1
|
Wang Y, Liu W, Liu L, He Y, Luo H, Fang C. Causal effect of gut microbiota on the risk of cancer and potential mediation by inflammatory proteins. World J Surg Oncol 2025; 23:163. [PMID: 40287752 PMCID: PMC12032672 DOI: 10.1186/s12957-025-03822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND While growing evidence highlights the role of gut microbiota and inflammatory proteins in cancer, with cancer-related inflammation now considered the seventh hallmark of cancer, the direct causal relationships between specific microbiota, cancer, and the potential mediating effects of inflammatory proteins have not been fully established. METHODS We employed Mendelian randomization (MR) to assess the causal relationships between gut microbiota, inflammatory proteins, and eighteen distinct cancers using data from extensive genome-wide association studies (GWAS). The primary statistical method utilized was inverse variance weighting (IVW). We also investigated whether inflammatory proteins could mediate the effects of gut microbiota on cancer development. RESULTS Our findings revealed 42 positive and 49 inverse causal impacts of gut microbiota on cancer risk (P < 0.05). Additionally, we identified 32 positive and 28 inverse causal relationships between inflammatory proteins and cancer risk. Moreover, genus Collinsella decreased the risk of lung cancer by decreasing levels of T-cell surface glycoprotein CD5 (mediating effect = 16.667%), while genus Ruminococcaceae UCG005 increased the risk of mesothelioma by increasing levels of CCL4 (mediating effect = 5.134%). CONCLUSIONS Our study provides evidence for a causal association between gut microbiota, inflammatory proteins, and eighteen different cancer types. Notably, the T-cell surface glycoprotein CD5 and CCL4 were identified as mediators linking the genus Collinsella with lung cancer and the genus Ruminococcaceae UCG005 with mesothelioma, respectively.
Collapse
Affiliation(s)
- Yao Wang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong Province, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wanli Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Liwen Liu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong Province, China
| | - Yanli He
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| | - Huanhuan Luo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong Province, China.
| | - Cantu Fang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong Province, China.
| |
Collapse
|
2
|
Zhang B, He R, Yao Z, Li P, Niu G, Yan Z, Zou Y, Tong X, Yang M. Exploring Causal Relationships between Circulating Inflammatory Proteins and Thromboangiitis Obliterans: A Mendelian Randomization Study. Thromb Haemost 2024; 124:1075-1083. [PMID: 38788766 PMCID: PMC11518616 DOI: 10.1055/s-0044-1786809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/05/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Thromboangiitis obliterans (TAO) is a vascular condition characterized by poor prognosis and an unclear etiology. This study employs Mendelian randomization (MR) to investigate the causal impact of circulating inflammatory proteins on TAO. METHODS In this MR analysis, summary statistics from a genome-wide association study meta-analysis of 91 inflammation-related proteins were integrated with independently sourced TAO data from the FinnGen consortium's R10 release. Methods such as inverse variance weighting, MR-Egger regression, weighted median approaches, MR-PRESSO, and multivariable MR (MVMR) analysis were utilized. RESULTS The analysis indicated an association between higher levels of C-C motif chemokine 4 and a reduced risk of TAO, with an odds ratio (OR) of 0.44 (95% confidence interval [CI]: 0.29-0.67; p = 1.4 × 10-4; adjusted p = 0.013). Similarly, glial cell line-derived neurotrophic factor exhibited a suggestively protective effect against TAO (OR: 0.43, 95% CI: 0.22-0.81; p = 0.010; adjusted p = 0.218). Conversely, higher levels of C-C motif chemokine 23 were suggestively linked to an increased risk of TAO (OR: 1.88, 95% CI: 1.21-2.93; p = 0.005; adjusted p = 0.218). The sensitivity analysis and MVMR revealed no evidence of heterogeneity or pleiotropy. CONCLUSION This study identifies C-C motif chemokine 4 and glial cell line-derived neurotrophic factor as potential protective biomarkers for TAO, whereas C-C motif chemokine 23 emerges as a suggestive risk marker. These findings elucidate potential causal relationships and highlight the significance of these proteins in the pathogenesis and prospective therapeutic strategies for TAO.
Collapse
Affiliation(s)
- Bihui Zhang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Rui He
- Department of Plastic Surgery and Burn, Peking University First Hospital, Beijing, China
| | - Ziping Yao
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Pengyu Li
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Guochen Niu
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Ziguang Yan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiaoqiang Tong
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Min Yang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Yao Z, Guo F, Tan Y, Zhang Y, Geng Y, Yang G, Wang S. Causal relationship between inflammatory cytokines and autoimmune thyroid disease: a bidirectional two-sample Mendelian randomization analysis. Front Immunol 2024; 15:1334772. [PMID: 38571956 PMCID: PMC10989681 DOI: 10.3389/fimmu.2024.1334772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Background Autoimmune thyroid disease (AITD) ranks among the most prevalent thyroid diseases, with inflammatory cytokines playing a decisive role in its pathophysiological process. However, the causal relationship between the inflammatory cytokines and AITD remains elusive. Methods A two-sample Mendelian randomization (MR) analysis was performed to elucidate the causal connection between AITD and 41 inflammatory cytokines. Genetic variations associated with inflammatory cytokines were sourced from the FinnGen biobank, whereas a comprehensive meta-analysis of genome-wide association studies (GWASs) yielded data on Graves' disease (GD) and Hashimoto thyroiditis. Regarding the MR analysis, the inverse variance-weighted, MR-Egger, and weighted median methods were utilized. Additionally, sensitivity analysis was conducted using MR-Egger regression, MR-pleiotropy residual sum, and outliers. Results Seven causal associations were identified between inflammatory cytokines and AITD. High levels of tumor necrosis factor-β and low levels of stem cell growth factor-β were indicative of a higher risk of GD. In contrast, high levels of interleukin-12p70 (IL-12p70), IL-13, and interferon-γ and low levels of monocyte chemotactic protein-1 (MCP-1) and TNF-α suggested a higher risk of HD. Moreover, 14 causal associations were detected between AITD and inflammatory cytokines. GD increases the levels of macrophage inflammatory protein-1β, MCP-1, monokine induced by interferon-γ (MIG), interferon γ-induced protein 10 (IP-10), stromal cell-derived factor-1α, platelet-derived growth factor BB, β-nerve growth factor, IL-2ra, IL-4, and IL-17 in blood, whereas HD increases the levels of MIG, IL-2ra, IP-10, and IL-16 levels. Conclusion Our bidirectional MR analysis revealed a causal relationship between inflammatory cytokines and AITD. These findings offer valuable insights into the pathophysiological mechanisms underlying AITD.
Collapse
Affiliation(s)
- Zhiwei Yao
- Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Fengli Guo
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanlu Tan
- Department of Interventional Oncology, Zibo Central Hospital, Zibo, China
| | - Yiyuan Zhang
- Department of Reproductive Endocrinology, Second Hospital of Shandong University, Jinan, China
| | - Yichen Geng
- Nursing College of Binzhou Medical University, Yantai, China
| | - Guang Yang
- Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Song Wang
- Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Naidoo L, Arumugam T, Ramsuran V. Host Genetic Impact on Infectious Diseases among Different Ethnic Groups. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2300181. [PMID: 38099246 PMCID: PMC10716055 DOI: 10.1002/ggn2.202300181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Indexed: 12/17/2023]
Abstract
Infectious diseases such as malaria, tuberculosis (TB), human immunodeficiency virus (HIV), and the coronavirus disease of 2019 (COVID-19) are problematic globally, with high prevalence particularly in Africa, attributing to most of the death rates. There have been immense efforts toward developing effective preventative and therapeutic strategies for these pathogens globally, however, some remain uncured. Disease susceptibility and progression for malaria, TB, HIV, and COVID-19 vary among individuals and are attributed to precautionary measures, environment, host, and pathogen genetics. While studying individuals with similar attributes, it is suggested that host genetics contributes to most of an individual's susceptibility to disease. Several host genes are identified to associate with these pathogens. Interestingly, many of these genes and polymorphisms are common across diseases. This paper analyzes genes and genetic variations within host genes associated with HIV, TB, malaria, and COVID-19 among different ethnic groups. The differences in host-pathogen interaction among these groups, particularly of Caucasian and African descent, and which gene polymorphisms are prevalent in an African population that possesses protection or risk to disease are reviewed. The information in this review could potentially help develop personalized treatment that could effectively combat the high disease burden in Africa.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
5
|
Mukaida N, Sasaki SI, Baba T. CCL4 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:23-32. [PMID: 32060843 DOI: 10.1007/978-3-030-36667-4_3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CCL4, a CC chemokine, previously known as macrophage inflammatory protein (MIP)-1β, has diverse effects on various types of immune and nonimmune cells by the virtue of its interaction with its specific receptor, CCR5, in collaboration with related but distinct CC chemokines such as CCL3 and CCL5, which can also bind CCR5. Several lines of evidence indicate that CCL4 can promote tumor development and progression by recruiting regulatory T cells and pro-tumorigenic macrophages, and acting on other resident cells present in the tumor microenvironment, such as fibroblasts and endothelial cells, to facilitate their pro-tumorigenic capacities. These observations suggest the potential efficacy of CCR5 antagonists for cancer treatment. On the contrary, under some situations, CCL4 can enhance tumor immunity by recruiting cytolytic lymphocytes and macrophages with phagocytic ability. Thus, presently, the clinical application of CCR5 antagonists warrants more detailed analysis of the role of CCL4 and other CCR5-binding chemokines in the tumor microenvironment.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - So-Ichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
6
|
Laffer B, Bauer D, Wasmuth S, Busch M, Jalilvand TV, Thanos S, Meyer Zu Hörste G, Loser K, Langmann T, Heiligenhaus A, Kasper M. Loss of IL-10 Promotes Differentiation of Microglia to a M1 Phenotype. Front Cell Neurosci 2019; 13:430. [PMID: 31649508 PMCID: PMC6794388 DOI: 10.3389/fncel.2019.00430] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia represent the primary resident immune cells of the central nervous system (CNS) and modulate local immune responses. Depending on their physiological functions, microglia can be classified into pro- (M1) and anti-inflammatory (M2) phenotype. Interleukin (IL)-10 is an important modulator of neuronal homeostasis, with anti-inflammatory and neuroprotective functions, and can be released by microglia. Here, we investigated how IL-10 deficiency affected the M1/2 polarization of primary microglia upon lipopolysaccharide (LPS) stimulation in vitro. Microglia phenotypes were analyzed via flow cytometry. Cytokine and chemokine secretion were examined by ELISA and bead-based multiplex LEGENDplexTM. Our results showed that genetic depletion of IL-10 led to elevated M1 like phenotype (CD86+ CD206−) under pro-inflammatory conditions associated with increased frequency of IL-6+, TNF-α+ cells and enhanced release of several pro-inflammatory chemokines. Absence of IL-10 led to an attenuated M2 like phenotype (CD86− CD206+) and a reduced secretion of TGF-β1 upon LPS stimulation. In conclusion, IL-10 deficiency may promote the polarization of microglia into M1-prone phenotype under pro-inflammatory conditions.
