1
|
Butera F, Sero JE, Dent LG, Bakal C. Actin networks modulate heterogeneous NF-κB dynamics in response to TNFα. eLife 2024; 13:e86042. [PMID: 39110005 PMCID: PMC11524587 DOI: 10.7554/elife.86042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/05/2024] [Indexed: 11/01/2024] Open
Abstract
The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in pancreatic ductal adenocardinoma (PDAC) tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single-cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single-cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.
Collapse
Affiliation(s)
- Francesca Butera
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Julia E Sero
- Department of Life Sciences, University of BathBathUnited Kingdom
| | - Lucas G Dent
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| |
Collapse
|
2
|
Yang X, Zeng Q, İnam MG, İnam O, Lin CS, Tezel G. cFLIP in the molecular regulation of astroglia-driven neuroinflammation in experimental glaucoma. J Neuroinflammation 2024; 21:145. [PMID: 38824526 PMCID: PMC11143607 DOI: 10.1186/s12974-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Qun Zeng
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Maide Gözde İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Onur İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Li MY, Chong LC, Duns G, Lytle A, Woolcock B, Jiang A, Telenius A, Ben-Neriah S, Nawaz W, Slack GW, Elisia I, Viganò E, Aoki T, Healy S, Krystal G, Venturutti L, Scott DW, Steidl C. TRAF3 loss-of-function reveals the noncanonical NF-κB pathway as a therapeutic target in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2024; 121:e2320421121. [PMID: 38662551 PMCID: PMC11067025 DOI: 10.1073/pnas.2320421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Here, we report recurrent focal deletions of the chr14q32.31-32 locus, including TRAF3, a negative regulator of NF-κB signaling, in de novo diffuse large B cell lymphoma (DLBCL) (24/324 cases). Integrative analysis revealed an association between TRAF3 copy number loss with accumulation of NIK, the central noncanonical (NC) NF-κB kinase, and increased NC NF-κB pathway activity. Accordingly, TRAF3 genetic ablation in isogenic DLBCL model systems caused upregulation of NIK and enhanced NC NF-κB downstream signaling. Knockdown or pharmacological inhibition of NIK in TRAF3-deficient cells differentially impaired their proliferation and survival, suggesting an acquired onco-addiction to NC NF-κB. TRAF3 ablation also led to exacerbated secretion of the immunosuppressive cytokine IL-10. Coculturing of TRAF3-deficient DLBCL cells with CD8+ T cells impaired the induction of Granzyme B and interferon (IFN) γ, which were restored following neutralization of IL-10. Our findings corroborate a direct relationship between TRAF3 genetic alterations and NC NF-κB activation, and highlight NIK as a potential therapeutic target in a defined subset of DLBCL.
Collapse
Affiliation(s)
- Michael Y. Li
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Lauren C. Chong
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Andrew Lytle
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Bruce Woolcock
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Aixiang Jiang
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Waqas Nawaz
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Ingrid Elisia
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Elena Viganò
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Shannon Healy
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Leandro Venturutti
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| |
Collapse
|
4
|
Harada M, Su-Harada K, Kimura T, Ono K, Ashida N. Sustained activation of NF-κB through constitutively active IKKβ leads to senescence bypass in murine dermal fibroblasts. Cell Cycle 2024; 23:308-327. [PMID: 38461418 PMCID: PMC11057680 DOI: 10.1080/15384101.2024.2325802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Although the transcription factor nuclear factor κB (NF-κB) plays a central role in the regulation of senescence-associated secretory phenotype (SASP) acquisition, our understanding of the involvement of NF-κB in the induction of cellular senescence is limited. Here, we show that activation of the canonical NF-κB pathway suppresses senescence in murine dermal fibroblasts. IκB kinase β (IKKβ)-depleted dermal fibroblasts showed ineffective NF-κB activation and underwent senescence more rapidly than control cells when cultured under 20% oxygen conditions, as indicated by senescence-associated β-galactosidase (SA-β-gal) staining and p16INK4a mRNA levels. Conversely, the expression of constitutively active IKKβ (IKKβ-CA) was sufficient to drive senescence bypass. Notably, the expression of a degradation-resistant form of inhibitor of κB (IκB), which inhibits NF-κB nuclear translocation, abolished senescence bypass, suggesting that the inhibitory effect of IKKβ-CA on senescence is largely mediated by NF-κB. We also found that IKKβ-CA expression suppressed the derepression of INK4/Arf genes and counteracted the senescence-associated loss of Ezh2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2). Moreover, pharmacological inhibition of Ezh2 abolished IKKβ-CA-induced senescence bypass. We propose that NF-κB plays a suppressive role in the induction of stress-induced senescence through sustaining Ezh2 expression.
Collapse
Affiliation(s)
- Masayuki Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanae Su-Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Vucur M, Ghallab A, Schneider AT, Adili A, Cheng M, Castoldi M, Singer MT, Büttner V, Keysberg LS, Küsgens L, Kohlhepp M, Görg B, Gallage S, Barragan Avila JE, Unger K, Kordes C, Leblond AL, Albrecht W, Loosen SH, Lohr C, Jördens MS, Babler A, Hayat S, Schumacher D, Koenen MT, Govaere O, Boekschoten MV, Jörs S, Villacorta-Martin C, Mazzaferro V, Llovet JM, Weiskirchen R, Kather JN, Starlinger P, Trauner M, Luedde M, Heij LR, Neumann UP, Keitel V, Bode JG, Schneider RK, Tacke F, Levkau B, Lammers T, Fluegen G, Alexandrov T, Collins AL, Nelson G, Oakley F, Mann DA, Roderburg C, Longerich T, Weber A, Villanueva A, Samson AL, Murphy JM, Kramann R, Geisler F, Costa IG, Hengstler JG, Heikenwalder M, Luedde T. Sublethal necroptosis signaling promotes inflammation and liver cancer. Immunity 2023; 56:1578-1595.e8. [PMID: 37329888 DOI: 10.1016/j.immuni.2023.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/30/2022] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Anne T Schneider
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Arlind Adili
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Michael T Singer
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Veronika Büttner
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Leonie S Keysberg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Lena Küsgens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Marlene Kohlhepp
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Suchira Gallage
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Jose Efren Barragan Avila
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne-Laure Leblond
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Markus S Jördens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Maria T Koenen
- Department of Medicine, Rhein-Maas-Klinikum, Würselen, Germany
| | - Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Simone Jörs
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Carlos Villacorta-Martin
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, University of Milan, Milan, Italy
| | - Josep M Llovet
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Liver Unit, CIBEREHD, Hospital Clínic, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mark Luedde
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lara R Heij
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P Neumann
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Rebekka K Schneider
- Department of Cell Biology, Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Dusseldorf, Heinrich Heine University, Dusseldorf, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Georg Fluegen
- Department of Surgery (A), University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University, Dusseldorf, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Amy L Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Glyn Nelson
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Achim Weber
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andre L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Geisler
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Mathias Heikenwalder
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| |
Collapse
|
6
|
Martens A, Hertens P, Priem D, Rinotas V, Meletakos T, Gennadi M, Van Hove L, Louagie E, Coudenys J, De Muynck A, Gaublomme D, Sze M, van Hengel J, Catrysse L, Hoste E, Zajac JD, Davey RA, Van Hoorebeke L, Hochepied T, Bertrand MJM, Armaka M, Elewaut D, van Loo G. A20 controls RANK-dependent osteoclast formation and bone physiology. EMBO Rep 2022; 23:e55233. [PMID: 36194667 PMCID: PMC9724664 DOI: 10.15252/embr.202255233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
The anti-inflammatory protein A20 serves as a critical brake on NF-κB signaling and NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been associated with several inflammatory disorders, including rheumatoid arthritis (RA), and experimental studies in mice have demonstrated that myeloid-specific A20 deficiency causes the development of a severe polyarthritis resembling human RA. Myeloid A20 deficiency also promotes osteoclastogenesis in mice, suggesting a role for A20 in the regulation of osteoclast differentiation and bone formation. We show here that osteoclast-specific A20 knockout mice develop severe osteoporosis, but not inflammatory arthritis. In vitro, osteoclast precursor cells from A20 deficient mice are hyper-responsive to RANKL-induced osteoclastogenesis. Mechanistically, we show that A20 is recruited to the RANK receptor complex within minutes of ligand binding, where it restrains NF-κB activation independently of its deubiquitinating activity but through its zinc finger (ZnF) 4 and 7 ubiquitin-binding functions. Together, these data demonstrate that A20 acts as a regulator of RANK-induced NF-κB signaling to control osteoclast differentiation, assuring proper bone development and turnover.
Collapse
Affiliation(s)
- Arne Martens
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Pieter Hertens
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Dario Priem
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Vagelis Rinotas
- Biomedical Sciences Research Center 'Alexander Fleming'VariGreece
| | | | - Meropi Gennadi
- Biomedical Sciences Research Center 'Alexander Fleming'VariGreece
| | - Lisette Van Hove
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Els Louagie
- Center for Inflammation Research VIBGhentBelgium
- Department of RheumatologyGhent University HospitalGhentBelgium
| | - Julie Coudenys
- Center for Inflammation Research VIBGhentBelgium
- Department of RheumatologyGhent University HospitalGhentBelgium
| | | | - Djoere Gaublomme
- Center for Inflammation Research VIBGhentBelgium
- Department of RheumatologyGhent University HospitalGhentBelgium
| | - Mozes Sze
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | | | - Leen Catrysse
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Esther Hoste
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Jeffrey D Zajac
- Department of Medicine, Austin HealthUniversity of MelbourneHeidelbergVictoriaAustralia
| | - Rachel A Davey
- Department of Medicine, Austin HealthUniversity of MelbourneHeidelbergVictoriaAustralia
| | | | - Tino Hochepied
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Mathieu J M Bertrand
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Marietta Armaka
- Biomedical Sciences Research Center 'Alexander Fleming'VariGreece
| | - Dirk Elewaut
- Center for Inflammation Research VIBGhentBelgium
- Department of RheumatologyGhent University HospitalGhentBelgium
| | - Geert van Loo
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
7
|
Nguyen-Vo TH, Trinh QH, Nguyen L, Nguyen-Hoang PU, Rahardja S, Nguyen BP. iPromoter-Seqvec: identifying promoters using bidirectional long short-term memory and sequence-embedded features. BMC Genomics 2022; 23:681. [PMID: 36192696 PMCID: PMC9531353 DOI: 10.1186/s12864-022-08829-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Promoters, non-coding DNA sequences located at upstream regions of the transcription start site of genes/gene clusters, are essential regulatory elements for the initiation and regulation of transcriptional processes. Furthermore, identifying promoters in DNA sequences and genomes significantly contributes to discovering entire structures of genes of interest. Therefore, exploration of promoter regions is one of the most imperative topics in molecular genetics and biology. Besides experimental techniques, computational methods have been developed to predict promoters. In this study, we propose iPromoter-Seqvec - an efficient computational model to predict TATA and non-TATA promoters in human and mouse genomes using bidirectional long short-term memory neural networks in combination with sequence-embedded features extracted from input sequences. The promoter and non-promoter sequences were retrieved from the Eukaryotic Promoter database and then were refined to create four benchmark datasets. RESULTS The area under the receiver operating characteristic curve (AUCROC) and the area under the precision-recall curve (AUCPR) were used as two key metrics to evaluate model performance. Results on independent test sets showed that iPromoter-Seqvec outperformed other state-of-the-art methods with AUCROC values ranging from 0.85 to 0.99 and AUCPR values ranging from 0.86 to 0.99. Models predicting TATA promoters in both species had slightly higher predictive power compared to those predicting non-TATA promoters. With a novel idea of constructing artificial non-promoter sequences based on promoter sequences, our models were able to learn highly specific characteristics discriminating promoters from non-promoters to improve predictive efficiency. CONCLUSIONS iPromoter-Seqvec is a stable and robust model for predicting both TATA and non-TATA promoters in human and mouse genomes. Our proposed method was also deployed as an online web server with a user-friendly interface to support research communities. Links to our source codes and web server are available at https://github.com/mldlproject/2022-iPromoter-Seqvec .
