1
|
Liu T, Dong L, Yue N, Lv J, Ji B, Xia S, Wang C, Li J, Wang J, Wang J, Xu N, Gao S, Kang L, Xin W. Innovative Ricin Toxin Detection: Unraveling Apurinic/Apyrimidinic Lyase Activity and Developing Fluorescence Sensors. Anal Chem 2025; 97:3608-3616. [PMID: 39843920 PMCID: PMC11840801 DOI: 10.1021/acs.analchem.4c06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Ricin toxin (RT) is a potential bioterrorism agent because of its high potency, extremely small lethal dose, ease of preparation, and notable stability. Therefore, a portable method is urgently required to efficiently detect and determine the presence of toxicity of RT and evaluate its potency for public health monitoring and counter-bioterrorism responses. Currently, enzyme-based assays for detecting RT mainly focus on its N-glycosidase activity. In this study, we demonstrated that RT exhibits apurinic/apyrimidinic (AP) lyase activity using several methods. Characterization of the enzyme reaction and kinetics revealed that AP lyase activity is optimal at 59 °C and pH 4.0. This activity is highly pH-sensitive, remaining active between pH 3.0 and pH 4.6. Furthermore, we developed a portable fluorescence-based lateral flow assay (FLFA) that detects RT much faster than existing assays based on its N-glycosidase activity. Moreover, this assay can efficiently detect RT at nanogram levels from complex matrix samples within 1.5 h while simultaneously determining its biological activity. In conclusion, the discovery of the AP lyase activity of RT and the development of FLFA represent novel approaches for studying the enzymatic profiles of other ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Tingting Liu
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lina Dong
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School
of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Nan Yue
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jing Lv
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Bin Ji
- Department
of Disease Control, The Affiliated Wuxi
Center for Disease Control and Prevention of Nanjing Medical University,
Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Susu Xia
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Cen Wang
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School
of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jiaxin Li
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jing Wang
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jinglin Wang
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Na Xu
- Jilin
Medical University, Jilin 132013, China
| | - Shan Gao
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lin Kang
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenwen Xin
- State
Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School
of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Wilburn K, Matrishin CB, Choudhury A, Larsen R, Wildschutte H. Tradeoffs Between Evolved Phage Resistance and Antibiotic Susceptibility in a Highly Drug-Resistant Cystic Fibrosis-Derived Pseudomonas aeruginosa Strain. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:45-52. [PMID: 39119204 PMCID: PMC11304796 DOI: 10.1089/phage.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Background Multi-drug resistant pathogens pose significant challenges towards the effective resolution of bacterial infections. A promising alternative strategy is phage therapy in which limited applications has afforded lifesaving resolution from drug resistant pathogens. However, adoption of this strategy is hampered by narrow bacteriophage host ranges, and as with antibiotics, bacteria can acquire resistance to phage. Methods To address these issues, we isolated 25 broad-host range phages against multiple cystic fibrosis (CF)-derived P. aeruginosa clinical strains thus promoting their application against conspecific pathogens. To investigate evolved resistance to phage in relation to antibiotic resistance, one CF-derived P. aeruginosa strain was exposed to a lytic phage over a short time scale. Results Trade-offs were observed in which evolved phage resistant P. aeruginosa strains showed decreased resistance to antibiotics. These traits that likely reflect single nucleotide polymorphisms. Conclusion Results suggest phage and antibiotics may be a combined approach to treat bacterial infections.
Collapse
Affiliation(s)
- Kaylee Wilburn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Cole B. Matrishin
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Anika Choudhury
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Ray Larsen
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Hans Wildschutte
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
3
|
Structural organization, evolution, and distribution of viral pyrimidine dimer-DNA glycosylases. Biophys Rev 2022; 14:923-932. [DOI: 10.1007/s12551-022-00972-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 12/18/2022] Open
|
4
|
Jha JS, Nel C, Haldar T, Peters D, Housh K, Gates KS. Products Generated by Amine-Catalyzed Strand Cleavage at Apurinic/Apyrimidinic Sites in DNA: New Insights from a Biomimetic Nucleoside Model System. Chem Res Toxicol 2022; 35:203-217. [PMID: 35124963 PMCID: PMC9477562 DOI: 10.1021/acs.chemrestox.1c00408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abasic sites are common in cellular and synthetic DNA. As a result, it is important to characterize the chemical fate of these lesions. Amine-catalyzed strand cleavage at abasic sites in DNA is an important process in which conversion of small amounts of the ring-opened abasic aldehyde residue to an iminium ion facilitates β-elimination of the 3'-phosphoryl group. This reaction generates a trans-α,β-unsaturated iminium ion on the 3'-terminus of the strand break as an obligate intermediate. The canonical product expected from amine-catalyzed cleavage at an AP site is the corresponding trans-α,β-unsaturated aldehyde sugar remnant resulting from hydrolysis of this iminium ion. Interestingly, a handful of studies have reported noncanonical 3'-sugar remnants generated by amine-catalyzed strand cleavage, but the formation and properties of these products are not well-understood. To address this knowledge gap, a nucleoside system was developed that enabled chemical characterization of the sugar remnants generated by amine-catalyzed β-elimination in the 2-deoxyribose system. The results predict that amine-catalyzed strand cleavage at an AP site under physiological conditions has the potential to reversibly generate noncanonical cleavage products including cis-alkenal, 3-thio-2,3-dideoxyribose, and 2-deoxyribose groups alongside the canonical trans-alkenal residue on the 3'-terminus of the strand break. Thus, the model reactions provide evidence that the products generated by amine-catalyzed strand cleavage at abasic sites in cellular DNA may be more complex that commonly thought, with trans-α,β-unsaturated iminium ion intermediates residing at the hub of interconverting product mixtures. The results expand the list of possible 3'-sugar remnants arising from amine-catalyzed cleavage of abasic sites in DNA that must be chemically or enzymatically removed for the completion of base excision repair and single-strand break repair in cells.
Collapse
Affiliation(s)
- Jay S. Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Daniel Peters
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211,University of Missouri, Department of Biochemistry, Columbia, MO 65211,Corresponding Author: Kent S. Gates – Departments of Chemistry and Biochemistry, 125 Chemistry Bldg. University of Missouri, Columbia, MO 65211, United States; Phone: (573) 882-6763;
| |
Collapse
|
5
|
Haldar T, Jha JS, Yang Z, Nel C, Housh K, Cassidy OJ, Gates KS. Unexpected Complexity in the Products Arising from NaOH-, Heat-, Amine-, and Glycosylase-Induced Strand Cleavage at an Abasic Site in DNA. Chem Res Toxicol 2022; 35:218-232. [PMID: 35129338 PMCID: PMC9482271 DOI: 10.1021/acs.chemrestox.1c00409] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrolytic loss of nucleobases from the deoxyribose backbone of DNA is one of the most common unavoidable types of damage in synthetic and cellular DNA. The reaction generates abasic sites in DNA, and it is important to understand the properties of these lesions. The acidic nature of the α-protons of the ring-opened abasic aldehyde residue facilitates the β-elimination of the 3'-phosphoryl group. This reaction is expected to generate a DNA strand break with a phosphoryl group on the 5'-terminus and a trans-α,β-unsaturated aldehyde residue on the 3'-terminus; however, a handful of studies have identified noncanonical sugar remnants on the 3'-terminus, suggesting that the products arising from strand cleavage at apurinic/apyrimidinic sites in DNA may be more complex than commonly thought. We characterized the strand cleavage induced by the treatment of an abasic site-containing DNA oligonucleotide with heat, NaOH, piperidine, spermine, and the base excision repair glycosylases Fpg and Endo III. The results showed that under multiple conditions, cleavage at an abasic site in a DNA oligomer generated noncanonical sugar remnants including cis-α,β-unsaturated aldehyde, 2-deoxyribose, and 3-thio-2,3-dideoxyribose products on the 3'-terminus of the strand break.
