1
|
Yin D, Li F, Xia L, Wei T, Shan C, Zhang Z, Wei R. GLP-1 receptor agonists show no detrimental effect on sperm quality in mouse models and cell lines. Endocrine 2025:10.1007/s12020-025-04245-4. [PMID: 40347306 DOI: 10.1007/s12020-025-04245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/18/2025] [Indexed: 05/12/2025]
Abstract
PURPOSE Glucagon-like peptide-1 receptor (GLP-1R) agonists exert multiple beneficial effects. However, their effects on reproduction system are controversial. Here, we aimed to investigate their effects on male reproduction and provide safety evidence for future clinical use. METHODS Male diabetic mice and aged mice were treated with liraglutide or vehicle, and sperm concentration and motility were assessed. The expression and location of GLP-1R in testicular tissues and in four testicular cell lines (spermatogonia, spermatocytes, Leydig cells, and Sertoli cells) were detected. Cauda epididymis and testicular cells were treated with liraglutide, semaglutide or vehicle, and sperm motility and cell proliferation were detected to determine the direct effect of GLP-1R agonists. Global Glp1r knockout mice were constructed, and testicular morphology, sperm concentration and motility were detected to confirm the effects of GLP-1R signaling on male reproduction. RESULTS Liraglutide significantly reduced blood glucose levels, but did not improve sperm parameters in diabetic mice. No significant differences were observed between liraglutide and control group in aged mice. GLP-1R was expressed in testicular tissues and all four cell lines, with the highest expression in Leydig cells. Liraglutide or semaglutide had no impacts on sperm count and motility in vitro, and had no effects on cell proliferation in four cell lines. The Glp1r knockout mice exhibited higher blood glucose levels and preserved normal testicular morphology, but their sperm concentration was higher than that in wildtype mice. CONCLUSION GLP-1R agonists have no detrimental effect on sperm concentration and motility in vivo and in vitro, while GLP-1R absence increase the sperm concentration.
Collapse
Affiliation(s)
- Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Chunhua Shan
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Broderius K, Gosch A, Courts C. Multiplex-RNA-analysis for detection and identification of forensically relevant organ tissues. Int J Legal Med 2025:10.1007/s00414-025-03494-2. [PMID: 40237812 DOI: 10.1007/s00414-025-03494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
In forensic investigations, identifying the bodily origin of components in biological trace material can be essential for the evidence-based reconstruction of criminal events. Complementing standard forensic DNA analyses, specific RNA markers can be utilized in the contextualization of biological traces, particularly to detect and identify forensically relevant body fluids and organ tissues. Here, we describe an optimized and expanded approach to mRNA-based organ tissue identification. This method involves targeted amplification of organ-specific mRNA equivalents and separation and visualization via capillary electrophoresis. 21 established markers for seven types of tissue were validated using a current extensive gene expression database and combined in a newly designed panel for capillary electrophoretic detection with six fluorescent dyes. The method was successfully tested on various post-mortem tissue samples, demonstrating the reliable identification of brain, heart, lung, liver, kidney, adipose tissue and skeletal muscle in forensic casework-relevant sample types. The robustness and sensitivity of this approach renders it a valuable tool for forensic investigations, enhancing the precision of tissue type identification in diverse scenarios. Moreover, the development and implementation of the method produced valuable insights into opportunities for the optimization of laboratory processes for other RNA-based procedures.
Collapse
Affiliation(s)
- Kathrin Broderius
- University Hospital of Cologne, Institute of Legal Medicine, Melatengürtel 60‑62, 50823, Cologne, Germany
| | - Annica Gosch
- University Hospital of Cologne, Institute of Legal Medicine, Melatengürtel 60‑62, 50823, Cologne, Germany
| | - Cornelius Courts
- University Hospital of Cologne, Institute of Legal Medicine, Melatengürtel 60‑62, 50823, Cologne, Germany.
| |
Collapse
|
3
|
Škrlec I, Biloglav Z, Lešić D, Talapko J, Žabić I, Katalinić D. Association of MTNR1B Gene Polymorphisms with Body Mass Index in Hashimoto's Thyroiditis. Int J Mol Sci 2025; 26:3667. [PMID: 40332199 PMCID: PMC12027080 DOI: 10.3390/ijms26083667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Hashimoto's thyroiditis (HT) is an autoimmune disorder of the thyroid gland characterized by chronic inflammation, which in most cases results in hypothyroidism. The melatonin receptor MTNR1B is sporadically expressed in the thyroid gland. It modulates immune responses, and alterations in the melatonin-MTNR1B receptor signaling pathway may play a role in developing autoimmune diseases. Obesity worsens the severity and progression of some autoimmune diseases and reduces treatment efficacy. This study aimed to investigate the association of MTNR1B gene polymorphisms (rs10830963, rs1387153, and rs4753426) with HT with regards to the body mass index (BMI). Patients with HT were categorized into normal weight BMI ≤ 25 kg/m2 and overweight/obese BMI > 25 kg/m2 groups. This study included 115 patients with a clinical-, ultrasound-, and laboratory-confirmed diagnosis of HT (64 normal-weight patients and 51 overweight/obese patients) with a mean age of 43 ± 12 years. The results showed that specific MTNR1B polymorphisms are associated with obesity in HT patients. BMI was found to be associated with the rs10830963 polymorphism, and the G allele and GG genotype of the rs10830963 polymorphism were more common in overweight/obese HT patients. Furthermore, the results suggest that genetic factors associated with BMI play a role in developing HT and open new possibilities for personalized treatment approaches.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, University J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Zrinka Biloglav
- Department of Medical Statistics, Epidemiology and Medical Informatics, School of Public Health Andrija Štampar, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Jasminka Talapko
- Faculty of Dental Medicine and Health, University J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Igor Žabić
- County Hospital Koprivnica, 48000 Koprivnica, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, University J. J. Strossmayer Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
4
|
Yuan D, Bai N, Zhu Q, Song S, He A, Wang J, Chen Y. Hepatic HSD17B6 is dispensable for diet-induced fatty liver disease in mice. Biochem Biophys Rep 2025; 41:101924. [PMID: 39896111 PMCID: PMC11787692 DOI: 10.1016/j.bbrep.2025.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects up to a third of the global population, which causes huge both clinical and economic burdens. However, its therapeutic strategy is still limited. Steroid dysregulation plays a pivotal role in the homeostasis of lipid metabolism. 17-beta-hydroxysteroid dehydrogenase type 6 (HSD17B6)-one member of 17β-HSDs, encoded by the gene Hsd17b6, catalyzes the synthesis of androsterone and estrone-steroid hormones. However, whether the manipulation of HSD17B6 could ameliorate diet-induced fatty liver disease remains unknown. Here, we found that the expression of Hsd17b6 is enriched in the liver in both humans and mice. The data of single-cell RNA-seq suggests that Hsd17b6 appears to be exclusively expressed in hepatocytes-the parenchymal cells of the liver. Furthermore, the hepatic expression of Hsd17b6 is correlated with fatty liver disease. A mouse model with Hsd17b6 deletion in the liver (HLKO) is successfully generated via the administration of AAV8 expressing Cre recombinase (driven by TBG-a liver-specific promoter) and sgRNAs of Hsd17b6 to Cre-dependent Cas9 mice. Control and HLKO mice were challenged with the high-fat choline-deficient diet-a diet widely used for the model generation of fatty liver disease. Interestingly, the HLKO liver shows a special proteome signature, with the altered proteins enriched in the Golgi apparatus. However, the deletion of Hsd17b6 does not affect fatty liver disease in terms of fat accumulation, inflammation, and hepatic fibrosis. Taken together, our study suggests that the expression of Hsd17b6 is enriched in the liver and correlated with fatty liver disease but its hepatic deletion does not affect diet-induced fatty liver disease.