Collapse
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Gate 7, Kelburn Parade, 6140 Wellington, New Zealand
| | - Quang H. Trinh
- School of Information and Communication Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, 100000 Hanoi, Vietnam
| | - Loc Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Gate 7, Kelburn Parade, 6140 Wellington, New Zealand
| | - Phuong-Uyen Nguyen-Hoang
- Computational Biology Center, International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Susanto Rahardja
- School of Marine Science and Technology, Northwestern Polytechnical University, 127 West Youyi Road, 710072 Xi’an, China
- Infocomm Technology Cluster, Singapore Institute of Technology, 10 Dover Drive, 138683 Singapore, Singapore
| | - Binh P. Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Gate 7, Kelburn Parade, 6140 Wellington, New Zealand
| |
Collapse
|
8
|
A20 undermines alternative NF-κB activity and expression of anti-apoptotic genes in Helicobacter pylori infection. Cell Mol Life Sci 2022; 79:102. [PMID: 35089437 PMCID: PMC8799570 DOI: 10.1007/s00018-022-04139-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022]
Abstract
A hallmark of infection by the pathogen Helicobacter pylori, which colonizes the human gastric epithelium, is the simultaneous activation of the classical and alternative nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, underlying inflammation and cell survival. Here, we report that the classical NF-κB target gene product A20 contributes to the negative regulation of alternative NF-κB signaling in gastric epithelial cells infected by H. pylori. Mechanistically, the de novo synthesized A20 protein interacts with tumor necrosis factor receptor-associated factor-interacting protein with forkhead-associated domain (TIFA) and thereby interferes with the association of TIFA with the NIK regulatory complex. We also show that alternative NF-κB activity contributes to the up-regulation of anti-apoptotic genes, such as baculoviral IAP repeat containing 2 (BIRC2), BIRC3 and B-cell lymphoma 2-related protein A1 (BCL2A1) in gastric epithelial cells. Furthermore, the observed over-expression of RelB in human gastric biopsies with type B gastritis and RelB-dependent suppression of apoptotic cell death emphasize an important role of the alternative NF-κB pathway in H. pylori infection.
Collapse
|
9
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
10
|
Haselager M, Thijssen R, West C, Young L, Van Kampen R, Willmore E, Mackay S, Kater A, Eldering E. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL. Cell Death Differ 2021; 28:1658-1668. [PMID: 33495554 PMCID: PMC8167103 DOI: 10.1038/s41418-020-00692-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), the lymph node (LN) microenvironment delivers critical survival signals by inducing the expression of anti-apoptotic Bcl-2 members Bcl-XL, Bfl-1, and Mcl-1, resulting in apoptosis blockade. We determined previously that resistance against various drugs, among which is the clinically applied BH3 mimetic venetoclax, is dominated by upregulation of the anti-apoptotic regulator Bcl-XL. Direct clinical targeting of Bcl-XL by, e.g., Navitoclax is however not desirable due to induction of thrombocytopenia. Since the actual regulation of Bcl-XL in CLL in the context of the LN microenvironment is not well elucidated, we investigated various candidate LN signals to drive Bcl-XL expression. We found a dominance for NF-κB signaling upon CD40 stimulation, which results in activation of both the canonical and non-canonical NF-κB signaling pathways. We demonstrate that expression of Bcl-XL is first induced by the canonical NF-κB pathway, and subsequently boosted and continued via non-canonical NF-κB signaling through stabilization of NIK. NF-κB subunits p65 and p52 can both bind to the Bcl-XL promoter and activate transcription upon CD40 stimulation. Moreover, canonical NF-κB signaling was correlated with Bfl-1 expression, whereas Mcl-1 in contrast, was not transcriptionally regulated by NF-κB. Finally, we applied a novel compound targeting NIK to selectively inhibit the non-canonical NF-κB pathway and showed that venetoclax-resistant CLL cells were sensitized to venetoclax. In conclusion, protective signals from the CLL microenvironment can be tipped towards apoptosis sensitivity by interfering with non-canonical NF-κB signaling.
Collapse
Affiliation(s)
- Marco Haselager
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| | - Rachel Thijssen
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Christopher West
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Louise Young
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Roel Van Kampen
- grid.416905.fZuyderland Medical Center, Sittard, The Netherlands
| | - Elaine Willmore
- grid.1006.70000 0001 0462 7212Drug Discovery Unit, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Mackay
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnon Kater
- grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Temporal dynamics of a CSF1R signaling gene regulatory network involved in epilepsy. PLoS Comput Biol 2021; 17:e1008854. [PMID: 33819288 PMCID: PMC8057615 DOI: 10.1371/journal.pcbi.1008854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/20/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
Colony Stimulating Factor 1 Receptor (CSF1R) is a potential target for anti-epileptic drugs. However, inhibition of CSF1R is not well tolerated by patients, thereby prompting the need for alternative targets. To develop a framework for identification of such alternatives, we here develop a mathematical model of a pro-inflammatory gene regulatory network (GRN) involved in epilepsy and centered around CSF1R. This GRN comprises validated transcriptional and post-transcriptional regulations involving STAT1, STAT3, NFκB, IL6R, CSF3R, IRF8, PU1, C/EBPα, TNFR1, CSF1 and CSF1R. The model was calibrated on mRNA levels of all GRN components in lipopolysaccharide (LPS)-treated mouse microglial BV-2 cells, and allowed to predict that STAT1 and STAT3 have the strongest impact on the expression of the other GRN components. Microglial BV-2 cells were selected because, the modules from which the GRN was deduced are enriched for microglial marker genes. The function of STAT1 and STAT3 in the GRN was experimentally validated in BV-2 cells. Further, in silico analysis of the GRN dynamics predicted that a pro-inflammatory stimulus can induce irreversible bistability whereby the expression level of GRN components occurs as two distinct states. The irreversibility of the switch may enforce the need for chronic inhibition of the CSF1R GRN in order to achieve therapeutic benefit. The cell-to-cell heterogeneity driven by the bistability may cause variable therapeutic response. In conclusion, our modeling approach uncovered a GRN controlling CSF1R that is predominantly regulated by STAT1 and STAT3. Irreversible inflammation-induced bistability and cell-to-cell heterogeneity of the GRN provide a theoretical foundation to the need for chronic GRN control and the limited potential for disease modification via inhibition of CSF1R. Epilepsy is associated with the induction of complex molecular inflammatory processes. A better understanding of these molecular mechanisms is crucial to optimize therapeutic options. Here, we identified a gene regulatory network (GRN) involved in epilepsy that is controlled by inflammation and which regulates the expression and function of Colony Stimulating Factor 1 receptor (CSF1R), a therapeutic target for anti-epileptic drugs. Using mathematical modeling and experiments with cultured cells, we found that two of eleven components of the network, namely STAT1 and STAT3, exert a tight control on all other components. In addition, we found that inflammation can induce an irreversible switch in the expression of all components of the network, and can cause high cell-to-cell variability. Our findings provide a framework explaining why chronic, not acute, anti-inflammatory treatment is necessary to modulate the network and why drugs targeting CSF1R have limited therapeutic potential.
Collapse
|
12
|
Zhang S, Luo T, Wang J. Stable Cells with NF-κB-ZsGreen Fused Genes Created by TALEN Editing and Homology Directed Repair for Screening Anti-inflammation Drugs. J Inflamm Res 2021; 14:917-928. [PMID: 33762839 PMCID: PMC7982563 DOI: 10.2147/jir.s298938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background NF-κB is a sequence-specific DNA-binding transcription factor that plays key roles in inflammation and cancer. It is well known that NF-κB is over-activated in these diseases. NF-κB inhibitors are therefore developed as promising drugs for these diseases. However, finding NF-κB inhibitors is dependent on effective screening platforms. Methods For providing an easy and visualizable tool for screening NF-κB inhibitors, and other NF-κB-related studies, this study edited all five genes of NF-κB family (RELA, RELB, CREL, NF-κB1, NF-κB2) in three different cell lines (293T, HepG2, and PANC1) with both TALEN and CRISPR. The edited NF-κB genes were repaired by homology-dependent repair using a linear homologous donor containing ZsGreen coding sequence. The edit efficiency was thus directly evaluated by detecting cellular fluorescence. The editing efficiency was also confirmed by PCR detection of NF-κB-ZsGreen fused genes. Results It was found that all genes were more efficiently edited by TALEN in all cells than CRISPR. The positive cells were then isolated from the TALEN-edited cell pool by flow cytometry. The purified positive cells were finally evaluated by regulating NF-κB activity with a known NF-κB inhibitor, BAY 11-7082, and an NF-κB-targeting artificial microRNA, miR533. The results revealed that all the labeled NF-κB genes responded well to the two kinds of NF-κB activity regulators in all cell lines. Conclusion This study thus obtained 15 cell lines with NF-κB-ZsGreen fused genes, which provide an easy and visualizable tool for screening NF-κB inhibitors and other NF-κB-related studies.
