1
|
Fujii S, Fuchs RP. Accidental Encounter of Repair Intermediates in Alkylated DNA May Lead to Double-Strand Breaks in Resting Cells. Int J Mol Sci 2024; 25:8192. [PMID: 39125763 PMCID: PMC11311527 DOI: 10.3390/ijms25158192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.
Collapse
Affiliation(s)
- Shingo Fujii
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille University, 13273 Marseille, France
| | - Robert P. Fuchs
- SAS bioHalosis, Zone Luminy Biotech, 13009 Marseille, France
| |
Collapse
|
2
|
Li J, Song C, Gu J, Li C, Zang W, Shi L, Chen L, Zhu L, Zhou M, Wang T, Li H, Qi S, Lu Y. RBBP4 regulates the expression of the Mre11-Rad50-NBS1 (MRN) complex and promotes DNA double-strand break repair to mediate glioblastoma chemoradiotherapy resistance. Cancer Lett 2023; 557:216078. [PMID: 36736531 DOI: 10.1016/j.canlet.2023.216078] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/27/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
For treatment of glioblastoma (GBM), temozolomide (TMZ) and radiotherapy (RT) exert antitumor effects by inducing DNA double-strand breaks (DSBs), mainly via futile DNA mismatch repair (MMR) and inducing apoptosis. Here, we provide evidence that RBBP4 modulates glioblastoma resistance to chemotherapy and radiotherapy by recruiting transcription factors and epigenetic regulators that bind to their promoters to regulate the expression of the Mre11-Rad50-NBS1(MRN) complex and the level of DNA-DSB repair, which are closely associated with recovery from TMZ- and radiotherapy-induced DNA damage in U87MG and LN229 glioblastoma cells, which have negative MGMT expression. Disruption of RBBP4 induced GBM cell DNA damage and apoptosis in response to TMZ and radiotherapy and enhanced radiotherapy and chemotherapy sensitivity by the independent pathway of MGMT. These results displayed a possible chemo-radioresistant mechanism in MGMT negative GBM. In addition, the RBBP4-MRN complex regulation axis may provide an interesting target for developing therapy-sensitizing strategies for GBM.
Collapse
Affiliation(s)
- Junjie Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Glioma Center, Guangzhou, China
| | - Chong Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
| | - Junwei Gu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; The First People's Hospital of Xiushui County, Jiujiang, Jiangxi Province, China
| | - Chiyang Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenrui Zang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linyong Shi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liwen Zhu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Glioma Center, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Glioma Center, Guangzhou, China
| | - Yuntao Lu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China; Nanfang Glioma Center, Guangzhou, China.
| |
Collapse
|
3
|
Fujii S, Sobol RW, Fuchs RP. Double-Strand Breaks: when DNA Repair Events Accidentally Meet. DNA Repair (Amst) 2022; 112:103303. [PMID: 35219626 PMCID: PMC8898275 DOI: 10.1016/j.dnarep.2022.103303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/23/2022] [Accepted: 02/17/2022] [Indexed: 01/26/2023]
Abstract
The cellular response to alkylation damage is complex, involving multiple DNA repair pathways and checkpoint proteins, depending on the DNA lesion, the cell type, and the cellular proliferation state. The repair of and response to O-alkylation damage, primarily O6-methylguaine DNA adducts (O6-mG), is the purview of O6-methylguanine-DNA methyltransferase (MGMT). Alternatively, this lesion, if left un-repaired, induces replication-dependent formation of the O6-mG:T mis-pair and recognition of this mis-pair by the post-replication mismatch DNA repair pathway (MMR). Two models have been suggested to account for MMR and O6-mG DNA lesion dependent formation of DNA double-strand breaks (DSBs) and the resulting cytotoxicity - futile cycling and direct DNA damage signaling. While there have been hints at crosstalk between the MMR and base excision repair (BER) pathways, clear mechanistic evidence for such pathway coordination in the formation of DSBs has remained elusive. However, using a novel protein capture approach, Fuchs and colleagues have demonstrated that DSBs result from an encounter between MMR-induced gaps initiated at alkylation induced O6-mG:C sites and BER-induced nicks at nearby N-alkylation adducts in the opposite strand. The accidental encounter between these two repair events is causal in the formation of DSBs and the resulting cellular response, documenting a third model to account for O6-mG induced cell death in non-replicating cells. This graphical review highlights the details of this Repair Accident model, as compared to current models, and we discuss potential strategies to improve clinical use of alkylating agents such as temozolomide, that can be inferred from the Repair Accident model.
Collapse
Affiliation(s)
- Shingo Fujii
- Marseille Medical Genetics, UMR1251 Marseille, France
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Dept of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| | | |
Collapse
|
4
|
Zhao L, Zhang J, Xuan S, Liu Z, Wang Y, Zhao P. Molecular and Clinicopathological Characterization of a Prognostic Immune Gene Signature Associated With MGMT Methylation in Glioblastoma. Front Cell Dev Biol 2021; 9:600506. [PMID: 33614641 PMCID: PMC7892978 DOI: 10.3389/fcell.2021.600506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background: O6-methylguanine-DNA methyltransferase (MGMT) methylation status affects tumor chemo-resistance and the prognosis of glioblastoma (GBM) patients. We aimed to investigate the role of MGMT methylation in the regulation of GBM immunophenotype and discover an effective biomarker to improve prognosis prediction of GBM patients. Methods: A total of 769 GBM patients with clinical information from five independent cohorts were enrolled in the present study. Samples from the Cancer Genome Atlas (TCGA) dataset were used as the training set, whereas transcriptome data from the Chinese Glioma Genome Atlas (CGGA) RNA-seq, CGGA microarray, GSE16011, and the Repository for Molecular Brain Neoplasia (REMBRANDT) cohort were used for validation. A series of bioinformatics approaches were carried out to construct a prognostic signature based on immune-related genes, which were tightly related to the MGMT methylation status. In silico analyses were performed to investigate the influence of the signature on immunosuppression and remodeling of the tumor microenvironment. Then, the utility of this immune gene signature was analyzed by the development and evaluation of a nomogram. In vitro experiments were further used to verify the immunologic function of the genes in the signature. Results: We found that MGMT unmethylation was closely associated with immune-related biological processes in GBM. Sixty-five immune genes were more highly expressed in the MGMT unmethylated than the MGMT-methylated group. An immune gene-based risk model was further established to divide patients into high and low-risk groups, and the prognostic value of this signature was validated in several GBM cohorts. Functional analyses manifested a universal up-regulation of immune-related pathways in the high-risk group. Furthermore, the risk score was highly correlated to the immune cell infiltration, immunosuppression, inflammatory activities, as well as the expression levels of immune checkpoints. A nomogram was developed for clinical application. Knockdown of the five genes in the signature remodeled the immunosuppressive microenvironment by restraining M2 macrophage polarization and suppressing immunosuppressive cytokines production. Conclusions: MGMT methylation is strongly related to the immune responses in GBM. The immune gene-based signature we identified may have potential implications in predicting the prognosis of GBM patients and mechanisms underlying the role of MGMT methylation.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayue Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shurui Xuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyuan Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Bouvet D, Bodo S, Munier A, Guillerm E, Bertrand R, Colas C, Duval A, Coulet F, Muleris M. Methylation Tolerance-Based Functional Assay to Assess Variants of Unknown Significance in the MLH1 and MSH2 Genes and Identify Patients With Lynch Syndrome. Gastroenterology 2019; 157:421-431. [PMID: 30998989 DOI: 10.1053/j.gastro.2019.03.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Approximately 75% of patients with suspected Lynch syndrome carry variants in MLH1 or MSH2, proteins encoded by these genes are required for DNA mismatch repair (MMR). However, 30% of these are variants of unknown significance (VUS). A assay that measures cell response to the cytotoxic effects of a methylating agent can determine the effects of VUS in MMR genes and identify patients with constitutional MMR-deficiency syndrome. We adapted this method to test the effects of VUS in MLH1 and MSH2 genes found in patients with suspected Lynch syndrome. METHODS We transiently expressed MLH1 or MSH2 variants in MLH1- or MSH2-null human colorectal cancer cell lines (HCT116 or LoVo), respectively. The MMR process causes death of cells with methylation-damaged DNA bases, so we measured proportions of cells that undergo death following exposure to the methylating agent; cells that escaped its toxicity were considered to have variants that affect function of the gene product. Using this assay, we analyzed 88 variants (mainly missense variants), comprising a validation set of 40 previously classified variants (19 in MLH1 and 21 in MSH2) and a prospective set of 48 VUS (25 in MLH1 and 23 in MSH2). Prediction scores were calculated for all VUS according to the recommendations of the American College of Medical Genetics and Genomics, based on clinical, somatic, in silico, population, and functional data. RESULTS The assay correctly classified 39 of 40 variants in the validation set. The assay identified 12 VUS that did alter function of the gene product and 28 VUS that did not; the remaining 8 VUS had intermediate effects on MMR capacity and could not be classified. Comparison of assay results with prediction scores confirmed the ability of the assay to discriminate VUS that affected the function of the gene products from those that did not. CONCLUSIONS Using an assay that measures the ability of the cells to undergo death following DNA damage induction by a methylating agent, we were able to assess whether variants in MLH1 and MSH2 cause defects in DNA MMR. This assay might be used to help assessing the pathogenicity of VUS in MLH1 and MSH2 found in patients with suspected Lynch syndrome.