Collapse
Affiliation(s)
- Björn Laffer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Susanne Wasmuth
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Martin Busch
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Tida Viola Jalilvand
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,Department of Experimental Ophthalmology, Westphalian Wilhelms University of Münster, Münster, Germany
| | - Solon Thanos
- Department of Experimental Ophthalmology, Westphalian Wilhelms University of Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Karin Loser
- Department of Dermatology - Experimental Dermatology and Immunobiology of the Skin, University of Münster, Münster, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,University of Duisburg-Essen, Essen, Germany
| | - Maren Kasper
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| |
Collapse
|
7
|
Paeonol Ameliorates Ovalbumin-Induced Asthma through the Inhibition of TLR4/NF- κB and MAPK Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3063145. [PMID: 30186353 PMCID: PMC6114069 DOI: 10.1155/2018/3063145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/18/2017] [Indexed: 01/20/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways, with complex signaling pathways involved in its pathogenesis. It was reported that paeonol attenuated airway inflammation of ovalbumin (OVA)-induced mice. Therefore, it is of importance to further investigate the underlying mechanism. BALB/c mice were challenged with OVA for the asthma model, which was validated by the changed levels of IL-4, IFN-γ, and IgE. The elevation of IL-4 and the decreasing of IFN-γ were significantly in middle (p<0.05) or high (p<0.01) paeonol dose groups compared with OVA group. MIP-1β in bronchoalveolar lavage fluid (BALF) also decreased significantly in middle and high paeonol group compared with OVA group (p<0.01), which is similar to the change of its mRNA in lung tissues. Moreover, the inflammatory cells infiltration and collagen deposition were attenuated by paeonol and montelukast sodium via histology examination. At last the immune blot of the protein extracted from lung tissues demonstrated that paeonol decreased the expression of TLR4 and the nuclear translocation of NF-κB, as well as the phosphorylation levels of P38 and ERK in asthma model. In conclusion, paeonol ameliorated OVA-induced asthma through the TLR4/NF-κB and mitogen-activated protein kinase (MAPK) signaling.
Collapse
|
8
|
Inflammation and Monocyte Recruitment due to Aging and Mechanical Stretch in Alveolar Epithelium are Inhibited by the Molecular Chaperone 4-phenylbutyrate. Cell Mol Bioeng 2018; 11:495-508. [PMID: 30581495 DOI: 10.1007/s12195-018-0537-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction Ventilator-Induced lung injury (VILI) is a form of acute lung injury that is initiated or exacerbated by mechanical ventilation. The aging lung is also more susceptible to injury. Harmful mechanical stretch of the alveolar epithelium is a recognized mechanism of VILI, yet little is known about how mechanical stretch affects aged epithelial cells. Disruption to Endoplasmic Reticulum (ER) homeostasis results in a condition known as ER stress that leads to disruption of cellular homeostasis, apoptosis, and inflammation. ER stress is increased with aging and other pathological stimuli. We hypothesized that age and mechanical stretch increase alveolar epithelial cells' proinflammatory responses that are mediated by ER stress. Furthermore, we believed that inhibition of this upstream mechanism with 4PBA, an ER stress reducer, alleviates subsequent inflammation and monocyte recruitment. Methods Type II alveolar epithelial cells (ATII) were harvested from C57Bl6/J mice 2 months (young) and 20 months (old) of age. The cells were cyclically stretched at 15% change in surface area for up to 24 hours. Prior to stretch, groups were administered 4PBA or vehicle as a control. Results Mechanical stretch and age upregulated ER stress and proinflammatory MCP-1/CCL2 and MIP-1β/CCL4 chemokine expression in ATIIs. Age-matched and mismatched monocyte recruitment by ATII conditioned media was also quantified. Conclusions Age increases susceptibility to stretch-induced ER stress and downstream inflammatory gene expression in a primary ATII epithelial cell model. Administration of 4PBA attenuated the increased ER stress and proinflammatory responses from stretch and/or age and significantly reduced monocyte migration to ATII conditioned media.
Collapse
|
9
|
Rieth J, Subramanian S. Mechanisms of Intrinsic Tumor Resistance to Immunotherapy. Int J Mol Sci 2018; 19:ijms19051340. [PMID: 29724044 PMCID: PMC5983580 DOI: 10.3390/ijms19051340] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 02/06/2023] Open
Abstract
An increased understanding of the interactions between the immune system and tumors has opened the door to immunotherapy for cancer patients. Despite some success with checkpoint inhibitors including ipilimumab, pembrolizumab, and nivolumab, most cancer patients remain unresponsive to such immunotherapy, likely due to intrinsic tumor resistance. The mechanisms most likely involve reducing the quantity and/or quality of antitumor lymphocytes, which ultimately are driven by any number of developments: tumor mutations and adaptations, reduced neoantigen generation or expression, indoleamine 2,3-dioxygenase (IDO) overexpression, loss of phosphatase and tensin homologue (PTEN) expression, and overexpression of the Wnt⁻β-catenin pathway. Current work in immunotherapy continues to identify various tumor resistance mechanisms; future work is needed to develop adjuvant treatments that target those mechanisms, in order to improve the efficacy of immunotherapy and to expand its scope.
Collapse
Affiliation(s)
- John Rieth
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Adewoye AB, Shrine N, Odenthal-Hesse L, Welsh S, Malarstig A, Jelinsky S, Kilty I, Tobin MD, Hollox EJ, Wain LV. Human CCL3L1 copy number variation, gene expression, and the role of the CCL3L1-CCR5 axis in lung function. Wellcome Open Res 2018; 3:13. [PMID: 29682616 PMCID: PMC5883389 DOI: 10.12688/wellcomeopenres.13902.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/21/2023] Open
Abstract
Background: The CCL3L1-CCR5 signaling axis is important in a number of inflammatory responses, including macrophage function, and T-cell-dependent immune responses. Small molecule CCR5 antagonists exist, including the approved antiretroviral drug maraviroc, and therapeutic monoclonal antibodies are in development. Repositioning of drugs and targets into new disease areas can accelerate the availability of new therapies and substantially reduce costs. As it has been shown that drug targets with genetic evidence supporting their involvement in the disease are more likely to be successful in clinical development, using genetic association studies to identify new target repurposing opportunities could be fruitful. Here we investigate the potential of perturbation of the CCL3L1-CCR5 axis as treatment for respiratory disease. Europeans typically carry between 0 and 5 copies of CCL3L1 and this multi-allelic variation is not detected by widely used genome-wide single nucleotide polymorphism studies. Methods: We directly measured the complex structural variation of CCL3L1 using the Paralogue Ratio Test and imputed (with validation) CCR5del32 genotypes in 5,000 individuals from UK Biobank, selected from the extremes of the lung function distribution, and analysed DNA and RNAseq data for CCL3L1 from the 1000 Genomes Project. Results: We confirmed the gene dosage effect of CCL3L1 copy number on CCL3L1 mRNA expression levels. We found no evidence for association of CCL3L1 copy number or CCR5del32 genotype with lung function. Conclusions: These results suggest that repositioning CCR5 antagonists is unlikely to be successful for the treatment of airflow obstruction.
Collapse
Affiliation(s)
- Adeolu B. Adewoye
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Linda Odenthal-Hesse
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | | | - Scott Jelinsky
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Iain Kilty
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK,National Institute of Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK,
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, UK,National Institute of Health Research Biomedical Research Centre, University of Leicester, Leicester, UK,
| |
Collapse
|
11
|
Adewoye AB, Shrine N, Odenthal-Hesse L, Welsh S, Malarstig A, Jelinsky S, Kilty I, Tobin MD, Hollox EJ, Wain LV. Human CCL3L1 copy number variation, gene expression, and the role of the CCL3L1-CCR5 axis in lung function. Wellcome Open Res 2018. [DOI: 10.12688/wellcomeopenres.13902.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The CCL3L1-CCR5 signaling axis is important in a number of inflammatory responses, including macrophage function, and T-cell-dependent immune responses. Small molecule CCR5 antagonists exist, including the approved antiretroviral drug maraviroc, and therapeutic monoclonal antibodies are in development. Repositioning of drugs and targets into new disease areas can accelerate the availability of new therapies and substantially reduce costs. As it has been shown that drug targets with genetic evidence supporting their involvement in the disease are more likely to be successful in clinical development, using genetic association studies to identify new target repurposing opportunities could be fruitful. Here we investigate the potential of perturbation of the CCL3L1-CCR5 axis as treatment for respiratory disease. Europeans typically carry between 0 and 5 copies of CCL3L1 and this multi-allelic variation is not detected by widely used genome-wide single nucleotide polymorphism studies. Methods: We directly measured the complex structural variation of CCL3L1 using the Paralogue Ratio Test and imputed (with validation) CCR5del32 genotypes in 5,000 individuals from UK Biobank, selected from the extremes of the lung function distribution, and analysed DNA and RNAseq data for CCL3L1 from the 1000 Genomes Project. Results: We confirmed the gene dosage effect of CCL3L1 copy number on CCL3L1 mRNA expression levels. We found no evidence for association of CCL3L1 copy number or CCR5del32 genotype with lung function. Conclusions: These results suggest that repositioning CCR5 antagonists is unlikely to be successful for the treatment of airflow obstruction.