Collapse
Affiliation(s)
- Shuyan Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
13
|
Bigildeev AE, Chepurnykh YF, Petinati NA, Drize NJ. Features of the Expression of NF-kB Pathway Genes in Tissues of Irradiated Mice and in Old Animals. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Blanchett S, Boal-Carvalho I, Layzell S, Seddon B. NF-κB and Extrinsic Cell Death Pathways - Entwined Do-or-Die Decisions for T cells. Trends Immunol 2020; 42:76-88. [PMID: 33246882 DOI: 10.1016/j.it.2020.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
NF-κB signaling is required at multiple stages of T cell development and function. The NF-κB pathway integrates signals from many receptors and involves diverse adapters and kinases. Recent advances demonstrate that kinases controlling NF-κB activation, such as the IKK complex, serve dual independent functions because they also control cell death checkpoints. Survival functions previously attributed to NF-κB are in fact mediated by these upstream kinases by novel mechanisms. This new understanding has led to a refined view of how NF-κB and cell death signaling are interlinked and how they regulate cell fate. We discuss how NF-κB activation and control of cell death signaling by common upstream triggers cooperate to regulate different aspects of T cell development and function.
Collapse
Affiliation(s)
- Sam Blanchett
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Ines Boal-Carvalho
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
15
|
Taylor SK, Houshdaran S, Robinson JF, Gormley MJ, Kwan EY, Kapidzic M, Schilling B, Giudice LC, Fisher SJ. Cytotrophoblast extracellular vesicles enhance decidual cell secretion of immune modulators via TNFα. Development 2020; 147:dev.187013. [PMID: 32747437 DOI: 10.1242/dev.187013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The placenta releases large quantities of extracellular vesicles (EVs) that likely facilitate communication between the embryo/fetus and the mother. We isolated EVs from second trimester human cytotrophoblasts (CTBs) by differential ultracentrifugation and characterized them using transmission electron microscopy, immunoblotting and mass spectrometry. The 100,000 g pellet was enriched for vesicles with a cup-like morphology typical of exosomes. They expressed markers specific to this vesicle type, CD9 and HRS, and the trophoblast proteins placental alkaline phosphatase and HLA-G. Global profiling by mass spectrometry showed that placental EVs were enriched for proteins that function in transport and viral processes. A cytokine array revealed that the CTB 100,000 g pellet contained a significant amount of tumor necrosis factor α (TNFα). CTB EVs increased decidual stromal cell (dESF) transcription and secretion of NF-κB targets, including IL8, as measured by qRT-PCR and cytokine array. A soluble form of the TNFα receptor inhibited the ability of CTB 100,000 g EVs to increase dESF secretion of IL8. Overall, the data suggest that CTB EVs enhance decidual cell release of inflammatory cytokines, which we theorize is an important component of successful pregnancy.
Collapse
Affiliation(s)
- Sara K Taylor
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Matthew J Gormley
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Elaine Y Kwan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Birgit Schilling
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA .,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, CA 94143, USA.,Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Murphy CE, Lawther AJ, Webster MJ, Asai M, Kondo Y, Matsumoto M, Walker AK, Weickert CS. Nuclear factor kappa B activation appears weaker in schizophrenia patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines. J Neuroinflammation 2020; 17:215. [PMID: 32680547 PMCID: PMC7368759 DOI: 10.1186/s12974-020-01890-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background High inflammation status despite an absence of known infection characterizes a subpopulation of people with schizophrenia who suffer from more severe cognitive deficits, less cortical grey matter, and worse neuropathology. Transcripts encoding factors upstream of nuclear factor kappa B (NF-κB), a major transcriptional activator for the synthesis of pro-inflammatory cytokines, are increased in the frontal cortex in schizophrenia compared to controls. However, the extent to which these changes are disease-specific, restricted to those with schizophrenia and high-neuroinflammatory status, or caused by loss of a key NF-κB inhibitor (HIVEP2) found in schizophrenia brain, has not been tested. Methods Post-mortem prefrontal cortex samples were assessed in 141 human brains (69 controls and 72 schizophrenia) and 13 brains of wild-type mice and mice lacking HIVEP2 (6 wild-type, 7 knockout mice). Gene expression of pro-inflammatory cytokines and acute phase protein SERPINA3 was used to categorize high and low neuroinflammation biotype groups in human samples via cluster analysis. Expression of 18 canonical and non-canonical NF-κB pathway genes was assessed by qPCR in human and mouse tissue. Results In humans, we found non-canonical upstream activators of NF-κB were generally elevated in individuals with neuroinflammation regardless of diagnosis, supporting NF-κB activation in both controls and people with schizophrenia when cytokine mRNAs are high. However, high neuroinflammation schizophrenia patients had weaker (or absent) transcriptional increases of several canonical upstream activators of NF-κB as compared to the high neuroinflammation controls. HIVEP2 mRNA reduction was specific to patients with schizophrenia who also had high neuroinflammatory status, and we also found decreases in NF-κB transcripts typically induced by activated microglia in mice lacking HIVEP2. Conclusions Collectively, our results show that high cortical expression of pro-inflammatory cytokines and low cortical expression of HIVEP2 in a subset of people with schizophrenia is associated with a relatively weak NF-κB transcriptional signature compared to non-schizophrenic controls with high cytokine expression. We speculate that this comparatively milder NF-κB induction may reflect schizophrenia-specific suppression possibly related to HIVEP2 deficiency in the cortex.
Collapse
Affiliation(s)
- Caitlin E Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Adam J Lawther
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Maree J Webster
- Stanley Medical Research Institute, Kensington, Maryland, USA
| | - Makoto Asai
- Astellas Pharma Inc., Drug Discovery Research, Tsukuba, Japan
| | - Yuji Kondo
- Astellas Pharma Inc., Drug Discovery Research, Tsukuba, Japan
| | | | - Adam K Walker
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Drug Discovery Biology Theme, Monash University, Parkville, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia. .,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia. .,Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
17
|
Yadav D, Nath Mishra B, Khan F. 3D-QSAR and docking studies on ursolic acid derivatives for anticancer activity based on bladder cell line T24 targeting NF-kB pathway inhibition. J Biomol Struct Dyn 2019; 37:3822-3837. [PMID: 30261824 DOI: 10.1080/07391102.2018.1528888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023]
Abstract
Bladder cancer is the common reason for mortality worldwide, and its increasing rate announces as a significant area of research in drug designing. The side effects and toxicity of existing drugs and the consequence of gradual cancer cell resistance against the available therapy make the treatment poor. Globally, there is a continuous high demand to develop new, more potent, and easily affordable drugs against cancer. The current research article illustrates the application of developed three-dimensional quantitative structure-activity relationship (3D-QSAR) based on human bladder cancer cell line T24 in vitro anticancer activity. The derived QSAR model has been used for prediction of natural compounds and analogs with 80% similarity of the most active compound of the dataset. The developed model describes the structure-activity relationship for terpenes and their derivatives at the molecular level. The developed comparative molecular field analysis (CoMFA) model shows a satisfactory cross-validation correlation coefficient (q2) of 0.54 and a regression correlation coefficient (r2) of 0.86. In order to evaluate the compliance with electronic pharmacokinetic parameters, Lipinski's rule of five filter, absorption, distribution, metabolism, and excretion (ADME) and toxicity of predicted compounds have been calculated. Furthermore, molecular-docking study has been performed to prioritize these predicted compounds based on their docking score and binding pocket similarity through the identified potential anticancer targets. Finally, two compounds T9 and B42 have been identified as the best hit because these two fall within the standard limits of all filters and show a good binding affinity. Conclusively, all satisfactory results strongly suggest that the derived 3D-QSAR model and obtained candidate's binding structures are reasonable in the prediction of a new antagonist's activity. The strategy adopted in the present research is expected to be of immense importance and a great support in the identification and optimization of lead in the early and advance drug discovery.
Collapse
Affiliation(s)
- Deepika Yadav
- a Department of Metabolic and Structural Biology , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India
- b Department of Biotechnology , Institute of Engineering and Technology (Dr. A.P.J. Abdul Kalam Technical University) , Lucknow , Uttar Pradesh , India
| | - Bhartendu Nath Mishra
- b Department of Biotechnology , Institute of Engineering and Technology (Dr. A.P.J. Abdul Kalam Technical University) , Lucknow , Uttar Pradesh , India
| | - Feroz Khan
- a Department of Metabolic and Structural Biology , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India
| |
Collapse
|
18
|
Sung CC, Chen L, Limbutara K, Jung HJ, Gilmer GG, Yang CR, Lin SH, Khositseth S, Chou CL, Knepper MA. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus. Kidney Int 2019; 96:363-377. [PMID: 31146973 PMCID: PMC6650374 DOI: 10.1016/j.kint.2019.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Lithium salts, used for treating bipolar disorder, frequently induce nephrogenic diabetes insipidus (NDI) thereby limiting therapeutic success. NDI is associated with loss of expression of the gene coding for the molecular water channel, aquaporin-2, in the renal collecting duct (CD). Here, we use systems biology methods in a well-established rat model of lithium-induced NDI to identify signaling pathways activated at the onset of polyuria. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts (CCDs) of rats after 72 hours without or with initiation of lithium chloride administration. Transcriptome-wide changes in mRNA abundances were mapped to gene sets associated with curated canonical signaling pathways, showing evidence for activation of NF-κB signaling with induction of genes coding for multiple chemokines and most components of the Major Histocompatibility Complex Class I antigen-presenting complex. Administration of anti-inflammatory doses of dexamethasone to lithium chloride-treated rats countered the loss of aquaporin-2. RNA-Seq also confirmed prior evidence of a shift from quiescence into the cell cycle with arrest. Time course studies demonstrated an early (12 hour) increase in multiple immediate early response genes including several transcription factors. Protein mass spectrometry in microdissected CCDs provided corroborative evidence and identified decreased abundance of several anti-oxidant proteins. Thus, in the context of prior observations, our study can be best explained by a model in which lithium increases ERK activation leading to induction of NF-κB signaling and an inflammatory-like response that represses Aqp2 transcription.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabrielle G Gilmer
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sookkasem Khositseth
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Pediatrics, Faculty of Medicine, Thammasat University (Rangsit Campus), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
19
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Humphries JE, Deneckere LE. Characterization of a Toll-like receptor (TLR) signaling pathway in Biomphalaria glabrata and its potential regulation by NF-kappaB. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:118-129. [PMID: 29746981 DOI: 10.1016/j.dci.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 05/16/2023]
|
21
|
Kaltschmidt B, Greiner JFW, Kadhim HM, Kaltschmidt C. Subunit-Specific Role of NF-κB in Cancer. Biomedicines 2018; 6:E44. [PMID: 29673141 PMCID: PMC6027219 DOI: 10.3390/biomedicines6020044] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NF-κB is a key player in inflammation, cancer development, and progression. NF-κB stimulates cell proliferation, prevents apoptosis, and could promote tumor angiogenesis as well as metastasis. Extending the commonly accepted role of NF-κB in cancer formation and progression, different NF-κB subunits have been shown to be active and of particular importance in distinct types of cancer. Here, we summarize overexpression data of the NF-κB subunits RELA, RELB, and c-REL (referring to the v-REL, which is the oncogene of Reticuloendotheliosis virus strain T) as well as of their upstream kinase inhibitor, namely inhibitor of κB kinases (IKK), in different human cancers, assessed by database mining. These data argue against a universal mechanism of cancer-mediated activation of NF-κB, and suggest a much more elaborated mode of NF-κB regulation, indicating a tumor type-specific upregulation of the NF-κB subunits. We further discuss recent findings showing the diverse roles of NF-κB signaling in cancer development and metastasis in a subunit-specific manner, emphasizing their specific transcriptional activity and the role of autoregulation. While non-canonical NF-κB RELB signaling is described to be mostly present in hematological cancers, solid cancers reveal constitutive canonical NF-κB RELA or c-REL activity. Providing a linkage to cancer therapy, we discuss the recently described pivotal role of NF-κB c-REL in regulating cancer-targeting immune responses. In addition, current strategies and ongoing clinical trials are summarized, which utilize genome editing or drugs to inhibit the NF-κB subunits for cancer treatment.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- AG Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany.