Collapse
Affiliation(s)
- Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Jay S. Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Zhiyu Yang
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Orla J. Cassidy
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211,University of Missouri, Department of Biochemistry, Columbia, MO 65211,Address correspondence to Kent S. Gates – Departments of Chemistry and Biochemistry, 125 Chemistry Bldg. University of Missouri, Columbia, MO 65211, United States; ORCHID ID: 0000-0002-4218-7411; Phone: (573) 882-6763;
| |
Collapse
|
6
|
Wallace SS. Molecular radiobiology and the origins of the base excision repair pathway: an historical perspective. Int J Radiat Biol 2021; 99:891-902. [DOI: 10.1080/09553002.2021.1908639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
7
|
Phylogeography of Atlantic Forest glassfrogs (Vitreorana): when geography, climate dynamics and rivers matter. Heredity (Edinb) 2018; 122:545-557. [PMID: 30356224 DOI: 10.1038/s41437-018-0155-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 11/08/2022] Open
Abstract
Recent advances in the field of landscape genetics provide ways to jointly analyze the role of present-day climate and landscape configuration in current biodiversity patterns. Expanding this framework into a phylogeographic study, we incorporate information on historical climatic shifts, tied to descriptions of the local topography and river configuration, to explore the processes that underlie genetic diversity patterns in the Atlantic Forest hotspot. We study two montane, stream-associated species of glassfrogs: Vitreorana eurygnatha and V. uranoscopa. By integrating species distribution modeling with geographic information systems and molecular data, we find that regional patterns of molecular diversity are jointly explained by geographic distance, historical (last 120 ky) climatic stability, and (in one species) river configuration. Mitochondrial DNA genealogies recover significant regional structure in both species, matching previous classifications of the northern and southern forests in the Atlantic Forest, and are consistent with patterns reported in other taxa. Yet, these spatial patterns of genetic diversity are only partially supported by nuclear data. Contrary to data from lowland taxa, historical climate projections suggest that these montane species were able to persist in the southern Atlantic Forest during glacial periods, particularly during the Last Glacial Maximum. These results support generally differential responses to climatic cycling by northern (lowland) and southern (montane) Atlantic Forest species, triggered by the joint impact of regional landscape configuration and climate change.
Collapse
|
8
|
Structural and functional characterization of two unusual endonuclease III enzymes from Deinococcus radiodurans. J Struct Biol 2015; 191:87-99. [PMID: 26172070 DOI: 10.1016/j.jsb.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity.
Collapse
|
9
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
10
|
Daley JM, Zakaria C, Ramotar D. The endonuclease IV family of apurinic/apyrimidinic endonucleases. Mutat Res 2010; 705:217-27. [PMID: 20667510 DOI: 10.1016/j.mrrev.2010.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/03/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022]
Abstract
Apurinic/apyrimidinic (AP) endonucleases are versatile DNA repair enzymes that possess a variety of nucleolytic activities, including endonuclease activity at AP sites, 3' phosphodiesterase activity that can remove a variety of ligation-blocking lesions from the 3' end of DNA, endonuclease activity on oxidative DNA lesions, and 3' to 5' exonuclease activity. There are two families of AP endonucleases, named for the bacterial counterparts endonuclease IV (EndoIV) and exonuclease III (ExoIII). While ExoIII family members are present in all kingdoms of life, EndoIV members exist in lower organisms but are curiously absent in plants, mammals and some other vertebrates. Here, we review recent research on these enzymes, focusing primarily on the EndoIV family. We address the role(s) of EndoIV members in DNA repair and discuss recent findings from each model organism in which the enzymes have been studied to date.
Collapse
Affiliation(s)
- James M Daley
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, 5415 de L'Assomption, Montréal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
11
|
Darwanto A, Farrel A, Rogstad DK, Sowers LC. Characterization of DNA glycosylase activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 2009; 394:13-23. [PMID: 19607800 PMCID: PMC3990469 DOI: 10.1016/j.ab.2009.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 11/25/2022]
Abstract
The DNA of all organisms is persistently damaged by endogenous reactive molecules. Most of the single-base endogenous damage is repaired through the base excision repair (BER) pathway that is initiated by members of the DNA glycosylase family. Although the BER pathway is often considered to proceed through a common abasic site intermediate, emerging evidence indicates that there are likely distinct branches reflected by the multitude of chemically different 3' and 5' ends generated at the repair site. In this study, we have applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to the analysis of model DNA substrates acted on by recombinant glycosylases. We examine the chemical identity of several possible abasic site and nicked intermediates generated by monofunctional and bifunctional glycosylases. Our results suggest that the intermediate from endoIII/Nth might not be a simple beta-elimination product as described previously. On the basis of (18)O incorporation experiments, we propose a new mechanism for the endoIII/Nth family of glycosylases that may resolve several of the previous controversies. We further demonstrate that the use of an array of lesion-containing oligonucleotides can be used to rapidly examine the substrate preferences of a given glycosylase. Some of the lesions examined here can be acted on by more than one glycosylase, resulting in a spectrum of damaged intermediates for each lesion, suggesting that the sequence and coordination of repair activities that act on these lesions may influence the biological outcome of damage repair.
Collapse
Affiliation(s)
- Agus Darwanto
- Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Alvin Farrel
- Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Daniel K. Rogstad
- Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lawrence C. Sowers
- Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
12
|
Bases R, Mendez F. Repair of Ionizing Radiation Damage in Primate αDNA Transfected into Rat Cells. Int J Radiat Biol 2009; 62:21-32. [PMID: 1353772 DOI: 10.1080/09553009214551791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The time-course of repair of irradiated primate alpha DNA was studied after transfection and recovery from rat NRK cells. Rat cells were chosen for transfection because they have no alpha DNA. Plasmid pBUC4 alpha 10, containing 10 tandem 172 bp alpha DNA subunits in its 5 kbp DNA, was irradiated and introduced into the rat cells by electroporation. The transfected alpha DNA was then recovered from NRK nuclei free of extraneous rat DNA, permitting study of the fate of the transfected alpha DNA in time-course experiments. alpha DNA continuously entered nuclei for processing in the first 2.5 h after transfection. The pool of damaged bases in alpha DNA in NRK nuclei was detectable 2.5 h after transfection. Radiation-induced alpha DNA fragments of electrophoretic mobility intermediate between those of unit nucleotide length were prominent in sequencing gel analyses of alpha DNA for 5-150 min after transfection. These intermediate mobility fragments initially disappeared with T 1/2 of 6-20 min. The alpha DNAs of intermediate mobility are presumed to be intermediates in DNA repair. Residual DNA base damage which had not been processed in the transfected cells could later be unmasked in vitro by conversion to strand breaks by beta-elimination using heat and piperidine or endonuclease III of E. coli. Irradiation of the recipient NRK cells with 5 Gy 4 hours before transfection prolonged the time during which intermediate mobility species could be found, consistent with the increased frequency of intermediate mobility species observed in DNA of monkey CV-1 cells pretreated with small doses of radiation before 300 Gy (Bases et al. 1990).
Collapse
Affiliation(s)
- R Bases
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
13
|
Bellon S, Shikazono N, Cunniffe S, Lomax M, O'Neill P. Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic Acids Res 2009; 37:4430-40. [PMID: 19468043 PMCID: PMC2715253 DOI: 10.1093/nar/gkp422] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. The potential for genetic change arising from the effects of clustered damage sites containing combinations of AP sites, 8-oxo-7,8-dihydroguanine (8-oxoG) or 5,6-dihydrothymine is high. To date clusters containing a DNA base lesion that is a strong block to replicative polymerases, have not been explored. Since thymine glycol (Tg) is non-mutagenic but a strong block to replicative polymerases, we have investigated whether clusters containing Tg are highly mutagenic or lead to potentially cytotoxic lesions, when closely opposed to either 8-oxoG or an AP site. Using a bacterial plasmid-based assay and repair assays using cell extracts or purified proteins, we have shown that DNA double-strand breaks (DSBs) arise when Tg is opposite to an AP site, either through attempted base excision repair or at replication. In contrast, 8-oxoG opposite to Tg in a cluster ‘protects’ against DSB formation but does enhance the mutation frequency at the site of 8-oxoG relative to that at a single 8-oxoG, due to the decisive role of endonucleases in the initial stages of processing Tg/8-oxoG clusters, removing Tg to give an intermediate with an abasic site or single-strand break.
Collapse
Affiliation(s)
- Sophie Bellon
- DNA Damage Group, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | | |
Collapse
|
14
|
Shikazono N, Pearson C, O'Neill P, Thacker J. The roles of specific glycosylases in determining the mutagenic consequences of clustered DNA base damage. Nucleic Acids Res 2006; 34:3722-30. [PMID: 16893955 PMCID: PMC1557791 DOI: 10.1093/nar/gkl503] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The potential for genetic change arising from specific single types of DNA lesion has been thoroughly explored, but much less is known about the mutagenic effects of DNA lesions present in clustered damage sites. Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. We have investigated the potential of a non-mutagenic DNA base lesion, 5,6-dihydrothymine (DHT), to influence the mutagenicity of 8-oxo-7,8-dihydroguanine (8-oxoG) when the two lesions are closely opposed. Using a bacterial plasmid-based assay we present the first report of a significantly higher mutation frequency for the clustered DHT and 8-oxoG lesions than for single 8-oxoG in wild-type and in glycosylase-deficient strains. We propose that endonuclease III has an important role in the initial stages of processing DHT/8-oxoG clusters, removing DHT to give an intermediate with an abasic site or single-strand break opposing 8-oxoG. We suggest that this mutagenic intermediate is common to several different combinations of base lesions forming clustered DNA damage sites. The MutY glycosylase, acting post-replication, is most important for reducing mutation formation. Recovered plasmids commonly gave rise to both wild-type and mutant progeny, suggesting that there is differential replication of the two DNA strands carrying specific forms of base damage.