Collapse
Affiliation(s)
- Delphine Bouvet
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Sahra Bodo
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Annie Munier
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine, UMS30-LUMIC, Plateforme de Cytométrie en Flux CISA, site Saint-Antoine, Paris, France
| | - Erell Guillerm
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France; Genetics Department, AP-HP, Hôpital Universitaire Pitié-Salpétrière, Paris, France
| | - Romane Bertrand
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Chrystelle Colas
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France; Institut Curie, Paris Sciences Lettres Research University, Department of Genetics, Paris, France
| | - Alex Duval
- Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France; Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Biochimie, biologie moléculaire, Paris, France
| | - Florence Coulet
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France; Genetics Department, AP-HP, Hôpital Universitaire Pitié-Salpétrière, Paris, France
| | - Martine Muleris
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France.
| |
Collapse
|
6
|
Kewitz-Hempel S, Kurch L, Cepelova M, Volkmer I, Sauerbrey A, Conrad E, Knirsch S, Pöpperl G, Steinbach D, Beer AJ, Kramm CM, Sahlmann CO, Erdlenbruch B, Reinbold WD, Odparlik A, Sabri O, Kluge R, Staege MS. Impact of rs12917 MGMT Polymorphism on [ 18F]FDG-PET Response in Pediatric Hodgkin Lymphoma (PHL). Mol Imaging Biol 2019; 21:1182-1191. [PMID: 30945122 DOI: 10.1007/s11307-019-01350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The enzyme O6-methylguanine-DNA methyltransferase (MGMT) is an important component of the DNA repair machinery. MGMT removes O6-methylguanine from the DNA by transferring the methyl group to a cysteine residue in its active site. Recently, we detected the single nucleotide polymorphism (SNP) rs12917 (C/T) in the MGMT sequence adjacent to the active site in Hodgkin lymphoma (HL) cell line KM-H2. We now investigated whether this SNP is also present in other HL cell lines and patient samples. Furthermore, we asked whether this SNP might have an impact on metabolic response in 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG-PET), and on overall treatment outcome based on follow-up intervals of at least 34 months. PROCEDURES We determined the frequency of this MGMT polymorphism in 5 HL cell lines and in 29 pediatric HL (PHL) patients. The patient cohort included 17 female and 12 male patients aged between 4 and 18 years. After characterization of the sequence, we tested a possible association between rs12917 and age, gender, Ann Arbor stage, treatment group, metabolic response following two courses of OEPA (vincristine, etoposide, prednisone, and doxorubicin) chemotherapy, radiotherapy indication, and relapse status. RESULTS We detected the minor T allele in four of five HL cell lines. 11/29 patients carried the minor T allele whereas 18/29 patients showed homozygosity for the major C allele. Interestingly, we observed significantly better metabolic response in PHL patients carrying the rs12917 C allele resulting in a lower frequency of radiotherapy indication. CONCLUSION MGMT polymorphism rs12917 seems to affect chemotherapy response in PHL. The prognostic value of this polymorphism should be investigated in a larger patient cohort.
Collapse
Affiliation(s)
- Stefanie Kewitz-Hempel
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle, Germany.,Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany.,Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103, Leipzig, Germany
| | - Michaela Cepelova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Praha, Czech Republic
| | - Ines Volkmer
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle, Germany
| | | | - Elke Conrad
- Department of Nuclear Medicine, Helios Hospital Erfurt, Erfurt, Germany
| | - Stephanie Knirsch
- Pediatrics 5 (Oncology, Hematology, and Immunology), Klinikum Stuttgart, Olgahospital, Stuttgart, Germany
| | - Gabriele Pöpperl
- Department of Nuclear Medicine, Klinikum Stuttgart, Olgahospital, Stuttgart, Germany
| | - Daniel Steinbach
- Department of Pediatric Hematology and Oncology, University Hospital Ulm, Ulm, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, University Hospital, Ulm, Germany
| | - Christof M Kramm
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle, Germany.,Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Bernhard Erdlenbruch
- University Hospital for Children and Adolescents, Johannes Wesling Klinikum Minden, Ruhr University Hospital, Bochum, Germany
| | - Wolf-Dieter Reinbold
- Universitätsinstitut für Diagnostische Radiologie, Neuroradiologie und Nuklearmedizin, Johannes Wesling Klinikum Minden, Ruhr University Hospital, Bochum, Germany
| | - Andreas Odparlik
- Department of Nuclear Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103, Leipzig, Germany
| | - Regine Kluge
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103, Leipzig, Germany.
| | - Martin S Staege
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle, Germany.
| |
Collapse
|
7
|
Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst) 2019; 78:60-69. [PMID: 30959407 DOI: 10.1016/j.dnarep.2019.03.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 03/16/2019] [Indexed: 12/22/2022]
Abstract
An important role for the DNA mismatch repair (MMR) pathway in maintaining genomic stability is embodied in its conservation through evolution and the link between loss of MMR function and tumorigenesis. The latter is evident as inheritance of mutations within the major MMR genes give rise to the cancer predisposition condition, Lynch syndrome. Nonetheless, how MMR loss contributes to tumorigenesis is not completely understood. In addition to preventing the accumulation of mutations, MMR also directs cellular responses, such as cell cycle checkpoint or apoptosis activation, to different forms of DNA damage. Understanding this MMR-dependent DNA damage response may provide insight into the full tumor suppressing capabilities of the MMR pathway. Here, we delve into the proposed mechanisms for the MMR-dependent response to DNA damaging agents. We discuss how these pre-clinical findings extend to the clinical treatment of cancers, emphasizing MMR status as a crucial variable in selection of chemotherapeutic regimens. Also, we discuss how loss of the MMR-dependent damage response could promote tumorigenesis via the establishment of a survival advantage to endogenous levels of stress in MMR-deficient cells.
Collapse
Affiliation(s)
- Dipika Gupta
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | | |
Collapse
|
8
|
Lin AL, Jonsson P, Tabar V, Yang TJ, Cuaron J, Beal K, Cohen M, Postow M, Rosenblum M, Shia J, DeAngelis LM, Taylor BS, Young RJ, Geer EB. Marked Response of a Hypermutated ACTH-Secreting Pituitary Carcinoma to Ipilimumab and Nivolumab. J Clin Endocrinol Metab 2018; 103:3925-3930. [PMID: 30085142 PMCID: PMC6456994 DOI: 10.1210/jc.2018-01347] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Abstract
CONTEXT Pituitary carcinoma is a rare and aggressive malignancy with a poor prognosis and few effective treatment options. CASE A 35-year-old woman presented with an aggressive ACTH-secreting pituitary adenoma that initially responded to concurrent temozolomide and capecitabine prior to metastasizing to the liver. Following treatment with ipilimumab and nivolumab, the tumor volume of the dominant liver metastasis reduced by 92%, and the recurrent intracranial disease regressed by 59%. Simultaneously, her plasma ACTH level decreased from 45,550 pg/mL to 66 pg/mL. MOLECULAR EVALUATION Both prospective clinical sequencing with Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets and retrospective whole-exome sequencing were performed to characterize the molecular alterations in the chemotherapy-naive pituitary adenoma and the temozolomide-resistant liver metastasis. The liver metastasis harbored a somatic mutational burden consistent with alkylator-induced hypermutation that was absent from the treatment-naive tumor. Resistance to temozolomide treatment, acquisition of new oncogenic drivers, and subsequent sensitivity to immunotherapy may be attributed to hypermutation. CONCLUSION Combination treatment with ipilimumab and nivolumab may be an effective treatment in pituitary carcinoma. Clinical sequencing of pituitary tumors that have relapsed following treatment with conventional chemotherapy may identify the development of therapy-induced somatic hypermutation, which may be associated with treatment response to immunotherapy.
Collapse
Affiliation(s)
- Andrew L Lin
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Correspondence and Reprint Requests: Andrew L. Lin, MD, and Eliza B. Geer, MD, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065. E-mail: ;
| | - Philip Jonsson
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Viviane Tabar
- Weill Cornell Medical College, New York, New York
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - T Jonathan Yang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine Beal
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Cohen
- Weill Cornell Medical College, New York, New York
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Postow
- Weill Cornell Medical College, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Rosenblum
- Weill Cornell Medical College, New York, New York
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinru Shia
- Weill Cornell Medical College, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Barry S Taylor
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J Young
- Weill Cornell Medical College, New York, New York
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eliza B Geer
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Endocrinology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Kim E, Davidson LA, Zoh RS, Hensel ME, Patil BS, Jayaprakasha GK, Callaway ES, Allred CD, Turner ND, Weeks BR, Chapkin RS. Homeostatic responses of colonic LGR5+ stem cells following acute in vivo exposure to a genotoxic carcinogen. Carcinogenesis 2015; 37:206-14. [PMID: 26717997 DOI: 10.1093/carcin/bgv250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022] Open
Abstract
Perturbations in DNA damage, DNA repair, apoptosis and cell proliferation in the base of the crypt where stem cells reside are associated with colorectal cancer (CRC) initiation and progression. Although the transformation of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)(+) cells is an extremely efficient route towards initiating small intestinal adenomas, the role of Lgr5(+) cells in CRC pathogenesis has not been well investigated. Therefore, we further characterized the properties of colonic Lgr5(+) cells compared to differentiated cells in Lgr5-EGFP-IRES-creER(T2) knock-in mice at the initiation stage of carcinogen azoxymethane (AOM)-induced tumorigenesis using a quantitative immunofluorescence microscopy approach. At 12 and 24h post-AOM treatment, colonic Lgr5(+) stem cells (GFP(high)) were preferentially damaged by carcinogen, exhibiting a 4.7-fold induction of apoptosis compared to differentiated (GFP(neg)) cells. Furthermore, with respect to DNA repair, O(6)-methylguanine DNA methyltransferase (MGMT) expression was preferentially induced (by 18.5-fold) in GFP(high) cells at 24h post-AOM treatment compared to GFP(neg) differentiated cells. This corresponded with a 4.3-fold increase in cell proliferation in GFP(high) cells. These data suggest that Lgr5(+) stem cells uniquely respond to alkylation-induced DNA damage by upregulating DNA damage repair, apoptosis and cell proliferation compared to differentiated cells in order to maintain genomic integrity. These findings highlight the mechanisms by which colonic Lgr5(+) stem cells respond to cancer-causing environmental factors.
Collapse
Affiliation(s)
- Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Cellular and Molecular Medicine, Texas A&M Health Science Center
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science
| | - Roger S Zoh
- Program in Integrative Nutrition and Complex Diseases, Department of Statistics
| | | | - Bhimanagouda S Patil
- Vegetable Crop Improvement Center, Texas A&M University, College Station, TX, USA
| | | | - Evelyn S Callaway
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science
| | | | - Nancy D Turner
- Department of Nutrition and Food Science, Vegetable Crop Improvement Center, Texas A&M University, College Station, TX, USA
| | | | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science, Vegetable Crop Improvement Center, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Bodo S, Colas C, Buhard O, Collura A, Tinat J, Lavoine N, Guilloux A, Chalastanis A, Lafitte P, Coulet F, Buisine MP, Ilencikova D, Ruiz-Ponte C, Kinzel M, Grandjouan S, Brems H, Lejeune S, Blanché H, Wang Q, Caron O, Cabaret O, Svrcek M, Vidaud D, Parfait B, Verloes A, Knappe UJ, Soubrier F, Mortemousque I, Leis A, Auclair-Perrossier J, Frébourg T, Fléjou JF, Entz-Werle N, Leclerc J, Malka D, Cohen-Haguenauer O, Goldberg Y, Gerdes AM, Fedhila F, Mathieu-Dramard M, Hamelin R, Wafaa B, Gauthier-Villars M, Bourdeaut F, Sheridan E, Vasen H, Brugières L, Wimmer K, Muleris M, Duval A. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents. Gastroenterology 2015; 149:1017-29.e3. [PMID: 26116798 DOI: 10.1053/j.gastro.2015.06.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/21/2015] [Accepted: 06/13/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. METHODS We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. RESULTS In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. CONCLUSION The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients.
