four "hidden" bird genes that are crucial for energy homeostasis in skeletal muscle: ALDOA, ENO3, PYGM and SLC2A4. Conclusions A least part of the “missing” genes in bird genomes can be attributed to an artifact caused by the difficulty to sequence regions with extreme GC% (“hidden” genes). Biologically, these “hidden” genes are of interest as they encode proteins that evolve more rapidly than the genome wide average. Finally we show that four of these “hidden” genes encode key proteins for energy metabolism in flight muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01905-7.
Collapse
Affiliation(s)
- R Huttener
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Thorrez
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.,Tissue Engineering Laboratory, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - T In't Veld
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - M Granvik
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - E Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - R Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - K Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - S De Coster
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - F Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.
| |
Collapse
|
31
|
Tran Van P, Anselmetti Y, Bast J, Dumas Z, Galtier N, Jaron KS, Martens K, Parker DJ, Robinson-Rechavi M, Schwander T, Simion P, Schön I. First annotated draft genomes of nonmarine ostracods (Ostracoda, Crustacea) with different reproductive modes. G3 (BETHESDA, MD.) 2021; 11:jkab043. [PMID: 33591306 PMCID: PMC8049415 DOI: 10.1093/g3journal/jkab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 11/14/2022]
Abstract
Ostracods are one of the oldest crustacean groups with an excellent fossil record and high importance for phylogenetic analyses but genome resources for this class are still lacking. We have successfully assembled and annotated the first reference genomes for three species of nonmarine ostracods; two with obligate sexual reproduction (Cyprideis torosa and Notodromas monacha) and the putative ancient asexual Darwinula stevensoni. This kind of genomic research has so far been impeded by the small size of most ostracods and the absence of genetic resources such as linkage maps or BAC libraries that were available for other crustaceans. For genome assembly, we used an Illumina-based sequencing technology, resulting in assemblies of similar sizes for the three species (335-382 Mb) and with scaffold numbers and their N50 (19-56 kb) in the same orders of magnitude. Gene annotations were guided by transcriptome data from each species. The three assemblies are relatively complete with BUSCO scores of 92-96. The number of predicted genes (13,771-17,776) is in the same range as Branchiopoda genomes but lower than in most malacostracan genomes. These three reference genomes from nonmarine ostracods provide the urgently needed basis to further develop ostracods as models for evolutionary and ecological research.
Collapse
Affiliation(s)
- Patrick Tran Van
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Yoann Anselmetti
- ISEM—Institut des Sciences de l’Evolution, Montpellier 34090, France
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Galtier
- ISEM—Institut des Sciences de l’Evolution, Montpellier 34090, France
| | - Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Koen Martens
- Royal Belgian Institute of Natural Sciences, OD Nature, Freshwater Biology, Brussels 1000, Belgium
- Department of Biology, University of Ghent, Ghent 9000, Belgium
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paul Simion
- ISEM—Institut des Sciences de l’Evolution, Montpellier 34090, France
- Université de Namur, LEGE, URBE, Namur 5000, Belgium
| | - Isa Schön
- Royal Belgian Institute of Natural Sciences, OD Nature, Freshwater Biology, Brussels 1000, Belgium
- University of Hasselt, Research Group Zoology, Diepenbeek 3590, Belgium
| |
Collapse
|
32
|
Abstract
Recombination increases the local GC-content in genomic regions through GC-biased gene conversion (gBGC). The recent discovery of a large genomic region with extreme GC-content in the fat sand rat Psammomys obesus provides a model to study the effects of gBGC on chromosome evolution. Here, we compare the GC-content and GC-to-AT substitution patterns across protein-coding genes of four gerbil species and two murine rodents (mouse and rat). We find that the known high-GC region is present in all the gerbils, and is characterized by high substitution rates for all mutational categories (AT-to-GC, GC-to-AT, and GC-conservative) both at synonymous and nonsynonymous sites. A higher AT-to-GC than GC-to-AT rate is consistent with the high GC-content. Additionally, we find more than 300 genes outside the known region with outlying values of AT-to-GC synonymous substitution rates in gerbils. Of these, over 30% are organized into at least 17 large clusters observable at the megabase-scale. The unusual GC-skewed substitution pattern suggests the evolution of genomic regions with very high recombination rates in the gerbil lineage, which can lead to a runaway increase in GC-content. Our results imply that rapid evolution of GC-content is possible in mammals, with gerbil species providing a powerful model to study the mechanisms of gBGC.