Collapse
Affiliation(s)
| | - Colin Pearson
- Medical Research Council, Radiation and Genome Stability UnitHarwell, Oxfordshire OX11 0RD, UK
| | - Peter O'Neill
- Medical Research Council, Radiation and Genome Stability UnitHarwell, Oxfordshire OX11 0RD, UK
| | - John Thacker
- Medical Research Council, Radiation and Genome Stability UnitHarwell, Oxfordshire OX11 0RD, UK
- To whom correspondence should be addressed. Tel: +44 1235 241000; Fax: +44 1235 241200;
| |
Collapse
|
15
|
Golan G, Zharkov DO, Grollman AP, Dodson ML, McCullough AK, Lloyd RS, Shoham G. Structure of T4 pyrimidine dimer glycosylase in a reduced imine covalent complex with abasic site-containing DNA. J Mol Biol 2006; 362:241-58. [PMID: 16916523 DOI: 10.1016/j.jmb.2006.06.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/18/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
The base excision repair (BER) pathway for ultraviolet light (UV)-induced cyclobutane pyrimidine dimers is initiated by DNA glycosylases that also possess abasic (AP) site lyase activity. The prototypical enzyme known to catalyze these reactions is the T4 pyrimidine dimer glycosylase (T4-Pdg). The fundamental chemical reactions and the critical amino acids that lead to both glycosyl and phosphodiester bond scission are known. Catalysis proceeds via a protonated imine covalent intermediate between the alpha-amino group of the N-terminal threonine residue and the C1' of the deoxyribose sugar of the 5' pyrimidine at the dimer site. This covalent complex can be trapped as an irreversible, reduced cross-linked DNA-protein complex by incubation with a strong reducing agent. This active site trapping reaction is equally efficient on DNA substrates containing pyrimidine dimers or AP sites. Herein, we report the co-crystal structure of T4-Pdg as a reduced covalent complex with an AP site-containing duplex oligodeoxynucleotide. This high-resolution structure reveals essential precatalytic and catalytic features, including flipping of the nucleotide opposite the AP site, a sharp kink (approximately 66 degrees ) in the DNA at the dimer site and the covalent bond linking the enzyme to the DNA. Superposition of this structure with a previously published co-crystal structure of a catalytically incompetent mutant of T4-Pdg with cyclobutane dimer-containing DNA reveals new insights into the structural requirements and the mechanisms involved in DNA bending, nucleotide flipping and catalytic reaction.
Collapse
Affiliation(s)
- Gali Golan
- Department of Inorganic Chemistry, and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Choi SH, Kim SY, An JJ, Lee SH, Kim DW, Won MH, Kang TC, Park J, Eum WS, Kim J, Choi SY. Immunohistochemical Studies of Human Ribosomal Protein S3 (rpS3). BMB Rep 2006; 39:208-15. [PMID: 16584637 DOI: 10.5483/bmbrep.2006.39.2.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human ribosomal protein S3 (rpS3) was expressed in E. coli using the pET-15b vector and the monoclonal antibodies (mAbs) were produced and characterized. A total of five hybridoma cell lines were established and the antibodies recognized a single band of molecular weight of 33 kDa on immunoblot with purified rpS3. When the purified rpS3 was incubated with the mAbs, the UV endonuclease activity of rpS3 was inhibited up to a maximum of 49%. The binding affinity of mAbs to rpS3 determined by using a biosensor technology showed that they have similar binding affinities. Using the anti-rpS3 antibodies as probes, we investigated the cross-reactivities of various other mammalian brain tissues and cell lines, including human. The immunoreactive bands on Western blots appeared to be the same molecular mass of 33 kDa in all animal species tested. They also appear to be extensively cross-reactive among different organs in rat. These results demonstrated that only one type of immunologically similar rpS3 protein is present in all of the mammalian brain tissues including human. Furthermore, these antibodies were successfully applied in immunohistochemistry in order to detect rpS3 in the gerbil brain tissues. Among the various regions in the brain tissues, the rpS3 positive neurons were predominantly observed in the ependymal cells, hippocampus and stantia nigra pars compacta. The different distributions of rpS3 in brain tissues reply that rpS3 protein may play an important second function in the neuronal cells.
Collapse
Affiliation(s)
- Soo Hyun Choi
- Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Faure V, Constant JF, Dumy P, Saparbaev M. 2'-deoxyribonolactone lesion produces G->A transitions in Escherichia coli. Nucleic Acids Res 2004; 32:2937-46. [PMID: 15159441 PMCID: PMC419619 DOI: 10.1093/nar/gkh622] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
2'-deoxyribonolactone (dL) is a C1'-oxidized abasic site damage generated by a radical attack on DNA. Numerous genotoxic agents have been shown to produce dL including UV and gamma-irradiation, ene-dye antibiotics etc. At present the biological consequences of dL present in DNA have been poorly documented, mainly due to the lack of method for introducing the lesion in oligonucleotides. We have recently designed a synthesis of dL which allowed investigation of the mutagenicity of dL in Escherichia coli by using a genetic reversion assay. The lesion was site-specifically incorporated in a double-stranded bacteriophage vector M13G*1, which detects single-base-pair substitutions at position 141 of the lacZalpha gene by a change in plaque color. In E.coli JM105 the dL-induced reversion frequency was 4.7 x 10(-5), similar to that of the classic abasic site 2'-deoxyribose (dR). Here we report that a dL residue in a duplex DNA codes mainly for thymidine. The processing of dL in vivo was investigated by measuring lesion-induced mutation frequencies in DNA repair deficient E.coli strains. We showed a 32-fold increase in dL-induced reversion rate in AP endonuclease deficient (xth nfo) mutant compared with wild-type strain, indicating that the Xth and Nfo AP endonucleases participate in dL repair in vivo.
Collapse
Affiliation(s)
- Virginie Faure
- LEDSS-UMR 5616, ICMG-FR 2607, BP 53, Université Joseph Fourier, 38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
18
|
Kathe SD, Shen GP, Wallace SS. Single-Stranded Breaks in DNA but Not Oxidative DNA Base Damages Block Transcriptional Elongation by RNA Polymerase II in HeLa Cell Nuclear Extracts. J Biol Chem 2004; 279:18511-20. [PMID: 14978042 DOI: 10.1074/jbc.m313598200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription and repair of many DNA helix-distorting lesions such as cyclobutane pyrimidine dimers have been shown to be coupled in cells across phyla from bacteria to humans. The signal for transcription-coupled repair appears to be a stalled transcription complex at the lesion site. To determine whether oxidative DNA lesions can block correctly initiated human RNA polymerase II, we examined the effect of site-specifically introduced oxidative damages on transcription in HeLa cell nuclear extracts. We found that transcription was blocked by single-stranded breaks, common oxidative DNA lesions, when present in the transcribed strand of the transcription template. Cyclobutane pyrimidine dimers, which have been previously shown to block transcription both in vitro and in vivo, also blocked transcription in the HeLa cell nuclear transcription assay. In contrast, the oxidative DNA base lesions, 8-oxoguanine, 5-hydroxycytosine, and thymine glycol did not inhibit transcription, although pausing was observed with the thymine glycol lesion. Thus, DNA strand breaks but not oxidative DNA base damages blocked transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Scott D Kathe
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405-0068, USA
| | | | | |
Collapse
|
19
|
Abstract
Until recently, the Fpg family was the only major group of DNA glycosylases for which no structural data existed. Prototypical members of this family, found in eukaryotes as well as prokaryotes, have now been crystallized as free proteins and as complexes with DNA. In this review, we analyze the available structural information for formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease VIII (Nei). Special emphasis is placed on mechanisms by which these enzymes recognize and selectively excise cognate lesions from oxidatively damaged DNA. The problem of lesion recognition is considered in two parts: how the enzyme efficiently locates a single lesion embedded in a vast excess of DNA; and how the lesion is accommodated in a pocket near the active site of the enzyme. Although all crystal structures reported to date for the Fpg family lack the damaged base, functionally important residues that participate in DNA binding and enzyme catalysis have been clearly identified and other residues, responsible for substrate specificity, have been inferred.