Collapse
Affiliation(s)
- Sahra Bodo
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Chrystelle Colas
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France; AP-HP, Laboratoire d'Oncogénétique et d'Angiogénétique, GH Pitié-Salpétrière, Paris, France
| | - Olivier Buhard
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Ada Collura
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Julie Tinat
- Département de génétique, Hôpital universitaire, Rouen, France
| | - Noémie Lavoine
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Agathe Guilloux
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Alexandra Chalastanis
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Philippe Lafitte
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Florence Coulet
- UPMC Univ Paris, Paris, France; AP-HP, Laboratoire d'Oncogénétique et d'Angiogénétique, GH Pitié-Salpétrière, Paris, France
| | - Marie-Pierre Buisine
- Institut de Biochimie et Biologie moléculaire, Oncologie et Génétique Moléculaires, CHRU Lille, Lille, France; INSERM UMR837 et Université Lille, Lille, France
| | - Denisa Ilencikova
- 2nd Pediatric Department, Children's University Hospital, Comenius University, Bratislava, Slovakia
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX) SERGAS, Grupo de Medicina Xenómica, IDIS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Spain
| | | | | | - Hilde Brems
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sophie Lejeune
- CHRU Lille, Service de génétique clinique, Lille, France
| | - Hélène Blanché
- CEPH, Fondation Jean Dausset, Institut de Génétique Moléculaire, Paris, France
| | - Qing Wang
- Plateforme de Génétique constitutionnelle HCL-CLB, Laboratoire de recherche translationnelle, Centre Léon Bérard, Lyon, France
| | - Olivier Caron
- Department of Medical Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Odile Cabaret
- Service de Génétique, Département de Biologie et Pathologie Médicales, Institut Gustave Roussy, Villejuif, France
| | - Magali Svrcek
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France; AP-HP, Hôpital Saint-Antoine, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Dominique Vidaud
- INSERM UMR745 Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Béatrice Parfait
- INSERM UMR745 Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Alain Verloes
- AP-HP, Département de Génétique and INSERM UMR 1141 PROTECT, Hôpital Robert Debré, Paris, France
| | - Ulrich J Knappe
- Department of Neurosurgery, Johannes Wesling Klinikum, Minden, Germany
| | - Florent Soubrier
- AP-HP, Département de génétique, GH Pitié-Salpêtrière, Paris, France
| | | | - Alexander Leis
- French Medical Institute for Children, Kabul, Afghanistan
| | - Jessie Auclair-Perrossier
- Plateforme de Génétique constitutionnelle HCL-CLB, Laboratoire de recherche translationnelle, Centre Léon Bérard, Lyon, France
| | | | - Jean-François Fléjou
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France; AP-HP, Hôpital Saint-Antoine, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Natacha Entz-Werle
- Pédiatrie Onco-Hématologie Pédiatrie CHRU Hautepierre UdS EA, Strasbourg, France
| | - Julie Leclerc
- Institut de Biochimie et Biologie moléculaire, Oncologie et Génétique Moléculaires, CHRU Lille, Lille, France; INSERM UMR837 et Université Lille, Lille, France
| | - David Malka
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | | | - Yael Goldberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospital, Copenhagen, Denmark
| | - Faten Fedhila
- Service de médecine infantile, hôpital d'enfants de Tunis, Tunis, Tunisia
| | | | - Richard Hamelin
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Badre Wafaa
- Department of Hepato-Gastro-Enterology, Ibn Rochd, Hospital University Center, Casablanca, Morocco
| | | | - Franck Bourdeaut
- Department of Pediatric Oncology and INSERM U830, Institut Curie, Paris, France
| | - Eamonn Sheridan
- Department of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Hans Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Martine Muleris
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France.
| | - Alex Duval
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France.
| | | |
Collapse
|
11
|
Abstract
Many patients with malignant gliomas do not respond to alkylating agent chemotherapy. Alkylator resistance of glioma cells is mainly mediated by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Epigenetic silencing of the MGMT gene by promoter methylation in glioma cells compromises this DNA repair mechanism and increases chemosensitivity. MGMT promoter methylation is, therefore, a strong prognostic biomarker in paediatric and adult patients with glioblastoma treated with temozolomide. Notably, elderly patients (>65-70 years) with glioblastoma whose tumours lack MGMT promoter methylation derive minimal benefit from such chemotherapy. Thus, MGMT promoter methylation status has become a frequently requested laboratory test in neuro-oncology. This Review presents current data on the prognostic and predictive relevance of MGMT testing, discusses clinical trials that have used MGMT status to select participants, evaluates known issues concerning the molecular testing procedure, and addresses the necessity for molecular-context-dependent interpretation of MGMT test results. Whether MGMT promoter methylation testing should be offered to all individuals with glioblastoma, or only to elderly patients and those in clinical trials, is also discussed. Justifications for withholding alkylating agent chemotherapy in patients with MGMT-unmethylated glioblastomas outside clinical trials, and the potential role for MGMT testing in other gliomas, are also discussed.
Collapse
|
12
|
Chen X, Zhao Y, Li GM, Guo L. Proteomic analysis of mismatch repair-mediated alkylating agent-induced DNA damage response. Cell Biosci 2013; 3:37. [PMID: 24330662 PMCID: PMC3848634 DOI: 10.1186/2045-3701-3-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/26/2013] [Indexed: 11/13/2022] Open
Abstract
Background Mediating DNA damage-induced apoptosis is an important genome-maintenance function of the mismatch repair (MMR) system. Defects in MMR not only cause carcinogenesis, but also render cancer cells highly resistant to chemotherapeutics, including alkylating agents. To understand the mechanisms of MMR-mediated apoptosis and MMR-deficiency-caused drug resistance, we analyze a model alkylating agent (N-methyl-N’-nitro-N-nitrosoguanidine, MNNG)-induced changes in protein phosphorylation and abundance in two cell lines, the MMR-proficient TK6 and its derivative MMR-deficient MT1. Results Under an experimental condition that MNNG-induced apoptosis was only observed in MutSα-proficient (TK6), but not in MutSα-deficient (MT1) cells, quantitative analysis of the proteomic data revealed differential expression and phosphorylation of numerous individual proteins and clusters of protein kinase substrates, as well differential activation of response pathways/networks in MNNG-treated TK6 and MT1 cells. Many alterations in TK6 cells are in favor of turning on the apoptotic machinery, while many of those in MT1 cells are to promote cell proliferation and anti-apoptosis. Conclusions Our work provides novel molecular insights into the mechanism of MMR-mediated DNA damage-induced apoptosis.
Collapse
|
13
|
Hayashi T, Adachi K, Ohba S, Hirose Y. The Cdk inhibitor flavopiridol enhances temozolomide-induced cytotoxicity in human glioma cells. J Neurooncol 2013; 115:169-78. [PMID: 23943501 DOI: 10.1007/s11060-013-1220-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 08/04/2013] [Indexed: 12/11/2022]
Abstract
The recent progress in chemotherapy for malignant gliomas is attributable to the introduction of the DNA-methylating agent temozolomide (TMZ); however, drug resistance remains a major issue. Previous studies have shown that TMZ induces prolonged arrest of human glioma cells in the G2/M phase of the cell cycle followed by a senescence-like phenomenon or mitotic catastrophe. These findings suggest that the G2 checkpoint is linked to DNA repair mechanisms. We investigated the effect of a cyclin-dependent kinase (Cdk) inhibitor flavopiridol (FP) that inhibits the action of Cdc2, a key protein in the G2 checkpoint pathway, on TMZ-treated glioma cells. Colony formation efficiency revealed that FP potentiated the cytotoxicity of TMZ in glioma cells in a p53-independent manner. This effect was clearly associated with the suppression of key proteins at the G2-M transition, accumulation of the cells exclusively at the G2 phase, and increase in a double-stranded DNA break marker (seen on performing immunoblotting). TMZ-resistant clones showed activation of the G2 checkpoint in response to TMZ, while FP treatment resensitized these clones to TMZ. FP also enhanced the cytotoxicity of TMZ in U87MG-AktER cells. Moreover, administration of TMZ and/or FP to nude mice with xenografted U87MG cells revealed that FP sensitized xenografted U87MG cells to TMZ in these mice. Our findings suggest that TMZ resistance could be promoted by enhanced DNA repair activity in the G2-M transition and that a Cdk inhibitor could suppress this activity, leading to potentiation of TMZ action on glioma cells.
Collapse
Affiliation(s)
- Takuro Hayashi
- Department of Neurosurgery, Fujita Health University School of Medicine, 1-98 Kutsukake-cho Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | | | | | | |
Collapse
|
14
|
Cui B, Johnson SP, Bullock N, Ali-Osman F, Bigner DD, Friedman HS. Decoupling of DNA damage response signaling from DNA damages underlies temozolomide resistance in glioblastoma cells. J Biomed Res 2013; 24:424-35. [PMID: 23554659 PMCID: PMC3596690 DOI: 10.1016/s1674-8301(10)60057-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/04/2010] [Accepted: 11/15/2010] [Indexed: 10/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults. Current therapy includes surgery, radiation and chemotherapy with temozolomide (TMZ). Major determinants of clinical response to TMZ include methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter and mismatch repair (MMR) status. Though the MGMT promoter is methylated in 45% of cases, for the first nine months of follow-up, TMZ does not change survival outcome. Furthermore, MMR deficiency makes little contribution to clinical resistance, suggesting that there exist unrecognized mechanisms of resistance. We generated paired GBM cell lines whose resistance was attributed to neither MGMT nor MMR. We show that, responding to TMZ, these cells exhibit a decoupling of DNA damage response (DDR) from ongoing DNA damages. They display methylation-resistant synthesis in which ongoing DNA synthesis is not inhibited. They are also defective in the activation of the S and G2 phase checkpoint. DDR proteins ATM, Chk2, MDC1, NBS1 and gammaH2AX also fail to form discrete foci. These results demonstrate that failure of DDR may play an active role in chemoresistance to TMZ. DNA damages by TMZ are repaired by MMR proteins in a futile, reiterative process, which activates DDR signaling network that ultimately leads to the onset of cell death. GBM cells may survive genetic insults in the absence of DDR. We anticipate that our findings will lead to more studies that seek to further define the role of DDR in ultimately determining the fate of a tumor cell in response to TMZ and other DNA methylators.