Collapse
Affiliation(s)
- Rodrigo Pracana
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - John F Mulley
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | | |
Collapse
|
33
|
Rolland J, Schluter D, Romiguier J. Vulnerability to Fishing and Life History Traits Correlate with the Load of Deleterious Mutations in Teleosts. Mol Biol Evol 2021; 37:2192-2196. [PMID: 32163146 PMCID: PMC7403610 DOI: 10.1093/molbev/msaa067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding why some species accumulate more deleterious substitutions than others is an important question relevant in evolutionary biology and conservation sciences. Previous studies conducted in terrestrial taxa suggest that life history traits correlate with the efficiency of purifying selection and accumulation of deleterious mutations. Using a large genome data set of 76 species of teleostean fishes, we show that species with life history traits associated with vulnerability to fishing have an increased rate of deleterious mutation accumulation (measured via dN/dS, i.e., nonsynonymous over synonymous substitution rate). Our results, focusing on a large clade of aquatic species, generalize previous patterns found so far in few clades of terrestrial vertebrates. These results also show that vulnerable species to fishing inherently accumulate more deleterious substitutions than nonthreatened ones, which illustrates the potential links among population genetics, ecology, and fishing policies to prevent species extinction.
Collapse
Affiliation(s)
- Jonathan Rolland
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan Romiguier
- CNRS, UMR 5554 Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| |
Collapse
|
34
|
Blom MPK. Opportunities and challenges for high-quality biodiversity tissue archives in the age of long-read sequencing. Mol Ecol 2021; 30:5935-5948. [PMID: 33786900 DOI: 10.1111/mec.15909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
The technological ability to characterize genetic variation at a genome-wide scale provides an unprecedented opportunity to study the genetic underpinnings and evolutionary mechanisms that promote and sustain biodiversity. The transition from short- to long-read sequencing is particularly promising and allows a more holistic view on any changes in genetic diversity across time and space. Long-read sequencing has tremendous potential but sequencing success strongly depends on the long-range integrity of DNA molecules and therefore on the availability of high-quality tissue samples. With the scope of genomic experiments expanding and wild populations simultaneously disappearing at an unprecedented rate, access to high-quality samples may soon be a major concern for many projects. The need for high-quality biodiversity tissue archives is therefore urgent but sampling and preserving high-quality samples is not a trivial exercise. In this review, I will briefly outline how long-read sequencing can benefit the study of molecular ecology, how this will substantially increase the demand for high-quality tissues and why it is challenging to preserve DNA integrity. I will then provide an overview of preservation approaches and end with a call for support to acknowledge the efforts needed to assemble high-quality tissue archives. In doing so, I hope to simultaneously motivate field biologists to expand sampling practices and molecular biologists to develop (cost) efficient guidelines for the sampling and long-term storage of tissues. A concerted, interdisciplinary, effort is needed to catalogue the genetic variation underlying contemporary biodiversity and will eventually provide a critical resource for future studies.
Collapse
Affiliation(s)
- Mozes P K Blom
- Leibniz Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| |
Collapse
|
35
|
Kern C, Wang Y, Xu X, Pan Z, Halstead M, Chanthavixay G, Saelao P, Waters S, Xiang R, Chamberlain A, Korf I, Delany ME, Cheng HH, Medrano JF, Van Eenennaam AL, Tuggle CK, Ernst C, Flicek P, Quon G, Ross P, Zhou H. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat Commun 2021; 12:1821. [PMID: 33758196 PMCID: PMC7988148 DOI: 10.1038/s41467-021-22100-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Gene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of these datasets and those from the human and mouse Encyclopedia of DNA Elements projects reveal that a core set of regulatory elements are functionally conserved independent of divergence between species, and that tissue-specific transcription factor occupancy at regulatory elements and their predicted target genes are also conserved. These datasets represent a unique opportunity for the emerging field of comparative epigenomics, as well as the agricultural research community, including species that are globally important food resources.