Collapse
Affiliation(s)
- Delong Yuan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Nan Bai
- Department of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qihan Zhu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shaoxuan Song
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Anyuan He
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jianqing Wang
- Department of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yali Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
5
|
Yu X, Ni Z, Wang Y, Wang J, Deng G, Shi J, Kong H, Jiang Y, Tian G, Li C, Kawaoka Y, Chen H, Wang J. Claudin-11 plays a pivotal role in the clathrin-mediated endocytosis of influenza A virus. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2856-y. [PMID: 39985647 DOI: 10.1007/s11427-024-2856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Abstract
Identification of host factors that play a key role in viral replication is of great importance for antiviral development. Metabotropic glutamate receptor subtype 2 (mGluR2) is the receptor to trigger clathrin-mediated endocytosis (CME), the major pathway by which influenza virus enters cells. However, other host factors almost certainly involved in the influenza virus CME are largely unknown. Here, we found that the four-transmembrane protein claudin-11 plays an integral part in influenza virus CME. Claudin-11 promotes the dissociation of KCa1.1 (potassium calcium-activated channel subfamily M alpha 1) from mGluR2 and, together with mGluR2, is internalized in virus-containing clathrin-coated pits (CCPs), where it regulates the depolymerization of polymerized F-actin, allowing the CCPs to mature. Importantly, over 60% of claudin-11-silenced mice survived infection with a lethal influenza virus. Our findings advance the understanding of influenza virus infection and provide a promising strategy for the development of host-based antiviral drugs.
Collapse
Affiliation(s)
- Xiaofei Yu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zixin Ni
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yifan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jingfei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Hualan Chen
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Jinliang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
6
|
Sun X, Chen Y, Zhang Y, Cheng T, Peng H, Sun Y, Liu JG, Xu C. Exosomes released from immature neurons regulate adult neural stem cell differentiation through microRNA-7a-5p. Stem Cells 2025; 43:sxae082. [PMID: 39670872 DOI: 10.1093/stmcls/sxae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Exosomes in the hippocampal dentate gyrus are essential for modulating the cell signaling and controlling the neural differentiation of hippocampal neural stem cells (NSCs), which may determine the level of hippocampal adult neurogenesis. In the present study, we found that exosomes secreted by immature neurons may promote the neuronal differentiation of mouse NSCs in vitro. By miRNA sequencing, we discovered that miR-7a-5p was significantly lower in exosomes from differentiated immature neurons than those from undifferentiated NSCs. By modulating the level of miR-7a-5p, the mimic and inhibitor of miR-7a-5p could either inhibit or promote the neuronal differentiation of NSCs, respectively. Moreover, we confirmed that miR-7a-5p affected neurogenesis by directly targeting Tcf12, a transcription factor responsible for the differentiation of NSCs. The siRNA of Tcf12 inhibited neuronal differentiation of NSCs, while overexpression of Tcf12 promoted NSC differentiation. Thus, we conclude that the miR-7a-5p content in neural exosomes is essential to the fate determination of adult hippocampal neurogenesis and that miR-7a-5p directly targets Tcf12 to regulate adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Xiujian Sun
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yexiang Chen
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
| | - Tiantian Cheng
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Huisheng Peng
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yanting Sun
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Jing-Gen Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
| |
Collapse
|
7
|
Chakraborty A, Punnamraju P, Sajeevan T, Kaur A, Kolthur-Seetharam U, Kamat SS. Identification of ABHD6 as a lysophosphatidylserine lipase in the mammalian liver and kidneys. J Biol Chem 2025; 301:108157. [PMID: 39761854 PMCID: PMC11808726 DOI: 10.1016/j.jbc.2025.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
Lysophosphatidylserine (lyso-PS) is a potent hormone-like signaling lysophospholipid, which regulates many facets of mammalian biology and dysregulation in its metabolism is associated with several human neurological and autoimmune diseases. Despite the physiological importance and causal relation with human pathophysiology, little is known about the metabolism of lyso-PS in tissues other than the nervous and immune systems. To address this problem, here, we attempted to identify one (or more) lipase(s) capable of degrading lyso-PS in different mammalian tissues. We found that the membrane fraction of most mammalian tissues possess lyso-PS lipase activity, yet interestingly, the only bona fide lyso-PS lipase ABHD12 displays this enzymatic activity and has control over lyso-PS metabolism only in the mammalian brain. Using an in vitro inhibitor screen against membrane fractions of different tissues, we find that another lipase from the metabolic serine hydrolase family, ABHD6, is a putative lyso-PS lipase in the mouse liver and kidney. Finally, using pharmacological tools, we validate the lyso-PS lipase activity of ABHD6 in vivo, and functionally designate this enzyme as a major lyso-PS lipase in primary hepatocytes, and the mammalian liver and kidneys.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Prajwal Punnamraju
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Theja Sajeevan
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Arshdeep Kaur
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India; Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India.
| |
Collapse
|
8
|
Kuo G, Kumbhar R, Blair W, Dawson VL, Dawson TM, Mao X. Emerging targets of α-synuclein spreading in α-synucleinopathies: a review of mechanistic pathways and interventions. Mol Neurodegener 2025; 20:10. [PMID: 39849529 PMCID: PMC11756073 DOI: 10.1186/s13024-025-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn. Recognizing the intricate complexity and multifactorial etiology of α-synucleinopathy, the review illuminates the potential of various membrane receptors, proteins, intercellular spreading pathways, and pathological agents for therapeutic interventions. While significant progress has been made in understanding α-synucleinopathy, the pursuit of efficacious treatments remains challenging. Several strategies involving decreasing α-syn production and aggregation, increasing α-syn degradation, lowering extracellular α-syn, and inhibiting cellular uptake of α-syn are presented. The paper underscores the necessity of meticulous and comprehensive investigations to advance our knowledge of α-synucleinopathy pathology and ultimately develop innovative therapeutic strategies for α-synucleinopathies.
Collapse
Affiliation(s)
- Grace Kuo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William Blair
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Lu G, Ma F, Wei P, Ma M, Tran VNH, Baldo BA, Li L. Cocaine-Induced Remodeling of the Rat Brain Peptidome: Quantitative Mass Spectrometry Reveals Anatomically Specific Patterns of Cocaine-Regulated Peptide Changes. ACS Chem Neurosci 2025; 16:128-140. [PMID: 39810605 PMCID: PMC11736046 DOI: 10.1021/acschemneuro.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Addiction to psychostimulants, including cocaine, causes widespread morbidity and mortality and is a major threat to global public health. Currently, no pharmacotherapies can successfully treat psychostimulant addiction. The neuroactive effects of cocaine and other psychostimulants have been studied extensively with respect to their modulation of monoamine systems (particularly dopamine); effects on neuropeptide systems have received less attention. Here, we employed mass spectrometry (MS) methods to characterize cocaine-induced peptidomic changes in the rat brain. Label-free peptidomic analysis using liquid chromatography coupled with tandem MS (LC-MS/MS) was used to describe the dynamic changes of endogenous peptides in five brain regions (nucleus accumbens, dorsal striatum, prefrontal cortex, amygdala, and hypothalamus) following an acute systemic cocaine challenge. The improved sensitivity and specificity of this method, coupled with quantitative assessment, enabled the identification of 1376 peptides derived from 89 protein precursors. Our data reveal marked, region-specific changes in peptide levels in the brain induced by acute cocaine exposure, with peptides in the cholecystokinin and melanin-concentrating hormone families being significantly affected. These findings offer new insights into the region-specific effects of cocaine and could pave the way for developing new therapies to treat substance use disorders and related psychiatric conditions.