Collapse
Affiliation(s)
- Dmitry O Zharkov
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
20
|
Dodson ML, Kurtz AJ, Lloyd RS. T4 endonuclease V: use of NMR and borohydride trapping to provide evidence for covalent enzyme-substrate imine intermediate. Methods Enzymol 2003; 354:202-7. [PMID: 12418228 DOI: 10.1016/s0076-6879(02)54017-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- M L Dodson
- Sealy Center for Molecular Science, Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
21
|
Abstract
A number of intrinsic and extrinsic mutagens induce structural damage in cellular DNA. These DNA damages are cytotoxic, miscoding or both and are believed to be at the origin of cell lethality, tissue degeneration, ageing and cancer. In order to counteract immediately the deleterious effects of such lesions, leading to genomic instability, cells have evolved a number of DNA repair mechanisms including the direct reversal of the lesion, sanitation of the dNTPs pools, mismatch repair and several DNA excision pathways including the base excision repair (BER) nucleotide excision repair (NER) and the nucleotide incision repair (NIR). These repair pathways are universally present in living cells and extremely well conserved. This review is focused on the repair of lesions induced by free radicals and ionising radiation. The BER pathway removes most of these DNA lesions, although recently it was shown that other pathways would also be efficient in the removal of oxidised bases. In the BER pathway the process is initiated by a DNA glycosylase excising the modified and mismatched base by hydrolysis of the glycosidic bond between the base and the deoxyribose of the DNA, generating a free base and an abasic site (AP-site) which in turn is repaired since it is cytotoxic and mutagenic.
Collapse
Affiliation(s)
- Laurent Gros
- Groupe Réparation de l'ADN, UMR 8532 CNRS, LBPA-ENS Cachan, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
22
|
Rabow L, Venkataraman R, Kow YW. Mechanism of action of Escherichia coli formamidopyrimidine N-glycosylase: role of K155 in substrate binding and product release. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:223-34. [PMID: 11554299 DOI: 10.1016/s0079-6603(01)68102-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Escherichia coli formamidopyrimidine N-glycosylase (fpg) is a DNA glycosylase with an associated beta,delta-lyase activity. We have recently shown that the highly conserved lysine residue K155 is important for base recognition. Incubation of a double-stranded DNA containing an abasic site with the wild-type fpg protein generated only beta,delta-product. However, incubation of a double-stranded DNA containing an abasic site opposite a small gap with fpg protein generated predominantly beta-product. These data suggested that the induction of a double-strand break by fpg led to the destabilization of the protein-DNA covalent intermediate, causing the fpg protein to prematurely dissociate from the DNA substrate. Furthermore, when a double-stranded DNA containing an abasic site opposite an A was used as a substrate, K155A mutant fpg protein yielded a mixture of beta- and beta,delta-products. These data suggested that K155 is essential for maintaining the stability of the intermediary protein-DNA covalent complex. Pre-steady-state burst kinetics showed that mutation in K155 led to the apparent disappearance of the initial burst, suggesting that the rate of product release from K155A is much greater than the rate of chemical reaction catalyzed by the mutant enzyme. This is consistent with the idea that K155A dissociates prematurely from the covalent complex, leading to a higher turnover number observed for K155A for DNA substrate containing an AP site.
Collapse
Affiliation(s)
- L Rabow
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30335, USA
| | | | | |
Collapse
|
23
|
Muller E, Gasparutto D, Jaquinod M, Romieu A, Cadet J. Chemical and Biochemical Properties of Oligonucleotides that Contain (5′S,6S)-Cyclo-5,6-dihydro-2′-deoxyuridine and (5′S,6S)-Cyclo-5,6-dihydrothymidine, Two Main Radiation-Induced Degradation Products of Pyrimidine 2′-Deoxyribonucleosides. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00809-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Tuo J, Liu L, Poulsen HE, Weimann A, Svendsen O, Loft S. Importance of guanine nitration and hydroxylation in DNA in vitro and in vivo. Free Radic Biol Med 2000; 29:147-55. [PMID: 10980403 DOI: 10.1016/s0891-5849(00)00324-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Guanine (Gua) modification by nitrating and hydroxylating systems was investigated in DNA. In isolated calf thymus DNA, 8-NO(2)-Gua and 8-oxo-Gua were dose-dependently formed with peroxynitrite, and 8-NO(2)-Gua was released in substantial amounts. Myeloperoxidase (MPO) with H(2)O(2) and NO(2)(-) reacted with calf thymus DNA to form 8-NO(2)-Gua dose dependently without release of 8-NO(2)-Gua. The frequency of strand breaks was higher than the sum of 8-NO(2)-Gua and 8-oxo-Gua, particularly in the MPO-treated DNA, indicating the importance of other types of damage. The activation of human neutrophils and lymphocytes with phorbol ester did not induce 8-NO(2)-Gua and 8-oxo-Gua in their nuclear DNA. However, 8-NO(2)-Gua was found in calf thymus DNA co-incubated with activated neutrophils in the presence of NO(2)(-). No significant formation of 8-NO(2)-Gua was found in liver DNA from mice treated with Escherichia coli lipopolysaccharide. The incubation of peroxynitrite or MPO-H(2)O(2)-NO(2)(-)-treated DNA with formamidopyrimidine glycosylase (Fpg) released 8-oxo-Gua, but not 8-NO(2)-Gua, indicating that 8-NO(2)-Gua is not a substrate for Fpg. Although 8-NO(2)-Gua was generated in isolated DNA by different nitrating systems, other types of damage were formed in abundance, and the lesion could not be found reliably in nuclear DNA, suggesting that the biological importance is limited.
Collapse
Affiliation(s)
- J Tuo
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
25
|
Duarte V, Gasparutto D, Jaquinod M, Cadet J. In vitro DNA synthesis opposite oxazolone and repair of this DNA damage using modified oligonucleotides. Nucleic Acids Res 2000; 28:1555-63. [PMID: 10710422 PMCID: PMC102781 DOI: 10.1093/nar/28.7.1555] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Emphasis was placed in this work on the assessment of biological features of 2,2,4-triaminooxazolone, a major one-electron and(. )OH-mediated oxidation product of guanine. For this purpose, two oligonucleotides that contain a unique oxazolone residue were synthesized. Herein we report the mutagenic potential of oxazolone during in vitro DNA synthesis and its behavior towards DNA repair enzymes. Nucleotide insertion opposite oxazolone, catalyzed by Klenow fragment exo(-)and Taq polymerase indicates that the oxazolone lesion induces mainly dAMP insertion. This suggests that the formation of oxazolone in DNA may lead to G-->T transversions. On the other hand, oxazolone represents a blocking lesion when DNA synthesis is performed with DNA polymerase beta. Interestingly, DNA repair experiments carried out with formamidopyrimidine DNA N -glycosylase (Fpg) and endonuclease III (endo III) show that oxazolone is a substrate for both enzymes. Values of k (cat)/ K (m)for the Fpg-mediated removal of oxidative guanine lesions revealed that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than oxazolone. In the case of endo III-mediated cleavage of modified bases, the present results suggest that oxazolone is a better substrate than 5-OHC, an oxidized pyrimidine base. Finally, MALDI-TOF-MS analysis of the DNA fragments released upon digestion of an oxazolone-containing oligonucleotide by Fpg gave insights into the enzymatic mechanism of oligonucleotide cleavage.
Collapse
Affiliation(s)
- V Duarte
- Laboratoire des Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, Département de Recherche Fondamentale sur la Matière Condensée, UMR 5046, CEA Grenoble, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
26
|
Gasparutto D, Bourdat AG, D'Ham C, Duarte V, Romieu A, Cadet J. Repair and replication of oxidized DNA bases using modified oligodeoxyribonucleotides. Biochimie 2000; 82:19-24. [PMID: 10717382 DOI: 10.1016/s0300-9084(00)00347-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified oligodeoxyribonucleotides (ODNs) are powerful tools to assess the biological significance of oxidized lesions to DNA. For this purpose, we developed original synthetical pathways for the site-specific insertion of several oxidized bases into DNA fragments. Thus, the chemical solid-phase synthesis of ODNs using original strategies of protection and mild conditions of deprotection, as well as a specific post-oxidation approach of an unique nucleoside residue within the sequence have been applied. These two approaches of preparation allowed us to have access to a set of modified ODNs that contain a single modified nucleoside, i.e., N-(2-deoxy-beta-D-erythro-pentofuranosyl)formylamine (dF), 5-hydroxy-2'-deoxycytidine (5-OHdCyd), thymidine glycol (dTg), 5,6-dihydrothymidine (DHdThd), 2,2-diamino-4-[(2-deoxy-beta-D-erythro-pentofuranosyl)-amino]-5(2H)- oxazolone (dZ), N-(2-deoxy-beta-D-erythro-pentofuranosyl)cyanuric acid (dY), 5',8-cyclo-2'-deoxyguanosine (cyclodGuo) and 5',8-cyclo-2'-deoxyadenosine (cyclodAdo). The substrates were used to investigate recognition and removal of the lesions by bacterial DNA N-glycosylases, including endonuclease III (endo III) and Fapy glycosylase (Fpg). In addition, the DNA polymerase-mediated nucleotide incorporation opposite the damage was determined using modified ODNs as templates.