Collapse
Affiliation(s)
- Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Xiaoqin Xu
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Michelle Halstead
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Susan Waters
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Amanda Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Mary E Delany
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Hans H Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Chris K Tuggle
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, David, Davis, CA, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
36
|
Abstract
Birds are one of the most recognizable and diverse groups of organisms on earth. This group has played an important role in many fields, including the development of methods in behavioral ecology and evolutionary theory. The use of population genomics took off following the advent of high-throughput sequencing in various taxa. Several features of avian genomes make them particularly amenable for work in this field, including their nucleated red blood cells permitting easy DNA extraction and small, compact genomes. We review the latest findings in the population genomics of birds here, emphasizing questions related to behavior, ecology, evolution, and conservation. Additionally, we include insights in trait mapping and the ability to obtain accurate estimates of important summary statistics for conservation (e.g., genetic diversity and inbreeding). We highlight roadblocks that will need to be overcome in order to advance work on the population genomics of birds and prospects for future work. Roadblocks include the assembly of more contiguous reference genomes using long-reads and optical mapping. Prospects include the integration of population genomics with additional fields (e.g., landscape genetics, phylogeography, and genomic mapping) along with studies beyond genetic variants (e.g., epigenetics).
Collapse
|
37
|
Li J, Zhang J, Liu J, Zhou Y, Cai C, Xu L, Dai X, Feng S, Guo C, Rao J, Wei K, Jarvis ED, Jiang Y, Zhou Z, Zhang G, Zhou Q. A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals. Gigascience 2021; 10:giaa142. [PMID: 33406261 PMCID: PMC7787181 DOI: 10.1093/gigascience/giaa142] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ducks have a typical avian karyotype that consists of macro- and microchromosomes, but a pair of much less differentiated ZW sex chromosomes compared to chickens. To elucidate the evolution of chromosome architectures between ducks and chickens, and between birds and mammals, we produced a nearly complete chromosomal assembly of a female Pekin duck by combining long-read sequencing and multiplatform scaffolding techniques. RESULTS A major improvement of genome assembly and annotation quality resulted from the successful resolution of lineage-specific propagated repeats that fragmented the previous Illumina-based assembly. We found that the duck topologically associated domains (TAD) are demarcated by putative binding sites of the insulator protein CTCF, housekeeping genes, or transitions of active/inactive chromatin compartments, indicating conserved mechanisms of spatial chromosome folding with mammals. There are extensive overlaps of TAD boundaries between duck and chicken, and also between the TAD boundaries and chromosome inversion breakpoints. This suggests strong natural selection pressure on maintaining regulatory domain integrity, or vulnerability of TAD boundaries to DNA double-strand breaks. The duck W chromosome retains 2.5-fold more genes relative to chicken. Similar to the independently evolved human Y chromosome, the duck W evolved massive dispersed palindromic structures, and a pattern of sequence divergence with the Z chromosome that reflects stepwise suppression of homologous recombination. CONCLUSIONS Our results provide novel insights into the conserved and convergently evolved chromosome features of birds and mammals, and also importantly add to the genomic resources for poultry studies.