Collapse
Affiliation(s)
- Gaoyuan Lu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Pingli Wei
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Vu Ngoc Huong Tran
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Brian A Baldo
- Department of Psychiatry, University of Wisconsin─Madison, Madison, Wisconsin 53719, United States
- Neuroscience Training Program, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
10
|
Yang X, Jeong D, Madeo G, Kumbhar R, Wang N, Niu L, Hu J, Li S, Gadhave K, Chen R, Akkentli F, Workman CJ, Vignali DAA, Ying M, Bonci A, Dawson VL, Dawson TM, Mao X. Neuronal LAG3 facilitates pathogenic α-synuclein neuron-to-neuron propagation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631221. [PMID: 39803449 PMCID: PMC11722393 DOI: 10.1101/2025.01.03.631221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Lymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation. Our results show that the absence of neuronal LAG3 significantly reduces αSyn pathology, alleviates motor dysfunction, and inhibits neurodegeneration in vivo. Electrophysiological recordings revealed that αSyn PFFs induce pronounced neuronal hyperactivity in wild-type (WT) neurons, increasing firing rates in cell-attached and whole-cell configurations, and reducing miniature excitatory postsynaptic currents. In contrast, neurons lacking LAG3 resisted these electrophysiological effects. Moreover, treatment with an anti-human LAG3 antibody in human DA neurons inhibited αSyn PFFs binding and uptake, preventing pathology propagation. These findings confirm the essential function of neuronal LAG3 in mediating αSyn propagation and associated disruptions, identifying LAG3 as a potential therapeutic target for PD and related α-synucleinopathies.
Collapse
Affiliation(s)
- Xiuli Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deok Jeong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Graziella Madeo
- Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ning Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lili Niu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junkai Hu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuya Li
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kundlik Gadhave
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fatih Akkentli
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation; New Orleans, LA 70130-2685, USA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Hugo W. Moser Research Institute at Kennedy Krieger; Baltimore, MD 21205, USA
| | - Antonello Bonci
- Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation; New Orleans, LA 70130-2685, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation; New Orleans, LA 70130-2685, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, MD 21205, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, MD 21205, USA
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Yang J, Li Y, Zhang Y, Xu L, Wang J, Xing F, Song X. Unraveling the Core Components and Critical Targets of Houttuynia cordata Thunb. in Treating Non-small Cell Lung Cancer through Network Pharmacology and Multi-omics Analysis. Curr Pharm Des 2025; 31:540-558. [PMID: 39440769 DOI: 10.2174/0113816128330427241017110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This study aimed to preliminary explore the molecular mechanisms of Houttuynia cordata Thunb. (H. cordata; Saururaceae) in treating non-small cell lung cancer (NSCLC), with the goal of screening drug potential targets for clinical drug development. METHODS This study employed a multi-omics and multi-source data integration approach to identify potential therapeutic targets of H. cordata against NSCLC from the TCMSP database, GEO database, BioGPS database, Metascape database, and others. Meanwhile, target localization was performed, and its possible mechanisms of action were predicted. Furthermore, dynamics simulations and molecular docking were used for verification. Multi-omics analysis was used to confirm the selected key genes' efficacy in treating NSCLC. RESULTS A total of 31 potential therapeutic targets, 8 key genes, and 5 core components of H. cordata against NSCLC were screened out. These potential therapeutic targets played a therapeutic role mainly by regulating lipid and atherosclerosis, the TNF signaling pathway, the IL-17 signaling pathway, and others. Molecular docking indicated a stable combination between MMP9 and quercetin. Finally, through multi-omics analysis, it was found that the expression of some key genes was closely related not only to the progression and prognosis of NSCLC but also to the level of immune infiltration. CONCLUSION Through comprehensive network pharmacology and multi-omics analysis, this study predicts that the core components of H. cordata play a role in treating NSCLC by regulating lipid and atherosclerosis, as well as the TNF signaling pathway. Among them, the anti-NSCLC activity of isoramanone is reported for the first time.
Collapse
Affiliation(s)
- Jinyan Yang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yang Li
- Department of Ultrasound, Xinyang Central Hospital, Xinyang 464000, China
| | - Yan Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Ling Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Jiahui Wang
- College of International Education, Xinyang Normal University, Xinyang 464000, China
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Xinqiang Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
- Medical College, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
12
|
Chopra S, Kadiri OLJ, Ulke J, Hauffe R, Jonas W, Cheshmeh S, Schmidt L, Bishop CA, Yagoub S, Schell M, Rath M, Krüger J, Lippert RN, Krüger M, Kappert K, Kleinridders A. DEP-1 is a brain insulin receptor phosphatase that prevents the simultaneous activation of counteracting metabolic pathways. Cell Rep 2024; 43:114984. [PMID: 39589923 DOI: 10.1016/j.celrep.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
A healthy metabolism relies on precise regulation of anabolic and catabolic pathways. While insulin deficiency impairs anabolism, insulin resistance in obesity causes metabolic dysfunction, especially via altered brain insulin receptor (IR) activity. Density-enhanced phosphatase 1 (DEP-1) negatively modulates the IR in peripheral tissues. Our study shows that DEP-1 is an insulin-regulated gene, dysregulated in obesity, and uncovers its role in brain insulin signaling, impacting both anabolic and catabolic pathways. Neuro-2a cells lacking DEP-1 demonstrated heightened IR phosphorylation upon acute insulin stimulation. This coincided with simultaneous AMP-activated protein kinase (AMPK) activation, which governs catabolic pathways, due to increased phospholipase C-gamma 1 signaling. These opposing pathways in male DEP-1 forebrain-specific knockout mice resulted in elevated lipolysis in white adipose tissue and fat oxidation in brown adipose tissue, with enhanced sympathetic activation and β-adrenergic receptor expression. In conclusion, DEP-1 deficiency causes the simultaneous activation of IR and AMPK signaling in the brain, with enhanced sympathetic activity in adipose tissues.
Collapse
Affiliation(s)
- Simran Chopra
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Otsuware Linda-Josephine Kadiri
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Jannis Ulke
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Cardiovascular-Metabolic-Renal (CMR) Research Center, Charité - Universitätsmedizin Berlin, Hessische Straße 3-4, 10115 Berlin, Germany
| | - Robert Hauffe
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Sahar Cheshmeh
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Christopher A Bishop
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany
| | - Selma Yagoub
- Department of Neurocircuit, Development and Function, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany
| | - Mareike Schell
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Michaela Rath
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Janine Krüger
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Cardiovascular-Metabolic-Renal (CMR) Research Center, Charité - Universitätsmedizin Berlin, Hessische Straße 3-4, 10115 Berlin, Germany
| | - Rachel N Lippert
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Department of Neurocircuit, Development and Function, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Kai Kappert
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Cardiovascular-Metabolic-Renal (CMR) Research Center, Charité - Universitätsmedizin Berlin, Hessische Straße 3-4, 10115 Berlin, Germany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
13
|
Xia H, Zhang J, Mao W, Yi K, Wang T, Liao L. Pathogenesis of acephalic spermatozoa syndrome caused by PMFBP1 mutation. Basic Clin Androl 2024; 34:22. [PMID: 39668357 PMCID: PMC11639112 DOI: 10.1186/s12610-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/26/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Acephalic spermatozoa syndrome is a rare but severe type of teratozoospermia. The familial trait of acephalic spermatozoa syndrome suggests that genetic factors play an important role. However, known mutations account for only some acephalic spermatozoa syndrome patients, and more studies are needed to elucidate its pathogenesis. The current study aimed to elucidate the pathogenesis of acephalic spermatozoa syndrome caused by PMFBP1 mutation. RESULTS We identified a homozygous splice site mutation (NM_031293.2, c.2089-1G > T) in PMFBP1 through Sanger sequencing. Western blotting and immunofluorescence analyses revealed that this splice site mutation resulted in the absence of PMFBP1 protein expression in the patient's sperm cells. We generated an in vitro model carrying the splice site mutation in PMFBP1 and confirmed, through RT‒PCR and Sanger sequencing, that it led to a deletion of 4 base pairs from exon 15. CONCLUSION A homozygous splice site mutation results in a deletion of 4 bp from exon 15 of PMFBP1, thereby affecting the expression of the PMFBP1 protein. The absence of PMFBP1 protein expression can lead to acephalic spermatozoa syndrome. This finding elucidates the underlying cause of acephalic spermatozoa syndrome associated with this specific mutation (NM_031293.2, c.2089-1G > T) in PMFBP1.