Collapse
|
12
|
Navarathna DHMLP, Pathirana RU, Lionakis MS, Nickerson KW, Roberts DD. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis. PLoS One 2016; 11:e0164449. [PMID: 27727302 PMCID: PMC5058487 DOI: 10.1371/journal.pone.0164449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/26/2016] [Indexed: 01/05/2023] Open
Abstract
Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida-infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment.
Collapse
Affiliation(s)
- Dhammika H. M. L. P. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ruvini U. Pathirana
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Kim KH, Choi BK, Kim YH, Han C, Oh HS, Lee DG, Kwon BS. Extracellular stimulation of VSIG4/complement receptor Ig suppresses intracellular bacterial infection by inducing autophagy. Autophagy 2016; 12:1647-59. [PMID: 27440002 DOI: 10.1080/15548627.2016.1196314] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
VSIG4/CRIg (V-set and immunoglobulin domain containing 4) is a transmembrane receptor of the immunoglobulin superfamily that is expressed specifically on macrophages and mature dendritic cells. VSIG4 signaling accelerates phagocytosis of C3-opsonized bacteria, thereby efficiently clearing pathogens within macrophages. We found that VSIG4 signaling triggered by C3-opsonized Listeria (opLM) or by agonistic anti-VSIG4 monoclonal antibody (mAb) induced macrophages to form autophagosomes. VSIG4-induced autophagosomes were selectively colocalized with the intracellular LM while starvation-induced autophagosomes were not. Consistent with these results, the frequency of autophagosomes induced by infection with opLM was lower in VSIG4-deficient bone marrow-derived macrophages (BMDMs) than in WT BMDMs. Furthermore, when VSIG4 molecules were overexpressed in HeLa cells, which are non-macrophage cells, VSIG4 triggering led to efficient uptake of LM, autophagosome formation, and killing of the infected LM. These findings suggest that VSIG4 signaling not only promotes rapid phagocytosis and killing of C3-opsonized intracellular bacteria, as previously reported, but also induces autophagosome formation, eliminating the LM that have escaped from phagosomes. We conclude that VSIG4 signaling provides an anti-immune evasion mechanism that prevents the outgrowth of intracellular bacteria in macrophages.
Collapse
Affiliation(s)
- Kwang H Kim
- a Eutilex , The Catholic University School of Medicine Seoul , Korea
| | - Beom K Choi
- b Cancer Immunology Branch , Division of Cancer Biology, National Cancer Center , Goyang , Korea
| | - Young H Kim
- c Immune Cell Production Unit , Program for Immunotherapeutic Research, National Cancer Center , Goyang , Korea
| | - Chungyong Han
- b Cancer Immunology Branch , Division of Cancer Biology, National Cancer Center , Goyang , Korea
| | - Ho S Oh
- b Cancer Immunology Branch , Division of Cancer Biology, National Cancer Center , Goyang , Korea
| | - Don G Lee
- b Cancer Immunology Branch , Division of Cancer Biology, National Cancer Center , Goyang , Korea
| | - Byoung S Kwon
- a Eutilex , The Catholic University School of Medicine Seoul , Korea.,b Cancer Immunology Branch , Division of Cancer Biology, National Cancer Center , Goyang , Korea.,d Department of Medicine , Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
14
|
Lin F, Xue D, Xie T, Pan Z. HMGB1 promotes cellular chemokine synthesis and potentiates mesenchymal stromal cell migration via Rap1 activation. Mol Med Rep 2016; 14:1283-9. [PMID: 27314424 DOI: 10.3892/mmr.2016.5398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 04/08/2016] [Indexed: 11/06/2022] Open
Abstract
The migration of mesenchymal stem cells (MSCs) and osteogenic differentiation occupy an important role in fracture healing. High mobility group box 1 (HMGB1), a widely distributed inflammatory factor in fractures, has been confirmed to act as a chemoattractant to MSCs. To investigate the effect of HMGB1 on MSC migration and the underlying mechanism, the synthesis of MSC chemokines, and the consequent activation of signaling pathways following HMGB1 stimulation, were evaluated. A Quantibody® array was performed to determine which chemokines were secreted from MSCs with or without treatment with HMGB1. The results indicated differential chemokine synthesis by MSCs following treatment with HMGB1, including that of CCL4 and CCL13. In addition, the Ras‑associated protein‑1 (Rap1) signaling pathway was markedly activated in the HMGB1‑treated groups, suggesting that HMGB1 may enhance the migrational ability of MSCs via Rap1 activation. Furthermore, HMGB1 was able to promote the secretion of various chemokines derived from MSCs, which would, in turn, increase the mobility of MSCs. Taken together, these results provide a mechanistic basis for developing novel approaches to promote fracture healing.
Collapse
Affiliation(s)
- Feng Lin
- Department of Orthopedics, The First People's Hospital of Xiaoshan, Hangzhou, Zhejiang 311200, P.R. China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Tao Xie
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
15
|
Assone T, Paiva A, Fonseca LAM, Casseb J. Genetic Markers of the Host in Persons Living with HTLV-1, HIV and HCV Infections. Viruses 2016; 8:v8020038. [PMID: 26848682 PMCID: PMC4776193 DOI: 10.3390/v8020038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) are prevalent worldwide, and share similar means of transmission. These infections may influence each other in evolution and outcome, including cancer or immunodeficiency. Many studies have reported the influence of genetic markers on the host immune response against different persistent viral infections, such as HTLV-1 infection, pointing to the importance of the individual genetic background on their outcomes. However, despite recent advances on the knowledge of the pathogenesis of HTLV-1 infection, gaps in the understanding of the role of the individual genetic background on the progress to disease clinically manifested still remain. In this scenario, much less is known regarding the influence of genetic factors in the context of dual or triple infections or their influence on the underlying mechanisms that lead to outcomes that differ from those observed in monoinfection. This review describes the main factors involved in the virus–host balance, especially for some particular human leukocyte antigen (HLA) haplotypes, and other important genetic markers in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other persistent viruses, such as HIV and HCV.
Collapse
Affiliation(s)
- Tatiane Assone
- Laboratory of Dermatology and Immune deficiencies, Department of Dermatology, University of São Paulo Medical School, LIM56, Av. Dr. Eneas de Carvalho Aguiar 500, 3rd Floor, Building II, São Paulo, SP, Brazil.
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| | - Arthur Paiva
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| | - Luiz Augusto M Fonseca
- Department of Preventive Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| | - Jorge Casseb
- Laboratory of Dermatology and Immune deficiencies, Department of Dermatology, University of São Paulo Medical School, LIM56, Av. Dr. Eneas de Carvalho Aguiar 500, 3rd Floor, Building II, São Paulo, SP, Brazil.
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Albulescu R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med 2015; 19:1783-1794. [PMID: 26176909 PMCID: PMC4549029 DOI: 10.1111/jcmm.12624] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Telocytes (TCs) are interstitial cells that are present in numerous organs, including the heart interstitial space and cardiac stem cell niche. TCs are completely different from fibroblasts. TCs release extracellular vesicles that may interact with cardiac stem cells (CSCs) via paracrine effects. Data on the secretory profile of TCs and the bidirectional shuttle vesicular signalling mechanism between TCs and CSCs are scarce. We aimed to characterize and understand the in vitro effect of the TC secretome on CSC fate. Therefore, we studied the protein secretory profile using supernatants from mouse cultured cardiac TCs. We also performed a comparative secretome analysis using supernatants from rat cultured cardiac TCs, a pure CSC line and TCs-CSCs in co-culture using (i) high-sensitivity on-chip electrophoresis, (ii) surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and (iii) multiplex analysis by Luminex-xMAP. We identified several highly expressed molecules in the mouse cardiac TC secretory profile: interleukin (IL)-6, VEGF, macrophage inflammatory protein 1α (MIP-1α), MIP-2 and MCP-1, which are also present in the proteome of rat cardiac TCs. In addition, rat cardiac TCs secrete a slightly greater number of cytokines, IL-2, IL-10, IL-13 and some chemokines like, GRO-KC. We found that VEGF, IL-6 and some chemokines (all stimulated by IL-6 signalling) are secreted by cardiac TCs and overexpressed in co-cultures with CSCs. The expression levels of MIP-2 and MIP-1α increased twofold and fourfold, respectively, when TCs were co-cultured with CSCs, while the expression of IL-2 did not significantly differ between TCs and CSCs in mono culture and significantly decreased (twofold) in the co-culture system. These data suggest that the TC secretome plays a modulatory role in stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Radu Albulescu
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
- National Institute for Chemical Pharmaceutical Research & DevelopmentBucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Daniela I Popescu
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Sanda M Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Department of Ultrastructural Pathology, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Laurentiu M Popescu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Department of Advanced Studies, Victor Babeş National Institute of PathologyBucharest, Romania
| |
Collapse
|
17
|
Bharuthram A, Paximadis M, Picton ACP, Tiemessen CT. Comparison of a quantitative Real-Time PCR assay and droplet digital PCR for copy number analysis of the CCL4L genes. INFECTION GENETICS AND EVOLUTION 2014; 25:28-35. [PMID: 24727646 DOI: 10.1016/j.meegid.2014.03.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 02/02/2023]
Abstract
The controversy surrounding the findings that copy number variation, of the CCL3 encoding genes, influences HIV-1 infection and disease progression has been in part attributed to the variable results obtained from methods used for copy number evaluation. Like CCL3, the genes encoding the CC chemokine CCL4, also a natural ligand of the CCR5 receptor, are found to occur in population-specific multiple copy number and have been shown to play a protective role against HIV-1. This study evaluated the standard method of quantitative Real-Time PCR (qPCR) and droplet digital PCR (ddPCR) for CCL4L gene copy number determination. The CCL4 encoding genes are CCL4, occurring in two copies per diploid genome (pdg), and the non-allelic CCL4L genes, comprised of CCL4L1 and CCL4L2, which are both found in multiple copies pdg. Copy number of CCL4L, CCL4L1 and CCL4L2 was determined in a cohort of HIV-1-uninfected individuals from the South African Black (n=23) and Caucasian (n=32) population groups using qPCR and ddPCR. A stronger correlation between the number of CCL4L copies and the sum of CCL4L1 and CCL4L2 copies generated by ddPCR (r=0.99, p<0.0001) compared to qPCR (r=0.87, p<0.0001) was observed. Real-Time qPCR exhibited greater inaccuracy at higher copy numbers which is particularly relevant to our cohort of Black individuals who have a higher range of CCL4L copies (3-6) compared to Caucasians (0-4) and a higher population median (4 and 2, respectively). Medians and ranges of CCL4L1 (Black: 2, 0-4, Caucasian: 0, 0-2) and CCL4L2 (Black: 2, 1-5, Caucasian: 2, 0-3) were also higher in the Black population. Droplet digital PCR was shown to be a far superior method to qPCR for assessment of CCL4 gene copy number variation, the accuracy of which is essential for studies of the contribution of variable gene copy number to phenotypic outcomes of host infection and disease course.