| | | | - Hussamadin M Kadhim
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany.
| | | |
Collapse
|
22
|
Rinkenbaugh AL, Cogswell PC, Calamini B, Dunn DE, Persson AI, Weiss WA, Lo DC, Baldwin AS. IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance. Oncotarget 2018; 7:69173-69187. [PMID: 27732951 PMCID: PMC5342468 DOI: 10.18632/oncotarget.12507] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/24/2016] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs. Inhibition of this pathway impairs self-renewal as analyzed in tumorsphere formation and GBM expansion as analyzed in brain slice culture. Interestingly, both the canonical and non-canonical branches of the NF-κB pathway are shown to contribute to this phenotype. One source of NF-κB activation in GBM involves the TGF-β/TAK1 signaling axis. Together, our results demonstrate a role for the NF-κB pathway in GSCs and provide a mechanistic basis for its potential as a therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Amanda L Rinkenbaugh
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Patricia C Cogswell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Chordoma Foundation, Durham, NC, USA
| | - Barbara Calamini
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Denise E Dunn
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Anders I Persson
- Helen Diller Family Comprehensive Cancer Center and Department of Neurology, University of California, San Francisco, CA, USA.,Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA
| | - William A Weiss
- Helen Diller Family Comprehensive Cancer Center and Department of Neurology, University of California, San Francisco, CA, USA.,Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA
| | - Donald C Lo
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Simon-Gabriel CP, Foerster K, Saleem S, Bleckmann D, Benkisser-Petersen M, Thornton N, Umezawa K, Decker S, Burger M, Veelken H, Claus R, Dierks C, Duyster J, Zirlik K. Microenvironmental stromal cells abrogate NF-κB inhibitor-induced apoptosis in chronic lymphocytic leukemia. Haematologica 2017; 103:136-147. [PMID: 29122993 PMCID: PMC5777201 DOI: 10.3324/haematol.2017.165381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) is known to play an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). Several NF-κB inhibitors were shown to successfully induce apoptosis of CLL cells in vitro Since the microenvironment is known to be crucial for the survival of CLL cells, herein, we tested whether NF-κB inhibition may still induce apoptosis in these leukemic cells in the presence of protective stromal interaction. We used the specific NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ). Microenvironmental support was mimicked by co-culturing CLL cells with bone marrow-derived stromal cell lines (HS-5 and M2-10B4). NF-κB inhibition by DHMEQ in CLL cells could be confirmed in both the monoculture and co-culture setting. In line with previous reports, NF-κB inhibition induced apoptosis in the monoculture setting by activating the intrinsic apoptotic pathway resulting in poly (ADP-ribose) polymerase (PARP)-cleavage; however, it was unable to induce apoptosis in leukemic cells co-cultured with stromal cells. Similarly, small interfering ribonucleic acid (siRNA)-mediated RELA downregulation induced apoptosis of CLL cells cultured alone, but not in the presence of supportive stromal cells. B-cell activating factor (BAFF) was identified as a microenvironmental messenger potentially protecting the leukemic cells from NF-κB inhibition-induced apoptosis. Finally, we show improved sensitivity of stroma-supported CLL cells to NF-κB inhibition when combining the NF-κB inhibitor with the SYK inhibitor R406 or the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, agents known to inhibit the stroma-leukemia crosstalk. We conclude that NF-κB inhibitors are not promising as monotherapies in CLL, but may represent attractive therapeutic partners for ibrutinib and R406.
Collapse
Affiliation(s)
- Carl Philipp Simon-Gabriel
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Foerster
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Shifa Saleem
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Dorothee Bleckmann
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Marco Benkisser-Petersen
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Nicolas Thornton
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Sarah Decker
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Meike Burger
- Furtwangen University, Faculty of Medical and Life Sciences, Schwenningen Campus, Villingen-Schwenningen, Germany
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Centre, the Netherlands
| | - Rainer Claus
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Christine Dierks
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Justus Duyster
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Katja Zirlik
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Germany .,Tumor and Breast Center ZeTuP, St. Gallen, Switzerland
| |
Collapse
|
24
|
Rajamani U, Gross AR, Ocampo C, Andres AM, Gottlieb RA, Sareen D. Endocrine disruptors induce perturbations in endoplasmic reticulum and mitochondria of human pluripotent stem cell derivatives. Nat Commun 2017; 8:219. [PMID: 28794470 PMCID: PMC5550485 DOI: 10.1038/s41467-017-00254-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 06/15/2017] [Indexed: 01/15/2023] Open
Abstract
Persistent exposure to man-made endocrine disrupting chemicals during fetal endocrine development may lead to disruption of metabolic homeostasis contributing to childhood obesity. Limited cellular platforms exist to test endocrine disrupting chemical-induced developmental abnormalities in human endocrine tissues. Here we use an human-induced pluripotent stem cell-based platform to demonstrate adverse impacts of obesogenic endocrine disrupting chemicals in the developing endocrine system. We delineate the effects upon physiological low-dose exposure to ubiquitous endocrine disrupting chemicals including, perfluoro-octanoic acid, tributyltin, and butylhydroxytoluene, in endocrine-active human-induced pluripotent stem cell-derived foregut epithelial cells and hypothalamic neurons. Endocrine disrupting chemicals induce endoplasmic reticulum stress, perturb NF-κB, and p53 signaling, and diminish mitochondrial respiratory gene expression, spare respiratory capacity, and ATP levels. As a result, normal production and secretion of appetite control hormones, PYY, α-MSH, and CART, are hampered. Blocking NF-κB rescues endocrine disrupting chemical-induced aberrant mitochondrial phenotypes and endocrine dysregulation, but not ER-stress and p53-phosphorylation changes.Harmful chemicals that disrupt the endocrine system and hormone regulation have been associated with obesity. Here the authors apply a human pluripotent stem cell-based platform to study the effects of such compounds on developing gut endocrine and neuroendocrine systems.
Collapse
Affiliation(s)
- Uthra Rajamani
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Andrew R Gross
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Camille Ocampo
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, University of California, Los Angeles, CA, 90048, USA
| | - Allen M Andres
- Metabolism and Mitochondrial Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Roberta A Gottlieb
- Metabolism and Mitochondrial Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dhruv Sareen
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Medicine, University of California, Los Angeles, CA, 90048, USA.
- iPSC Core, The David Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
25
|
Deletion of the K1L Gene Results in a Vaccinia Virus That Is Less Pathogenic Due to Muted Innate Immune Responses, yet Still Elicits Protective Immunity. J Virol 2017; 91:JVI.00542-17. [PMID: 28490586 DOI: 10.1128/jvi.00542-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
All viruses strategically alter the antiviral immune response to their benefit. The vaccinia virus (VACV) K1 protein has multiple immunomodulatory effects in tissue culture models of infection, including NF-κB antagonism. However, the effect of K1 during animal infection is poorly understood. We determined that a K1L-less vaccinia virus (vΔK1L) was less pathogenic than wild-type VACV in intranasal and intradermal models of infection. Decreased pathogenicity was correlated with diminished virus replication in intranasally infected mice. However, in intradermally inoculated ears, vΔK1L replicated to levels nearly identical to those of VACV, implying that the decreased immune response to vΔK1L infection, not virus replication, dictated lesion size. Several lines of evidence support this theory. First, vΔK1L induced slightly less edema than vK1L, as revealed by histopathology and noninvasive quantitative ultrasound technology (QUS). Second, infiltrating immune cell populations were decreased in vΔK1L-infected ears. Third, cytokine and chemokine gene expression was decreased in vΔK1L-infected ears. While these results identified the biological basis for smaller lesions, they remained puzzling; because K1 antagonizes NF-κB in vitro, antiviral gene expression was expected to be higher during vΔK1L infection. Despite these diminished innate immune responses, vΔK1L vaccination induced a protective VACV-specific CD8+ T cell response and protected against a lethal VACV challenge. Thus, vΔK1L is the first vaccinia virus construct reported that caused a muted innate immune gene expression profile and decreased immune cell infiltration in an intradermal model of infection yet still elicited protective immunity.IMPORTANCE The vaccinia virus (VACV) K1 protein inhibits NF-κB activation among its other antagonistic functions. A virus lacking K1 (vΔK1L) was predicted to be less pathogenic because it would trigger a more robust antiviral immune response than VACV. Indeed, vΔK1L was less pathogenic in intradermally infected mouse ear pinnae. However, vΔK1L infection unexpectedly elicited dramatically reduced infiltration of innate immune cells into ears. This was likely due to decreased expression of cytokine and chemokine genes in vΔK1L-infected ears. As such, our finding contradicted observations from cell culture systems. Interestingly, vΔK1L conferred protective immunity against lethal VACV challenge. This suggests that the muted immune response triggered during vΔK1L infection remained sufficient to mount an effective protective response. Our results highlight the complexity and unpredictable nature of virus-host interactions, a relationship that must be understood to better comprehend virus pathogenesis or to manipulate viruses for use as vaccines.