Collapse
Affiliation(s)
- Huaqiang Xia
- Reproductive Medicine Center, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China
| | - Juan Zhang
- Reproductive Medicine Center, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China
| | - Wuyuan Mao
- Reproductive Medicine Center, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, 41000, Hunan, China
| | - Teng Wang
- Reproductive Medicine Center, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China
| | - Lingyan Liao
- Pharmacy Department, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China.
| |
Collapse
|
14
|
Hu L, Yuan D, Zhu Q, Wu M, Tie M, Song S, Chen Y, Yang Y, He A. Evaluation of the role of hepatic Gstm4 in diet-induced obesity and dyslipidemia. Biochem Biophys Res Commun 2024; 737:150920. [PMID: 39481188 DOI: 10.1016/j.bbrc.2024.150920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Obesity and its related diseases continue to rise worldwide, necessitating further investigation to develop new therapeutic strategies. The dysregulation of redox homeostasis is tightly associated with metabolic diseases. Glutathione, an antioxidant, acts as a cofactor for antioxidant and detoxification enzymes such as glutathione S-transferases (GSTs)-a superfamily including Gstm4. So far, the physiological role of Gstm4 remains largely unknown. Human genetics is a powerful tool to discover novel therapeutic targets for metabolic diseases. The single nucleotide polymorphism rs650985, located within the sixth intron of the human gene Gstm4, was associated with plasma lipids, indicating that targeting Gstm4 might intervene in the progression of dyslipidemia. Furthermore, we found that Gstm4 is highly expressed in the liver and enriched in hepatocytes-the parenchymal cells of the liver. We established the mouse model with the hepatic deletion of Gstm4 and found that this mouse model did not present altered body weight, serum lipid profile, or liver fat content in the context of chow or high-fat high cholesterol diet feeding, indicating that hepatic Gstm4 is dispensable for diet-induced obesity and dyslipidemia. Further analysis revealed that hepatic deletion of Gstm4 upregulates the level of protein but not mRNA of Npc1l1-a critical protein mediating cholesterol uptake, suggesting that there might be a link between Gstm4 and lipid metabolic diseases in certain contexts.
Collapse
Affiliation(s)
- Liwei Hu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Delong Yuan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qihan Zhu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengyue Wu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Meng Tie
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shaoxuan Song
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yali Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yunzhi Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Anyuan He
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
15
|
Forero DA, Bonilla DA, González-Giraldo Y, Patrinos GP. An overview of key online resources for human genomics: a powerful and open toolbox for in silico research. Brief Funct Genomics 2024; 23:754-764. [PMID: 38993146 DOI: 10.1093/bfgp/elae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Recent advances in high-throughput molecular methods have led to an extraordinary volume of genomics data. Simultaneously, the progress in the computational implementation of novel algorithms has facilitated the creation of hundreds of freely available online tools for their advanced analyses. However, a general overview of the most commonly used tools for the in silico analysis of genomics data is still missing. In the current article, we present an overview of commonly used online resources for genomics research, including over 50 tools. This selection will be helpful for scientists with basic or intermediate skills in the in silico analyses of genomics data, such as researchers and students from wet labs seeking to strengthen their computational competencies. In addition, we discuss current needs and future perspectives within this field.
Collapse
Affiliation(s)
- Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Diego A Bonilla
- Research Division, Dynamical Business & Science Society - DBSS International SAS, Bogotá, Colombia
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Science, University of Patras, Patras, Greece
- Clinical Bioinformatics Unit, Department of Pathology, School of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-AIn, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-AIn, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Shi Q, Dai M, Ma Y, Liu J, Liu X, Wang XJ. DRED: A Comprehensive Database of Genes Related to Repeat Expansion Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae068. [PMID: 39348154 PMCID: PMC11696699 DOI: 10.1093/gpbjnl/qzae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Expansion of tandem repeats in genes often causes severe diseases, such as fragile X syndrome, Huntington's disease, and spinocerebellar ataxia. However, information on genes associated with repeat expansion diseases is scattered throughout the literature, systematic prediction of potential genes that may cause diseases via repeat expansion is also lacking. Here, we develop DRED, a Database of genes related to Repeat Expansion Diseases, as a manually-curated database that covers all known 61 genes related to repeat expansion diseases reported in PubMed and OMIM, along with the detailed repeat information for each gene. DRED also includes 516 genes with the potential to cause diseases via repeat expansion, which were predicted based on their repeat composition, genetic variations, genomic features, and disease associations. Various types of information on repeat expansion diseases and their corresponding genes/repeats are presented in DRED, together with links to external resources, such as NCBI and ClinVar. DRED provides user-friendly interfaces with comprehensive functions, and can serve as a central data resource for basic research and repeat expansion disease-related medical diagnosis. DRED is freely accessible at http://omicslab.genetics.ac.cn/dred, and will be frequently updated to include newly reported genes related to repeat expansion diseases.
Collapse
Affiliation(s)
- Qingqing Shi
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Dai
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingke Ma
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Liu
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuying Liu
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Hong Y, Wang Y, Wang D, Yuan Q, Yang Z, Deng C. Assessing male reproductive toxicity of environmental pollutant di-ethylhexyl phthalate with network toxicology and molecular docking strategy. Reprod Toxicol 2024; 130:108749. [PMID: 39551107 DOI: 10.1016/j.reprotox.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Environmental pollutants, especially endocrine-disrupting chemicals (EDCs) like di-ethylhexyl phthalate (DEHP), pose serious threats to human health, with DEHP widely implicated in male reproductive toxicity. However, the complex molecular interactions remain unknown. We employed a network toxicology approach combined with molecular docking analysis to identify potential targets and mechanisms of DEHP's toxic effects. Databases such as ChEMBL, STITCH, OMIM, and GeneCards were utilized to gather data, and Cytoscape software was used to construct protein-protein interaction networks. A total of 51 potential targets were identified, with eight core targets, including PTGS2, CASP3, and ESR1, highlighted for their roles in oxidative stress, apoptosis, and hormonal dysregulation. KEGG pathway enrichment analysis revealed significant associations with pathways in cancer, cytokine-mediated signaling, and the hypothalamic-pituitary-gonadal axis. Additionally, gene expression datasets from the Gene Expression Omnibus (GEO) database were analyzed to identify differentially expressed genes overlapped with DEHP targets in testicular diseases. Molecular docking results confirmed strong binding affinities between DEHP and the core target proteins, suggesting a robust interaction mechanism. This study underscores the need for further investigation into DEHP's toxic mechanisms and its combined effects with other environmental pollutants, paving the way for comprehensive risk assessments and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China.