Collapse
Affiliation(s)
- Avani Bharuthram
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Anabela C P Picton
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
The macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant-associated osteomyelitis: linking inflammation to bone degradation. Mediators Inflamm 2014; 2014:728619. [PMID: 24795505 PMCID: PMC3984830 DOI: 10.1155/2014/728619] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/18/2014] [Indexed: 12/22/2022] Open
Abstract
Bacterial infections of bones remain a serious complication of endoprosthetic surgery. These infections are difficult to treat, because many bacterial species form biofilms on implants, which are relatively resistant towards antibiotics. Bacterial biofilms elicit a progressive local inflammatory response, resulting in tissue damage and bone degradation. In the majority of patients, replacement of the prosthesis is required. To address the question of how the local inflammatory response is linked to bone degradation, tissue samples were taken during surgery and gene expression of the macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) was assessed by quantitative RT-PCR. MIPs were expressed predominantly at osteolytic sites, in close correlation with CD14 which was used as marker for monocytes/macrophages. Colocalisation of MIPs with monocytic cells could be confirmed by histology. In vitro experiments revealed that, aside from monocytic cells, also osteoblasts were capable of MIP production when stimulated with bacteria; moreover, CCL3 induced the differentiation of monocytes to osteoclasts. In conclusion, the multifunctional chemokines CCL3 and CXCL2 are produced locally in response to bacterial infection of bones. In addition to their well described chemokine activity, these cytokines can induce generation of bone resorbing osteoclasts, thus providing a link between bacterial infection and osteolysis.
Collapse
|
19
|
Peffers MJ, Beynon RJ, Clegg PD. Absolute quantification of selected proteins in the human osteoarthritic secretome. Int J Mol Sci 2013; 14:20658-81. [PMID: 24132152 PMCID: PMC3821636 DOI: 10.3390/ijms141020658] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA.
Collapse
Affiliation(s)
- Mandy J. Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-151-795-6006; Fax: +44-151-795-6101
| | - Robert J. Beynon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK; E-Mail:
| | - Peter D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
| |
Collapse
|
20
|
Genome diversification mechanism of rodent and Lagomorpha chemokine genes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:856265. [PMID: 23991422 PMCID: PMC3749542 DOI: 10.1155/2013/856265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022]
Abstract
Chemokines are a large family of small cytokines that are involved in host defence and body homeostasis through recruitment of cells expressing their receptors. Their genes are known to undergo rapid evolution. Therefore, the number and content of chemokine genes can be quite diverse among the different species, making the orthologous relationships often ambiguous even between closely related species. Given that rodents and rabbit are useful experimental models in medicine and drug development, we have deduced the chemokine genes from the genome sequences of several rodent species and rabbit and compared them with those of human and mouse to determine the orthologous relationships. The interspecies differences should be taken into consideration when experimental results from animal models are extrapolated into humans. The chemokine gene lists and their orthologous relationships presented here will be useful for studies using these animal models. Our analysis also enables us to reconstruct possible gene duplication processes that generated the different sets of chemokine genes in these species.
Collapse
|
21
|
Kumar S, Dwivedi PD, Das M, Tripathi A. Macrophages in food allergy: an enigma. Mol Immunol 2013; 56:612-8. [PMID: 23911419 DOI: 10.1016/j.molimm.2013.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 02/05/2023]
Abstract
Macrophages, the characteristic cell type in inflammatory reactions, participate in a variety of immunological events in humans and other mammals. They act as regulatory switches for both innate and acquired arms of immune system and play a vital role in tissue repair. Recent studies have shown the possible role of macrophages in food allergic reactions. Since, there is involvement of alveolar as well as peritoneal macrophages in the pathogenesis of several food allergies, the present review covers the relevance of macrophage related immunological response in food allergic reactions.
Collapse
Affiliation(s)
- Sandeep Kumar
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Post Box No. 80, Lucknow 226001, India
| | | | | | | |
Collapse
|
22
|
Carpenter D, McIntosh RS, Pleass RJ, Armour JAL. Functional effects of CCL3L1 copy number. Genes Immun 2012; 13:374-9. [PMID: 22476153 PMCID: PMC3409875 DOI: 10.1038/gene.2012.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 11/08/2022]
Abstract
Copy number variation (CNV) is becoming increasingly important as a feature of human variation in disease susceptibility studies. However, the consequences of CNV are not so well understood. Here, we present data exploring the functional consequences of CNV of CCL3L1 in 55 independent UK samples with no known clinical phenotypes. The copy number of CCL3L1 was determined by the paralogue ratio test, and expression levels of macrophage inflammatory protein-1α (MIP-1α) and mRNA from stimulated monocytes were measured and analysed. The data show no statistically significant association of MIP-1α protein levels with copy number. However, there was a significant correlation between copy number and CCL3L1:CCL3 mRNA ratio. The data also provide evidence that expression of CCL3 predominates in both protein and mRNA, and therefore the observed variation of CCL3 is potentially more important biologically than that of CNV of CCL3L1.
Collapse
Affiliation(s)
- D Carpenter
- Centre for Genetics and Genomics and School of Biology, University of Nottingham, Nottingham, UK.
| | | | | | | |
Collapse
|
23
|
Carpenter D, Färnert A, Rooth I, Armour JAL, Shaw MA. CCL3L1 copy number and susceptibility to malaria. INFECTION GENETICS AND EVOLUTION 2012; 12:1147-54. [PMID: 22484763 PMCID: PMC3401375 DOI: 10.1016/j.meegid.2012.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 11/16/2022]
Abstract
Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n=922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia.
Collapse
Affiliation(s)
- Danielle Carpenter
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | |
Collapse
|
24
|
Carpenter D, Walker S, Prescott N, Schalkwijk J, Armour JA. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders. BMC Genomics 2011; 12:418. [PMID: 21851606 PMCID: PMC3166952 DOI: 10.1186/1471-2164-12-418] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/18/2011] [Indexed: 11/11/2022] Open
Abstract
Background Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. Results We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Conclusions Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion.
Collapse
Affiliation(s)
- Danielle Carpenter
- Centre for Genetics and Genomics and School of Biology, University of Nottingham, UK
| | | | | | | | | |
Collapse
|
25
|
Widdison S, Coffey TJ. Cattle and chemokines: evidence for species-specific evolution of the bovine chemokine system. Anim Genet 2011; 42:341-53. [PMID: 21749416 DOI: 10.1111/j.1365-2052.2011.02200.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
The chemokine system comprises a family of small chemoattractant molecules that have roles in both the healthy and diseased organism. Chemokines act by binding specific receptors on the target cell surface and inducing chemotaxis. The human chemokine system is well characterized, with approximately fifty chemokines identified that fall into four families. The chemokines and their receptors are promiscuous in that one chemokine can often bind several receptors, and vice versa. Study of the bovine chemokine system has been restricted to date to a handful of chemokines, and the identification of bovine chemokines is largely based on the closest human homologue. This method of identification is prone to error and may result in the misassumption of function of a particular chemokine. Here, we review current knowledge of bovine chemokines and reassess the bovine chemokine system based on phylogenetic and syntenic approaches. The bovine chemokine system, for the most part, shows high similarity to the chemokine system of other mammals such as humans; however, differences have been identified. Cattle possess fewer chemokines than humans, yet also possess chemokines that have no obvious homologue in the human system. These 'missing' and 'novel' chemokines may represent functional differences between the bovine and human chemokine systems that may affect the way in which these species are able to respond to specific pathogen repertoires.
Collapse
Affiliation(s)
- S Widdison
- Institute for Animal Health, Compton, Newbury, Berkshire, UK
| | | |
Collapse
|
26
|
Lee H, Bae S, Choi BW, Choi JC, Yoon Y. Copy number variation of CCL3L1 influences asthma risk by modulating IL-10 expression. Clin Chim Acta 2011; 412:2100-4. [PMID: 21816135 DOI: 10.1016/j.cca.2011.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/19/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Copy number of Chemokine ligand 3-like 1 (CCL3L1) is associated with various immune disorders. This study was conducted to assess the role of CCL3L1 in asthma by both association analyses of human subjects and in vitro functional analyses. METHODS We analyzed the copy number of the CCL3L1 gene in 533 Korean subjects (372 controls and 161 asthma patients) by real-time PCR, and investigated the effect of recombinant CCL3L1 protein on THP-1 human monocytic cells that were stimulated with house dust mite extract. RESULTS The mean copy number of CCL3L1 in asthma subjects was significantly lower than that of control subjects (3.18 vs. 3.75, p=0.001). A low copy number of ≤1 was significantly associated with increased asthma risk with an odds ratio of 2.47, and a high copy number of ≥5 was associated with decreased asthma risk with an odds ratio of 0.40. Subjects with ≤1 copy of CCL3L1 had significantly lower mRNA levels of CCL3L1 in peripheral blood cells, and significantly higher serum IgE levels (p<0.05). In the house dust mite extract-simulated THP-1 monocytic cells, CCL3L1 protein dose-dependently up-regulated the expression of IL-10, an anti-inflammatory cytokine. CONCLUSION Copy number of CCL3L1 may influence asthma risk by modulating IL-10 expression.