Collapse
|
26
|
Bigildeev AE, Zezina EA, Drize NJ. The effects of interleukin-1 beta and gamma-quantum braking radiation on mesenchymal progenitor cells. Mol Biol 2017. [DOI: 10.1134/s0026893317020054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Nguyen CH, Senfter D, Basilio J, Holzner S, Stadler S, Krieger S, Huttary N, Milovanovic D, Viola K, Simonitsch-Klupp I, Jäger W, de Martin R, Krupitza G. NF-κB contributes to MMP1 expression in breast cancer spheroids causing paracrine PAR1 activation and disintegrations in the lymph endothelial barrier in vitro. Oncotarget 2016; 6:39262-75. [PMID: 26513020 PMCID: PMC4770771 DOI: 10.18632/oncotarget.5741] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
RELA, RELB, CREL, NFKB1 and NFKB2, and the upstream regulators NEMO and NIK were knocked-down in lymph endothelial cells (LECs) and in MDA-MB231 breast cancer spheroids to study the contribution of NF-κB in vascular barrier breaching. Suppression of RELA, NFKB1 and NEMO inhibited “circular chemo-repellent induced defects” (CCIDs), which form when cancer cells cross the lymphatic vasculature, by ~20–30%. Suppression of RELB, NFKB2 and NIK inhibited CCIDs by only ~10–15%. In MDA-MB231 cells RELA and NFKB1 constituted MMP1 expression, which caused the activation of PAR1 in adjacent LECs. The knock-down of MMP1 in MDA-MB231 spheroids and pharmacological inhibition of PAR1 in LECs inhibited CCID formation by ~30%. Intracellular Ca2+ release in LECs, which was induced by recombinant MMP1, was suppressed by the PAR1 inhibitor SCH79797, thereby confirming a functional intercellular axis: RELA/NFKB1 – MMP1 (MDA-MB231) – PAR1 (LEC). Recombinant MMP1 induced PAR1-dependent phosphorylation of MLC2 and FAK in LECs, which is indicative for their activity and for directional cell migration such as observed during CCID formation. The combined knock-down of the NF-κB pathways in LECs and MDA-MB231 spheroids inhibited CCIDs significantly stronger than knock-down in either cell type alone. Also the knock-down of ICAM-1 in LECs (a NF-κB endpoint with relevance for CCID formation) and knock-down of MMP1 in MDA-MB231 augmented CCID inhibition. This evidences that in both cell types NF-κB significantly and independently contributes to tumour-mediated breaching of the lymphatic barrier. Hence, inflamed tumour tissue and/or vasculature pose an additional threat to cancer progression.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Daniel Senfter
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Jose Basilio
- Department of Vascular Biology and Thrombosis Research, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Silvio Holzner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Serena Stadler
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sigurd Krieger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Nicole Huttary
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Daniela Milovanovic
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Katharina Viola
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Georg Krupitza
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Webb LV, Ley SC, Seddon B. TNF activation of NF-κB is essential for development of single-positive thymocytes. J Exp Med 2016; 213:1399-407. [PMID: 27432943 PMCID: PMC4986527 DOI: 10.1084/jem.20151604] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/27/2016] [Indexed: 01/19/2023] Open
Abstract
Seddon and colleagues study mice whose T cells lack both of the catalytic subunits of the IKK complex and show that impaired TNF receptor activation of NF-κB is responsible for their block in thymocyte development. NF-κB activation has been implicated at multiple stages of thymic development of T cells, during which it is thought to mediate developmental signals originating from the T cell receptor (TCR). However, the Card11–Bcl10–Malt1 (CBM) complex that is essential for TCR activation of NF-κB in peripheral T cells is not required for thymocyte development. It has remained unclear whether the TCR activates NF-κB independent of the CBM complex in thymocyte development or whether another NF-κB activating receptor is involved. In the present study, we generated mice in which T cells lacked expression of both catalytic subunits of the inhibitor of κB kinase (IKK) complex, IKK1 and IKK2, to investigate this question. Although early stages of T cell development were unperturbed, maturation of CD4 and CD8 single-positive (SP) thymocytes was blocked in mice lacking IKK1/2 in the T cell lineage. We found that IKK1/2-deficient thymocytes were specifically sensitized to TNF-induced cell death in vitro. Furthermore, the block in thymocyte development in IKK1/2-deficient mice could be rescued by blocking TNF with anti-TNF mAb or by ablation of TNFRI expression. These experiments reveal an essential role for TNF activation of NF-κB to promote the survival and development of single positive T cells in the thymus.
Collapse
Affiliation(s)
- Louise V Webb
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, England, UK
| | - Steven C Ley
- Francis Crick Institute, Mill Hill Laboratories, London NW7 1AA, England, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, England, UK
| |
Collapse
|
29
|
TNF-alpha and Notch signaling regulates the expression of HOXB4 and GATA3 during early T lymphopoiesis. In Vitro Cell Dev Biol Anim 2016; 52:920-934. [PMID: 27251160 DOI: 10.1007/s11626-016-0055-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
During the early thymus colonization, Notch signaling activation on hematopoietic progenitor cells (HPCs) drives proliferation and T cell commitment. Although these processes are driven by transcription factors such as HOXB4 and GATA3, there is no evidence that Notch directly regulates their transcription. To evaluate the role of NOTCH and TNF signaling in this process, human CD34+ HPCs were cocultured with OP9-DL1 cells, in the presence or absence of TNF. The use of a Notch signaling inhibitor and a protein synthesis inhibitor allowed us to distinguish primary effects, mediated by direct signaling downstream Notch and TNF, from secondary effects, mediated by de novo synthesized proteins. A low and physiologically relevant concentration of TNF promoted T lymphopoiesis in OP9-DL1 cocultures. TNF positively modulated the expression of both transcripts in a Notch-dependent manner; however, GATA3 induction was mediated by a direct mechanism, while HOXB4 induction was indirect. Induction of both transcripts was repressed by a GSK3β inhibitor, indicating that activation of canonical Wnt signaling inhibits rather than induces their expression. Our study provides novel evidences of the mechanisms integrating Notch and TNF-alpha signaling in the transcriptional induction of GATA3 and HOXB4. This mechanism has direct implications in the control of self-renewal, proliferation, commitment, and T cell differentiation.
Collapse
|
30
|
B-cell survival and development controlled by the coordination of NF-κB family members RelB and cRel. Blood 2016; 127:1276-86. [PMID: 26773039 PMCID: PMC4786837 DOI: 10.1182/blood-2014-10-606988] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/29/2015] [Indexed: 11/20/2022] Open
Abstract
Targeted deletion of BAFF causes severe deficiency of splenic B cells. BAFF-R is commonly thought to signal to nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-inducing kinase dependent noncanonical NF-κB RelB. However, RelB-deficient mice have normal B-cell numbers. Recent studies showed that BAFF also signals to the canonical NF-κB pathway, and we found that both RelB and cRel are persistently activated, suggesting BAFF signaling coordinates both pathways to ensure robust B-cell development. Indeed, we report now that combined loss of these 2 NF-κB family members leads to impaired BAFF-mediated survival and development in vitro. Although single deletion of RelB and cRel was dispensable for normal B-cell development, double knockout mice displayed an early B-cell developmental blockade and decreased mature B cells. Despite disorganized splenic architecture in Relb(-/-)cRel(-/-) mice, generation of mixed-mouse chimeras established the developmental phenotype to be B-cell intrinsic. Together, our results indicate that BAFF signals coordinate both RelB and cRel activities to ensure survival during peripheral B-cell maturation.
Collapse
|
31
|
Mei S, Zhu H. A simple feature construction method for predicting upstream/downstream signal flow in human protein-protein interaction networks. Sci Rep 2015; 5:17983. [PMID: 26648121 PMCID: PMC4673612 DOI: 10.1038/srep17983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Signaling pathways play important roles in understanding the underlying mechanism of cell growth, cell apoptosis, organismal development and pathways-aberrant diseases. Protein-protein interaction (PPI) networks are commonly-used infrastructure to infer signaling pathways. However, PPI networks generally carry no information of upstream/downstream relationship between interacting proteins, which retards our inferring the signal flow of signaling pathways. In this work, we propose a simple feature construction method to train a SVM (support vector machine) classifier to predict PPI upstream/downstream relations. The domain based asymmetric feature representation naturally embodies domain-domain upstream/downstream relations, providing an unconventional avenue to predict the directionality between two objects. Moreover, we propose a semantically interpretable decision function and a macro bag-level performance metric to satisfy the need of two-instance depiction of an interacting protein pair. Experimental results show that the proposed method achieves satisfactory cross validation performance and independent test performance. Lastly, we use the trained model to predict the PPIs in HPRD, Reactome and IntAct. Some predictions have been validated against recent literature.
Collapse
Affiliation(s)
- Suyu Mei
- Software College, Shenyang Normal University, Shenyang, China.,Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Bektas A, Zhang Y, Lehmann E, Wood WH, Becker KG, Madara K, Ferrucci L, Sen R. Age-associated changes in basal NF-κB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase. Aging (Albany NY) 2015; 6:957-74. [PMID: 25553802 PMCID: PMC4276789 DOI: 10.18632/aging.100705] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune impairment and high circulating level of pro-inflammatory cytokines are landmarks of human aging. However, the molecular basis of immune dys-regulation and the source of inflammatory markers remain unclear. Here we demonstrate that in the absence of overt cell stimulation gene expression mediated by the transcription factor NF-κB is higher in purified and rested human CD4+ T lymphocytes from older compared to younger individuals. This increase of NF-κB-associated transcription includes transcripts for pro-inflammatory cytokines such as IL-1 and chemokines such as CCL2 and CXCL10. We demonstrate that NF-κB up-regulation is cell-intrinsic and mediated in part by phosphatidylinositol 3-kinase (PI3K) activity induced in response to metabolic activity, which can be moderated by rapamycin treatment. Our observations provide direct evidence that dys-regulated basal NF-κB activity may contribute to the mild pro-inflammatory state of aging.