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Deqi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qichao Yuan
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Zihan Yang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Chuncao Deng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| |
Collapse
|
18
|
Gu F, Wang Z, Ding H, Tao X, Zhang J, Dai K, Li X, Shen H, Li H, Chen Z, Wang Z. Microglial mitochondrial DNA release contributes to neuroinflammation after intracerebral hemorrhage through activating AIM2 inflammasome. Exp Neurol 2024; 382:114950. [PMID: 39278588 DOI: 10.1016/j.expneurol.2024.114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe disease that often leads to disability and death. Neuroinflammatory response is a key causative factor of early secondary brain injury after ICH. AIM2 is a DNA-sensing protein that recognizes cytosolic double-stranded DNA and take a significant part in neuroinflammation. Mitochondrial DNA participates in the translation of proteins such as the respiratory chain in the mitochondria. Whether mtDNA is involved in forming AIM2 inflammasome after ICH remains unclear. We used mice to construct ICH model in vivo and we used BV2 microglial cells treated with oxyhemoglobin to simulate ICH in vitro. Following lentiviral transfection to overexpress AIM2 antagonist P202, a notable decrease was observed in the levels of AIM2 inflammasome-associated proteins, leading to a reduction in dead neurons surrounding the hematoma and an enhancement in long-term and short-term behavior of neurological deficits. We further explored whether mtDNA took part in the AIM2 activation after ICH. The cytosolic mtDNA level was down-regulated by the mitochondrial division protector Mdivi-1 and up-regulated by transfection of mtDNA into cytoplasm. We found the expression level of AIM2 inflammasome-related proteins and inflammatory cytokines release were regulated by the cytosolic mtDNA level. In conclusion, after ICH, the mtDNA content in the cytoplasm of microglia around the hematoma rises, causing AIM2 inflammation leading to neuronal apoptosis, which leads to neurological deficits in mice. On the other hand, P202 was able to block inflammatory vesicle activation and improve neurological function by preventing the interaction between AIM2 protein and mitochondrial DNA.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
19
|
Song D, Chen Y, Wang P, Cheng Y, Shyh‐Chang N. Lin28a forms an RNA-binding complex with Igf2bp3 to regulate m 6A-modified stress response genes in stress granules of muscle stem cells. Cell Prolif 2024; 57:e13707. [PMID: 39021312 PMCID: PMC11628740 DOI: 10.1111/cpr.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
In the early embryonic stages, Lin-28 homologue A (Lin28a) is highly expressed and declines as the embryo matures. As an RNA-binding protein, Lin28a maintains some adult muscle stem cells (MuSCs) in an embryonic-like state, but its RNA metabolism regulation mechanism remains unclear. BioGPS analysis revealed that Lin28a expression is significantly higher in muscle tissues than in other tissues. Lin28a-positive muscle stem cells (Lin28a+ MuSCs) were sorted from Lin28a-CreERT2; LSL-tdTomato mouse skeletal muscle tissue, which exhibited a higher proliferation rate than the control group. Lin28a-bound transcripts are enriched in various biological processes such as DNA repair, cell cycle, mitochondrial tricarboxylic acid cycle and oxidative stress response. The expression of insulin-like growth factor 2 mRNA-binding protein 3 (Igf2bp3) was markedly elevated in the presence of Lin28a. Co-immunoprecipitation analysis further demonstrated that Lin28a associates with Igf2bp3. Immunofluorescence analyses confirmed that Lin28a, Igf2bp3 and G3bp1 colocalize to form stress granules (SG), and N6-methyladenosine (m6A) modification promotes the formation of Lin28a-SG. Sequencing of the transcriptome and RNAs immunoprecipitated by Lin28a, Igf2bp3 and m6A antibodies in Lin28a+ MuSCs further revealed that Lin28a and Igf2bp3 collaboratively regulate the expression of DNA repair-related genes, including Fancm and Usp1. Lin28a stabilises Igf2bp3, Usp1, and Fancm mRNAs, enhancing DNA repair against oxidative or proteotoxic stress, thus promoting MuSCs self-renewal. Understanding the intricate mechanisms through which Lin28a and Igf2bp3 regulate MuSCs provides a deeper understanding of stem cell self-renewal, with potential implications for regenerative medicine.
Collapse
Affiliation(s)
- Dan Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Yu Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Peng Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yeqian Cheng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ng Shyh‐Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
20
|
Singh S, Dransfeld UE, Ambaw YA, Lopez-Scarim J, Farese RV, Walther TC. PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes. Cell 2024; 187:6820-6834.e24. [PMID: 39423811 PMCID: PMC12055030 DOI: 10.1016/j.cell.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, particularly gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here, we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including risk of Alzheimer's disease, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.
Collapse
Affiliation(s)
- Shubham Singh
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Ulrich E Dransfeld
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes A Ambaw
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Joshua Lopez-Scarim
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Robert V Farese
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA.
| | - Tobias C Walther
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
21
|
Liao Y, Chen Q, Liu L, Huang H, Sun J, Bai X, Jin C, Li H, Sun F, Xiao X, Zhang Y, Li J, Han W, Fu S. Amino acid is a major carbon source for hepatic lipogenesis. Cell Metab 2024; 36:2437-2448.e8. [PMID: 39461344 DOI: 10.1016/j.cmet.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/24/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Increased de novo lipogenesis is a hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD) in obesity, but the macronutrient carbon source for over half of hepatic fatty acid synthesis remains undetermined. Here, we discover that dietary protein, rather than carbohydrates or fat, is the primary nutritional risk factor for MASLD in humans. Consistently, ex vivo tracing studies identify amino acids as a major carbon supplier for the tricarboxylic acid (TCA) cycle and lipogenesis in isolated mouse hepatocytes. In vivo, dietary amino acids are twice as efficient as glucose in fueling hepatic fatty acid synthesis. The onset of obesity further drives amino acids into fatty acid synthesis through reductive carboxylation, while genetic and chemical interventions that divert amino acid carbon away from lipogenesis alleviate hepatic steatosis. Finally, low-protein diets (LPDs) not only prevent body weight gain in obese mice but also reduce hepatic lipid accumulation and liver damage. Together, this study uncovers the significant role of amino acids in hepatic lipogenesis and suggests a previously unappreciated nutritional intervention target for MASLD.