Collapse
Affiliation(s)
- Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 5 Nobels väg, Stockholm 17177, Sweden
| | - Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Yang Zhou
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Cheng Cai
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Luohao Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Shaohong Feng
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Ave, NY 10065, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 12 Zhong Guan Cun Da Jie, Beijing, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 10 Nørregade, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| |
Collapse
|
38
|
Peona V, Blom MPK, Xu L, Burri R, Sullivan S, Bunikis I, Liachko I, Haryoko T, Jønsson KA, Zhou Q, Irestedt M, Suh A. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol Ecol Resour 2021; 21:263-286. [PMID: 32937018 PMCID: PMC7757076 DOI: 10.1111/1755-0998.13252] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Genome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies now enable assembling genomes at unprecedented quality and contiguity. However, the difficulty in assembling repeat-rich and GC-rich regions (genomic "dark matter") limits insights into the evolution of genome structure and regulatory networks. Here, we compare the efficiency of currently available sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter. By adopting different de novo assembly strategies, we compare individual draft assemblies to a curated multiplatform reference assembly and identify the genomic features that cause gaps within each assembly. We show that a multiplatform assembly implementing long-read, linked-read and proximity sequencing technologies performs best at recovering transposable elements, multicopy MHC genes, GC-rich microchromosomes and the repeat-rich W chromosome. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is now possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects for optimized completeness of both the coding and noncoding parts of nonmodel genomes.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
- Museum für NaturkundeLeibniz Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Luohao Xu
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
| | - Reto Burri
- Department of Population EcologyInstitute of Ecology and EvolutionFriedrich‐Schiller‐University JenaJenaGermany
| | | | - Ignas Bunikis
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala Genome CenterUppsala UniversityUppsalaSweden
| | | | - Tri Haryoko
- Research Centre for BiologyMuseum Zoologicum BogorienseIndonesian Institute of Sciences (LIPI)CibinongIndonesia
| | - Knud A. Jønsson
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Qi Zhou
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
- MOE Laboratory of Biosystems Homeostasis & ProtectionLife Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Reproductive MedicineThe 2nd Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Martin Irestedt
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Alexander Suh
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- School of Biological Sciences—Organisms and the EnvironmentUniversity of East AngliaNorwichUK
| |
Collapse
|
39
|
Draft Genome of the Common Snapping Turtle, Chelydra serpentina, a Model for Phenotypic Plasticity in Reptiles. G3-GENES GENOMES GENETICS 2020; 10:4299-4314. [PMID: 32998935 PMCID: PMC7718744 DOI: 10.1534/g3.120.401440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Turtles are iconic reptiles that inhabit a range of ecosystems from oceans to deserts and climates from the tropics to northern temperate regions. Yet, we have little understanding of the genetic adaptations that allow turtles to survive and reproduce in such diverse environments. Common snapping turtles, Chelydra serpentina, are an ideal model species for studying adaptation to climate because they are widely distributed from tropical to northern temperate zones in North America. They are also easy to maintain and breed in captivity and produce large clutch sizes, which makes them amenable to quantitative genetic and molecular genetic studies of traits like temperature-dependent sex determination. We therefore established a captive breeding colony and sequenced DNA from one female using both short and long reads. After trimming and filtering, we had 209.51Gb of Illumina reads, 25.72Gb of PacBio reads, and 21.72 Gb of Nanopore reads. The assembled genome was 2.258 Gb in size and had 13,224 scaffolds with an N50 of 5.59Mb. The longest scaffold was 27.24Mb. BUSCO analysis revealed 97.4% of core vertebrate genes in the genome. We identified 3.27 million SNPs in the reference turtle, which indicates a relatively high level of individual heterozygosity. We assembled the transcriptome using RNA-Seq data and used gene prediction software to produce 22,812 models of protein coding genes. The quality and contiguity of the snapping turtle genome is similar to or better than most published reptile genomes. The genome and genetic variants identified here provide a foundation for future studies of adaptation to climate.