Collapse
Affiliation(s)
- D Gasparutto
- Laboratoire Lésions des Acides Nucléiques, C.E.A-Grenoble, France
| | | | | | | | | | | |
Collapse
|
27
|
Shekhtman A, McNaughton L, Cunningham RP, Baxter SM. Identification of the Archaeoglobus fulgidus endonuclease III DNA interaction surface using heteronuclear NMR methods. Structure 1999; 7:919-30. [PMID: 10467137 DOI: 10.1016/s0969-2126(99)80119-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endonuclease III is the prototype for a family of DNA-repair enzymes that recognize and remove damaged and mismatched bases from DNA via cleavage of the N-glycosidic bond. Crystal structures for endonuclease III, which removes damaged pyrimidines, and MutY, which removes mismatched adenines, show a highly conserved structure. Although there are several models for DNA binding by this family of enzymes, no experimental structures with bound DNA exist for any member of the family. RESULTS Nuclear magnetic resonance (NMR) spectroscopy chemical-shift perturbation of backbone nuclei (1H, 15N, 13CO) has been used to map the DNA-binding site on Archaeoglobus fulgidus endonuclease III. The experimentally determined interaction surface includes five structural elements: the helix-hairpin-helix (HhH) motif, the iron-sulfur cluster loop (FCL) motif, the pseudo helix-hairpin-helix motif, the helix B-helix C loop, and helix H. The elements form a continuous surface that spans the active site of the enzyme. CONCLUSIONS The enzyme-DNA interaction surface for endonuclease III contains five elements of the protein structure and suggests that DNA damage recognition may require several specific interactions between the enzyme and the DNA substrate. Because the target DNA used in this study contained a generic apurinic/apyrimidinic (AP) site, the binding interactions we observed for A. fulgidus endonuclease III should apply to all members of the endonuclease III family and several interactions could apply to the endonuclease III/AlkA (3-methyladenine DNA glycosylase) superfamily.
Collapse
Affiliation(s)
- A Shekhtman
- Department of Physics, University at Albany, SUNY, NY 12222, USA
| | | | | | | |
Collapse
|
28
|
Garvish JF, Lloyd RS. The catalytic mechanism of a pyrimidine dimer-specific glycosylase (pdg)/abasic lyase, Chlorella virus-pdg. J Biol Chem 1999; 274:9786-94. [PMID: 10092668 DOI: 10.1074/jbc.274.14.9786] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The repair of UV light-induced cyclobutane pyrimidine dimers can proceed via the base excision repair pathway, in which the initial step is catalyzed by DNA glycosylase/abasic (AP) lyases. The prototypical enzyme studied for this pathway is endonuclease V from the bacteriophage T4 (T4 bacteriophage pyrimidine dimer glycosylase (T4-pdg)). The first homologue for T4-pdg has been found in a strain of Chlorella virus (strain Paramecium bursaria Chlorella virus-1), which contains a gene that predicts an amino acid sequence homology of 41% with T4-pdg. Because both the structure and critical catalytic residues are known for T4-pdg, homology modeling of the Chlorella virus pyrimidine dimer glycosylase (cv-pdg) predicted that a conserved glutamic acid residue (Glu-23) would be important for catalysis at pyrimidine dimers and abasic sites. Site-directed mutations were constructed at Glu-23 to assess the necessity of a negatively charged residue at that position (Gln-23) and the importance of the length of the negatively charged side chain (Asp-23). E23Q lost glycosylase activity completely but retained low levels of AP lyase activity. In contrast, E23D retained near wild type glycosylase and AP lyase activities on cis-syn dimers but completely lost its activity on the trans-syn II dimer, which is very efficiently cleaved by the wild type cv-pdg. As has been shown for other glyscosylases, the wild type cv-pdg catalyzes the cleavage at dimers or AP sites via formation of an imino intermediate, as evidenced by the ability of the enzyme to be covalently trapped on substrate DNA when the reactions are carried out in the presence of a strong reducing agent; in contrast, E23D was very poorly trapped on cis-syn dimers but was readily trapped on DNA containing AP sites. It is proposed that Glu-23 protonates the sugar ring, so that the imino intermediate can be formed.
Collapse
Affiliation(s)
- J F Garvish
- the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1071, USA
| | | |
Collapse
|
29
|
Begley TJ, Cunningham RP. Methanobacterium thermoformicicum thymine DNA mismatch glycosylase: conversion of an N-glycosylase to an AP lyase. PROTEIN ENGINEERING 1999; 12:333-40. [PMID: 10325404 DOI: 10.1093/protein/12.4.333] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The thymine DNA mismatch glycosylase from Methanobacterium thermoformicicum, a member of the endonuclease III family of repair proteins, excises the pyrimidine base from T-G and U-G mismatches. Unlike endonuclease III, it does not cleave the phosphodiester backbone by a beta-elimination reaction. This cleavage event has been attributed to a nucleophilic attack by the conserved Lys120 of endonuclease III on the aldehyde group at C1' of the deoxyribose and subsequent Schiff base formation. The inability of TDG to perform this beta-elimination event appears to be due to the presence of a tyrosine residue at the position equivalent to Lys120 in endonuclease III. The purpose of this work was to investigate the requirements for AP lyase activity. We replaced Tyr126 in TDG with a lysine residue to determine if this replacement would yield an enzyme with an associated AP lyase activity capable of removing a mismatched pyrimidine. We observed that this replacement abolishes the glycosylase activity of TDG but does not affect substrate recognition. It does, however, convert the enzyme into an AP lyase. Chemical trapping assays show that this cleavage proceeds through a Schiff base intermediate and suggest that the amino acid at position 126 interacts with C1' on the deoxyribose sugar.
Collapse
Affiliation(s)
- T J Begley
- Department of Biological Sciences, SUNY at Albany, Albany, NY 12222, USA
| | | |
Collapse
|
30
|
Bauche C, Laval J. Repair of oxidized bases in the extremely radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol 1999; 181:262-9. [PMID: 9864339 PMCID: PMC103558 DOI: 10.1128/jb.181.1.262-269.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus radiodurans is able to resist and survive extreme DNA damage induced by ionizing radiation and many other DNA-damaging agents. It is believed that it possesses highly efficient DNA repair mechanisms. To characterize the repair pathway of oxidized purines in this bacteria, we have purified, from crude extracts, proteins that recognize these oxidized bases. We report here that D. radiodurans possesses two proteins excising the oxidized purines (formamidopyrimidine and 8-oxoguanine) by a DNA glycosylase-a purinic/apyrimidine lyase mechanism. Moreover, one of those proteins is endowed with a thymine glycol DNA glycosylase activity. One of these proteins could be the homolog of the Escherichia coli Fpg enzyme, which confirms the existence of a base excision repair system in this bacteria.
Collapse
Affiliation(s)
- C Bauche
- Groupe "Réparation des Lésions Radio-et Chimio-Induites," UMR 1772 CNRS, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | | |
Collapse
|
31
|
Laval J, Jurado J, Saparbaev M, Sidorkina O. Antimutagenic role of base-excision repair enzymes upon free radical-induced DNA damage. Mutat Res 1998; 402:93-102. [PMID: 9675252 DOI: 10.1016/s0027-5107(97)00286-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a consequence of oxidative stress, reactive oxygen species are generated in the cells. They interact with DNA and induce various modifications. Among them, oxidised purines (such as C8-oxoguanine and purines whose imidazole ring is opened), oxidised pyrimidines (such as thymine and cytosine glycols, ring saturated and fragmented pyrimidines), ethenobases and hypoxanthine. These various lesions have either miscoding properties or are blocks for DNA and RNA polymerases during replication and transcription, respectively. Most of these lesions are repaired by the base excision pathway in which the first step is mediated by specific DNA glycosylases. We review the various glycosylases involved in the repair of oxidised bases in Escherichia coli. The Fpg protein (formamidopyrimidine-DNA glycosylase) contains a zinc finger and excises oxidised purines whereas the Nth protein excises oxidised pyrimidines. The Nei protein excises a comparable spectra of pyrimidines and is believed to act as a back up enzyme to the Nth protein. The hypoxanthine-DNA glycosylase excises hypoxanthine residue and is one of the various activities of the AlkA protein (including formyluracil and ethenopurines residues). The Nfo protein was shown to have a novel activity that incises 5' to an alpha-deoxyadenosine residue (the anomer of deoxyadenosine formed by gamma-irradiation). The mechanism of action of the Fpg and Nth proteins are discussed. The properties of the human counterpart of the Fpg and Nth proteins the hNth and OGG1 proteins, respectively are also reviewed.