Collapse
Affiliation(s)
- Yilie Liao
- Zhongshan Institute for Drug Discovery (ZIDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Neurometabolism and Regenerative Medicine, Bioland Laboratories, Guangzhou, Guangdong 510530, China; Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore.
| | - Qishan Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Lei Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haipeng Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jingyun Sun
- Center for Neurometabolism and Regenerative Medicine, Bioland Laboratories, Guangzhou, Guangdong 510530, China
| | - Xiaojie Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenchen Jin
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Honghao Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangfang Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xia Xiao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yahong Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery (ZIDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China; Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Suneng Fu
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China.
| |
Collapse
|
22
|
Yang M, Chen T, Xu Y, Liu Q, Xu X. Study on the mechanism of Shenmai injection in the treatment of sepsis. J Cell Mol Med 2024; 28:e70201. [PMID: 39584444 PMCID: PMC11586680 DOI: 10.1111/jcmm.70201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Shenmai injection (SMI) is widely used in the clinical treatment of sepsis, but its mechanism is not yet clear. This study aimed to explore the molecular mechanism through network pharmacology, bioinformatics, and molecular docking technologies. The active ingredients and targets of SMI were screened through traditional Chinese medicine databases and the Swiss Target Prediction database, respectively. The disease genes were searched using GEO and GeneCards databases, and Venn mapping was used to screen potential therapeutic targets. The key targets were selected using Cytoscape 3.9.1 software. The BioGPS database was used to evaluate the expression of these targets in tissues/cells. The DAVID database is used for enrichment analysis. Molecular docking technology was used to evaluate the interaction between these targets and core active ingredients. 122 potential therapeutic targets and 28 key targets were identified. Forty-six potential therapeutic targets showed highly specific expression in 40 tissues/cells. The PI3K-AKT, RAP1, and MAPK signalling pathways are highly enriched. The molecular docking results showed good interactions. This study systematically analysed the mechanism of SMI in treating sepsis, involving multiple targets and pathways, possibly related to anti-inflammatory, anti-oxidative stress, and immune regulation, providing reference value for future basic research of sepsis.
Collapse
Affiliation(s)
- Mengxia Yang
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing institute of Traditional Chinese MedicineBeijingChina
- Graduate School of Beijing University of Chinese MedicineBeijingChina
| | - Tengfei Chen
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Yue Xu
- China Science and Technology Development Center for Chinese MedicineBeijingChina
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing institute of Traditional Chinese MedicineBeijingChina
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing institute of Traditional Chinese MedicineBeijingChina
| |
Collapse
|
23
|
Chen LY, Wang LW, Wen J, Cao JD, Zhou R, Yang JL, Xiao Y, Su T, Huang Y, Guo Q, Zhou HY, Luo XH, Feng X. RNA-binding protein YBX3 promotes PPARγ-SLC3A2 mediated BCAA metabolism fueling brown adipogenesis and thermogenesis. Mol Metab 2024; 90:102053. [PMID: 39481849 PMCID: PMC11570976 DOI: 10.1016/j.molmet.2024.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Activating brown adipose tissue (BAT) thermogenesis is a promising approach to combat obesity and metabolic disorders. The post-transcriptional regulation of BAT thermogenesis mediated by RNA-binding proteins (RBPs) is still not fully understood. This study explores the physiological role of novel RBPs in BAT differentiation and thermogenesis. METHODS We used multiple public datasets to screen out novel RBPs responsible for BAT differentiation and thermogenesis. In vitro loss- and gain-of-function experiments were performed in both C3H10T1/2 preadipocytes and mature brown adipocytes to determine the role of Y-box binding protein 3 (YBX3) in brown adipocyte differentiation and thermogenesis. Adeno-associated virus (AAV)-mediated BAT-specific knockdown or overexpression of Ybx3 was applied to investigate the function of YBX3 in vivo. RESULTS YBX3 is a brown adipocyte-enriched RBP induced by cold stimulation and β-adrenergic signaling. Both in vitro loss- and gain-of-function experiments demonstrate that YBX3 is essential for brown adipocyte differentiation and thermogenesis. BAT-specific loss of Ybx3 dampens thermogenesis and exacerbates diet-induced obesity in mice, while overexpression of Ybx3 promotes thermogenesis and confers protection against diet-induced metabolic dysfunction. Transcriptome analysis and mitochondrial stress test indicate that Ybx3 deficiency compromises the mitochondrial oxidative phosphorylation, leading to thermogenic failure. Mechanistically, YBX3 stabilizes the mRNA of Slc3a2 and Pparg, which facilitates branched-chain amino acid (BCAA) influx and catabolism and fuels brown adipocyte differentiation and thermogenesis. CONCLUSIONS YBX3 facilitates BAT fueling BCAA to boost thermogenesis and energy expenditure, which protects against obesity and metabolic dysfunction. Thus, YBX3 could be a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Lin-Yun Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Li-Wen Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Jing-Dong Cao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Jin-Lin Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China.
| |
Collapse
|
24
|
Wang L, Chen H, Deng L, Hu M, Wang Z, Zhang K, Lian C, Wang X, Zhang J. Roburic acid inhibits lung cancer metastasis and triggers autophagy as verified by network pharmacology, molecular docking techniques and experiments. Front Oncol 2024; 14:1449143. [PMID: 39450260 PMCID: PMC11499198 DOI: 10.3389/fonc.2024.1449143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Roburic acid (ROB) is a newly discovered tetracyclic triterpene acid extracted from oak galls, which has anti-inflammatory effects, but the mechanism of its anticancer effect is not clear. Our study focuses on exploring the potential mechanism of action of ROB in the treatment of lung cancer using a combination of network pharmacological prediction, molecular docking technique and experimental validation. Methods A network pharmacology approach was used to screen the protein targets of ROB and lung cancer, and PPI network analysis and enrichment analysis were performed on the intersecting genes. The tissue and organ distribution of the targets was also evaluated based on the BioGPS database. To ensure the reliability of the network pharmacology prediction results, we proceeded to use molecular docking technique to determine the relationship between drugs and targets. Finally, in vitro experiments with cell lines were performed to further reveal the potential mechanism of ROB for the treatment of lung cancer. Results A total of 83 potential targets of ROB in lung cancer were collected and further screened by using Cytoscape software, and 7 targets of PTGS2, CYP19A1, PTGS1, AR, CYP17A1, PTGES and SRD5A1 were obtained as hub genes and 7 hub targets had good binding energy with ROB. GO and KEGG analysis showed that ROB treatment of lung cancer mainly involves Arachidonic acid metabolism, Notch signaling pathway, cancer pathway and PPAR signaling pathway. The results of in vitro experiments indicated that ROB may inhibit the proliferation and metastasis of lung cancer cells and activate the PPARγ signaling pathway, as well as induce cellular autophagy. Conclusions The results of this study comprehensively elucidated the potential targets and molecular mechanisms of ROB for the treatment of lung cancer, providing new ideas for further lung cancer therapy.
Collapse
Affiliation(s)
- Luyao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Lili Deng
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Mengling Hu
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Kai Zhang
- Research Center of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Joint Research Center for Regional Diseases of Institute of Healthcare Management (IHM), The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| |
Collapse
|
25
|
Pan F, Wang CN, Yu ZH, Wu ZR, Wang Z, Lou S, Li WH, Liu GX, Li T, Zhao YZ, Tang Y. NADPHnet: a novel strategy to predict compounds for regulation of NADPH metabolism via network-based methods. Acta Pharmacol Sin 2024; 45:2199-2211. [PMID: 38902503 PMCID: PMC11420228 DOI: 10.1038/s41401-024-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Identification of compounds to modulate NADPH metabolism is crucial for understanding complex diseases and developing effective therapies. However, the complex nature of NADPH metabolism poses challenges in achieving this goal. In this study, we proposed a novel strategy named NADPHnet to predict key proteins and drug-target interactions related to NADPH metabolism via network-based methods. Different from traditional approaches only focusing on one single protein, NADPHnet could screen compounds to modulate NADPH metabolism from a comprehensive view. Specifically, NADPHnet identified key proteins involved in regulation of NADPH metabolism using network-based methods, and characterized the impact of natural products on NADPH metabolism using a combined score, NADPH-Score. NADPHnet demonstrated a broader applicability domain and improved accuracy in the external validation set. This approach was further employed along with molecular docking to identify 27 compounds from a natural product library, 6 of which exhibited concentration-dependent changes of cellular NADPH level within 100 μM, with Oxyberberine showing promising effects even at 10 μM. Mechanistic and pathological analyses of Oxyberberine suggest potential novel mechanisms to affect diabetes and cancer. Overall, NADPHnet offers a promising method for prediction of NADPH metabolism modulation and advances drug discovery for complex diseases.