Collapse
|
15
|
Kurowska M, Labocha-Pawłowska A, Gnizda D, Maluszynski M, Szarejko I. Molecular analysis of point mutations in a barley genome exposed to MNU and gamma rays. Mutat Res 2012; 738-739:52-70. [PMID: 23085094 DOI: 10.1016/j.mrfmmm.2012.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/27/2012] [Accepted: 08/24/2012] [Indexed: 12/24/2022]
Abstract
We present studies aimed at determining the types and frequencies of mutations induced in the barley genome after treatment with chemical (N-methyl-N-nitrosourea, MNU) and physical (gamma rays) mutagens. We created M(2) populations of a doubled haploid line and used them for the analysis of mutations in targeted DNA sequences and over an entire barley genome using TILLING (Targeting Induced Local Lesions in Genomes) and AFLP (Amplified Fragment Length Polymorphism) technique, respectively. Based on the TILLING analysis of the total DNA sequence of 4,537,117bp in the MNU population, the average mutation density was estimated as 1/504kb. Only one nucleotide change was found after an analysis of 3,207,444bp derived from the highest dose of gamma rays applied. MNU was clearly a more efficient mutagen than gamma rays in inducing point mutations in barley. The majority (63.6%) of the MNU-induced nucleotide changes were transitions, with a similar number of G>A and C>T substitutions. The similar share of G>A and C>T transitions indicates a lack of bias in the repair of O(6)-methylguanine lesions between DNA strands. There was, however, a strong specificity of the nucleotide surrounding the O(6)-meG at the -1 position. Purines formed 81% of nucleotides observed at the -1 site. Scanning the barley genome with AFLP markers revealed ca. a three times higher level of AFLP polymorphism in MNU-treated as compared to the gamma-irradiated population. In order to check whether AFLP markers can really scan the whole barley genome for mutagen-induced polymorphism, 114 different AFLP products, were cloned and sequenced. 94% of bands were heterogenic, with some bands containing up to 8 different amplicons. The polymorphic AFLP products were characterised in terms of their similarity to the records deposited in a GenBank database. The types of sequences present in the polymorphic bands reflected the organisation of the barley genome.
Collapse
Affiliation(s)
- Marzena Kurowska
- Department of Genetics, University of Silesia, Katowice, Poland.
| | | | | | | | | |
Collapse
|
16
|
Geng H, Sakato M, DeRocco V, Yamane K, Du C, Erie DA, Hingorani M, Hsieh P. Biochemical analysis of the human mismatch repair proteins hMutSα MSH2(G674A)-MSH6 and MSH2-MSH6(T1219D). J Biol Chem 2012; 287:9777-9791. [PMID: 22277660 DOI: 10.1074/jbc.m111.316919] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The heterodimeric human MSH2-MSH6 protein initiates DNA mismatch repair (MMR) by recognizing mismatched bases that result from replication errors. Msh2(G674A) or Msh6(T1217D) mice that have mutations in or near the ATP binding site of MSH2 or ATP hydrolysis catalytic site of MSH6 develop cancer and have a reduced lifespan due to loss of the MMR pathway (Lin, D. P., Wang, Y., Scherer, S. J., Clark, A. B., Yang, K., Avdievich, E., Jin, B., Werling, U., Parris, T., Kurihara, N., Umar, A., Kucherlapati, R., Lipkin, M., Kunkel, T. A., and Edelmann, W. (2004) Cancer Res. 64, 517-522; Yang, G., Scherer, S. J., Shell, S. S., Yang, K., Kim, M., Lipkin, M., Kucherlapati, R., Kolodner, R. D., and Edelmann, W. (2004) Cancer Cell 6, 139-150). Mouse embryonic fibroblasts from these mice retain an apoptotic response to DNA damage. Mutant human MutSα proteins MSH2(G674A)-MSH6(wt) and MSH2(wt)-MSH6(T1219D) are profiled in a variety of functional assays and as expected fail to support MMR in vitro, although they retain mismatch recognition activity. Kinetic analyses of DNA binding and ATPase activities and examination of the excision step of MMR reveal that the two mutants differ in their underlying molecular defects. MSH2(wt)-MSH6(T1219D) fails to couple nucleotide binding and mismatch recognition, whereas MSH2(G674A)-MSH6(wt) has a partial defect in nucleotide binding. Nevertheless, both mutant proteins remain bound to the mismatch and fail to promote efficient excision thereby inhibiting MMR in vitro in a dominant manner. Implications of these findings for MMR and DNA damage signaling by MMR proteins are discussed.
Collapse
Affiliation(s)
- Hui Geng
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Miho Sakato
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459, and
| | - Vanessa DeRocco
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kazuhiko Yamane
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Chunwei Du
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Manju Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459, and
| | - Peggy Hsieh
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892,.
| |
Collapse
|
17
|
Treatment resistance mechanisms of malignant glioma tumor stem cells. Cancers (Basel) 2011; 3:621-35. [PMID: 24212632 PMCID: PMC3756380 DOI: 10.3390/cancers3010621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/14/2010] [Accepted: 01/26/2011] [Indexed: 12/17/2022] Open
Abstract
Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed.
Collapse
|
18
|
Liu Y, Fang Y, Shao H, Lindsey-Boltz L, Sancar A, Modrich P. Interactions of human mismatch repair proteins MutSalpha and MutLalpha with proteins of the ATR-Chk1 pathway. J Biol Chem 2009; 285:5974-82. [PMID: 20029092 PMCID: PMC2820822 DOI: 10.1074/jbc.m109.076109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
At clinically relevant doses, chemotherapeutic SN1 DNA methylating agents induce an ATR-mediated checkpoint response in human cells that is dependent on functional MutSα and MutLα. Deficiency of either mismatch repair activity renders cells highly resistant to this class of drug, but the mechanisms linking mismatch repair to checkpoint activation have remained elusive. In this study we have systematically examined the interactions of human MutSα and MutLα with proteins of the ATR-Chk1 pathway using both nuclear extracts and purified proteins. Using nuclear co-immunoprecipitation, we have detected interaction of MutSα with ATR, TopBP1, Claspin, and Chk1 and interaction of MutLα with TopBP1 and Claspin. We were unable to detect interaction of MutSα or MutLα with Rad17, Rad9, or replication protein A in the extract system. Use of purified proteins confirmed direct interaction of MutSα with ATR, TopBP1, and Chk1 and of MutLα with TopBP1. MutSα-Claspin and MutLα-Claspin interactions were not demonstrable with purified proteins, suggesting that extract interactions are indirect or depend on post-translational modification. Use of a modified chromatin immunoprecipitation assay showed that proliferating cell nuclear antigen, ATR, TopBP1, and Chk1 are recruited to chromatin in a MutLα- and MutSα-dependent fashion after N-methyl-N′-nitro-N-nitrosoguanidine treatment. However, chromatin enrichment of replication protein A, Claspin, Rad17-RFC, and Rad9-Rad1-Hus1 was not detected in these experiments. Although our failure to observe enrichment of the latter activities could be due to sensitivity limitations, these observations may indicate a novel mechanism for ATR activation.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
19
|
Roos WP, Tsaalbi-Shtylik A, Tsaryk R, Güvercin F, de Wind N, Kaina B. The translesion polymerase Rev3L in the tolerance of alkylating anticancer drugs. Mol Pharmacol 2009; 76:927-34. [PMID: 19641035 DOI: 10.1124/mol.109.058131] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temozolomide and fotemustine, representing methylating and chloroethylating agents, respectively, are used in the treatment of glioma and malignant melanoma. Because chemoresistance of these tumors is a common phenomenon, identification of the underlying mechanisms is needed. Here we show that Rev3L, the catalytic subunit of the translesion DNA polymerase zeta, mediates resistance to both temozolomide and fotemustine. Rev3L knockout cells are hypersensitive to both agents. It is remarkable that cells heterozygous for Rev3L showed an intermediate sensitivity. Rev3L is not involved in the tolerance of the toxic O6-methylguanine lesion. However, a possible role of Rev3L in the tolerance of O6-chloroethylguanine or the subsequently formed N1-guanine-N3-cytosine interstrand cross-link is shown. Rev3L had no influence on base excision repair (BER) of the N-alkylation lesions but is very likely to be involved in the tolerance of N-alkylations or apurinic/apyrimidinic sites originating from them. We also show that Rev3L exerts its protective effect in replicating cells and that loss of Rev3L leads to a significant increase in DNA double-strand breaks after temozolomide and fotemustine treatment. These data show that Rev3L contributes to temozolomide and fotemustine resistance, thus acting in concert with O6-methylguanine-DNA methyltransferase, BER, mismatch repair, and double-strand break repair in defense against simple alkylating anticancer drugs.
Collapse
Affiliation(s)
- Wynand Paul Roos
- Institute of Toxicology, University Medicine Mainz, Mainz D-55131, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Homma K, Osakada F, Hirami Y, Jin ZB, Mandai M, Takahashi M. Detection of localized retinal malfunction in retinal degeneration model using a multielectrode array system. J Neurosci Res 2009; 87:2175-82. [DOI: 10.1002/jnr.22024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Combs SE, Bohl J, Elsasser T, Weber KJ, Schulz-Ertner D, Debus J, Weyrather WK. Radiobiological evaluation and correlation with the local effect model (LEM) of carbon ion radiation therapy and temozolomide in glioblastoma cell lines. Int J Radiat Biol 2009; 85:126-37. [PMID: 19280465 DOI: 10.1080/09553000802641151] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate the cytotoxic effect of high linear-energy transfer (LET) carbon irradiation on glioblastoma cells lines in combination with temozolomide (TMZ). METHODS AND MATERIALS The cell lines U87-MG expressing wild-type p53 and LN229 expressing both mutant and wild-type p53 were irradiated with monoenergetic carbon ion beams (LET 172 keV/microm) or an extended Bragg peak (LET 103 keV/microm) after treatment with 10 microM or 20 microM TMZ. Cytotoxicity was measured by a clonogenic survival assay, and cell growth as well as cell cycle progression, were examined. RESULTS The p53 mutant was more sensitive to X-ray irradiation than the p53 wild type cell line, which was also expressed in a shorter G2 block. High LET carbon ions show an increased biological effectiveness in both cell lines, which is consistent with the predictive calculations by the Local Effect Model (LEM) introduced by Scholz et al. The cell line LN229 was more sensitive to TMZ treatment than the U87MG cell line expressing wild-type p53 only. The combination of TMZ and irradiation showed an additive effect in both cell lines. CONCLUSION High LET carbon ion irradiation is significantly more effective for glioblastoma cell lines compared to photon irradiation. An additional treatment with TMZ may offer a great chance especially for several tumor types.