Collapse
Affiliation(s)
- J Laval
- Groupe Reparation des lesions Radio- et Chimio-Induites, URA 147 CNRS, Institut Gustave Roussy, 94805 Villejuif Cedex, France.
| | | | | | | |
Collapse
|
32
|
McCullough AK, Romberg MT, Nyaga S, Wei Y, Wood TG, Taylor JS, Van Etten JL, Dodson ML, Lloyd RS. Characterization of a novel cis-syn and trans-syn-II pyrimidine dimer glycosylase/AP lyase from a eukaryotic algal virus, Paramecium bursaria chlorella virus-1. J Biol Chem 1998; 273:13136-42. [PMID: 9582353 DOI: 10.1074/jbc.273.21.13136] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endonuclease V from bacteriophage T4, is a cis-syn pyrimidine dimer-specific glycosylase. Recently, the first sequence homolog of T4 endonuclease V was identified from chlorella virus Paramecium bursaria chlorella virus-1 (PBCV-1). Here we present the biochemical characterization of the chlorella virus pyrimidine dimer glycosylase, cv-PDG. Interestingly, cv-PDG is specific not only for the cis-syn cyclobutane pyrimidine dimer, but also for the trans-syn-II isomer. This is the first trans-syn-II-specific glycosylase identified to date. Kinetic analysis demonstrates that DNAs containing both types of pyrimidine dimers are cleaved by the enzyme with similar catalytic efficiencies. Cleavage analysis and covalent trapping experiments demonstrate that the enzyme mechanism is consistent with the model proposed for glycosylase/AP lyase enzymes in which the glycosylase action is mediated via an imino intermediate between the C1' of the sugar and an amino group in the enzyme, followed by a beta-elimination reaction resulting in cleavage of the phosphodiester bond. cv-PDG exhibits processive cleavage kinetics which are diminished at salt concentrations greater than those determined for T4 endonuclease V, indicating a possibly stronger electrostatic attraction between enzyme and DNA. The identification of this new enzyme with broader pyrimidine dimer specificity raises the intriguing possibility that there may be other T4 endonuclease V-like enzymes with specificity toward other DNA photoproducts.
Collapse
Affiliation(s)
- A K McCullough
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1071, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yamaguchi H, van Aalten DM, Pinak M, Furukawa A, Osman R. Essential dynamics of DNA containing a cis.syn cyclobutane thymine dimer lesion. Nucleic Acids Res 1998; 26:1939-46. [PMID: 9518486 PMCID: PMC147494 DOI: 10.1093/nar/26.8.1939] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Conformational properties of a UV-damaged DNA decamer containing a cis.syn cyclobutane thymine dimer (PD) have been investigated by molecular dynamics (MD) simulations. Results from MD simulations of the damaged decamer DNA show a kink of approximately 21.7 degrees at the PD damaged site and a disruption of H bonding between the 5'-thymine of the PD and its complementary adenine. However, no extra-helical flipping of the 3'-adenine complementary to the PD was observed. Comparison to two undamaged DNA decamers, one with the same sequence and the other with an AT replacing the TT sequence, indicates that these properties are specific to the damaged DNA. Essential dynamics (ED) derived from the MD trajectories of the three DNAs show that the backbone phosphate between the two adenines complementary to the PD of the damaged DNA has considerably larger mobility than the rest of the molecule and occurs only in the damaged DNA. As observed in the crystal structure of T4 endonuclease V in a complex with the damaged DNA, the interaction of the enzyme with the damaged DNA can lead to bending along the flexible joint and to induction of adenine flipping into an extra-helical position. Such motions may play an important role in damage recognition by repair enzymes.
Collapse
Affiliation(s)
- H Yamaguchi
- Space and Particle Radiation Science Research Group, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263, Japan.
| | | | | | | | | |
Collapse
|
34
|
Jiang D, Hatahet Z, Melamede RJ, Kow YW, Wallace SS. Characterization of Escherichia coli endonuclease VIII. J Biol Chem 1997; 272:32230-9. [PMID: 9405426 DOI: 10.1074/jbc.272.51.32230] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli endonuclease VIII (endo VIII) was identified as an enzyme that, like endonuclease III (endo III), removes radiolysis products of thymine including thymine glycol, dihydrothymine, beta-ureidoisobutyric acid, and urea from double-stranded plasmid or phage DNA and cleaves the DNA strand at abasic (AP) sites (Melamede, R. J., Hatahet, Z., Kow, Y. W., Ide., H., and Wallace, S. S. (1994) Biochemistry 33, 1255-1264). Using apparently homogeneous endo VIII protein, we now show that endo VIII removes from double-stranded oligodeoxyribonucleotides the stable oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil. Endo VIII cleaved the damage-containing DNA strand by beta,delta-elimination as does formamidopyrimidine DNA glycosylase (Fpg). Like Fpg, endo VIII also excised the 5'-terminal deoxyribose phosphate from an endonuclease IV (endo IV) pre-incised AP site. Thus, in addition to amino acid sequence homology (Jiang, D., Hatahet, Z., Blaisdell, J., Melamede, R. J., and Wallace, S. S. (1997) J. Bacteriol. 179, 3773-3782), endo VIII shares a number of catalytic properties with Fpg. In addition, endo VIII specifically bound to oligodeoxynucleotides containing a reduced AP site with a stoichiometry of 1:1 for protein to DNA with an apparent equilibrium dissociation constant of 3.9 nM. Like Fpg and endo III, the DNase I footprint was small with contact sites primarily on the damage-containing strand; unlike Fpg and endo III, the DNA binding of endo VIII to DNA was asymmetric, 3' to the reduced AP site.
Collapse
Affiliation(s)
- D Jiang
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
35
|
Croteau DL, ap Rhys CM, Hudson EK, Dianov GL, Hansford RG, Bohr VA. An oxidative damage-specific endonuclease from rat liver mitochondria. J Biol Chem 1997; 272:27338-44. [PMID: 9341184 DOI: 10.1074/jbc.272.43.27338] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species have been shown to generate mutagenic lesions in DNA. One of the most abundant lesions in both nuclear and mitochondrial DNA is 7,8-dihydro-8-oxoguanine (8-oxoG). We report here the partial purification and characterization of a mitochondrial oxidative damage endonuclease (mtODE) from rat liver that recognizes and incises at 8-oxoG and abasic sites in duplex DNA. Rat liver mitochondria were purified by differential and Percoll gradient centrifugation, and mtODE was extracted from Triton X-100-solubilized mitochondria. Incision activity was measured using a radiolabeled double-stranded DNA oligonucleotide containing a unique 8-oxoG, and reaction products were separated by polyacrylamide gel electrophoresis. Gel filtration chromatography predicts mtODE's molecular mass to be between 25 and 30 kDa. mtODE has a monovalent cation optimum between 50 and 100 mM KCl and a pH optimum between 7.5 and 8. mtODE does not require any co-factors and is active in the presence of 5 mM EDTA. It is specific for 8-oxoG and preferentially incises at 8-oxoG:C base pairs. mtODE is a putative 8-oxoG glycosylase/lyase enzyme, because it can be covalently linked to the 8-oxoG oligonucleotide by sodium borohydride reduction. Comparison of mtODE's activity with other known 8-oxoG glycosylases/lyases and mitochondrial enzymes reveals that this may be a novel protein.
Collapse
Affiliation(s)
- D L Croteau
- Laboratory of Molecular Genetics, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lapointe G, Winchcombe-Forhan C, Evans DH. Genotoxin resistance properties of transgenic tobacco plants expressing bacteriophage T4 DenV andSaccharomyces cerevisiaeApn1 proteins. Biochem Cell Biol 1997. [DOI: 10.1139/o97--057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Ramotar D. The apurinic–apyrimidinic endonuclease IV family of DNA repair enzymes. Biochem Cell Biol 1997. [DOI: 10.1139/o97-046] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Lapointe G, Evans DH. Genotoxin resistance properties of transgenic tobacco plants expressing bacteriophage T4 DenV and Saccharomyces cerevisiae Apn1 proteins. Biochem Cell Biol 1997. [DOI: 10.1139/o97-057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Suh D, Wilson DM, Povirk LF. 3'-phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends. Nucleic Acids Res 1997; 25:2495-500. [PMID: 9171104 PMCID: PMC146737 DOI: 10.1093/nar/25.12.2495] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In order to assess the possible role of human apurinic/apyrimidinic endonuclease (Ape) in double-strand break repair, the substrate specificity of this enzyme was investigated using short DNA duplexes and partial duplexes, each having a single 3'-phosphoglycolate terminus. Phosphoglycolate removal by Ape was detected as a shift in mobility of 5'-end-labeled DNA strands on polyacrylamide sequencing gels, and was quantified by phosphorimaging. Recombinant Ape efficiently removed phosphoglycolates from the 3'-terminus of an internal 1 base gap in a 38mer duplex, but acted more slowly on 3'-phosphoglycolates at a 19 base-recessed 3'-terminus, at an internal nick with no missing bases, and at a double-strand break end with either blunt or 2 base-recessed 3'-termini. There was no detectable activity of Ape toward 3'-phosphoglycolates on 1 or 2 base protruding single-stranded 3'-overhangs. The results suggest that both a single-base internal gap, and duplex DNA on each side of the gap are important binding/recognition determinants for Ape. While Ape may play a role in repair of terminally blocked double-strand breaks, there must also be additional factors involved in removal of at least some damaged 3'-termini, particularly those on 3'-overhangs.