Collapse
Affiliation(s)
- Fei Pan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng-Nuo Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhuo-Hang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zeng-Rui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ze Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Shang Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Gui-Xia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ting Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yu-Zheng Zhao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
26
|
De L, Xing N, Du Q, Guo S, Wang S. Investigating the anti-lung cancer properties of Zhuang medicine Cycas revoluta Thunb. leaves targeting ion channels and transporters through a comprehensive strategy. Comput Biol Chem 2024; 112:108156. [PMID: 39067352 DOI: 10.1016/j.compbiolchem.2024.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Cycas revoluta Thunb., known for its ornamental, economic, and medicinal value, has leaves often discarded as waste. However, in ethnic regions of China, the leaves (CRL) are used in folk medicine for anti-tumor properties, particularly for regulating pathways related to cancer. Recent studies on ion channels and transporters (ICTs) highlight their therapeutic potential against cancer, making it vital to identify CRL's active constituents targeting ICTs in lung cancer. PURPOSE This study aims to uncover bioactive substances in CRL and their mechanisms in regulating ICTs for lung cancer treatment using network pharmacology, bioinformatics, molecular docking, molecular dynamics (MD) simulations, in vitro cell assays and HPLC. METHODS We analyzed 62 CRL compounds, predicted targets using PubChem and SwissTargetPrediction, identified lung cancer and ICT targets via GeneCards, and visualized overlaps with R software. Interaction networks were constructed using Cytoscape and STRING. Gene expression, GO, and KEGG analyses were performed using R software. TCGA data provided insights into differential, correlation, survival, and immune analyses. Key interactions were validated through molecular docking and MD simulations. Main biflavonoids were quantified using HPLC, and in vitro cell viability assays were conducted for key biflavonoids. RESULTS Venn diagram analysis identified 52 intersecting targets and ten active CRL compounds. The PPI network highlighted seven key targets. GO and KEGG analysis showed CRL-targeted ICTs involved in synaptic transmission, GABAergic synapse, and proteoglycans in cancer. Differential expression and correlation analysis revealed significant differences in five core targets in lung cancer tissues. Survival analysis linked EGFR and GABRG2 with overall survival, and immune infiltration analysis associated the core targets with most immune cell types. Molecular docking indicated strong binding of CRL ingredients to core targets. HPLC revealed amentoflavone as the most abundant biflavonoid, followed by hinokiflavone, sciadopitysin, and podocarpusflavone A. MD simulations showed that podocarpusflavone A and amentoflavone had better binding stability with GABRG2, and the cell viability assay also proved that they had better anti-lung cancer potential. CONCLUSIONS This study identified potential active components, targets, and pathways of CRL-targeted ICTs for lung cancer treatment, suggesting CRL's utility in drug development and its potential beyond industrial waste.
Collapse
Affiliation(s)
- Luo De
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
27
|
Venkatraman R, Balka KR, Wong W, Sivamani J, Magill Z, Tullett KM, Lane RM, Saunders TL, Tailler M, Crack PJ, Wakim LM, Lahoud MH, Lawlor KE, Kile BT, O'Keeffe M, De Nardo D. IKKɛ induces STING non-IFN immune responses via a mechanism analogous to TBK1. iScience 2024; 27:110693. [PMID: 39262777 PMCID: PMC11387596 DOI: 10.1016/j.isci.2024.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
The cGAS-STING pathway responds to cytosolic DNA to elicit host immunity to infection. The activation of stimulator of interferon genes (STING) can trigger a number of critical cellular responses including inflammation, noncanonical autophagy, lipid metabolism, senescence, and cell death. STING-mediated immunity through the production of type I interferons (IFNs) and nuclear factor kappa B (NF-κB)-driven proinflammatory cytokines is primarily driven via the effector protein TBK1. We have previously found that IκBα kinase epsilon (IKKε), a homolog of TBK1, can also facilitate STING-NF-κB responses. Therefore, a thorough understanding of how IKKε participates in STING signaling is essential. Here, we used a combination of genetic and biochemical approaches to provide mechanistic details into how IKKε confers non-IFN (e.g., NF-κB and MAPK) STING responses in macrophages, including in the absence of TBK1. We demonstrate a conserved mechanism of STING binding between TBK1 and IKKε. These findings strengthen our understanding of cGAS-STING signaling and the preservation of host immunity in cases of TBK1-deficiency.
Collapse
Affiliation(s)
- Rajan Venkatraman
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Katherine R Balka
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Wilson Wong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Jananipriya Sivamani
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zoe Magill
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirsteen M Tullett
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rachael M Lane
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tahnee L Saunders
- Ubiquitin Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Maximilien Tailler
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter J Crack
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Benjamin T Kile
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
28
|
Cao Y, Boss AL, Bolam SM, Munro JT, Crawford H, Dalbeth N, Poulsen RC, Matthews BG. In Vitro Cell Surface Marker Expression on Mesenchymal Stem Cell Cultures does not Reflect Their Ex Vivo Phenotype. Stem Cell Rev Rep 2024; 20:1656-1666. [PMID: 38837115 PMCID: PMC11319515 DOI: 10.1007/s12015-024-10743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Cell surface marker expression is one of the criteria for defining human mesenchymal stem or stromal cells (MSC) in vitro. However, it is unclear if expression of markers including CD73 and CD90 reflects the in vivo origin of cultured cells. We evaluated expression of 15 putative MSC markers in primary cultured cells from periosteum and cartilage to determine whether expression of these markers reflects either the differentiation state of cultured cells or the self-renewal of in vivo populations. Cultured cells had universal and consistent expression of various putative stem cell markers including > 95% expression CD73, CD90 and PDPN in both periosteal and cartilage cultures. Altering the culture surface with extracellular matrix coatings had minimal effect on cell surface marker expression. Osteogenic differentiation led to loss of CD106 and CD146 expression, however CD73 and CD90 were retained in > 90% of cells. We sorted freshly isolated periosteal populations capable of CFU-F formation on the basis of CD90 expression in combination with CD34, CD73 and CD26. All primary cultures universally expressed CD73 and CD90 and lacked CD34, irrespective of the expression of these markers ex vivo indicating phenotypic convergence in vitro. We conclude that markers including CD73 and CD90 are acquired in vitro in most 'mesenchymal' cells capable of expansion. Overall, we demonstrate that in vitro expression of many cell surface markers in plastic-adherent cultures is unrelated to their expression prior to culture.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Anna L Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Scott M Bolam
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Raewyn C Poulsen
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand.
| |
Collapse
|
29
|
Mishra S, Singh G, Bhattacharya M. Tissue specific tumor-gene link prediction through sampling based GNN using a heterogeneous network. Med Biol Eng Comput 2024; 62:2499-2510. [PMID: 38635004 DOI: 10.1007/s11517-024-03087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
A tissue sample is a valuable resource for understanding a patient's symptoms and health status in relation to tumor growth. Recent research seeks to establish a connection between tissue-specific tumor samples and genetic markers (genes). This breakthrough has paved the way for personalized cancer therapies. With this motivation, the proposed model constructs a heterogeneous network based on tumor sample-gene relation data and gene-gene interaction data. This network also incorporates tissue-specific gene expression and primary site-based gene counts as features, enabling tissue-specific predictions. Graph neural networks (GNNs) have proven effective in modeling complex interactions and predicting links within this network. The proposed model has successfully predicted tumor-gene associations by leveraging sampling-based GNNs and link layer embedding. The model's performance metrics, such as AUC-ROC scores, reached approximately 94%, demonstrating the potential of this heterogeneous network in predicting tissue-specific tumor sample-gene links. This paper's findings highlight the importance of tissue-specific associations in cancer research.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Information Technology, ABV- Indian Institute of Information Technology and Management, Morena Road, Gwalior, 474015, Madhya Pradesh, India.