Collapse
Affiliation(s)
- Haeyong Lee
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, 156-756, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
An additive effect of protective host genetic factors correlates with HIV nonprogression status. J Acquir Immune Defic Syndr 2011; 56:300-5. [PMID: 21084992 DOI: 10.1097/qai.0b013e3182036f14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION In HIV-positive individuals, complex multifactorial mechanisms control viral infection. In addition to viral and immunological factors, the host genetic background also plays an important role. Our objective was to evaluate how various genetic factors associated with delayed AIDS onset. METHODS Thirty HIV+ long-term nonprogressors (LTNPs) and 30 known progressors were analyzed. Host genes were analyzed in peripheral blood mononuclear cells DNA: CCR5 and HLA were polymerase chain reaction typed. HLA-C5', HCP5 polymorphisms, and CCL3L1 copy number were determined using real-time polymerase chain reaction. RESULTS The CCL3L1high-copy-CCR5 deletion genetic risk groups was overrepresented in LTNPs. However, separately, neither CCL3L1 nor CCR5 were significantly associated with clinical outcome. HLA seemed as a strong nonprogression determinant, mainly HLA-B and the less-studied HLA-C. HLA-Cw0102 and HLA-C5' had an impact on LTNP phenotype along with HLA-B5701 and B2705. The presence of allele combinations like HLA- B*5701-Cw0602, HLA-B*2705-Cw0102, or HLA-B*3801-Cw1203 had the strongest effect in non-progression. As for HCP5, no independent effect was observed. The studied factors had additive effects, and although the number of patients was small, it seemed that carrying a high number of protective alleles associated with progression delay. CONCLUSIONS We showed the additive load of protective host factors was predictive of nonprogression, and that HLA-associated factors were predominant in this global effect.
Collapse
|
28
|
Nomiyama H, Osada N, Yoshie O. The evolution of mammalian chemokine genes. Cytokine Growth Factor Rev 2011; 21:253-62. [PMID: 20434943 DOI: 10.1016/j.cytogfr.2010.03.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chemokines play an important role in orchestrating cell recruitment and localization in both physiological and pathological conditions. More than 44 ligands have been identified in the human genome. A significantly different set of chemokines, however, is found in the mouse genome, suggesting a rapid evolution of the chemokine system in mammalian genomes. Thus, there are lineage and even individual-specific differences in chemokine genes in mammals. Differences in the expression and function between even recently duplicated genes are also evident. In this review, we discuss how evolutionary events such as gene duplication and gene conversion have shaped the diverse arrays of chemokines in mammalian genomes.
Collapse
Affiliation(s)
- Hisayuki Nomiyama
- Department of Molecular Enzymology, Faculty of Life Sciences, Kumamoto University, Honjo, Kumamoto 860-8556, Japan.
| | | | | |
Collapse
|
29
|
Colobran R, Pedrosa E, Carretero-Iglesia L, Juan M. Copy number variation in chemokine superfamily: the complex scene of CCL3L-CCL4L genes in health and disease. Clin Exp Immunol 2010; 162:41-52. [PMID: 20659124 DOI: 10.1111/j.1365-2249.2010.04224.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genome copy number changes (copy number variations: CNVs) include inherited, de novo and somatically acquired deviations from a diploid state within a particular chromosomal segment. CNVs are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. CNVs are distributed widely in the genomes of apparently healthy individuals and thus constitute significant amounts of population-based genomic variation. Human CNV loci are enriched for immune genes and one of the most striking examples of CNV in humans involves a genomic region containing the chemokine genes CCL3L and CCL4L. The CCL3L-CCL4L copy number variable region (CNVR) shows extensive architectural complexity, with smaller CNVs within the larger ones and with interindividual variation in breakpoints. Furthermore, the individual genes embedded in this CNVR account for an additional level of genetic and mRNA complexity: CCL4L1 and CCL4L2 have identical exonic sequences but produce a different pattern of mRNAs. CCL3L2 was considered previously as a CCL3L1 pseudogene, but is actually transcribed. Since 2005, CCL3L-CCL4L CNV has been associated extensively with various human immunodeficiency virus-related outcomes, but some recent studies called these associations into question. This controversy may be due in part to the differences in alternative methods for quantifying gene copy number and differentiating the individual genes. This review summarizes and discusses the current knowledge about CCL3L-CCL4L CNV and points out that elucidating their complete phenotypic impact requires dissecting the combinatorial genomic complexity posed by various proportions of distinct CCL3L and CCL4L genes among individuals.
Collapse
Affiliation(s)
- R Colobran
- Laboratory of Immunobiology for Research and Application to Diagnosis (LIRAD), Tissue and Blood Bank (BST), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP) Servei d'Immunologia, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | | | | | | |
Collapse
|
30
|
Liangos O, Addabbo F, Tighiouart H, Goligorsky M, Jaber BL. Exploration of disease mechanism in acute kidney injury using a multiplex bead array assay: a nested case-control pilot study. Biomarkers 2010; 15:436-45. [PMID: 20482449 PMCID: PMC2907469 DOI: 10.3109/1354750x.2010.485252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) following cardiac surgery with cardiopulmonary bypass (CPB) causes increased morbidity and mortality. OBJECTIVE To evaluate the plasma profile of biomarkers potentially involved in AKI development following CPB. METHODS In a nested case-control study, plasma levels of 27 biomarkers in 11 AKI cases were compared with 25 controls. RESULTS Pre-CPB, plasma levels of epidermal growth factor and macrophage inflammatory protein-1beta, 2 h following CPB, soluble vascular cell adhesion molecule-1 (sVCAM-1), fractalkine and macrophage inflammatory protein-1alpha, and at later time points, sVCAM-1 and interleukin-6 were associated with AKI. CONCLUSION Biomarkers associated with AKI following CPB may merit further study.
Collapse
Affiliation(s)
- Orfeas Liangos
- Kidney & Dialysis Research Laboratory, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
31
|
Degenhardt JD, de Candia P, Chabot A, Schwartz S, Henderson L, Ling B, Hunter M, Jiang Z, Palermo RE, Katze M, Eichler EE, Ventura M, Rogers J, Marx P, Gilad Y, Bustamante CD. Copy number variation of CCL3-like genes affects rate of progression to simian-AIDS in Rhesus Macaques (Macaca mulatta). PLoS Genet 2009; 5:e1000346. [PMID: 19165326 PMCID: PMC2621346 DOI: 10.1371/journal.pgen.1000346] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 12/17/2008] [Indexed: 11/18/2022] Open
Abstract
Variation in genes underlying host immunity can lead to marked differences in susceptibility to HIV infection among humans. Despite heavy reliance on non-human primates as models for HIV/AIDS, little is known about which host factors are shared and which are unique to a given primate lineage. Here, we investigate whether copy number variation (CNV) at CCL3-like genes (CCL3L), a key genetic host factor for HIV/AIDS susceptibility and cell-mediated immune response in humans, is also a determinant of time until onset of simian-AIDS in rhesus macaques. Using a retrospective study of 57 rhesus macaques experimentally infected with SIVmac, we find that CCL3L CNV explains approximately 18% of the variance in time to simian-AIDS (p<0.001) with lower CCL3L copy number associating with more rapid disease course. We also find that CCL3L copy number varies significantly (p<10(-6)) among rhesus subpopulations, with Indian-origin macaques having, on average, half as many CCL3L gene copies as Chinese-origin macaques. Lastly, we confirm that CCL3L shows variable copy number in humans and chimpanzees and report on CCL3L CNV within and among three additional primate species. On the basis of our findings we suggest that (1) the difference in population level copy number may explain previously reported observations of longer post-infection survivorship of Chinese-origin rhesus macaques, (2) stratification by CCL3L copy number in rhesus SIV vaccine trials will increase power and reduce noise due to non-vaccine-related differences in survival, and (3) CCL3L CNV is an ancestral component of the primate immune response and, therefore, copy number variation has not been driven by HIV or SIV per se.
Collapse
Affiliation(s)
- Jeremiah D. Degenhardt
- Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Paola de Candia
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Adrien Chabot
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Stuart Schwartz
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Les Henderson
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Meredith Hunter
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Zhaoshi Jiang
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Robert E. Palermo
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Michael Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Mario Ventura
- Dipartimento di Genetica e Microbiologia, Universita' degli Studi di Bari, Bari, Italy
| | - Jeffrey Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, and Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Preston Marx
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (YG); (CDB)
| | - Carlos D. Bustamante
- Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (YG); (CDB)
| |
Collapse
|
32
|
Zeremski M, Petrovic LM, Talal AH. The role of chemokines as inflammatory mediators in chronic hepatitis C virus infection. J Viral Hepat 2007; 14:675-87. [PMID: 17875002 DOI: 10.1111/j.1365-2893.2006.00838.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease that can progress to cirrhosis and/or hepatocellular carcinoma. Intrahepatic inflammation and liver cell injury are defining features of chronic HCV infection. Chemokines, chemotactic cytokines that attract leucocytes to inflammatory sites, may be important in the development of intrahepatic inflammation. As T-helper (Th)1 inflammatory cells, characterized by interferon (IFN)-gamma and interleukin (IL)-2 secretion, predominate in the liver during chronic HCV infection, chemokines that attract these cells might be particularly important in disease progression. In this review, we focus on the role of Th1 chemokines, which are all members of the CXC or CC subfamilies. Among the CXC chemokines, the non-ELR group comprised of IFN-gamma-inducible protein 10 (IP-10), monokine induced by IFN-gamma (Mig) and IFN-inducible T-cell-alpha chemoattractant (I-TAC), attract Th1 cells through the interaction with their receptor, CXCR3. Among the CC subfamily, Th1-associated chemokines include regulated upon activation, normal T-cell expressed and secreted (RANTES) and macrophage inflammatory proteins (MIP)1alpha and beta. These chemokines attract cells through an interaction with their receptor, CCR5. While peripheral blood and intrahepatic levels of all of these chemokines are elevated in chronic hepatitis C patients, only select chemokines have been found to be correlated with hepatic inflammation. Among the six chemokines, IP-10 has uniquely been shown to have prognostic utility as a marker of treatment outcome. In the future, chemokines might be used to monitor the natural course and progression of HCV-associated liver disease, to identify patients with a high likelihood of achieving a therapeutic response, and they may even have potential as therapeutic targets.