Collapse
Affiliation(s)
- D Suh
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
40
|
Jen J, Mitchell DL, Cunningham RP, Smith CA, Taylor JS, Cleaver JE. Ultraviolet irradiation produces novel endonuclease III-sensitive cytosine photoproducts at dipyrimidine sites. Photochem Photobiol 1997; 65:323-9. [PMID: 9066307 DOI: 10.1111/j.1751-1097.1997.tb08565.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ultraviolet light irradiation of DNA in vitro and in vivo induces cyclobutane dimers, (6-4) pyrimidine-pyrimidone photoproducts and a variety of minor products. Using a defined DNA fragment, we have identified two classes of sites that can be cleaved by Escherichia coli endonuclease III: single cytosines whose heat lability corresponds to that of cytosine hydrates and more heat-stable dipyrimidines containing cytosine. The dipyrimidine products are induced at sites suggestive of (6-4) photoproducts but are not recognized as (6-4) photoproducts by radioimmunoassay. Use of oligonucleotides containing a single cyclobutane thymine dimer, a (6-4) photoproduct or the Dewar photoisomer of the (6-4) photoproduct also indicated that these products are not substrates for endonuclease III. We have therefore identified a minor UV photoproduct that has the same sequence specificity as the two major dipyrimidine photoproducts; it may be a minor isomer, a unique derivative or an oxidative lesion confined to dipyrimidine sites. Its biological significance is not yet known but may be masked by the preponderance of major products at the same sites. Its occurrence at the particular site in dipyrimidine sequences involved in the mutagenic action of UV photoproducts suggests that it may play a role in generating C to T transitions that are common UV-induced mutations.
Collapse
Affiliation(s)
- J Jen
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143-0750, USA
| | | | | | | | | | | |
Collapse
|
41
|
Purmal AA, Rabow LE, Lampman GW, Cunningham RP, Kow YW. A common mechanism of action for the N-glycosylase activity of DNA N-glycosylase/AP lyases from E. coli and T4. Mutat Res 1996; 364:193-207. [PMID: 8960131 DOI: 10.1016/s0921-8777(96)00032-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Duplex oligonucleotides containing the base lesion analogs, O-methylhydroxylamine- and O-benzylhydroxylamine-modified abasic (AP) sites, were substrates for the DNA N-glycosylases endonuclease III, formamidopyrimidine DNA N-glycosylase and T4 endonuclease V. These N-glycosylases are known to have associated AP lyase activities. In contrast, uracil DNA N-glycosylase, a simple N-glycosylase which does not have an associated AP lyase activity, was unable to recognize the modified AP sites. Endonuclease III, formamidopyrimidine DNA N-glycosylase and T4 endonuclease V recognized the base lesion analogs as N-glycosylases generating intermediary AP sites which were subsequently cleaved by the enzyme-associated AP lyase activities. Kinetic measurements showed that O-alkoxyamine-modified AP sites were poorer substrates than the presumed physiological substrates. For endonuclease III, DNA containing O-methylhydroxyl-amine or O-benzylhydroxylamine was recognized at 12 and 9% of the rate of DNA containing thymine glycol, respectively, under subsaturating substrate concentrations (as determined by relative Vmax/K(m)). Similarly, with formamidopyrimidine DNA N-glycosylase and T4 endonuclease V. DNA containing O-methylhydroxylamine or O-benzylhydroxylamine was recognized at 4-9% of the efficiency of DNA containing N7-methyl formamidopyrimidine or pyrimidine cyclobutane dimers, respectively. Based on the known structures of these base lesion analogs and the substrate specificities of the N-glycosylases, a common mechanism of action is proposed for DNA N-glycosylases with an associated AP lyase activity.
Collapse
Affiliation(s)
- A A Purmal
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington 05405, USA
| | | | | | | | | |
Collapse
|
42
|
Shida T, Noda M, Sekiguchi J. Cleavage of single- and double-stranded DNAs containing an abasic residue by Escherichia coli exonuclease III (AP endonuclease VI). Nucleic Acids Res 1996; 24:4572-6. [PMID: 8948651 PMCID: PMC146277 DOI: 10.1093/nar/24.22.4572] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli exonuclease III (AP endonuclease VI) is a DNA-repair enzyme that hydrolyzes the phosphodiester bond 5' to an abasic site in DNA. To study how the enzyme recognizes the abasic site, we used oligonucleotides containing a synthetic abasic site at any desired position in the sequence. We prepared oligonucleotides containing an abasic residue such as 2'-deoxyribosylformamide, 2'-deoxyribose, 1',2'-dideoxy ribofuranose or propanediol. Duplex oligonucleotides containing an abasic residue used in this study were cleaved on the 5' side of the abasic site by exonuclease III in spite of the varieties of the bases opposite and adjacent to the abasic site. In addition, we observed that the enzyme cleaved single-stranded oligonucleotides containing an abasic site on the 5' side of the abasic site. These findings suggest that the enzyme may principally recognize the DNA-pocket formed at an abasic site. The indole ring of the tryptophan 212 residue of the exonuclease III is probably intercalated to the abasic site. The tryptophan in the vicinity of the catalytic site is conserved in the type II AP endonuclease from various organisms.
Collapse
Affiliation(s)
- T Shida
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan.
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Dennis H. Flint
- E. I. du Pont de Nemours and Co., Central Research and Development, Experimental Station, P.O. Box 80328, Wilmington, Delaware 19880-0328
| | | |
Collapse
|
44
|
Siomi MC, Zhang Y, Siomi H, Dreyfuss G. Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them. Mol Cell Biol 1996; 16:3825-32. [PMID: 8668200 PMCID: PMC231379 DOI: 10.1128/mcb.16.7.3825] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fragile X syndrome, the most common form of hereditary mental retardation, usually results from lack of expression of the FMR1 gene. The FMR1 protein is a cytoplasmic RNA-binding protein. The RNA-binding activity of FMR1 is an essential feature of FMR1, as fragile X syndrome can also result from the expression of mutant FMR1 protein that is impaired in RNA binding. Recently, we described two novel cytoplasmic proteins, FXR1 and FXR2, which are both very similar in amino acid sequence to FMR1 and which also interact strongly with FMR1 and with each other. To understand the function of FMR1 and the FXR proteins, we carried out cell fractionation and sedimentation experiments with monoclonal antibodies to these proteins to characterize the complexes they form. Here, we report that the FMR1 and FXR proteins are associated with ribosomes, predominantly with 60S large ribosomal subunits. The FXR proteins are associated with 60S ribosomal subunits even in cells that lack FMR1 and that are derived from a fragile X syndrome patient, indicating that FMR1 is not required for this association. We delineated the regions of FMR1 that mediate its binding to 60S ribosomal subunits and the interactions among the FMR1-FXR family members. Both regions contain sequences predicted to have a high propensity to form coiled coil interactions, and the sequences are highly evolutionarily conserved in this protein family. The association of the FMR1, FXR1, and FXR2 proteins with ribosomes suggests they have functions in translation or mRNA stability.
Collapse
Affiliation(s)
- M C Siomi
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, 19104-6148, USA
| | | | | | | |
Collapse
|
45
|
Lapointe G, Mori T, Evans DH. Tobacco plants expressing T4 endonuclease V show enhanced sensitivity to ultraviolet light and DNA alkylating agents. Mutat Res 1996; 351:19-31. [PMID: 8602170 DOI: 10.1016/0027-5107(95)00193-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA repair processes and UV-filtering pigments protect organisms from the cytotoxicity of UV light and endow plants with a high degree of natural UV resistance. In an attempt to further enhance this UV resistance we have constructed transgenic tobacco lines that express a DNA repair enzyme encoded by the bacteriophage T4 denV gene. The denV gene encodes endonuclease V, an enzyme which initiates base excision repair of cyclobutane pyrimidine dimers. Its presence is expected to provide transgenotes with a repair pathway complementary to, but likely distinct from, the repair pathways found in tobacco. The denV gene, flanked by a CaMV 35S promoter and poly(A) addition site, was introduced into tobacco and mature plants regenerated. The transgenotes expressed high levels of a UV-specific endonuclease and no such activity was found in control plants. Curiously, assays which detected several different biological endpoints showed that the denV+ transgenotes were also hypersensitive to UV-C light. This hypersensitivity segregated with the denV gene and was not caused by altered concentrations of UV-filtering pigments. Moreover, the denV+ transgenotes were also hypersensitive to high levels of baseless lesions that would be generated by a transgenically expressed beta-eliminating lyase such as endonuclease V.