Collapse
Affiliation(s)
- Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Elin Lehmann
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - William H Wood
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Karen Madara
- Clinical Research Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| |
Collapse
|
33
|
Kuebler U, Zuccarella-Hackl C, Arpagaus A, Wolf JM, Farahmand F, von Känel R, Ehlert U, Wirtz PH. Stress-induced modulation of NF-κB activation, inflammation-associated gene expression, and cytokine levels in blood of healthy men. Brain Behav Immun 2015; 46:87-95. [PMID: 25557189 DOI: 10.1016/j.bbi.2014.12.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/14/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022] Open
Abstract
Acute psychosocial stress stimulates transient increases in circulating pro-inflammatory plasma cytokines, but little is known about stress effects on anti-inflammatory cytokines or underlying mechanisms. We investigated the stress kinetics and interrelations of pro- and anti-inflammatory measures on the transcriptional and protein level. Forty-five healthy men were randomly assigned to either a stress or control group. While the stress group underwent an acute psychosocial stress task, the second group participated in a non-stress control condition. We repeatedly measured before and up to 120min after stress DNA binding activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, whole-blood mRNA levels of NF-κB, its inhibitor IκBα, and of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6, and the anti-inflammatory cytokine IL-10. We also repeatedly measured plasma levels of IL-1ß, IL-6, and IL-10. Compared to non-stress, acute stress induced significant and rapid increases in NF-κB-BA and delayed increases in plasma IL-6 and mRNA of IL-1ß, IL-6, and IκBα (p's<.045). In the stress group, significant increases over time were also observed for NF-κB mRNA and plasma IL-1ß and IL-10 (p's<.055). NF-κB-BA correlated significantly with mRNA of IL-1β (r=.52, p=.002), NF-κB (r=.48, p=.004), and IκBα (r=.42, p=.013), and marginally with IL-6 mRNA (r=.31, p=.11). Plasma cytokines did not relate to NF-κB-BA or mRNA levels of the respective cytokines. Our data suggest that stress induces increases in NF-κB-BA that relate to subsequent mRNA expression of pro-inflammatory, but not anti-inflammatory cytokines, and of regulatory-cytoplasmic-proteins. The stress-induced increases in plasma cytokines do not seem to derive from de novo synthesis in circulating blood cells.
Collapse
Affiliation(s)
- Ulrike Kuebler
- Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | | | - Angela Arpagaus
- Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Jutta M Wolf
- Department of Psychology & Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Firouzeh Farahmand
- Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Roland von Känel
- Department of Psychosomatic Medicine, Clinic Barmelweid, Barmelweid, Switzerland; Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Ulrike Ehlert
- Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Petra H Wirtz
- Biological and Health Psychology, University of Bern, Bern, Switzerland; Biological Work and Health Psychology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
34
|
Rapino F, Abhari BA, Jung M, Fulda S. NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways. Cell Death Dis 2015; 6:e1692. [PMID: 25766331 PMCID: PMC4385908 DOI: 10.1038/cddis.2014.584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/26/2014] [Accepted: 12/17/2014] [Indexed: 02/07/2023]
Abstract
Recently, we reported that induction of the co-chaperone Bcl-2-associated athanogene 3 (BAG3) is critical for recovery of rhabdomyosarcoma (RMS) cells after proteotoxic stress upon inhibition of the two constitutive protein degradation pathways, that is, the ubiquitin-proteasome system by Bortezomib and the aggresome-autophagy system by histone deacetylase 6 (HDAC6) inhibitor ST80. In the present study, we investigated the molecular mechanisms mediating BAG3 induction under these conditions. Here, we identify nuclear factor-kappa B (NF-κB)-inducing kinase (NIK) as a key mediator of ST80/Bortezomib-stimulated NF-κB activation and transcriptional upregulation of BAG3. ST80/Bortezomib cotreatment upregulates mRNA and protein expression of NIK, which is accompanied by an initial increase in histone H3 acetylation. Importantly, NIK silencing by siRNA abolishes NF-κB activation and BAG3 induction by ST80/Bortezomib. Furthermore, ST80/Bortezomib cotreatment stimulates NF-κB transcriptional activity and upregulates NF-κB target genes. Genetic inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor (IκBα-SR) or by knockdown of p65 blocks the ST80/Bortezomib-stimulated upregulation of BAG3 mRNA and protein expression. Interestingly, inhibition of lysosomal activity by Bafilomycin A1 inhibits ST80/Bortezomib-stimulated IκBα degradation, NF-κB activation and BAG3 upregulation, indicating that IκBα is degraded via the lysosome in the presence of Bortezomib. Thus, by demonstrating a critical role of NIK in mediating NF-κB activation and BAG3 induction upon ST80/Bortezomib cotreatment, our study provides novel insights into mechanisms of resistance to proteotoxic stress in RMS.
Collapse
Affiliation(s)
- F Rapino
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - B A Abhari
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - M Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Poussin C, Gallitz I, Schlage WK, Steffen Y, Stolle K, Lebrun S, Hoeng J, Peitsch MC, Lietz M. Mechanism of an indirect effect of aqueous cigarette smoke extract on the adhesion of monocytic cells to endothelial cells in an in vitro assay revealed by transcriptomics analysis. Toxicol In Vitro 2014; 28:896-908. [PMID: 24747719 DOI: 10.1016/j.tiv.2014.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/05/2014] [Accepted: 03/11/2014] [Indexed: 02/07/2023]
Abstract
The adhesion of monocytic cells to the "dysfunctional" endothelium constitutes a critical step in the initiation of atherosclerosis. Cigarette smoke (CS) has been shown to contribute to this process, the complex mechanism of which still needs to be unraveled. We developed an in vitro adhesion assay to investigate the CS-induced adhesion of monocytic MM6 cells to human umbilical vein endothelial cells (HUVECs) following exposure to an aqueous CS extract (smoke-bubbled phosphate buffered saline: sbPBS), reasoning that in vivo monocytes and endothelial cells are exposed primarily to soluble constituents from inhaled CS absorbed through the lung alveolar wall. MM6 cell adhesion was increased exclusively by the conditioned medium from sbPBS-exposed MM6 cells, not by direct sbPBS exposure of the HUVECs within a range of sbPBS doses. Using a transcriptomics approach followed by confirmation experiments, we identified different exposure effects on both cell types and a key mechanism by which sbPBS promoted the adhesion of MM6 cells to HUVECs. While sbPBS provoked a strong oxidative stress response in both cell types, the expression of E-selectin, VCAM-1 and ICAM-1, responsible for the adhesion of MM6 cells to HUVECs, was induced in the latter through a proinflammatory paracrine effect. We confirmed that this effect was driven mainly by TNFα produced by MM6 cells exposed to sbPBS. In conclusion, we have elucidated an indirect mechanism by which sbPBS increases the adhesion of monocytic cells to endothelial cells in this in vitro assay that was designed for tobacco product risk assessment while mimicking the in vivo exposure conditions as closely as possible.
Collapse
Affiliation(s)
- Carine Poussin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Inka Gallitz
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - Walter K Schlage
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - Yvonne Steffen
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Katrin Stolle
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - Stefan Lebrun
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manual C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Michael Lietz
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| |
Collapse
|
36
|
Litchfield LM, Appana SN, Datta S, Klinge CM. COUP-TFII inhibits NFkappaB activation in endocrine-resistant breast cancer cells. Mol Cell Endocrinol 2014; 382:358-367. [PMID: 24141032 PMCID: PMC5089806 DOI: 10.1016/j.mce.2013.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022]
Abstract
Reduced COUP-TFII expression contributes to endocrine resistance in breast cancer cells. Endocrine-resistant breast cancer cells have higher NFkappa B (NFκB) activity and target gene expression. The goal of this study was to determine if COUP-TFII modulates NFκB activity. Endocrine-resistant LCC9 cells with low endogenous COUP-TFII displayed ∼5-fold higher basal NFκB activity than parental endocrine-sensitive MCF-7 breast cancer cells. Transient transfection of LCC9 cells with COUP-TFII inhibited NFκB activation and reduced NFκB target gene expression. COUP-TFII and NFκB were inversely correlated in breast cancer patient samples. Endogenous COUP-TFII coimmunoprecipitated with NFκB subunits RelB and NFκB1 in MCF-7 cells. COUP-TFII inhibited NFκB-DNA binding in vitro and impaired coactivator induced NFκB transactivation. LCC9 cells were growth-inhibited by an NFκB inhibitor and 4-hydroxytamoxifen compared to MCF-7 cells. Together these data indicate a novel role for COUP-TFII in suppression of NFκB activity and explain, in part, why decreased COUP-TFII expression results in an endocrine-resistant phenotype.
Collapse
Affiliation(s)
- Lacey M Litchfield
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Savitri N Appana
- Deptartment of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY 40292, USA
| | - Susmita Datta
- Deptartment of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
37
|
Rauert-Wunderlich H, Siegmund D, Maier E, Giner T, Bargou RC, Wajant H, Stühmer T. The IKK inhibitor Bay 11-7082 induces cell death independent from inhibition of activation of NFκB transcription factors. PLoS One 2013; 8:e59292. [PMID: 23527154 PMCID: PMC3603909 DOI: 10.1371/journal.pone.0059292] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/13/2013] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) displays an NFκB activity-related gene expression signature and about 20% of primary MM samples harbor genetic alterations conducive to intrinsic NFκB signaling activation. The relevance of blocking the classical versus the alternative NFκB signaling pathway and the molecular execution mechanisms involved, however, are still poorly understood. Here, we comparatively tested NFκB activity abrogation through TPCA-1 (an IKK2 inhibitor), BAY 11-7082 (an IKK inhibitor poorly selective for IKK1 and IKK2), and MLN4924 (an NEDD8 activating enzyme (NAE)-inhibitor), and analyzed their anti-MM activity. Whereas TPCA-1 interfered selectively with activation of the classical NFκB pathway, the other two compounds inhibited classical and alternative NFκB signaling without significant discrimination. Noteworthy, whereas TPCA-1 and MLN4924 elicited rather mild anti-MM effects with slight to moderate cell death induction after 1 day BAY 11-7082 was uniformly highly toxic to MM cell lines and primary MM cells. Treatment with BAY 11-7082 induced rapid cell swelling and its initial effects were blocked by necrostatin-1 or the ROS scavenger BHA, but a lasting protective effect was not achieved even with additional blockade of caspases. Because MLN4924 inhibits the alternative NFκB pathway downstream of IKK1 at the level of p100 processing, the quite discordant effects between MLN4924 and BAY 11-7082 must thus be due to blockade of IKK1-mediated NFκB-independent necrosis-inhibitory functions or represent an off-target effect of BAY 11-7082. In accordance with the latter, we further observed that concomitant knockdown of IKK1 and IKK2 did not have any major short-term adverse effect on the viability of MM cells.