Collapse
Affiliation(s)
- M Zeremski
- Division of Gastroenterology and Hepatology, Department of Medicine, and The Center for the Study of Hepatitis C, Weill Medical College of Cornell University, New York 10021, USA
| | | | | |
Collapse
|
33
|
Lama J, Planelles V. Host factors influencing susceptibility to HIV infection and AIDS progression. Retrovirology 2007; 4:52. [PMID: 17651505 PMCID: PMC1978541 DOI: 10.1186/1742-4690-4-52] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/25/2007] [Indexed: 12/21/2022] Open
Abstract
Transmission of HIV first results in an acute infection, followed by an apparently asymptomatic period that averages ten years. In the absence of antiretroviral treatment, most patients progress into a generalized immune dysfunction that culminates in death. The length of the asymptomatic period varies, and in rare cases infected individuals never progress to AIDS. Other individuals whose behavioral traits put them at high-risk of HIV transmission, surprisingly appear resistant and never succumb to infection. These unique cases highlight the fact that susceptibility to HIV infection and progression to disease are complex traits modulated by environmental and genetic factors. Recent evidence has indicated that natural variations in host genes can influence the outcome of HIV infection and its transmission. In this review we summarize the available literature on the roles of cellular factors and their genetic variation in modulating HIV infection and disease progression.
Collapse
Affiliation(s)
- Juan Lama
- La Jolla Institute for Molecular Medicine, 4570 Executive Drive, Suite 100, San Diego, California 92121, USA
- RetroVirox, Inc. 4570 Executive Drive, Suite 100, San Diego, California 92121, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100 – Room 2520, Salt Lake City, Utah 84112, USA
| |
Collapse
|
34
|
Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 2007; 7:243. [PMID: 17201934 PMCID: PMC1794421 DOI: 10.1186/gb-2006-7-12-243] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The human chemokine superfamily currently includes at least 46 ligands, which bind to 18 functionally signaling G-protein-coupled receptors and two decoy or scavenger receptors. The chemokine ligands probably comprise one of the first completely known molecular superfamilies. The genomic organization of the chemokine ligand genes and a comparison of their sequences between species shows that tandem gene duplication has taken place independently in the mouse and human lineages of some chemokine families. This means that care needs to be taken when extrapolating experimental results on some chemokines from mouse to human.
Collapse
Affiliation(s)
- Albert Zlotnik
- Neurocrine Biosciences, Inc, Department of Molecular Medicine, 12790 El Camino Real, San Diego, CA 92130, USA.
| | | | | |
Collapse
|
35
|
Arenzana-Seisdedos F, Parmentier M. Genetics of resistance to HIV infection: Role of co-receptors and co-receptor ligands. Semin Immunol 2006; 18:387-403. [PMID: 16978874 DOI: 10.1016/j.smim.2006.07.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/14/2006] [Indexed: 11/30/2022]
Abstract
Susceptibility to HIV infection and AIDS progression is variable among individuals and populations, and in part genetically determined. Genetic variants of genes encoding HIV co-receptors and their chemokine ligands have been described, and some of these variants were associated with resistance to HIV infection and/or disease progression. We review here the reported data regarding the variants of the CCR5, CCR2, CX3CR1, MIP-1alpha/CCL3, MIP-1beta/CCL4, RANTES/CCL5 and SDF-1/CXCL12 genes. The Delta32 deletion mutant of CCR5, resulting in a non-functional receptor not reaching the cell surface, is unambiguously associated with strong, although incomplete, resistance to HIV infection for homozygotes, and retarded progression for heterozygotes. Specific haplotypes encompassing the CCR5 and CCR2 loci, and the copy number of the CCL3L1 gene, have also been convincingly correlated with delayed progression. For other gene variants, involving CXCL12/SDF-1 and CX3CR1, conclusive evidence for their relevance in the frame of HIV susceptibility is still lacking.
Collapse
Affiliation(s)
- Fernando Arenzana-Seisdedos
- Unité de Pathogénie Virale Moléculaire, Département de Virologie, INSERM, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex, France.
| | | |
Collapse
|
36
|
|
37
|
McClure CP, Tighe PJ, Robins RA, Bansal D, Bowman CA, Kingston M, Ball JK. HIV coreceptor and chemokine ligand gene expression in the male urethra and female cervix. AIDS 2005; 19:1257-65. [PMID: 16052080 DOI: 10.1097/01.aids.0000180096.50393.96] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Isolates with a tropism for the coreceptor CCR5 are the predominant viral strain transmitted following heterosexual transmission. We have investigated coreceptor expression levels within male and female genital epithelia to assess whether selective transmission can be explained by elevated CCR5 expression within the genital epithelia per se. DESIGN Individuals attending a local genitourinary medicine unit were recruited, and samples of genital epithelia obtained using either a cytobrush (females) or urethral swab (males). Expression of coreceptor and cell marker mRNAs was then determined by reverse transcription (RT)-PCR. METHODS RNA was recovered from the epithelial cell samples then used as templates in competitive quantitative RT-PCR to measure mRNA expression of key chemokines, coreceptors and cell-type markers in the epithelial cell samples. Cell-surface coreceptor expression was also assessed in a sample of patients using fluorescent cell staining. RESULTS CXCR4 and CCR3 coreceptors were expressed at significantly higher levels than CCR5 within the female endo- and ectocervix and distal end of the male urethra. Increased levels of cell surface expressed CXCR4 compared to CCR5 was confirmed in samples obtained from the female genital tract by FACS analysis. CONCLUSIONS The selective transmission of CCR5-tropic viral variants is unlikely to result simply from differential coreceptor abundance at the genital epithelia.
Collapse
Affiliation(s)
- C Patrick McClure
- Division of Microbiology and Infectious Diseases Institute of Infection, Immunity and Inflammation, University of Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Aldred PMR, Hollox EJ, Armour JAL. Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3. Hum Mol Genet 2005; 14:2045-52. [PMID: 15944200 DOI: 10.1093/hmg/ddi209] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have defined unexpectedly extensive copy number variation at the human anti-microbial alpha-defensin genes DEFA1 and DEFA3, encoding human neutrophil peptides HNP-1, HNP-2 and HNP-3. There was variation in both number and position of DEFA1/DEFA3 genes in arrays of 19 kb tandem repeats on 8p23.1, so that the DEFA1 and DEFA3 genes appear to be interchangeable variant cassettes within tandem gene arrays. For this reason, the official symbol for this locus has been revised to DEFA1A3. The total number of gene copies per diploid genome varied between four and 11 in a sample of 111 control individuals from the UK, with approximately 10% (11/111) of people lacking DEFA3 completely. DEFA1 appeared to be at high copy number in all great apes studied; at one variable site in the repeat unit, both variants have persisted in humans, chimpanzees and gorillas since their divergence. Analysis of expression levels in human white blood cells showed a clear correlation between the relative proportions of DEFA1:DEFA3 mRNA and corresponding gene numbers. However, there was no relationship between total (DEFA1+DEFA3) mRNA levels and total gene copy number, suggesting the superimposed influence of trans-acting factors. The persistence of DEFA1 at high copy number in other apes suggests an alternative model for the early stages of the evolution of novel genes by duplication and divergence. Duplicated genes present in variant tandem arrays may have greater potential than simple duplications for the combinatorial creation of new functions by recombination and gene conversion, while still preserving pre-existing functions on the same haplotype.
Collapse
|
39
|
Colobran R, Adreani P, Ashhab Y, Llano A, Esté JA, Dominguez O, Pujol-Borrell R, Juan M. Multiple Products Derived from Two CCL4 Loci: High Incidence of a New Polymorphism in HIV+Patients. THE JOURNAL OF IMMUNOLOGY 2005; 174:5655-64. [PMID: 15843566 DOI: 10.4049/jimmunol.174.9.5655] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human CCL4/macrophage inflammatory protein (MIP)-1beta and CCL3/MIP-1alpha are two highly related molecules that belong to a cluster of inflammatory CC chemokines located in chromosome 17. CCL4 and CCL3 were formed by duplication of a common ancestral gene, generating the SCYA4 and SCYA3 genes which, in turn, present a variable number of additional non-allelic copies (SCYA4L and SCYA3L1). In this study, we show that both CCL4 loci (SCYA4 and SCYA4L) are expressed and alternatively generate spliced variants lacking the second exon. In addition, we found that the SCYA4L locus is polymorphic and displays a second allelic variant (hereinafter SCYA4L2) with a nucleotide change in the intron 2 acceptor splice site compared with the one described originally (hereinafter SCYA4L1). Therefore, the pattern of SCYA4L2 transcripts is completely different from that of SCYA4L1, since SCYA4L2 uses several new acceptor splice sites and generates nine new mRNAs. Furthermore, we analyzed the contribution of each locus (SCYA4 and SCYA4L1/L2) to total CCL4 expression in human CD8 T cells by RT-amplified fragment length polymorphism and real-time PCR, and we found that L2 homozygous individuals (L2L2) only express half the levels of CCL4 compared with L1L1 individuals. The analysis of transcripts from the SCYA4L locus showed a lower level in L2 homozygous compared with L1 homozygous individuals (12% vs 52% of total CCL4 transcripts). A possible clinical relevance of these CCL4 allelic variants was suggested by the higher frequency of the L2 allele in a group of HIV(+) individuals (n = 175) when compared with controls (n = 220, 28.6% vs 16.6% (p = 0.00016)).