Collapse
|
22
|
Mazon G, Philippin G, Cadet J, Gasparutto D, Fuchs RP. The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O(6)-alkylguanine adducts in E. coli. DNA Repair (Amst) 2009; 8:697-703. [PMID: 19269902 DOI: 10.1016/j.dnarep.2009.01.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 11/16/2022]
Abstract
O(6)-methylguanine adducts are potent pre-mutagenic lesions owing to their high capacity to direct mis-insertion of thymine when bypassed by replicative DNA polymerases. The strong mutagenic potential of these adducts is prevented by alkyltransferases such as Ada and Ogt in Escherichia coli that transfer the methyl group to one of their cysteine residues. Alkyl residues larger than methyl are generally weak substrates for reversion by alkyltransferases. In this paper we have investigated the genotoxic potential of the O(6)-alkylguanine adducts formed by ethylene and propylene oxide using single-adducted plasmid probes. Our work shows that the ybaZ gene product, a member of the alkyltransferase-like protein family, strongly enhances the repair by nucleotide excision repair of the larger O(6)-alkylguanine adducts that are otherwise poor substrates for alkyltransferases. The YbaZ protein is shown to interact with UvrA. This factor may thus enhance the efficiency of nucleotide excision repair in a way similar to the Transcription-Repair Coupling factor Mfd, by recruiting the UvrA(2).UvrB complex to the adduct site via its interaction with UvrA.
Collapse
Affiliation(s)
- Gerard Mazon
- CNRS, UPR 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 31, Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | |
Collapse
|
23
|
Role of pre- and post-replicative mismatch repair in cytotoxicity of methylating antitumor agents (a review). Pharm Chem J 2009. [DOI: 10.1007/s11094-009-0251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Bugni JM, Meira LB, Samson LD. Alkylation-induced colon tumorigenesis in mice deficient in the Mgmt and Msh6 proteins. Oncogene 2008; 28:734-41. [PMID: 19029948 PMCID: PMC3557788 DOI: 10.1038/onc.2008.426] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
O6-methylguanine DNA methyltransferase (MGMT) suppresses mutations and cell death that result from alkylation damage. MGMT expression is lost by epigenetic silencing in a variety of human cancers including nearly half of sporadic colorectal cancers, suggesting that this loss maybe causal. Using mice with a targeted disruption of the Mgmt gene we tested whether Mgmt protects against azoxymethane (AOM) induced colonic aberrant crypt foci (ACF), against AOM and dextran sulfate sodium (DSS) induced colorectal adenomas, and against spontaneous intestinal adenomas in ApcMin mice. We also examined the genetic interaction of the Mgmt null gene with a DNA mismatch repair null gene, namely Msh6. Both Mgmt and Msh6 independently suppress AOM-induced ACF, and combination of the two mutant alleles had a multiplicative effect. This synergism can be explained entirely by the suppression of alkylation-induced apoptosis when Msh6 is absent. In addition, following AOM+DSS treatment Mgmt protected against adenoma formation to the same degree as it protected against AOM-induced ACF formation. Finally, Mgmt deficiency did not affect spontaneous intestinal adenoma development in ApcMin/+ mice, suggesting that Mgmt suppresses intestinal cancer associated with exogenous alkylating agents, and that endogenous alkylation does not contribute to the rapid tumor development seen in ApcMin/+ mice.
Collapse
Affiliation(s)
- J M Bugni
- Biological Engineering Department and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
25
|
He W, Zhao Y, Zhang C, An L, Hu Z, Liu Y, Han L, Bi L, Xie Z, Xue P, Yang F, Hang H. Rad9 plays an important role in DNA mismatch repair through physical interaction with MLH1. Nucleic Acids Res 2008; 36:6406-17. [PMID: 18842633 PMCID: PMC2582629 DOI: 10.1093/nar/gkn686] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rad9 is conserved from yeast to humans and plays roles in DNA repair (homologous recombination repair, and base-pair excision repair) and cell cycle checkpoint controls. It has not previously been reported whether Rad9 is involved in DNA mismatch repair (MMR). In this study, we have demonstrated that both human and mouse Rad9 interacts physically with the MMR protein MLH1. Disruption of the interaction by a single-point mutation in Rad9 leads to significantly reduced MMR activity. This disruption does not affect S/M checkpoint control and the first round of G2/M checkpoint control, nor does it alter cell sensitivity to UV light, gamma rays or hydroxyurea. Our data indicate that Rad9 is an important factor in MMR and carries out its MMR function specifically through interaction with MLH1.
Collapse
Affiliation(s)
- Wei He
- National Laboratory of Biomacromolecules, Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, Wick W. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 2008; 14:2900-8. [PMID: 18483356 PMCID: PMC2430468 DOI: 10.1158/1078-0432.ccr-07-1719] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.
Collapse
Affiliation(s)
- Jann N Sarkaria
- Department of Radiation Oncology and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
van Boxtel R, Toonen PW, van Roekel HS, Verheul M, Smits BMG, Korving J, de Bruin A, Cuppen E. Lack of DNA mismatch repair protein MSH6 in the rat results in hereditary non-polyposis colorectal cancer-like tumorigenesis. Carcinogenesis 2008; 29:1290-7. [DOI: 10.1093/carcin/bgn094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Kim WJ, Rajasekaran B, Brown KD. MLH1- and ATM-dependent MAPK signaling is activated through c-Abl in response to the alkylator N-methyl-N'-nitro-N'-nitrosoguanidine. J Biol Chem 2007; 282:32021-31. [PMID: 17804421 DOI: 10.1074/jbc.m701451200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-Methyl-N'-nitro-N'-nitrosoguanidine (MNNG) is a DNA-methylating agent, and deficiency in mismatch repair (MMR) results in lack of sensitivity to this genotoxin (termed alkylation tolerance). A number of DNA damage response pathways are activated in a MMR-dependent manner following MNNG, and several also require ATM kinase activity. Here we show that activation of the transcription factor c-Jun is dependent upon both the MMR component MLH1 and ATM, but not ATR, in response to MNNG. In addition to c-Jun, the upstream MAPKs JNK and MKK4 are also activated in a MLH1- and ATM-dependent manner. We document that c-Jun activation is dependent on the MAPK kinase kinase MEKK1. Additionally, the tyrosine kinase c-Abl is required to activate this signaling cascade and forms a complex with MEKK1 and MLH1. This study indicates that an arm of DNA damage-activated MAPK signaling is activated in an MLH1- and ATM-dependent manner in response to MNNG and perhaps suggests that dysregulation of this signaling is responsible, in part, for alkylation tolerance.
Collapse
Affiliation(s)
- Wan-Ju Kim
- Department of Biochemistry and Molecular Biology and the University of Florida Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
29
|
Bugni JM, Han J, Tsai MS, Hunter DJ, Samson LD. Genetic association and functional studies of major polymorphic variants of MGMT. DNA Repair (Amst) 2007; 6:1116-26. [PMID: 17569599 DOI: 10.1016/j.dnarep.2007.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA repair protein, O(6)-methylguanine DNA-methyltransferase (MGMT) prevents mutations and cell death that result from aberrant alkylation of DNA. The polymorphic variants Leu84Phe, Ile143Val, and Lys178Arg are frequent in the human population. We review here studies of these and other MGMT polymorphisms and their association with risk for lung, breast, colorectal and endometrial cancer with a consideration of gene-environment interactions. In addition, we review studies of the effects of polymorphic variation on alkyltransferase activity and expression. It is formally possible that polymorphic variation could modify functions of MGMT other than its alkyltransferase activity. While it was previously reported that an alkylated form of MGMT modifies Estrogen Receptor alpha activity, from our studies we conclude that this regulation is not a major function of MGMT. Overall, the effects of polymorphic variation on protein function are subtle, and further investigation is required to provide a comprehensive mechanism that explains the observed associations of these variants with risk for cancer.
Collapse
Affiliation(s)
- James M Bugni
- Biological Engineering Division, Biology Department, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
30
|
Roos WP, Christmann M, Fraser ST, Kaina B. Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O(6)-methylguanine due to high E2F1 regulated mismatch repair. Cell Death Differ 2007; 14:1422-32. [PMID: 17464330 DOI: 10.1038/sj.cdd.4402136] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Exposure of stem cells to genotoxins may lead to embryonic lethality or teratogenic effects. This can be prevented by efficient DNA repair or by eliminating genetically damaged cells. Using undifferentiated mouse embryonic stem (ES) cells as a pluripotent model system, we compared ES cells with differentiated cells, with regard to apoptosis induction by alkylating agents forming the highly mutagenic and killing DNA adduct O(6)-methylguanine. Upon treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ES cells undergo apoptosis at much higher frequency than differentiated cells, although they express a high level of the repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Apoptosis induced by MNNG is due to O(6)-methylguanine DNA adducts, since inhibition of MGMT sensitized ES cells. The high sensitivity of ES cells to O(6)-methylating agents is due to high expression of the mismatch repair proteins MSH2 and MSH6 (MutSalpha), which declines during differentiation. High MutSalpha expression in ES cells was related to a high hyperphosphorylated retinoblastoma (ppRb) level and E2F1 activity that upregulates MSH2, causing, in turn, stabilization of MSH6. Non-repaired O(6)-methylguanine adducts were shown to cause DNA double-stranded breaks, stabilization of p53 and upregulation of Fas/CD95/Apo-1 at significantly higher level in ES cells than in fibroblasts. The high apoptotic response of ES cells to O(6)-methylguanine adducts may contribute to reduction of the mutational load in the progenitor population.