Collapse
|
40
|
Sharma S, Shinde SS, Teekas L, Vijay N. Evidence for the loss of plasminogen receptor KT gene in chicken. Immunogenetics 2020; 72:507-515. [PMID: 33247773 DOI: 10.1007/s00251-020-01186-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
The loss of conserved genes has the potential to alter phenotypes drastically. Screening of vertebrate genomes for lineage-specific gene loss events has identified numerous natural knockouts associated with specific phenotypes. We provide evidence for the loss of a multi-exonic plasminogen receptor KT (PLGRKT) protein-encoding gene located on the Z chromosome in chicken. Exons 1 and 2 are entirely missing; remnants of exon 3 and a mostly intact exon 4 are identified in an assembly gap-free region in chicken with conserved synteny across species and verified using transcriptome and genome sequencing. PLGRKT gene disrupting changes are present in representative species from all five galliform families. In contrast to this, the presence of an intact transcriptionally active PLGRKT gene in species such as mallard, swan goose, and Anolis lizard suggests that gene loss occurred in the galliform lineage sometime between 68 and 80 Mya. The presence of galliform specific chicken repeat 1 (CR1) insertion at the erstwhile exon 2 of PLGRKT gene suggests repeat insertion-mediated loss. However, at least nine other independent PLGRKT coding frame disrupting changes in other bird species are supported by genome sequencing and indicate a role for relaxed purifying selection before CR1 insertion. The recurrent loss of a conserved gene with a role in the regulation of macrophage migration, efferocytosis, and blood coagulation is intriguing. Hence, we propose potential candidate genes that might be compensating the function of PLGRKT based on the presence of a C-terminal lysine residue, transmembrane domains, and gene expression patterns.
Collapse
Affiliation(s)
- Sandhya Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sagar Sharad Shinde
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Lokdeep Teekas
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
41
|
Kadota M, Nishimura O, Miura H, Tanaka K, Hiratani I, Kuraku S. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding? Gigascience 2020; 9:5695848. [PMID: 31919520 PMCID: PMC6952475 DOI: 10.1093/gigascience/giz158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/23/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background Hi-C is derived from chromosome conformation capture (3C) and targets chromatin contacts on a genomic scale. This method has also been used frequently in scaffolding nucleotide sequences obtained by de novo genome sequencing and assembly, in which the number of resultant sequences rarely converges to the chromosome number. Despite its prevalent use, the sample preparation methods for Hi-C have not been intensively discussed, especially from the standpoint of genome scaffolding. Results To gain insight into the best practice of Hi-C scaffolding, we performed a multifaceted methodological comparison using vertebrate samples and optimized various factors during sample preparation, sequencing, and computation. As a result, we identified several key factors that helped improve Hi-C scaffolding, including the choice and preparation of tissues, library preparation conditions, the choice of restriction enzyme(s), and the choice of scaffolding program and its usage. Conclusions This study provides the first comparison of multiple sample preparation kits/protocols and computational programs for Hi-C scaffolding by an academic third party. We introduce a customized protocol designated “inexpensive and controllable Hi-C (iconHi-C) protocol,” which incorporates the optimal conditions identified in this study, and demonstrate this technique on chromosome-scale genome sequences of the Chinese softshell turtle Pelodiscus sinensis.
Collapse
Affiliation(s)
- Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN BDR, Kobe 650-0047, Japan
| | - Kaori Tanaka
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN BDR, Kobe 650-0047, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| |
Collapse
|
42
|
Pereira-Santana A, Gamboa-Tuz SD, Zhao T, Schranz ME, Vinuesa P, Bayona A, Rodríguez-Zapata LC, Castano E. Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin. PLoS Comput Biol 2020; 16:e1008318. [PMID: 33075080 PMCID: PMC7608942 DOI: 10.1371/journal.pcbi.1008318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/03/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved.