Collapse
Affiliation(s)
- Roger Colobran
- Laboratory of Immunobiology for Research and Application to Diagnosis, Centre for Transfusion and Tissue Bank, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Modi WS. CCL3L1 and CCL4L1 chemokine genes are located in a segmental duplication at chromosome 17q12. Genomics 2004; 83:735-8. [PMID: 15028295 DOI: 10.1016/j.ygeno.2003.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 09/10/2003] [Indexed: 10/26/2022]
Abstract
Sixteen CC chemokine genes localize to a 2.06-Mb interval at 17q11.2-q12 on genomic contig NT_010799.13. Four of these genes comprise two closely related paralogous pairs: CCL3-CCL3L1 and CCL4-CCL4L1. Members within each pair share 95% sequence identity at both the genomic and the amino acid levels. One BAC clone (AC131056.5) on the contig with substantial internal sequence duplication contains two complete copies of CCL3L1 and CCL4L1 and one truncated copy of CCL3L1, while a partially overlapping clone (AC003976.1) contains one copy each of CCL3 and CCL4. Dot-matrix comparison of the regions of AC131056.5 with those of AC003976.1 containing the four genes reveals 90% sequence similarity over 37 kb. These observations support the idea that the multiple copies of CCL3L1 and CCL4L1 present in a single diploid genome are the result of segmental duplication.
Collapse
Affiliation(s)
- William S Modi
- Basic Research Program, SAIC Frederick, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
41
|
Mackenzie S, Liarte C, Iliev D, Planas JV, Tort L, Goetz FW. Characterization of a highly inducible novel CC chemokine from differentiated rainbow trout (Oncorhynchus mykiss) macrophages. Immunogenetics 2004; 56:611-5. [PMID: 15503008 DOI: 10.1007/s00251-004-0698-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 06/14/2004] [Indexed: 10/26/2022]
Abstract
A full-length cDNA clone encoding a novel trout CC chemokine was identified in expressed sequence tags generated from lipopolysaccharide (LPS)-stimulated in vitro differentiated macrophages isolated from the head kidney of the rainbow trout (Oncorhynchus mykiss). The putative 101-amino-acid protein is 38% similar to Macaca mulatta CCL4 (macrophage inflammatory protein 1beta) but is also similar to several other related mammalian CC chemokines, including human Act-2. Real-time PCR and conventional RT-PCR revealed significant up-regulation of transcript levels of the trout CCL4-like mRNA in LPS-stimulated in vitro differentiated macrophages. In unstimulated trout, CCL4-like mRNA expression was detected at different levels in all tissues tested, whereas in LPS-challenged animals (6 mg/kg), CCL4-like mRNA increased in intestine, ovary and spleen at both 24 h and 72 h post-injection. In gills, CCL4-like mRNA expression was inhibited after LPS administration. Based on the highly regulated expression pattern exhibited by the trout CCL4-like mRNA, it is likely that this chemokine plays an important regulatory role in the immune response of trout.
Collapse
Affiliation(s)
- S Mackenzie
- Unitat de Fisiologia Animal, Departament de Biologia Cellular, Fisiologia i d'Immunologia, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
42
|
Nomiyama H, Egami K, Tanase S, Miura R, Hirakawa H, Kuhara S, Ogasawara J, Morishita S, Yoshie O, Kusuda J, Hashimoto K. Comparative DNA sequence analysis of mouse and human CC chemokine gene clusters. J Interferon Cytokine Res 2003; 23:37-45. [PMID: 12639297 DOI: 10.1089/10799900360520432] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CC chemokines are a closely related subfamily of the chemokine superfamily. Most of the CC chemokine genes form a cluster on chromosome 11 in mice and chromosome 17 in humans. To date, 11 and 16 functional genes have been localized within the mouse and human clusters, respectively. Notably, some of the genes within these clusters appear to have no counterparts between the two species, and the orthologous relationships of some of the genes are difficult to establish solely on the basis of amino acid similarity. In this study, we have taken a comparative genomic approach to reveal some of the features that may be involved in the dynamic evolution of these gene clusters. We sequenced a 122-kb region containing five chemokine genes of the mouse CC cluster. This mouse sequence was combined with those determined by the Mouse Genome Sequencing Project, and the entire sequence of the mouse CC cluster was compared with that of the corresponding cluster in the human genome by percent identity plot and dot-plot analyses. Although no additional chemokine genes have been found in these clusters, our analysis has revealed that numerous gene rearrangements have occurred even after the diversification of rodents and primates, resulting in several species-specific chemokine genes and pseudogenes. In addition, phylogenetic analysis and comparison of the genomic sequences unambiguously identified the orthologous relationships of some of the chemokine genes in the mouse and human CC gene clusters.
Collapse
Affiliation(s)
- Hisayuki Nomiyama
- Department of Biochemistry, Kumamoto University Medical School, Honjo, Kumamoto 860-0811, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta are highly related members of the CC chemokine subfamily. Despite their structural similarities, MIP-1alpha and MIP-1beta show diverging signaling capacities. Depending on the MIP-1 subtype and its NH(2)-terminal processing, one or more of the CC chemokine receptors CCR1, CCR2, CCR3 and CCR5 are recognized. Since both human MIP-1alpha subtypes (LD78alpha and LD78beta) and MIP-1beta signal through CCR5, the major co-receptor for M-tropic HIV-1 strains, these chemokines are capable of inhibiting HIV-1 infection in susceptible cells. In this review, different aspects of human and mouse MIP-1alpha and MIP-1beta are discussed, including their protein and gene structures, their regulated production, their receptor usage and biological activities and their role in several pathologies including HIV-1 infection.
Collapse
Affiliation(s)
- Patricia Menten
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000, Leuven Belgium
| | | | | |
Collapse
|
44
|
Aquaro S, Caliò R, Balzarini J, Bellocchi MC, Garaci E, Perno CF. Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral Res 2002; 55:209-25. [PMID: 12103427 DOI: 10.1016/s0166-3542(02)00052-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cells of macrophage lineage represent a key target of human immunodeficiency virus (HIV) in addition to CD4-lymphocytes. The absolute number of infected macrophages in the body is relatively low compared to CD4-lymphocytes. Nevertheless, the peculiar dynamics of HIV replication in macrophages, their long-term survival after HIV infection, and their ability to spread virus particles to bystander CD4-lymphocytes, make evident their substantial contribution to the pathogenesis of HIV infection. In addition, infected macrophages are able to recruit and activate CD4-lymphocytes through the production of both chemokines and virus proteins (such as nef). In addition, the activation of the oxidative pathway in HIV-infected macrophages may lead to apoptotic death of bystander, not-infected cells. Finally, macrophages are the most important target of HIV in the central nervous system. The alteration of neuronal metabolism induced by infected macrophages plays a crucial role in the pathogenesis of HIV-related encephalopathy. Taken together, these results strongly support the clinical relevance of therapeutic strategies able to interfere with HIV replication in macrophages. In vitro data show the potent efficacy of all nucleoside analogues inhibitors of HIV-reverse transcriptase in macrophages. Nevertheless, the limited penetration of some of these compounds in sequestered districts, coupled with the scarce phosphorylation ability of macrophages, suggests that nucleoside analogues carrying preformed phosphate groups may have a potential role against HIV replication in macrophages. This hypothesis is supported by the great anti-HIV activity of tenofovir and other acyclic nucleoside phosphonates in macrophages that may provide a rationale for the remarkable efficacy of tenofovir in HIV-infected patients. Non-nucleoside reverse transcriptase inhibitors (NNRTI) do not affect HIV-DNA chain termination, and for this reason their antiviral activity in macrophages is similar to that found in CD4-lymphocytes. Interestingly, protease inhibitors (PIs), acting at post-integrational stages of virus replication, are the only drugs able to interfere with virus production and release from macrophages with established and persistent HIV infection (chronically-infected cells). Since this effect is achieved at concentrations and doses higher than those effective in de-novo infected CD4-lymphocytes, it is possible that lack of adherence to therapy, and/or suboptimal dosage leading to insufficient concentrations of PIs may cause a resumption of virus replication from chronically-infected macrophages, ultimately resulting in therapeutic failure. For all these reasons, therapeutic strategies aimed to achieve the greatest and longest control of HIV replication should inhibit HIV not only in CD4-lymphocytes, but also in macrophages. Testing new and promising antiviral compounds in such cells may provide crucial hints about their efficacy in patients infected by HIV.