Collapse
Affiliation(s)
- Hilka Rauert-Wunderlich
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Eduard Maier
- Department of Internal Medicine II, Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Tina Giner
- Department of Dermatology, University of Würzburg, Würzburg, Germany
| | - Ralf C. Bargou
- Department of Internal Medicine II, Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Thorsten Stühmer
- Department of Internal Medicine II, Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
Buchan SL, Al-Shamkhani A. Distinct motifs in the intracellular domain of human CD30 differentially activate canonical and alternative transcription factor NF-κB signaling. PLoS One 2012; 7:e45244. [PMID: 23028875 PMCID: PMC3445475 DOI: 10.1371/journal.pone.0045244] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 08/17/2012] [Indexed: 11/18/2022] Open
Abstract
The TNF-receptor superfamily member CD30 is expressed on normal and malignant lymphocytes, including anaplastic large cell lymphoma (ALCL) cells. CD30 transmits multiple effects, including activation of NF-κB signaling, cell proliferation, growth arrest and apoptosis. How CD30 generates these pleiotropic effects is currently unknown. Herein we describe ALCL cells expressing truncated forms of the CD30 intracellular domain that allowed us to identify the key regions responsible for transmitting its biological effects in lymphocytes. The first region (CD30519–537) activated both the alternative and canonical NF-κB pathways as detected by p100 and IκBα degradation, IKKβ-dependent transcription of both IκBα and the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and induction of cell cycle arrest. In contrast, the second region of CD30 (CD30538–595) induced some aspects of canonical NF-κB activation, including transcription of IκBα, but failed to activate the alternative NF-κB pathway or drive p21WAF1/CIP1-mediated cell-cycle arrest. Direct comparison of canonical NF-κB activation by the two motifs revealed 4-fold greater p65 nuclear translocation following CD30519–537 engagement. These data reveal that independent regions of the CD30 cytoplasmic tail regulate the magnitude and type of NF-κB activation and additionally identify a short motif necessary for CD30-driven growth arrest signals in ALCL cells.
Collapse
MESH Headings
- Amino Acid Motifs
- Apoptosis/drug effects
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Endonucleases
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- Ki-1 Antigen/chemistry
- Ki-1 Antigen/genetics
- Ki-1 Antigen/pharmacology
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Lymphocytes/pathology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Molecular Sequence Data
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphorylation/drug effects
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
- Transcription, Genetic
Collapse
Affiliation(s)
- Sarah L. Buchan
- Cancer Sciences Unit, School of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- * E-mail: (SLB); (AAS)
| | - Aymen Al-Shamkhani
- Cancer Sciences Unit, School of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- * E-mail: (SLB); (AAS)
| |
Collapse
|
39
|
Vaughan C, Mohanraj L, Singh S, Dumur CI, Ramamoorthy M, Garrett CT, Windle B, Yeudall WA, Deb S, Deb SP. Human Oncoprotein MDM2 Up-regulates Expression of NF-κB2 Precursor p100 Conferring a Survival Advantage to Lung Cells. Genes Cancer 2012; 2:943-55. [PMID: 22701761 DOI: 10.1177/1947601911436008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/24/2011] [Indexed: 12/12/2022] Open
Abstract
The current model predicts that MDM2 is primarily overexpressed in cancers with wild-type (WT) p53 and contributes to oncogenesis by degrading p53. Following a correlated expression of MDM2 and NF-κB2 transcripts in human lung tumors, we have identified a novel transactivation function of MDM2. Here, we report that in human lung tumors, overexpression of MDM2 was found in approximately 30% of cases irrespective of their p53 status, and expression of MDM2 and NF-κB2 transcripts showed a highly significant statistical correlation in tumors with WT p53. We investigated the significance of this correlated expression in terms of mechanism and biological function. Increase in MDM2 expression from its own promoter in transgenic mice remarkably enhanced expression of NF-κB2 compared with its non-transgenic littermates. Knockdown or elimination of endogenous MDM2 expression in cultured non-transformed or lung tumor cells drastically reduced expression of NF-κB2 transcripts, suggesting a normal physiological role of MDM2 in regulating NF-κB2 transcription. MDM2 could up-regulate expression of NF-κB2 transcripts when its p53-interaction domain was blocked with Nutlin-3, indicating that the MDM2-p53 interaction is dispensable for up-regulation of NF-κB2 expression. Consistently, analysis of functional domains of MDM2 indicated that although the p53-interaction domain of MDM2 contributes to the up-regulation of the NFκB2 promoter, MDM2 does not require direct interactions with p53 for this function. Accordingly, MDM2 overexpression in non-transformed or lung cancer cells devoid of p53 also generated a significant increase in the expression of NF-κB2 transcript and its targets CXCL-1 and CXCL-10, whereas elimination of MDM2 expression had the opposite effects. MDM2-mediated increase in p100/NF-κB2 expression reduced cell death mediated by paclitaxel. Furthermore, knockdown of NF-κB2 expression retarded cell proliferation. Based on these data, we propose that MDM2-mediated NF-κB2 up-regulation is a combined effect of p53-dependent and independent mechanisms and that it confers a survival advantage to lung cancer cells.
Collapse
Affiliation(s)
- Catherine Vaughan
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
41
|
Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A. Blood 2012; 120:1668-77. [PMID: 22791293 DOI: 10.1182/blood-2012-02-406074] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma, remains a partially curable disease. Genetic alterations affecting components of NF-κB signaling pathways occur frequently in DLBCL. Almost all activated B cell-like (ABC) DLBCL, which is the least curable group among the 3 major subtypes of this malignancy, and a substantial fraction of germinal center B cell-like (GCB) DLBCL exhibit constitutive NF-κB pathway activity. It has been demonstrated that ABC-DLBCL cells require such activity for proliferation and survival. Therefore, inhibition of NF-κB activation in DLBCL may provide an efficient and targeted therapy. In screening for small-molecule compounds that may inhibit NF-κB activation in DLBCL cells, we identified a compound, NSC697923, which inhibits the activity of the ubiquitin-conjugating (E2) enzyme Ubc13-Uev1A. NSC697923 impedes the formation of the Ubc13 and ubiquitin thioester conjugate and suppresses constitutive NF-κB activity in ABC-DLBCL cells. Importantly, NSC697923 inhibits the proliferation and survival of ABC-DLBCL cells and GCB-DLBCL cells, suggesting the Ubc13-Uev1A may be crucial for DLBCL growth. Consistently, knockdown of Ubc13 expression also inhibited DLBCL cell survival. The results of the present study indicate that Ubc13-Uev1A may represent a potential therapeutic target in DLBCL. In addition, compound NSC697923 may be exploited for the development of DLBCL therapeutic agents.
Collapse
|
42
|
|
43
|
AML1/RUNX1 functions as a cytoplasmic attenuator of NF-κB signaling in the repression of myeloid tumors. Blood 2011; 118:6626-37. [PMID: 22021368 DOI: 10.1182/blood-2010-12-326710] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Functional deregulation of transcription factors has been found in many types of tumors. Transcription factor AML1/RUNX1 is one of the most frequent targets of chromosomal abnormalities in human leukemia and altered function of AML1 is closely associated with malignant transformation of hematopoietic cells. However, the molecular basis and therapeutic targets of AML1-related leukemia are still elusive. Here, we explored immediate target pathways of AML1 by in vitro synchronous inactivation in hematopoietic cells. We found that AML1 inhibits NF-κB signaling through interaction with IκB kinase complex in the cytoplasm. Remarkably, AML1 mutants found in myeloid tumors lack the ability to inhibit NF-κB signaling, and human cases with AML1-related leukemia exhibits distinctly activated NF-κB signaling. Furthermore, inhibition of NF-κB signaling in leukemic cells with mutated AML1 efficiently blocks their growth and development of leukemia. These findings reveal a novel role for AML1 as a cytoplasmic attenuator of NF-κB signaling and indicate that NF-κB signaling is one of the promising therapeutic targets of hematologic malignancies with AML1 abnormality.
Collapse
|
44
|
Vlantis K, Wullaert A, Sasaki Y, Schmidt-Supprian M, Rajewsky K, Roskams T, Pasparakis M. Constitutive IKK2 activation in intestinal epithelial cells induces intestinal tumors in mice. J Clin Invest 2011; 121:2781-93. [PMID: 21701067 DOI: 10.1172/jci45349] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 04/06/2011] [Indexed: 12/11/2022] Open
Abstract
Many cancers display increased NF-κB activity, and NF-κB inhibition is known to diminish tumor development in multiple mouse models, supporting an important role of NF-κB in carcinogenesis. NF-κB activation in premalignant or cancer cells is believed to promote tumor development mainly by protecting these cells from apoptosis. However, it remains unclear to what extent NF-κB activation exhibits additional protumorigenic functions in premalignant cells that could be sufficient to induce spontaneous tumor development. Here we show that expression of constitutively active IκB kinase 2 (IKK2ca) in mouse intestinal epithelial cells (IECs) induced spontaneous tumors in aged mice and also strongly enhanced chemical- and Apc mutation-mediated carcinogenesis. IECs expressing IKK2ca displayed altered Wnt signaling and increased proliferation and elevated expression of genes encoding intestinal stem cell-associated factors including Ascl2, Olfm4, DLK1, and Bmi-1, indicating that increased IKK2/NF-κB activation synergized with Wnt signaling to drive intestinal tumorigenesis. Moreover, IECs expressing IKK2ca produced cytokines and chemokines that induced the recruitment of myeloid cells and activated stromal fibroblasts to become myofibroblasts, thus creating a tumor-promoting microenvironment. Taken together, our results show that constitutively increased activation of IKK2/NF-κB signaling in the intestinal epithelium is sufficient to induce the full spectrum of cell-intrinsic and stromal alterations required for intestinal tumorigenesis.
Collapse
Affiliation(s)
- Katerina Vlantis
- Institute for Genetics, Center for Molecular Medicine, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Mizumoto Y, Kyo S, Kiyono T, Takakura M, Nakamura M, Maida Y, Mori N, Bono Y, Sakurai H, Inoue M. Activation of NF-kappaB is a novel target of KRAS-induced endometrial carcinogenesis. Clin Cancer Res 2011; 17:1341-50. [PMID: 21411444 DOI: 10.1158/1078-0432.ccr-10-2291] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although the KRAS mutation is one of critical genetic alterations in endometrial carcinogenesis, the downstream targets are not known. EXPERIMENTAL DESIGN In this study, we investigated the molecular targets of KRAS signals, using tumorigenic cells with oncogenic KRAS mutation established from telomerase reverse transcriptase (TERT)-immortalized endometrial epithelial cells. RESULTS We first confirmed that the RAF-ERK pathway, but not the PI3K-Akt pathway, was activated in KRAS tumorigenic cells. However, the introduction of constitutively active MAP/ERK kinase into immortalized cells to mimic RAF-ERK activation failed to obtain tumorigenic phenotypes, indicating the existence of other carcinogenic pathways triggered by KRAS. Recent evidence suggestive of linkage with KRAS signals prompted us to examine the involvement of NF-κB in endometrial carcinogenesis. We found that the DNA-binding activity of NF-κB was markedly elevated in KRAS tumorigenic cells compared with TERT-immortalized cells. Furthermore, the ability of NF-κB to activate the target gene promoters significantly increased in KRAS tumorigenic cells. Introduction of a mutant IκB that is resistant to degradation and thereby enhances the inhibitory effect on NF-κB largely abrogated the transformed phenotypes of KRAS tumorigenic cells. Thus, oncogenic KRAS signals contributed to the tumorigenic phenotypes of endometrial cells by activating the transcription function of NF-κB. CONCLUSIONS These findings clearly show that NF-κB activation is a novel target of oncogenic KRAS in endometrial carcinogenesis, implying the potential utility of NF-κB inhibitors for endometrial cancer chemoprevention, especially with KRAS mutation.