Collapse
Affiliation(s)
- Alejandro Pereira-Santana
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, México
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Tao Zhao
- Bioinformatics and Evolutionary Genomics, VIB-UGent Center for Plant Systems Biology, Gent, Belgium
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Andrea Bayona
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | | | - Enrique Castano
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
43
|
Determinants of genetic variation across eco-evolutionary scales in pinnipeds. Nat Ecol Evol 2020; 4:1095-1104. [PMID: 32514167 DOI: 10.1038/s41559-020-1215-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022]
Abstract
The effective size of a population (Ne), which determines its level of neutral variability, is a key evolutionary parameter. Ne can substantially depart from census sizes of present-day breeding populations (NC) as a result of past demographic changes, variation in life-history traits and selection at linked sites. Using genome-wide data we estimated the long-term coalescent Ne for 17 pinniped species represented by 36 population samples (total n = 458 individuals). Ne estimates ranged from 8,936 to 91,178, were highly consistent within (sub)species and showed a strong positive correlation with NC ([Formula: see text] = 0.59; P = 0.0002). Ne/NC ratios were low (mean, 0.31; median, 0.13) and co-varied strongly with demographic history and, to a lesser degree, with species' ecological and life-history variables such as breeding habitat. Residual variation in Ne/NC, after controlling for past demographic fluctuations, contained information about recent population size changes during the Anthropocene. Specifically, species of conservation concern typically had positive residuals indicative of a smaller contemporary NC than would be expected from their long-term Ne. This study highlights the value of comparative population genomic analyses for gauging the evolutionary processes governing genetic variation in natural populations, and provides a framework for identifying populations deserving closer conservation attention.
Collapse
|
44
|
Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res 2020; 30:553-565. [PMID: 32269134 PMCID: PMC7197477 DOI: 10.1101/gr.255752.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.
Collapse
Affiliation(s)
- Leeban Yusuf
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Matthew C Heatley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Joseph P G Palmer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Organismal and Evolutionary Biology Research Programme, Viikinkaari 9 (PL 56), University of Helsinki, Helsinki, FI-00014, Finland
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Department of Animal Behaviour, Bielefeld University, Bielefeld, DE-33501, Germany
| |
Collapse
|
45
|
Ducrest A, Neuenschwander S, Schmid‐Siegert E, Pagni M, Train C, Dylus D, Nevers Y, Warwick Vesztrocy A, San‐Jose LM, Dupasquier M, Dessimoz C, Xenarios I, Roulin A, Goudet J. New genome assembly of the barn owl ( Tyto alba alba). Ecol Evol 2020; 10:2284-2298. [PMID: 32184981 PMCID: PMC7069322 DOI: 10.1002/ece3.5991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
New genomic tools open doors to study ecology, evolution, and population genomics of wild animals. For the Barn owl species complex, a cosmopolitan nocturnal raptor, a very fragmented draft genome was assembled for the American species (Tyto furcata pratincola) (Jarvis et al. 2014). To improve the genome, we assembled de novo Illumina and Pacific Biosciences (PacBio) long reads sequences of its European counterpart (Tyto alba alba). This genome assembly of 1.219 Gbp comprises 21,509 scaffolds and results in a N50 of 4,615,526 bp. BUSCO (Universal Single-Copy Orthologs) analysis revealed an assembly completeness of 94.8% with only 1.8% of the genes missing out of 4,915 avian orthologs searched, a proportion similar to that found in the genomes of the zebra finch (Taeniopygia guttata) or the collared flycatcher (Ficedula albicollis). By mapping the reads of the female American barn owl to the male European barn owl reads, we detected several structural variants and identified 70 Mbp of the Z chromosome. The barn owl scaffolds were further mapped to the chromosomes of the zebra finch. In addition, the completeness of the European barn owl genome is demonstrated with 94 of 128 proteins missing in the chicken genome retrieved in the European barn owl transcripts. This improved genome will help future barn owl population genomic investigations.