Collapse
Affiliation(s)
- Stefano Aquaro
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Struyf S, Menten P, Lenaerts JP, Put W, D'Haese A, De Clercq E, Schols D, Proost P, Van Damme J. Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol 2001; 31:2170-8. [PMID: 11449371 DOI: 10.1002/1521-4141(200107)31:7<2170::aid-immu2170>3.0.co;2-d] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, the LD78beta isoform of the CC chemokine macrophage inflammatory protein (MIP)-1alpha was shown to efficiently chemoattract lymphocytes and monocytes and to inhibit infection of mononuclear cells by R5 HIV-1 strains. We have now demonstrated that after cleavage of the NH2-terminal Ala-Pro dipeptide by CD26, LD78beta(3 - 70) became the most potent chemokine blocking HIV-1. LD78beta(3 - 70) competed tenfold more efficiently than LD78beta(1 - 70) with [125I] RANTES for binding to the CC chemokine receptors CCR5 and CCR1. Contrary to LD78alpha, LD78beta(1 - 70) at 30 ng/ml efficiently competed with [125I] RANTES for binding to CCR3 and mobilized calcium in CCR3 transfectants, whereas LD78beta(3 - 70) showed a 30-fold decrease in CCR3 affinity compared to LD78beta(1 - 70). This demonstrates the importance of the penultimate proline in LD78beta(1 - 70) for CCR3 recognition. Both LD78beta isoforms efficiently chemoattracted eosinophils from responsive donors. In contrast, only the CCR3 agonist LD78beta(1 - 70) and not LD78beta(3 - 70), induced calcium increases in eosinophils with low levels of CCR1. In responder neutrophils, LD78beta(3 - 70) elicited calcium fluxes at a 30-fold lower dose (10 ng/ml) compared to intact LD78beta and LD78alpha, whereas the three MIP-1alpha isoforms were equipotent neutrophil chemoattractants. Taken together, both LD78beta isoforms are potent HIV-1 inhibitors (CCR5) and activators for neutrophils (CCR1) and eosinophils (CCR1, CCR3), affecting infection and inflammation.
Collapse
Affiliation(s)
- S Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aquaro S, Menten P, Struyf S, Proost P, Van Damme J, De Clercq E, Schols D. The LD78beta isoform of MIP-1alpha is the most potent CC-chemokine in inhibiting CCR5-dependent human immunodeficiency virus type 1 replication in human macrophages. J Virol 2001; 75:4402-6. [PMID: 11287590 PMCID: PMC114186 DOI: 10.1128/jvi.75.9.4402-4406.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CC-chemokines RANTES, macrophage inflammatory protein 1alpha (MIP-1alpha), and MIP-1beta are natural ligands for the CC-chemokine receptor CCR5. MIP-1alpha, also known as LD78alpha, has an isoform, LD78beta, which was identified as the product of a nonallelic gene. The two isoforms differ in only 3 amino acids. LD78beta was recently reported to be a much more potent CCR5 agonist than LD78alpha and RANTES in inducing intracellular Ca2+ signaling and chemotaxis. CCR5 is expressed by human monocytes/macrophages (M/M) and represents an important coreceptor for macrophage-tropic, CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains to infect the cells. We compared the antiviral activities of LD78beta and the other CC-chemokines in M/M. LD78beta at 100 ng/ml almost completely blocked HIV-1 replication, while at the same concentration LD78alpha had only weak antiviral activity. Moreover, when HIV-1 infection in M/M was monitored by a flow cytometric analysis using p24 antigen intracellular staining, LD78beta proved to be the most antivirally active of the chemokines. RANTES, once described as the most potent chemokine in inhibiting R5 HIV-1 infection, was found to be considerably less active than LD78beta. LD78beta strongly downregulated CCR5 expression in M/M, thereby explaining its potent antiviral activity.
Collapse
Affiliation(s)
- S Aquaro
- Laboratory of Experimental Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
47
|
The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:867-77. [PMID: 11238036 PMCID: PMC1850343 DOI: 10.1016/s0002-9440(10)64035-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The lymphatic vessels (lymphatics) play an important role in channeling fluid and leukocytes from the tissues to the secondary lymphoid organs. In addition to driving leukocyte egress from blood, chemokines have been suggested to contribute to leukocyte recirculation via the lymphatics. Previously, we have demonstrated that binding sites for several pro-inflammatory beta-chemokines are found on the endothelial cells (ECs) of lymphatics in human dermis. Here, using the MIP-1alpha isoform MIP-1alphaP, we have extended these studies to further support the contention that the in situ chemokine binding to afferent lymphatics exhibits specificity akin to that observed in vitro with the promiscuous beta-chemokine receptor D6. We have generated monoclonal antibodies to human D6 and showed D6 immunoreactivity on the ECs lining afferent lymphatics, confirmed as such by staining serial skin sections with antibodies against podoplanin, a known lymphatic EC marker. In parallel, in situ hybridization on skin with antisense D6 probes demonstrated the expression of D6 mRNA by lymphatic ECs. D6-immunoreactive lymphatics were also abundant in mucosa and submucosa of small and large intestine and appendix, but not observed in several other organs tested. In lymph nodes, D6 immunoreactivity was present on the afferent lymphatics and also in subcapsular and medullary sinuses. Tonsilar lymphatic sinuses were also D6-positive. Peripheral blood cells and the ECs of blood vessels and high endothelial venules were consistently nonreactive with anti-D6 antibodies. Additionally, we have demonstrated that D6 immunoreactivity is detectable in some malignant vascular tumors suggesting they may be derived from, or phenotypically similar to, lymphatic ECs. This is the first demonstration of chemokine receptor expression by lymphatic ECs, and suggests that D6 may influence the chemokine-driven recirculation of leukocytes through the lymphatics and modify the putative chemokine effects on the development and growth of vascular tumors.
Collapse
|
48
|
Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant and CCR1 agonist. Blood 2000. [DOI: 10.1182/blood.v96.5.1674.h8001674a_1674_1680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemokines are proinflammatory cytokines that play a role in leukocyte migration and activation. Recent reports showed that RANTES (regulated on activation normal T-cell expressed and secreted chemokine), eotaxin, macrophage-derived chemokine (MDC), and stromal cell–derived factor-1 (SDF-1) are NH2-terminally truncated by the lymphocyte surface glycoprotein and protease CD26/dipeptidyl peptidase IV (CD26/DPP IV). Removal of the NH2-terminal dipeptide resulted in impaired inflammatory properties of RANTES, eotaxin, MDC, and SDF-1. The potential CD26/DPP IV substrate macrophage inflammatory protein–1β (MIP-1β) and the related chemokine, LD78α (ie, one of the MIP-1α isoforms), were not affected by this protease. However, CD26/DPP IV cleaved LD78β, a most potent CCR5 binding chemokine and inhibitor of macrophage tropic human immunodeficiency virus–1 (HIV-1) infection, into LD78β(3-70). Naturally truncated LD78β(3-70), but not truncated MIP-1β, was recovered as an abundant chemokine form from peripheral blood mononuclear cells. In contrast to all other chemokines processed by CD26/DPP IV, LD78β(3-70) had increased chemotactic activity in comparison to intact LD78β. With a minimal effective concentration of 30 pmol/L, LD78β(3-70) became the most efficient monocyte chemoattractant. LD78β(3-70) retained its high capacity to induce an intracellular calcium increase in CCR5-transfected cells. Moreover, on CCR1 transfectants, truncated LD78β(3-70) was 30-fold more potent than intact LD78β. Thus, CD26/DPP IV can exert not only a negative but also a positive feedback during inflammation by increasing the specific activity of LD78β. CD26/DPP IV–cleaved LD78β(3-70) is the most potent CCR1 and CCR5 agonist that retains strong anti–HIV-1 activity, indicating the importance of the chemokine-protease interaction in normal and pathologic conditions.
Collapse
|
49
|
Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant and CCR1 agonist. Blood 2000. [DOI: 10.1182/blood.v96.5.1674] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Chemokines are proinflammatory cytokines that play a role in leukocyte migration and activation. Recent reports showed that RANTES (regulated on activation normal T-cell expressed and secreted chemokine), eotaxin, macrophage-derived chemokine (MDC), and stromal cell–derived factor-1 (SDF-1) are NH2-terminally truncated by the lymphocyte surface glycoprotein and protease CD26/dipeptidyl peptidase IV (CD26/DPP IV). Removal of the NH2-terminal dipeptide resulted in impaired inflammatory properties of RANTES, eotaxin, MDC, and SDF-1. The potential CD26/DPP IV substrate macrophage inflammatory protein–1β (MIP-1β) and the related chemokine, LD78α (ie, one of the MIP-1α isoforms), were not affected by this protease. However, CD26/DPP IV cleaved LD78β, a most potent CCR5 binding chemokine and inhibitor of macrophage tropic human immunodeficiency virus–1 (HIV-1) infection, into LD78β(3-70). Naturally truncated LD78β(3-70), but not truncated MIP-1β, was recovered as an abundant chemokine form from peripheral blood mononuclear cells. In contrast to all other chemokines processed by CD26/DPP IV, LD78β(3-70) had increased chemotactic activity in comparison to intact LD78β. With a minimal effective concentration of 30 pmol/L, LD78β(3-70) became the most efficient monocyte chemoattractant. LD78β(3-70) retained its high capacity to induce an intracellular calcium increase in CCR5-transfected cells. Moreover, on CCR1 transfectants, truncated LD78β(3-70) was 30-fold more potent than intact LD78β. Thus, CD26/DPP IV can exert not only a negative but also a positive feedback during inflammation by increasing the specific activity of LD78β. CD26/DPP IV–cleaved LD78β(3-70) is the most potent CCR1 and CCR5 agonist that retains strong anti–HIV-1 activity, indicating the importance of the chemokine-protease interaction in normal and pathologic conditions.
Collapse
|
50
|
Xin X, Shioda T, Kato A, Liu H, Sakai Y, Nagai Y. Enhanced anti-HIV-1 activity of CC-chemokine LD78beta, a non-allelic variant of MIP-1alpha/LD78alpha. FEBS Lett 1999; 457:219-22. [PMID: 10471782 DOI: 10.1016/s0014-5793(99)01035-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the anti-HIV-1 activity of CC-chemokine LD78beta with that of MIP-1alpha, another CC-chemokine which shows 94% sequence homology with LD78beta. Despite its close similarity to MIP-1alpha, the anti-HIV-1 activity of LD78beta appeared to be nearly 10 times higher than that of MIP-1alpha. Mutagenesis of MIP-1alpha showed that the N-terminal additional tetrapeptide, which was present in LD78beta and absent in MIP-1alpha, is responsible for enhanced anti-HIV-1 activity. The N-terminal structure-function relationship of LD78beta described here will be of value in understanding the chemokine-receptor interactions and designing anti-HIV-1 compounds based on LD78beta.
Collapse
Affiliation(s)
- X Xin
- Department of Viral Infection, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|