Collapse
Affiliation(s)
- Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Farhana L, Dawson MI, Murshed F, Fontana JA. Maximal adamantyl-substituted retinoid-related molecule-induced apoptosis requires NF-κB noncanonical and canonical pathway activation. Cell Death Differ 2011; 18:164-73. [PMID: 20671747 PMCID: PMC2970660 DOI: 10.1038/cdd.2010.84] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 01/20/2023] Open
Abstract
NF-κB transcription factors have a critical role in regulating cell survival and apoptosis. We have previously shown that 4-(3-Cl-(1-adamantyl)-4-hydroxyphenyl)-3-chlorocinnamic acid (3-Cl-AHPC), an adamantyl-substituted retinoid molecule, induced apoptosis and required NF-κB activation in prostate and breast carcinoma cells. Here, we show that 3-Cl-AHPC activated both IκB kinase (IKK)α and IKKβ with subsequent activation of the canonical and noncanonical NF-κB pathways in the human breast carcinoma and leukemia cell lines. 3-Cl-AHPC-mediated activation of the NF-κB canonical pathway occurred within 6 h, whereas maximal activation of the NF-κB noncanonical pathway required 48 h. Knockout of IKKα or IKKβ expression in mouse embryonic fibroblast cells and knockdown of IKKα or IKKβ in MDA-MB-468 cells resulted in the inhibition of 3-Cl-AHPC-mediated apoptosis, indicating that activation of canonical and noncanonical pathways are required for maximal 3-Cl-AHPC-mediated apoptosis. 3-Cl-AHPC activation of the noncanonical pathway was preceded by caspase-mediated decrease in the E3-ligase c-IAP1 with subsequent stabilization of NF-κB-inducing kinase (NIK) expression, increased binding of NIK by TRAF3, activation of IKKα, and the resultant increased levels of RelB and p52. Increased expression of c-IAP1 blocked 3-Cl-AHPC-mediated stabilization of NIK levels and 3-Cl-AHPC-mediated apoptosis. Cdc37 expression was required for activation of IKKα and IKKβ by 3-Cl-AHPC. These findings suggest that NF-κB pathways have an important role in 3-Cl-AHPC-mediated apoptosis.
Collapse
Affiliation(s)
- L Farhana
- Deparment of Medicine, John D Dingell VA Medical Center, Wayne State University, Detroit, MI, USA.
| | | | | | | |
Collapse
|
47
|
Comb WC, Cogswell P, Sitcheran R, Baldwin AS. IKK-dependent, NF-κB-independent control of autophagic gene expression. Oncogene 2010; 30:1727-32. [PMID: 21151171 DOI: 10.1038/onc.2010.553] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The induction of mammalian autophagy, a cellular catabolic bulk-degradation process conserved from humans to yeast, was recently shown to require IκB kinase (IKK), the upstream regulator of the nuclear factor (NF)-κB pathway. Interestingly, it was shown that this response did not involve NF-κB. Thus, the mechanism by which IKK promotes stimulus-induced autophagy is largely unknown. Here, we investigate the role of IKK/NF-κB in response to nutrient deprivation, the well-understood autophagy-inducing stimulus. IKK and both the classic and non-canonical pathways of NF-κB are robustly induced in response to cellular starvation. Notably, cells lacking either catalytic subunit of IKK (IKK-α or IKK-β) fail to induce autophagy in response to cellular starvation. Importantly, we show that IKK activity but not NF-κB controls basal expression of the proautophagic gene LC3. We further demonstrate that starvation induces the expression of LC3 and two other essential autophagic genes ATG5 and Beclin-1 in an IKK-dependent manner. These results indicate that the IKK complex is a central mediator of starvation-induced autophagy in mammalian cells, and suggest that this requirement occurs at least in part through the regulation of autophagic gene expression. Interestingly, NF-κB subunits are dispensable for both basal and starvation-induced expression of proautophagic genes. However, starvation-induced activation of NF-κB is not inconsequential, as increases in expression of antiapoptotic NF-κB target genes such as Birc3 are observed in response to cellular starvation. Thus, IKK likely has multiple roles in response to starvation by regulating NF-κB-dependent antiapoptotic gene expression as well as controlling expression of autophagic genes through a yet undetermined mechanism.
Collapse
Affiliation(s)
- W C Comb
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
48
|
Yang L, Cui H, Wang Z, Zhang B, Ding J, Liu L, Ding HF. Loss of negative feedback control of nuclear factor-kappaB2 activity in lymphocytes leads to fatal lung inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2646-57. [PMID: 20363924 DOI: 10.2353/ajpath.2010.090751] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteolytic processing of the nuclear factor (NF)-kappaB2 precursor protein p100 generates the active NF-kappaB2 subunit p52, which in turn transcriptionally up-regulates p100 expression. p100 also functions as an IkappaB molecule capable of repressing p52 activity. The biological significance of this negative feedback control loop has yet to be demonstrated in vivo. Here we show that mice deficient in p100 but with constitutive expression of p52 in lymphocytes developed fatal lung inflammation characterized by diffuse alveolar damage with marked peribronchial fibrosis. In contrast, their littermates with only p100 deficiency or constitutive expression of p52 in lymphocytes developed mild lung inflammation with perivascular lymphocyte infiltration and had a normal life span. The fatal lung inflammation is associated with high-level induction of interferon-gamma and its inducible inflammatory chemokines, suggesting the involvement of a T-helper-1 immune response. These findings demonstrate the physiological relevance of the NF-kappaB2 p100 precursor protein in limiting the potentially detrimental effects of constitutive NF-kappaB2 signaling in lymphocytes.
Collapse
Affiliation(s)
- Liqun Yang
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
de Jong SJ, Albrecht JC, Schmidt M, Müller-Fleckenstein I, Biesinger B. Activation of noncanonical NF-kappaB signaling by the oncoprotein Tio. J Biol Chem 2010; 285:16495-503. [PMID: 20353939 DOI: 10.1074/jbc.m110.102848] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB transcription factors are key regulators of cellular proliferation and frequently contribute to oncogenesis. The herpesviral oncoprotein Tio, which promotes growth transformation of human T cells in a recombinant herpesvirus saimiri background, potently induces canonical NF-kappaB signaling through membrane recruitment of the ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6). Here, we show that, in addition to Tio-TRAF6 interaction, the Tio-induced canonical NF-kappaB signal requires the presence of the regulatory subunit of the inhibitor of kappaB kinase (IKK) complex, NF-kappaB essential modulator (NEMO), and the activity of its key kinase, IKKbeta, to up-regulate expression of endogenous cellular inhibitor of apoptosis 2 (cIAP2) and interleukin 8 (IL-8) proteins. Dependent on TRAF6 and NEMO, Tio enhances the expression of the noncanonical NF-kappaB proteins, p100 and RelB. Independent of TRAF6 and NEMO, Tio mediates stabilization of the noncanonical kinase, NF-kappaB-inducing kinase (NIK). Concomitantly, Tio induces efficient processing of the p100 precursor molecule to its active form, p52, as well as DNA binding of nuclear p52 and RelB. In human T cells transformed by infection with a Tio-recombinant virus, sustained expression of p100, RelB, and cIAP2 depends on IKKbeta activity, yet processing to p52 remains largely unaffected by IKKbeta inhibition. However, long term inhibition of IKKbeta disrupts the continuous growth of the transformed cells and induces cell death. Hence, the Tio oncoprotein triggers noncanonical NF-kappaB signaling through NEMO-dependent up-regulation of p100 precursor and RelB, as well as through NEMO-independent generation of p52 effector.
Collapse
Affiliation(s)
- Sarah Jill de Jong
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
50
|
Li M, Chen F, Liu CP, Li DM, Li X, Wang C, Li JC. Dexamethasone enhances trichosanthin-induced apoptosis in the HepG2 hepatoma cell line. Life Sci 2009; 86:10-6. [PMID: 19891978 DOI: 10.1016/j.lfs.2009.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 10/11/2009] [Accepted: 10/16/2009] [Indexed: 11/18/2022]
Abstract
AIMS Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) with antitumor activities for various cancers. In this paper, we aimed to investigate whether dexamethasone, an important synthetic member of the glucocorticoid steroids, in combination with TCS can be a potential therapy in treating hepatoma. MAIN METHODS Cell viability was investigated using MTT assay, and apoptosis was evaluated with Hoechst 33258 staining. Western blot analysis was used to examine the changes in the expression levels of IkappaB-alpha, NF-kappaB p65 subunit and Cox-2. Additionally, we took advantage of dominant-negative IkappaB (IkappaB-DM) over-expression and chemical inhibitor PDTC to inhibit NF-kappaB activation. KEY FINDINGS Our results demonstrated that dexamethasone could enhance TCS-induced apoptosis in the hepatoma cell line HepG2, decreasing IC50 values from in excess of 200microg/ml to 50microg/ml. In addition, our results demonstrated that TCS could induce rapid degradation of IkappaB-alpha, nuclear translocation of NF-kappaB and decrease of COX-2 expression in HepG2 cells. Inhibition of NF-kappaB by biological (IkappaB-DM) or chemical inhibitor (PDTC) increased HepG2 cells' sensitivity to TCS, resulting in cell viability rate decreasing and apoptotic rate increasing. Simultaneously, dexamethasone increased the level of IkappaB-alpha protein and effectively inhibited TCS-induced degradation of IkappaB-alpha. SIGNIFICANCE These results suggest that dexamethasone could enhance trichosanthin-induced apoptosis in the HepG2, at least in part, by inhibiting the NF-kappaB signaling pathway and thus strengthening the antitumor effects of TCS, which highlights the possibility of combined drug application of TCS and dexamethasone in the clinical treatment of hepatoma.
Collapse
Affiliation(s)
- Meng Li
- Institute of Cell Biology, Zhejiang University Medical School, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|