Collapse
Affiliation(s)
- W P Roos
- Department of Toxicology, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
31
|
Mirzoeva OK, Kawaguchi T, Pieper RO. The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity. Mol Cancer Ther 2006; 5:2757-66. [PMID: 17121922 DOI: 10.1158/1535-7163.mct-06-0183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chemotherapeutic agent temozolomide produces O(6)-methylguanine (O6MG) in DNA, which triggers futile DNA mismatch repair, DNA double-strand breaks (DSB), G(2) arrest, and ultimately cell death. Because the protein complex consisting of Mre11/Rad50/Nbs1 (MRN complex) plays a key role in DNA damage detection and signaling, we asked if this complex also played a role in the cellular response to temozolomide. Temozolomide exposure triggered the assembly of MRN complex into chromatin-associated nuclear foci. MRN foci formed significantly earlier than gamma-H2AX and 53BP1 foci that assembled in response to temozolomide-induced DNA DSBs. MRN foci formation was suppressed in cells that incurred lower levels of temozolomide-induced O6MG lesions and/or had decreased mismatch repair capabilities, suggesting that the MRN foci formed not in response to temozolomide-induced DSB but rather in response to mismatch repair processing of mispaired temozolomide-induced O6MG lesions. Consistent with this idea, the MRN foci colocalized with those of proliferating cell nuclear antigen (a component of the mismatch repair complex), and the MRN complex component Nbs1 coimmunoprecipitated with the mismatch repair protein Mlh1 specifically in response to temozolomide treatment. Furthermore, small inhibitory RNA-mediated suppression of Mre11 levels decreased temozolomide-induced G(2) arrest and cytotoxicity in a manner comparable to that achieved by suppression of mismatch repair. These data show that temozolomide-induced O6MG lesions, acted upon by the mismatch repair system, drive formation of the MRN complex foci and the interaction of this complex with the mismatch repair machinery. The MRN complex in turn contributes to the control of temozolomide-induced G(2) arrest and cytotoxicity, and as such is an additional determining factor in glioma sensitivity to DNA methylating chemotherapeutic drugs such as temozolomide.
Collapse
Affiliation(s)
- Olga K Mirzoeva
- UCSF Cancer Center, The University of California-San Francisco, Room N219, 2340 Sutter Street, San Francisco, CA 94115-0875.
| | | | | |
Collapse
|
32
|
York SJ, Modrich P. Mismatch repair-dependent iterative excision at irreparable O6-methylguanine lesions in human nuclear extracts. J Biol Chem 2006; 281:22674-83. [PMID: 16772289 PMCID: PMC2234603 DOI: 10.1074/jbc.m603667200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The response of mammalian cells to Sn1 DNA methylators depends on functional MutSalpha and MutLalpha. Cells deficient in either of these activities are resistant to the cytotoxic effects of this class of chemotherapeutic drug. Because killing by Sn1 methylators has been attributed to O6-methylguanine (MeG), we have constructed nicked circular heteroduplexes that contain a single MeG-T mispair, and we have examined processing of these molecules by mismatch repair in nuclear extracts of human cells. Excision provoked by MeG-T is restricted to the incised heteroduplex strand, leading to removal of the MeG when it resides on this strand. However, when the MeG is located on the continuous strand, the heteroduplex is irreparable. MeG-T-dependent repair DNA synthesis is observed on both reparable and irreparable 3' and 5' heteroduplexes as judged by [32P]dAMP incorporation. Labeling with [alpha-32P]dATP followed by a cold dATP chase has demonstrated that newly synthesized DNA on irreparable molecules is subject to re-excision in a reaction that is MutLalpha-dependent, an effect attributable to the presence of MeG on the template strand. Processing of the irreparable 3' heteroduplex is also associated with incision of the discontinuous strand of a few percent of molecules near the thymidylate of the MeG-T base pair. These results provide the first direct evidence for mismatch repair-mediated iterative processing of DNA methylator damage, an effect that may be relevant to damage signaling events triggered by this class of chemotherapeutic agent.
Collapse
Affiliation(s)
- Sally J. York
- Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Paul Modrich
- Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
33
|
Mounetou E, Cussac C, Mathieu F, Maurizis JC, Labarre P, Moreau MF, Veyre A, Madelmont JC. Synthesis of three no-carrier-added O6-4-[125I] iodobenzylguanosine derivatives, new reagents for the assay of O6-alkylguanine-DNA alkyltransferase activity. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580361212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Saygili EI, Akcay T, Dinçer Y, Obek C, Kural AR, Cakalir C. Methylguanine DNA methyl transferase activities, glutathione s transferase and nitric oxide in bladder cancer patients. Cancer Invest 2006; 24:256-60. [PMID: 16809152 DOI: 10.1080/07357900600634120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tumor formation is a multistep process that can be divided in to the stages of tumor initiation, promotion, and progression. DNA repair protein; MGMT is a key suicide enzyme that repairs the mispairing base methylguanine, which is induced in DNA as a minor lesion. The glutathione S transferases (GSTs) are a family of enzymes that are important to protect against alkylating agents. Nitric oxide, contributes to the regulation of tumor angiogenesis. A substantial body of experimental evidence supports the hypothesis that tumor angiogenesis is fundamental for the growth and metastasis of solid tumors. We measured the activities of GST, MGMT, and levels of NO3-/NO2- in the leukocytes from patients with bladder carcinoma and healthy controls and activities of MGMT in the tissue from patients with bladder carcinoma and adjacent normal tissue in bladder. Both GST and tissue MGMT activites were significantly increased in the patient group. There was no significant difference between controls and patients for MGMT activity in peripheral blood leukocytes (PBL). Nitrate/nitrite levels in PBL, there was no significant difference between controls and patients. Nitrate/nitrite levels were increased in G2-G3 tumors. In conclusion, we determined high concentrations of nitrite in leukocytes are suspected alkylation damage by induction nitrosamine. Increased DNA alkylation damage may lead the stimulation of MGMT and GST.
Collapse
Affiliation(s)
- E Ilker Saygili
- Departments of Biochemistry, Cerrahpaşa Medical School, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
35
|
Tompkins EM, Farmer PB, Lamb JH, Jukes R, Dingley K, Ubick E, Turteltaub KW, Martin EA, Brown K. A novel 14C-postlabeling assay using accelerator mass spectrometry for the detection of O6-methyldeoxy-guanosine adducts. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:883-91. [PMID: 16470516 DOI: 10.1002/rcm.2370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Accelerator mass spectrometry (AMS) is currently one of the most sensitive methods available for the trace detection of DNA adducts and is particularly valuable for measuring adducts in humans or animal models. However, the standard approach requires administration of a radiolabeled compound. As an alternative, we have developed a preliminary 14C-postlabeling assay for detection of the highly mutagenic O6-methyldeoxyguanosine (O6-MedG), by AMS. Procedures were developed for derivatising O6-MedG using unlabeled acetic anhydride. Using conventional liquid chromatography/mass spectrometry (LC/MS) analysis, the limit of detection (LOD) for the major product, triacetylated O6-MedG, was 10 fmol. On reaction of O6-MedG with 14C-acetic anhydride, using a specially designed enclosed system, the predominant product was 14C-di-acetyl O6-MedG. This change in reaction profile was due to a modification of the reaction procedure, introduced as a necessary safety precaution. The LOD for 14C-di-acetyl O6-MedG by AMS was determined as 79 amol, approximately 18,000-fold lower than that achievable by liquid scintillation counting (LSC). Although the assay has so far only been carried out with labeled standards, the degree of sensitivity obtained illustrates the potential of this assay for measuring O6-MedG levels in humans.
Collapse
Affiliation(s)
- Elaine M Tompkins
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, The Biocentre, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Beardsley DI, Kim WJ, Brown KD. N-methyl-N'-nitro-N-nitrosoguanidine activates cell-cycle arrest through distinct mechanisms activated in a dose-dependent manner. Mol Pharmacol 2005; 68:1049-60. [PMID: 15994368 DOI: 10.1124/mol.105.013888] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S(N)1-alkylating agents, such as the mutagenic and cytotoxic drug N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), robustly activate the DNA damage-responsive G(2) checkpoint. Establishment of this checkpoint is dependent on a functional mismatch repair (MMR) system; however, exposure to high doses of MNNG overrides the requirement for MMR to trigger G(2) arrest. In addition, unlike moderate-dose exposure, in which the G(2) checkpoint is attenuated in ataxia-telangiectasia, mutated (ATM)-deficient cells, high-dose MNNG treatment activates G(2) arrest through an ATM-independent mechanism. We document that this arrest is sensitive to the pharmacological agents caffeine and 7-hydroxystaurosporine (UCN-01) that inhibit the checkpoint kinases ATM/ATM and Rad-3-related (ATR) and Chk1/Chk2, respectively. Furthermore, these agents block inactivation of the cell-cycle regulatory molecules Cdc25C and Cdc2, establishing the downstream mechanism through which high-dose MNNG establishes G(2) arrest. Activation of both Chk2 and Chk1 was independent of ATM and MMR in response to high-dose MNNG, unlike the response to moderate doses of this drug. Chk2 was found to be dispensable for cell-cycle arrest in response to high-dose MNNG treatment; however, ATR deficiency and decreased Chk1 expression forced by RNA interference resulted in diminished checkpoint response. These results indicate that MNNG activates the G(2) checkpoint through different mechanisms activated in a dose-dependent fashion.
Collapse
Affiliation(s)
- Dillon I Beardsley
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
37
|
van Oosten M, Stout GJ, Backendorf C, Rebel H, de Wind N, Darroudi F, van Kranen HJ, de Gruijl FR, Mullenders LH. Mismatch repair protein Msh2 contributes to UVB-induced cell cycle arrest in epidermal and cultured mouse keratinocytes. DNA Repair (Amst) 2005; 4:81-9. [PMID: 15533840 DOI: 10.1016/j.dnarep.2004.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Accepted: 08/18/2004] [Indexed: 12/01/2022]
Abstract
Nucleotide excision repair (NER), cell cycle regulation and apoptosis are major defence mechanisms against the carcinogenic effects of UVB radiation. NER eliminates UVB-induced DNA photolesions via two subpathways: global genome repair (GGR) and transcription-coupled repair (TCR). In a previous study, we found UVB-induced accumulation of tetraploid (4N) keratinocytes in the epidermis of Xpc(-/-) mice (no GGR), but not in Xpa(-/-) (no TCR and no GGR) or in wild-type (WT) mice. We inferred that this arrest in Xpc(-/-) mice is caused by erroneous replication past photolesions, leading to 'compound lesions' known to be recognised by mismatch repair (MMR). MMR-induced futile cycles of breakage and resynthesis at sites of compound lesions may then sustain a cell cycle arrest. The present experiments with Xpc(-/-)Msh2(-/-) mice and derived keratinocytes show that the MMR protein Msh2 indeed plays a role in the generation of the UVB-induced arrested cells: a Msh2-deficiency lowered significantly the percentage of arrested cells in vivo (40-50%) and in vitro (30-40%). Analysis of calyculin A (CA)-induced premature chromosome condensation (PCC) of cultured Xpc(-/-) keratinocytes showed that the delayed arrest occurred in late S phase rather than in G(2)-phase. Taken together, the results indicate that in mouse epidermis and cultured keratinocytes, the MMR protein Msh2 plays a role in the UVB-induced S-phase arrest. This indicates that MMR plays a role in the UVB-induced S-phase arrest. Alternatively, Msh2 may have a more direct signalling function.