Collapse
Affiliation(s)
- Anne‐Lyse Ducrest
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | | | | | - Marco Pagni
- Vital‐ITSwiss Institute of BioinformaticsLausanneSwitzerland
| | - Clément Train
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - David Dylus
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Yannis Nevers
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Alex Warwick Vesztrocy
- Center for Life's Origins and EvolutionDepartment of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Luis M. San‐Jose
- Laboratory Evolution and Biological DiversityUMR 5174CNRSUniversity of Toulouse III Paul SabatierToulouseFrance
| | | | - Christophe Dessimoz
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Ioannis Xenarios
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Alexandre Roulin
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Jérôme Goudet
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
46
|
Elleder D, Kaspers B. After TNF-α, still playing hide-and-seek with chicken genes. Poult Sci 2020; 98:4373-4374. [PMID: 31189184 DOI: 10.3382/ps/pez307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Daniel Elleder
- Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Bernd Kaspers
- Department of Veterinary Science, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| |
Collapse
|
47
|
De Novo Assembly of a High-Quality Reference Genome for the Horned Lark ( Eremophila alpestris). G3-GENES GENOMES GENETICS 2020; 10:475-478. [PMID: 31857331 PMCID: PMC7003096 DOI: 10.1534/g3.119.400846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Horned Lark (Eremophila alpestris) is a small songbird that exhibits remarkable geographic variation in appearance and habitat across an expansive distribution. While E. alpestris has been the focus of many ecological and evolutionary studies, we still lack a highly contiguous genome assembly for the Horned Lark and related taxa (Alaudidae). Here, we present CLO_EAlp_1.0, a highly contiguous assembly for E. alpestris generated from a blood sample of a wild, male bird captured in the Altiplano Cundiboyacense of Colombia. By combining short-insert and mate-pair libraries with the ALLPATHS-LG genome assembly pipeline, we generated a 1.04 Gb assembly comprised of 2713 scaffolds, with a largest scaffold size of 31.81 Mb, a scaffold N50 of 9.42 Mb, and a scaffold L50 of 30. These scaffolds were assembled from 23685 contigs, with a largest contig size of 1.69 Mb, a contig N50 of 193.81 kb, and a contig L50 of 1429. Our assembly pipeline also produced a single mitochondrial DNA contig of 14.00 kb. After polishing the genome, we identified 94.5% of single-copy gene orthologs from an Aves data set and 97.7% of single-copy gene orthologs from a vertebrata data set, which further demonstrates the high quality of our assembly. We anticipate that this genomic resource will be useful to the broader ornithological community and those interested in studying the evolutionary history and ecological interactions of larks, which comprise a widespread, yet understudied lineage of songbirds.
Collapse
|
48
|
Wilbrandt J, Misof B, Panfilio KA, Niehuis O. Repertoire-wide gene structure analyses: a case study comparing automatically predicted and manually annotated gene models. BMC Genomics 2019; 20:753. [PMID: 31623555 PMCID: PMC6798390 DOI: 10.1186/s12864-019-6064-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background The location and modular structure of eukaryotic protein-coding genes in genomic sequences can be automatically predicted by gene annotation algorithms. These predictions are often used for comparative studies on gene structure, gene repertoires, and genome evolution. However, automatic annotation algorithms do not yet correctly identify all genes within a genome, and manual annotation is often necessary to obtain accurate gene models and gene sets. As manual annotation is time-consuming, only a fraction of the gene models in a genome is typically manually annotated, and this fraction often differs between species. To assess the impact of manual annotation efforts on genome-wide analyses of gene structural properties, we compared the structural properties of protein-coding genes in seven diverse insect species sequenced by the i5k initiative. Results Our results show that the subset of genes chosen for manual annotation by a research community (3.5–7% of gene models) may have structural properties (e.g., lengths and exon counts) that are not necessarily representative for a species’ gene set as a whole. Nonetheless, the structural properties of automatically generated gene models are only altered marginally (if at all) through manual annotation. Major correlative trends, for example a negative correlation between genome size and exonic proportion, can be inferred from either the automatically predicted or manually annotated gene models alike. Vice versa, some previously reported trends did not appear in either the automatic or manually annotated gene sets, pointing towards insect-specific gene structural peculiarities. Conclusions In our analysis of gene structural properties, automatically predicted gene models proved to be sufficiently reliable to recover the same gene-repertoire-wide correlative trends that we found when focusing on manually annotated gene models only. We acknowledge that analyses on the individual gene level clearly benefit from manual curation. However, as genome sequencing and annotation projects often differ in the extent of their manual annotation and curation efforts, our results indicate that comparative studies analyzing gene structural properties in these genomes can nonetheless be justifiable and informative. Electronic supplementary material The online version of this article (10.1186/s12864-019-6064-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeanne Wilbrandt
- Center for molecular Biodiversity Research, Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113, Bonn, Germany. .,Present address: Hoffmann Research Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstraße 11, 07745, Jena, Germany.