Collapse
Affiliation(s)
- G Lapointe
- Department of Molecular Biology & Genetics, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
46
|
Drouin R, Rodriguez H, Gao SW, Gebreyes Z, O'Connor TR, Holmquist GP, Akman SA. Cupric ion/ascorbate/hydrogen peroxide-induced DNA damage: DNA-bound copper ion primarily induces base modifications. Free Radic Biol Med 1996; 21:261-73. [PMID: 8855437 DOI: 10.1016/0891-5849(96)00037-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The kinetics of frank DNA strand breaks and DNA base modifications produced by Cu(II)/ascorbate/H2O2 were simultaneously determined in purified human genomic DNA in vitro. Modified bases were determined by cleavage with Escherichia coli enzymes Nth protein (modified pyrimidines) and Fpg protein (modified purines). Single-stranded lesion frequency before (frank strand breaks) and after (modified bases) Nth or Fpg protein digestion was quantified by neutral glyoxal gel electrophoresis. Dialysis of EDTA-treated genomic DNA purified by standard proteinase K digestion/phenol extraction was necessary to remove low molecular weight species, probably transition metal ions and metal ion chelators, which supported frank strand breaks in the presence of ascorbate + H2O2 without supplemental copper ions. We then established a kinetic model of the DNA-damaging reactions caused by Cu(II) + ascorbate + H2O2. The principal new assumption in our model was that DNA base modifications were caused exclusively by DNA-bound Cu(I) and frank strand breaks by non-DNA-bound Cu(I). The model was simulated by computer using published rate constants. The computer simulation quantitatively predicted: (1) the rate of H2O2 degradation, which was measured using an H2O2-sensitive electrode, (2) the linearity of accumulation of DNA strand breaks and modified bases over the reaction period, (3) the rate of modified base accumulation, and (4) the dependence of modified base and frank strand production on initial Cu(II) concentration. The simulation significantly overestimated the rate of frank strand break accumulation, suggesting either that the ultimate oxidizing species that attacks the sugar-phosphate backbone is a less-reactive species than the hydroxyl radical used in the model and/or an unidentified hydroxyl radical-scavenging species was present in the reactions. Our experimental data are consistent with a model of copper ion-DNA interaction in which DNA-bound Cu(I) primarily mediates DNA base modifications and nonbound Cu(I) primarily mediates frank strand break production.
Collapse
Affiliation(s)
- R Drouin
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Vassylyev DG, Kashiwagi T, Mikami Y, Ariyoshi M, Iwai S, Ohtsuka E, Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell 1995; 83:773-82. [PMID: 8521494 DOI: 10.1016/0092-8674(95)90190-6] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
T4 endonuclease V is a DNA repair enzyme from bacteriophage T4 that catalyzes the first reaction step of the pyrimidine dimer-specific base excision repair pathway. The crystal structure of this enzyme complexed with a duplex DNA substrate, containing a thymine dimer, has been determined at 2.75 A resolution. The atomic structure of the complex reveals the unique conformation of the DNA duplex, which exhibits a sharp kink with a 60 degree inclination at the central thymine dimer. The adenine base complementary to the 5' side of the thymine dimer is completely flipped out of the DNA duplex and trapped in a cavity on the protein surface. These structural features allow an understanding of the catalytic mechanism and implicate a general mechanism of how other repair enzymes recognize damaged DNA duplexes.
Collapse
|
48
|
Piersen CE, Prince MA, Augustine ML, Dodson ML, Lloyd RS. Purification and cloning of Micrococcus luteus ultraviolet endonuclease, an N-glycosylase/abasic lyase that proceeds via an imino enzyme-DNA intermediate. J Biol Chem 1995; 270:23475-84. [PMID: 7559510 DOI: 10.1074/jbc.270.40.23475] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although Micrococcus luteus UV endonuclease has been reported to be an 18-kDa enzyme with possible homology to the 16-kDa endonuclease V from bacteriophage T4 (Gordon, L. K., and Haseltine, W. A. (1980) J. Biol. Chem. 255, 12047-12050; Grafstrom, R. H., Park, L., and Grossman, L. (1982) J. Biol. Chem. 257, 13465-13474), this study describes three independent purification schemes in which M. luteus UV damage-specific or pyrimidine dimer-specific nicking activity was associated with two proteins of apparent molecular masses of 31 and 32 kDa. An 18-kDa contaminant copurified with the doublet through many of the chromatographic steps, but it was determined to be a homolog of Escherichia coli ribosomal protein L6. Edman degradation analyses of the active proteins yielded identical NH2-terminal amino acid sequences. The corresponding gene (pdg, pyrimidine dimer glycosylase) was cloned. The protein bears strong sequence similarities to the E. coli repair proteins endonuclease III and MutY. Nonetheless, traditionally purified M. luteus protein acted exclusively on cis-syn thymine dimers; it was unable to cleave site-specific oligonucleotide substrates containing a trans-syn -I, (6-4), or Dewar thymine dimer, a 5,6-dihydrouracil lesion, or an A:G or A:C mismatch. The UV endonuclease incised cis-syn dimer-containing DNA in a dose-dependent manner and exhibited linear kinetics within that dose range. Enzyme activity was inhibited by the presence of NaCN or NaBH4 with NaBH4 additionally being able to trap a covalent enzyme-substrate product. These last findings confirm that the catalytic mechanism of M. luteus UV endonuclease, like those of other glycosylase/AP lyases, involves an imino intermediate.
Collapse
Affiliation(s)
- C E Piersen
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1071, USA
| | | | | | | | | |
Collapse
|
49
|
Valerie K. Replacing tryptophan-128 of T4 endonuclease V with a serine residue results in decreased enzymatic activity in vitro and in vivo. Nucleic Acids Res 1995; 23:3764-70. [PMID: 7479008 PMCID: PMC307277 DOI: 10.1093/nar/23.18.3764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Endonuclease V of bacteriophage T4 possesses two enzymatic activities, a DNA N-glycosylase specific for cyclobutane pyrimidine dimers (CBPD) and an associated apurinic/apyrimidinic (AP) lyase. Extensive structural and functional studies of endonuclease V have revealed that specific amino acids are associated with these two activities. Controversy still exists regarding the role of the aromatic amino acid stretch close to the carboxyl terminus, in particular the tryptophan at position 128. We have expressed wild-type and mutant W128S endonuclease V in Escherichia coli from an inducible tac promoter. Purified W128S endonuclease V demonstrated substantially decreased N-glycosylase (approximately 5-fold) and AP lyase (10- to 20-fold) activities in vitro compared to the wild-type enzyme when a UV-irradiated poly(dA)-poly(dT) substrate was used. However, a much smaller difference in AP lyase activity between the two forms was observed with a site-specific abasic oligonucleotide. The difference in enzymatic activity was qualitatively, but not quantitatively, reflected in the survival of UV-irradiated bacteria, that is the W128S cells were slightly less UV resistant than wild-type cells. No difference was observed in the complementation of UV repair using UV-damaged denV- T4 phage. A more pronounced difference between the wild-type and W128S proteins was observed in human xeroderma pigmentosum group A cells by host-cell reactivation of a UV-irradiated reporter gene. The relatively large discrepancy between the in vitro and in vivo results observed with bacteria may be because saturated levels of DNA repair are obtained in vivo with relatively low levels of endonuclease V. However, under limiting in vitro conditions and in human cells in vivo a considerable difference between the W128S mutant and wild-type endonuclease V activities can be detected. Our results demonstrate that tryptophan-128 is important for endonuclease V activity.
Collapse
Affiliation(s)
- K Valerie
- Department of Radiation Oncology and Microbiology and Immunology, Massey Cancer Center, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0058, USA
| |
Collapse
|
50
|
Latham KA, Manuel RC, Lloyd RS. The interaction of T4 endonuclease V E23Q mutant with thymine dimer- and tetrahydrofuran-containing DNA. J Bacteriol 1995; 177:5166-8. [PMID: 7665500 PMCID: PMC177301 DOI: 10.1128/jb.177.17.5166-5168.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The interaction between endonuclease V, the cyclobutane pyrimidine dimer-specific N-glycosylase/abasic lyase from bacteriophage T4, and DNA was investigated by DNase I footprinting methods. The catalytically inactive mutant E23Q was found to interact with a smaller region of DNA at the abasic site analog, tetrahydrofuran, than at a thymine dimer site. Like the wild-type enzyme, the mutant contacted the DNA substrates primarily on the strand opposite the damage. The various complexes examined by footprinting techniques represent distinct points along the catalytic pathway of endonuclease V: before catalysis at a dimer, after N-glycosylase action but before abasic lyase action, and before catalysis at an abasic site. The differences between the footprints of the mutant and wild-type enzymes on both DNA substrates likely represent subtly different conformations within these complexes.
Collapse
Affiliation(s)
- K A Latham
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1071, USA
| | | | | |
Collapse
|