Collapse
Affiliation(s)
- Marijke van Oosten
- Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shi BS, Cai ZN, Yang J, Yu YN. N-methyl-N'-nitro-N-nitrosoguanidine sensitivity, mutator phenotype and sequence specificity of spontaneous mutagenesis in FEN-1-deficient cells. Mutat Res 2005; 556:1-9. [PMID: 15491627 DOI: 10.1016/j.mrfmmm.2004.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 05/18/2004] [Accepted: 05/28/2004] [Indexed: 11/26/2022]
Abstract
Intact pZ189 DNA was allowed to replicate in FL-FEN-1(-) cell line that was established in this laboratory in which the expression of FEN-1 gene was blocked by dexamethasone-inducible expression of antisense RNA to FEN-1. E. coli MBM7070 was transfected with the replicated plasmid, and those with mutations in the supF gene were identified. The frequency of mutants that did not contain recognizable changes in the electrophoretic mobility of the plasmid DNA was scored. The frequency of such mutants was 19.1 x 10(-4) (34/17781), significantly higher than those of 2.9 x 10(-4) (4/13668) and 3.0 x 10(-4) (3/9857) in the corresponding controls, respectively. Sequence analysis of the supF genes of these mutants showed that all (37/37) the base substitutions occurred at C:G base pairs; 68% (23/37) of the base substitutions were base transversions, while 32% (12/37) were transitions. Approximately 76% (23/37) of these base substitutions occurred frequently at nine positions; two of these sites contain triple pyrimidine (T or C) repeat upstream to the mutated base; four of these sites consist of 5'-TTN1N2 and mutations occurred at N1 site sequence; another two sites have the characteristics of triple A flanked at both 5' and 3' side by TCT, with the base substitution occurring at C in the context sequence. These data suggested that these sites are the hot spot of mutagenesis in plasmid replicated in FEN-1-deficient cells. Besides the mutator phenotype of the FEN-1-deficient cell, it was also demonstrated that FEN-1-deficient cell exhibited an increased N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) sensitive phenotype.
Collapse
Affiliation(s)
- Bin-Shan Shi
- Department of Pathophysiology, Center of Environmental Genomics, Zhejiang University School of Medicine, 353 Yan'an Road, Hangzhou 310031, China
| | | | | | | |
Collapse
|
39
|
Adamson AW, Beardsley DI, Kim WJ, Gao Y, Baskaran R, Brown KD. Methylator-induced, mismatch repair-dependent G2 arrest is activated through Chk1 and Chk2. Mol Biol Cell 2005; 16:1513-26. [PMID: 15647386 PMCID: PMC551512 DOI: 10.1091/mbc.e04-02-0089] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SN1 DNA methylating agents such as the nitrosourea N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) elicit a G2/M checkpoint response via a mismatch repair (MMR) system-dependent mechanism; however, the exact nature of the mechanism governing MNNG-induced G2/M arrest and how MMR mechanistically participates in this process are unknown. Here, we show that MNNG exposure results in activation of the cell cycle checkpoint kinases ATM, Chk1, and Chk2, each of which has been implicated in the triggering of the G2/M checkpoint response. We document that MNNG induces a robust, dose-dependent G2 arrest in MMR and ATM-proficient cells, whereas this response is abrogated in MMR-deficient cells and attenuated in ATM-deficient cells treated with moderate doses of MNNG. Pharmacological and RNA interference approaches indicated that Chk1 and Chk2 are both required components for normal MNNG-induced G2 arrest. MNNG-induced nuclear exclusion of the cell cycle regulatory phosphatase Cdc25C occurred in an MMR-dependent manner and was compromised in cells lacking ATM. Finally, both Chk1 and Chk2 interact with the MMR protein MSH2, and this interaction is enhanced after MNNG exposure, supporting the notion that the MMR system functions as a molecular scaffold at the sites of DNA damage that facilitates activation of these kinases.
Collapse
Affiliation(s)
- Aaron W Adamson
- Department of Biochemistry and Molecular Biology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Hirose Y, Katayama M, Berger MS, Pieper RO. Cooperative function of Chk1 and p38 pathways in activating G2 arrest following exposure to temozolomide. J Neurosurg 2004; 100:1060-5. [PMID: 15200121 DOI: 10.3171/jns.2004.100.6.1060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The Chk1 and p38 mitogen-activated protein kinase (MAPK) pathways play key roles in the G2 arrest caused by exposing glioma cells to temozolomide (TMZ). Although inhibition of either pathway sensitizes glioma cells to TMZ-induced cytotoxicity, the relative contributions of these pathways to TMZ-induced G2 arrest and to TMZ resistance conferred by G2 arrest have not been defined. METHODS The authors pharmacologically inhibited the Chk1 and/or p38 pathways in U87MG human glioma cells prior to and/or after exposure to TMZ; thereafter, effects on the TMZ-induced G2 arrest pathway and toxicity were monitored. The p38 inhibitor SB203580 or the Chk1 inhibitor UCN-01 or their combination blocked TMZ-mediated inactivation of cdc25C and cdc2, suggesting that p38 and Chk1 pathways work cooperatively and are both necessary to inactivate cdc25C and cdc2. Consistent with this idea, the inhibition of both Chk1 and p38 pathways did not lead to greater bypass of TMZ-induced G2 arrest or greater cytotoxicity than inhibition of either pathway alone. Inhibition of p38 did not alter TMZ-induced Chk1 activation/phosphorylation and vice versa, suggesting that p38 and Chk1 do not cooperatively bring about G2 arrest by reciprocal activation/phosphorylation. The two pathways, however, are not functionally identical; the Chk1 pathway was required for both the initiation and maintenance of TMZ-induced G2 arrest, whereas the p38 pathway played a role only in the initiation. CONCLUSIONS The Chk1 and p38 pathways cooperate to bring about TMZ-induced G2 arrest, and the inhibition of either pathway alone is sufficient to sensitize U87MG glioma cells to TMZ-induced cytotoxicity.
Collapse
Affiliation(s)
- Yuichi Hirose
- Brain Tumor Research Center, Department of Neurological Surgery, San Francisco, California, USA
| | | | | | | |
Collapse
|
42
|
Stojic L, Mojas N, Cejka P, Di Pietro M, Ferrari S, Marra G, Jiricny J. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes Dev 2004; 18:1331-44. [PMID: 15175264 PMCID: PMC420358 DOI: 10.1101/gad.294404] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Accepted: 04/06/2004] [Indexed: 11/25/2022]
Abstract
S(N)1-type alkylating agents represent an important class of chemotherapeutics, but the molecular mechanisms underlying their cytotoxicity are unknown. Thus, although these substances modify predominantly purine nitrogen atoms, their toxicity appears to result from the processing of O(6)-methylguanine ((6Me)G)-containing mispairs by the mismatch repair (MMR) system, because cells with defective MMR are highly resistant to killing by these agents. In an attempt to understand the role of the MMR system in the molecular transactions underlying the toxicity of alkylating agents, we studied the response of human MMR-proficient and MMR-deficient cells to low concentrations of the prototypic methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We now show that MNNG treatment induced a cell cycle arrest that was absolutely dependent on functional MMR. Unusually, the cells arrested only in the second G(2) phase after treatment. Downstream targets of both ATM (Ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) kinases were modified, but only the ablation of ATR, or the inhibition of CHK1, attenuated the arrest. The checkpoint activation was accompanied by the formation of nuclear foci containing the signaling and repair proteins ATR, the S(*)/T(*)Q substrate, gamma-H2AX, and replication protein A (RPA). The persistence of these foci implied that they may represent sites of irreparable damage.
Collapse
Affiliation(s)
- Lovorka Stojic
- Institute of Molecular Cancer Research, University of Zurich, CH-8008 Zurich
| | | | | | | | | | | | | |
Collapse
|
43
|
Sciandrello G, Caradonna F, Barbata G. Karyotype abnormalities in a variant Chinese hamster cell line resistant to methyl methanesulphonate. Hereditas 2004; 124:39-46. [PMID: 8690612 DOI: 10.1111/j.1601-5223.1996.00039.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A variant cell population, isolated from V79-C13 Chinese hamster cells after two consecutive treatments with methyl methanesulphonate (MMS), was found to be highly resistant to killing by this alkylating agent. The resistant cell line was cytogenetically characterized both by the presence of a stable translocation involving metacentric chromosome 2 and acrocentric chromosome 6 and by a supernumerary chromosome originated by the duplication of a small telocentric chromosome. This cell population also showed a transient transformed phenotype, seen as formation of transformed foci containing cells with high chromosomes counts and multiple chromosomal aberrations. As MMS-resistance and karyotype changes are permanent and heritable traits, we suppose that they are related events.
Collapse
Affiliation(s)
- G Sciandrello
- Dipartimento di Biologia Cellulare e dello Sviluppo A. Monroy, Università di Palermo, Italy
| | | | | |
Collapse
|
44
|
Wu J, Zhu BB, Yu J, Zhu H, Qiu L, Kindy MS, Gu L, Seidel A, Li GM. In vitro and in vivo modulations of benzo[c]phenanthrene-DNA adducts by DNA mismatch repair system. Nucleic Acids Res 2004; 31:6428-34. [PMID: 14602900 PMCID: PMC275569 DOI: 10.1093/nar/gkg875] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Benzo[c]phenanthrene dihydrodiol epoxide (B[c] PhDE) is well known as an important environmental chemical carcinogen that preferentially modifies DNA in adenine residues. However, the molecular mechanism by which B[c]PhDE induces tumorigenesis is not fully understood. In this report, we demonstrate that DNA mismatch repair (MMR), a genome maintenance system, plays an important role in B[c]PhDE-induced carcinogensis by promoting apoptosis in cells treated with B[c]PhDE. We show that purified human MMR recognition proteins, MutS(alpha) and MutSbeta, specifically recognized B[c]PhDE-DNA adducts. Cell lines proficient in MMR exhibited several-fold more sensitivity to killing than cell lines defective in either MutS(alpha) or MutL(alpha) by B[c]PhDE; the nature of this sensitivity was shown to be due to increased apoptosis. Additionally, wild-type mice exposed to B[c]PhDE had intestinal crypt cells that underwent apoptosis significantly more often than intestinal crypt cells found in B[c]PhDE-treated Msh2(-/-) or Mlh1(-/-) mice. These findings, combined with previous studies, suggest that the MMR system may serve as a general sensor for chemical-caused DNA damage to prevent damaged cells from mutagenesis and carcinogenesis by promoting apoptosis.