| | - Bernhard Misof
- Center for molecular Biodiversity Research, Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113, Bonn, Germany
| | - Kristen A Panfilio
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Oliver Niehuis
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University, Hauptstr. 1, 79104, Freiburg, Germany
| |
Collapse
|
49
|
Beauclair L, Ramé C, Arensburger P, Piégu B, Guillou F, Dupont J, Bigot Y. Sequence properties of certain GC rich avian genes, their origins and absence from genome assemblies: case studies. BMC Genomics 2019; 20:734. [PMID: 31610792 PMCID: PMC6792250 DOI: 10.1186/s12864-019-6131-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Background More and more eukaryotic genomes are sequenced and assembled, most of them presented as a complete model in which missing chromosomal regions are filled by Ns and where a few chromosomes may be lacking. Avian genomes often contain sequences with high GC content, which has been hypothesized to be at the origin of many missing sequences in these genomes. We investigated features of these missing sequences to discover why some may not have been integrated into genomic libraries and/or sequenced. Results The sequences of five red jungle fowl cDNA models with high GC content were used as queries to search publicly available datasets of Illumina and Pacbio sequencing reads. These were used to reconstruct the leptin, TNFα, MRPL52, PCP2 and PET100 genes, all of which are absent from the red jungle fowl genome model. These gene sequences displayed elevated GC contents, had intron sizes that were sometimes larger than non-avian orthologues, and had non-coding regions that contained numerous tandem and inverted repeat sequences with motifs able to assemble into stable G-quadruplexes and intrastrand dyadic structures. Our results suggest that Illumina technology was unable to sequence the non-coding regions of these genes. On the other hand, PacBio technology was able to sequence these regions, but with dramatically lower efficiency than would typically be expected. Conclusions High GC content was not the principal reason why numerous GC-rich regions of avian genomes are missing from genome assembly models. Instead, it is the presence of tandem repeats containing motifs capable of assembling into very stable secondary structures that is likely responsible.
Collapse
Affiliation(s)
- Linda Beauclair
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Christelle Ramé
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| | - Benoît Piégu
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Florian Guillou
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Joëlle Dupont
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Yves Bigot
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France.
| |
Collapse
|
50
|
Hume DA, Gutowska‐Ding MW, Garcia‐Morales C, Kebede A, Bamidele O, Trujillo AV, Gheyas AA, Smith J. Functional evolution of the colony‐stimulating factor 1 receptor (CSF1R) and its ligands in birds. J Leukoc Biol 2019; 107:237-250. [DOI: 10.1002/jlb.6ma0519-172r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- David A. Hume
- Mater Research Institute‐University of Queensland Translational Research Institute Woolloongabba QLD 4102 Australia
| | | | - Carla Garcia‐Morales
- Department Biotecnologia Universidad Automona del Estado de Mexico Toluca Area Mexico
| | - Adebabay Kebede
- Department of Microbial, Cellular and Molecular Biology Addis Ababa University Addis Ababa Ethiopia
- Amhara Regional Agricultural Research Institute Bahir Dar Ethiopia
- International Livestock Research Institution (ILRI) Addis Ababa Ethiopia
| | - Oladeji Bamidele
- African Chicken Genetic Gains Project‐Nigeria The International Livestock Research Institute (ILRI) Addis Ababa Ethiopia
| | - Adriana Vallejo Trujillo
- Cells, Organisms and Molecular Genetics, School of Life Sciences University of Nottingham Nottingham United Kingdom
| | - Almas A. Gheyas
- The Roslin Institute University of Edinburgh Midlothian United Kingdom
- Centre for Tropical Livestock Genetics and Health University of Edinburgh Midlothian United Kingdom
| | - Jacqueline Smith
- The Roslin Institute University of Edinburgh Midlothian United Kingdom
- Centre for Tropical Livestock Genetics and Health University of Edinburgh Midlothian United Kingdom
| |
Collapse
|