Collapse
Affiliation(s)
- Jianxin Wu
- Markey Cancer Center and Department of Pathology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bell JS, Harvey TI, Sims AM, McCulloch R. Characterization of components of the mismatch repair machinery in Trypanosoma brucei. Mol Microbiol 2004; 51:159-73. [PMID: 14651619 DOI: 10.1046/j.1365-2958.2003.03804.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mismatch repair is one of a number of DNA repair pathways that cells possess to deal with damage to their genome. Mismatch repair is concerned with the recognition and correction of incorrectly paired bases, which can be base-base mismatches or insertions or deletions of a few bases, and appears to have been conserved throughout evolution. Primarily, this is concerned with increasing the fidelity of DNA replication, but also has important roles in the regulation of homologous recombination and the correction of chemical damage. In this study, we describe five genes in the protistan parasite Trypanosoma brucei that are likely to be involved in nuclear mismatch repair. The predicted T. brucei mismatch repair genes are diverged compared with their likely counterparts in the other eukaryotes examined to date. To demonstrate that these do indeed encode a functional nuclear mismatch repair system, we made T. brucei null mutants in two of the genes, MSH2 and MLH1, that are likely to be central to the functioning of the mismatch repair machinery. These mutations resulted in increased rates of sequence variation at a number of microsatellite loci in the parasite genome, and led to increased tolerance to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, both phenotypes consistent with mismatch repair impairment.
Collapse
Affiliation(s)
- Joanna S Bell
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | | | | | |
Collapse
|
46
|
Lützen A, Bisgaard HC, Rasmussen LJ. Cyclin D1 expression and cell cycle response in DNA mismatch repair-deficient cells upon methylation and UV-C damage. Exp Cell Res 2004; 292:123-34. [PMID: 14720512 DOI: 10.1016/j.yexcr.2003.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have evaluated cell survival, apoptosis, and cell cycle responses in a panel of DNA mismatch repair (MMR)-deficient colon and prostate cancer cell lines after alkylation and UV-C damage. We show that although these MMR-deficient cells tolerate alkylation damage, they are as sensitive to UV-C-induced damage as are the MMR-proficient cells. MMR-proficient cells arrest in the S-G2 phase of the cell cycle and initiate apoptosis following alkylation damage, whereas MMR-deficient cells continue proliferation. However, two prostate cancer cell lines that are MMR-deficient surprisingly arrest transiently in S-G2 after alkylation damage. Progression through G1 phase initially depends on the expression of one or more of the D-type cyclins (D1, D2, and/or D3). Analysis of cyclin D1 expression shows an initial MMR-independent decrease in the protein level after alkylation as well as UV-C damage. At later time points, however, only DNA damage-arrested cells showed decreased cyclin D1 levels irrespective of MMR status, indicating that reduced cyclin D1 could be a result of a smaller fraction of cells being in G1 phase rather than a result of an intact MMR system. Finally, we show that cyclin D1 is degraded by the proteasome in response to alkylation damage.
Collapse
Affiliation(s)
- Anne Lützen
- Department of Life Sciences and Chemistry, Roskilde University, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
47
|
Hirose Y, Katayama M, Stokoe D, Haas-Kogan DA, Berger MS, Pieper RO. The p38 mitogen-activated protein kinase pathway links the DNA mismatch repair system to the G2 checkpoint and to resistance to chemotherapeutic DNA-methylating agents. Mol Cell Biol 2003; 23:8306-15. [PMID: 14585987 PMCID: PMC262371 DOI: 10.1128/mcb.23.22.8306-8315.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although human cells exposed to DNA-methylating agents undergo mismatch repair (MMR)-dependent G(2) arrest, the basis for the linkage between MMR and the G(2) checkpoint is unclear. We noted that mitogen-activated protein kinase p38alpha was activated in MMR-proficient human glioma cells exposed to the chemotherapeutic methylating agent temozolomide (TMZ) but not in paired cells made MMR deficient by expression of a short inhibitory RNA (siRNA) targeted to the MMR protein Mlh1. Furthermore, activation of p38alpha in MMR-proficient cells was associated with nuclear inactivation of the cell cycle regulator Cdc25C phosphatase and its downstream target Cdc2 and with activation of the G(2) checkpoint, actions which were suppressed by the p38alpha/beta inhibitors SB203580 and SB202590 or by expression of a p38alpha siRNA. Finally, pharmacologic or genetic inhibition of p38alpha increased the sensitivity of MMR-proficient cells to the cytotoxic actions of TMZ by increasing the percentage of cells that underwent mitotic catastrophe as a consequence of G(2) checkpoint bypass. These results suggest that p38alpha links DNA MMR to the G(2) checkpoint and to resistance to chemotherapeutic DNA-methylating agents. The p38 pathway may therefore represent a new target for the development of agents to sensitize tumor cells to chemotherapeutic methylating agents.
Collapse
Affiliation(s)
- Yuichi Hirose
- UCSF Cancer Center, Department of Neurological Surgery, University of California-San Francisco, 2340 Sutter Street, San Francisco, CA 94115-0875, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sansom OJ, Zabkiewicz J, Bishop SM, Guy J, Bird A, Clarke AR. MBD4 deficiency reduces the apoptotic response to DNA-damaging agents in the murine small intestine. Oncogene 2003; 22:7130-6. [PMID: 14562041 DOI: 10.1038/sj.onc.1206850] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MBD4 was originally identified through its methyl binding domain, but has more recently been characterized as a thymine DNA glycosylase that interacts with the mismatch repair (MMR) protein MLH1. In vivo, MBD4 functions to reduce the mutability of methyl-CpG sites in the genome and mice deticient in MBD4 show increased intestinal tumorigenesis on an Apc(Min/+) background. As MLH1 and other MMR proteins have been functionally linked to apoptosis, we asked whether MBD4 also plays a role in mediating the apoptotic response within the murine small intestine. Mice deficient for MBD4 showed significantly reduced apoptotic responses 6 h following treatment with a range of cytotoxic agents including gamma-irradiation, cisplatin, temozolomide and 5-fluorouracil (5-FU). This leads to increased clonogenic survival in vivo in Mbd4(-/-) mice following exposure to either 5-FU or cisplatin. We next analysed the apoptotic response to 5-FU and temozolomide in doubly mutant Mbd4(-/-), Mlh1(-/-) mice but observed no additive decrease. The results imply that MBD4 and MLH1 lie in the same pathway and therefore that MMR-dependent apoptosis is mediated through MBD4. MBD4 deficiency also reduced the normal apoptotic response to gamma-irradiation, which we show is independent of Mlh1 status (at least in the murine small intestine), so suggesting that the reliance upon MBD4 may extend beyond MMR-mediated apoptosis. Our results establish a novel functional role for MBD4 in the cellular response to DNA damage and may have implications for its role in suppressing neoplasia.
Collapse
Affiliation(s)
- Owen James Sansom
- Cardiff School of Biosciences, Cardiff University, PO Box 911, Cardiff CF10 3US, UK
| | | | | | | | | | | |
Collapse
|
49
|
Sansom OJ, Bishop SM, Court H, Dudley S, Liskay RM, Clarke AR. Apoptosis and mutation in the murine small intestine: loss of Mlh1- and Pms2-dependent apoptosis leads to increased mutation in vivo. DNA Repair (Amst) 2003; 2:1029-39. [PMID: 12967659 DOI: 10.1016/s1568-7864(03)00111-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mismatch repair (MMR) protein Msh2 has been shown to function in the apoptotic response to alkylating agents in vivo. Here, we extend these studies to the MutL homologues (MLH) Mlh1 and Pms2 by analysing the apoptotic response within the small intestine of gene targeted strains. We demonstrate significant differences between Msh2, Mlh1 and Pms2 mutations in influencing apoptotic signalling following 50mg/kg N-methyl-nitrosourea (NMNU), with no obvious reliance upon either Mlh1 or Pms2. However, following exposure to 100mg/kg temozolomide or lower levels of NMNU (10mg/kg) both Mlh1- and Pms2-dependent apoptosis was observed, indicating that the apoptotic response at these levels of DNA damage is dependent on the MutL homologues. Given our ability to observe a MutLalpha dependence of the apoptotic response, we tested whether perturbations of this response directly translate into increases in mutation frequency in vivo. We show that treatment with temozolomide or 10mg/kg NMNU significantly increases mutation in both the Mlh1 and Pms2 mutant mice. At higher levels of NMNU, where the apoptotic response is independent of Mlh1 and Pms2, no gene dependent increase in mutation frequency was observed. These results argue that the MutSalpha and MutLalpha are not equally important in their ability to signal apoptosis. However, when MMR does mediate apoptosis, perturbation of this response leads to long-term persistence of mutant cells in vivo.
Collapse
Affiliation(s)
- Owen J Sansom
- School of Biosciences, University of Cardiff, Museum Avenue, P.O. Box 911, Cardiff, Wales CF10 3US, UK
| | | | | | | | | | | |
Collapse
|
50
|
Reese JS, Liu L, Gerson SL. Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 2003; 102:1626-33. [PMID: 12730104 DOI: 10.1182/blood-2002-10-3035] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mismatch repair deficiency is associated with carcinogenesis, increased spontaneous and induced mutagenesis, and resistance to methylating agents. In humans, leukemias and lymphomas arise in the background of mismatch repair deficiency, raising the possibility that hematopoiesis is abnormal as well. To address hematopoiesis in MSH2-/- mice, we collected marrow and performed serial transplantations of these cells, alone or mixed with wild-type cells, into lethally irradiated healthy mice. Transplant recipients were observed or treated with the methylating agent, temozolomide (TMZ). Methylating agent tolerance was evident by the competitive survival advantage of MSH2-/- marrow progenitors compared with wild-type cells after each TMZ exposure. However, serial repopulation by MSH2-/- cells was deficient compared with wild-type cells. In recipients of mixed populations, the MSH 2-/- cells were lost from the marrow, and mice receiving MSH2-/- cells plus TMZ could not be reconstituted in the third passage, whereas all wild-type cell recipients survived. No differences in telomere length, cell cycle distribution, or homing were observed, but an increase in microsatellite instability was seen in the MSH2-/- early progenitor colony-forming unit (CFU) and Sca+Kit+lin--derived clones. Thus, mismatch repair deficiency is associated with a hematopoietic repopulation defect and stem cell exhaustion because of accumulation of genomic instability.
Collapse
Affiliation(s)
- Jane S Reese
- BRB 3, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | | | | |
Collapse
|