| | - Gurjot Singh
- Department of Information Technology, ABV- Indian Institute of Information Technology and Management, Morena Road, Gwalior, 474015, Madhya Pradesh, India
| | - Mahua Bhattacharya
- Department of Information Technology, ABV- Indian Institute of Information Technology and Management, Morena Road, Gwalior, 474015, Madhya Pradesh, India
| |
Collapse
|
30
|
Zhao X, Zhao Y, Zhang Y, Fan Q, Ke H, Chen X, Jin L, Tang H, Jiang Y, Ma J. Unraveling pathogenesis, biomarkers and potential therapeutic agents for endometriosis associated with disulfidptosis based on bioinformatics analysis, machine learning and experiment validation. J Biol Eng 2024; 18:42. [PMID: 39061076 PMCID: PMC11282767 DOI: 10.1186/s13036-024-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Endometriosis (EMs) is an enigmatic disease of yet-unknown pathogenesis. Disulfidptosis, a novel identified form of programmed cell death resulting from disulfide stress, stands a chance of treating diverse ailments. However, the potential roles of disulfidptosis-related genes (DRGs) in EMs remain elusive. This study aims to thoroughly explore the key disulfidptosis genes involved in EMs, and probe novel diagnostic markers and candidate therapeutic compounds from the aspect of disulfidptosis based on bioinformatics analysis, machine learning, and animal experiments. RESULTS Enrichment analysis on key module genes and differentially expressed genes (DEGs) of eutopic and ectopic endometrial tissues in EMs suggested that EMs was closely related to disulfidptosis. And then, we obtained 20 and 16 disulfidptosis-related DEGs in eutopic and ectopic endometrial tissue, respectively. The protein-protein interaction (PPI) network revealed complex interactions between genes, and screened nine and ten hub genes in eutopic and ectopic endometrial tissue, respectively. Furthermore, immune infiltration analysis uncovered distinct differences in the immunocyte, human leukocyte antigen (HLA) gene set, and immune checkpoints in the eutopic and ectopic endometrial tissues when compared with health control. Besides, the hub genes mentioned above showed a close correlation with the immune microenvironment of EMs. Furthermore, four machine learning algorithms were applied to screen signature genes in eutopic and ectopic endometrial tissue, including the binary logistic regression (BLR), the least absolute shrinkage and selection operator (LASSO), the support vector machine-recursive feature elimination (SVM-RFE), and the extreme gradient boosting (XGBoost). Model training and hyperparameter tuning were implemented on 80% of the data using a ten-fold cross-validation method, and tested in the testing sets which determined the excellent diagnostic performance of these models by six indicators (Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, Accuracy, and Area Under Curve). And seven eutopic signature genes (ACTB, GYS1, IQGAP1, MYH10, NUBPL, SLC7A11, TLN1) and five ectopic signature genes (CAPZB, CD2AP, MYH10, OXSM, PDLIM1) were finally identified based on machine learning. The independent validation dataset also showed high accuracy of the signature genes (IQGAP1, SLC7A11, CD2AP, MYH10, PDLIM1) in predicting EMs. Moreover, we screened 12 specific compounds for EMs based on ectopic signature genes and the pharmacological impact of tretinoin on signature genes was further verified in the ectopic lesion in the EMs murine model. CONCLUSION This study verified a close association between disulfidptosis and EMs based on bioinformatics analysis, machine learning, and animal experiments. Further investigation on the biological mechanism of disulfidptosis in EMs is anticipated to yield novel advancements for searching for potential diagnostic biomarkers and revolutionary therapeutic approaches in EMs.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingnan Fan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huanxiao Ke
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linxi Jin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongying Tang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jing Ma
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
31
|
Ni Z, Wang J, Yu X, Wang Y, Wang J, He X, Li C, Deng G, Shi J, Kong H, Jiang Y, Chen P, Zeng X, Tian G, Chen H, Bu Z. Influenza virus uses mGluR2 as an endocytic receptor to enter cells. Nat Microbiol 2024; 9:1764-1777. [PMID: 38849624 PMCID: PMC11222159 DOI: 10.1038/s41564-024-01713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Influenza virus infection is initiated by the attachment of the viral haemagglutinin (HA) protein to sialic acid receptors on the host cell surface. Most virus particles enter cells through clathrin-mediated endocytosis (CME). However, it is unclear how viral binding signals are transmitted through the plasma membrane triggering CME. Here we found that metabotropic glutamate receptor subtype 2 (mGluR2) and potassium calcium-activated channel subfamily M alpha 1 (KCa1.1) are involved in the initiation and completion of CME of influenza virus using an siRNA screen approach. Influenza virus HA directly interacted with mGluR2 and used it as an endocytic receptor to initiate CME. mGluR2 interacted and activated KCa1.1, leading to polymerization of F-actin, maturation of clathrin-coated pits and completion of the CME of influenza virus. Importantly, mGluR2-knockout mice were significantly more resistant to different influenza subtypes than the wild type. Therefore, blocking HA and mGluR2 interaction could be a promising host-directed antiviral strategy.
Collapse
Affiliation(s)
- Zixin Ni
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jinliang Wang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaofei Yu
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yifan Wang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jingfei Wang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xijun He
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Pucheng Chen
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| |
Collapse
|
32
|
He S, Chen H, Yi Y, Hou D, Fu X, Xie J, Zhang J, Liu C, Ru X, Wang J. A novel bioinformatics strategy to uncover the active ingredients and molecular mechanisms of Bai Shao in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1406188. [PMID: 39005933 PMCID: PMC11239447 DOI: 10.3389/fphar.2024.1406188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: As a new discipline, network pharmacology has been widely used to disclose the material basis and mechanism of Traditional Chinese Medicine in recent years. However, numerous researches indicated that the material basis of TCMs identified based on network pharmacology was the mixtures of beneficial and harmful substances rather than the real material basis. In this work, taking the anti-NAFLD (non-alcoholic fatty liver disease) effect of Bai Shao (BS) as a case, we attempted to propose a novel bioinformatics strategy to uncover the material basis and mechanism of TCMs in a precise manner. Methods: In our previous studies, we have done a lot work to explore TCM-induced hepatoprotection. Here, by integrating our previous studies, we developed a novel computational pharmacology method to identify hepatoprotective ingredients from TCMs. Then the developed method was used to discover the material basis and mechanism of Bai Shao against Non-alcoholic fatty liver disease by combining with the techniques of molecular network, microarray data analysis, molecular docking, and molecular dynamics simulation. Finally, literature verification method was utilized to validate the findings. Results: A total of 12 ingredients were found to be associated with the anti-NAFLD effect of BS, including monoterpene glucosides, flavonoids, triterpenes, and phenolic acids. Further analysis found that IL1-β, IL6, and JUN would be the key targets. Interestingly, molecular docking and molecular dynamics simulation analysis showed that there indeed existed strong and stable binding affinity between the active ingredients and the key targets. In addition, a total of 23 NAFLD-related KEGG pathways were enriched. The major biological processes involved by these pathways including inflammation, apoptosis, lipid metabolism, and glucose metabolism. Of note, there was a great deal of evidence available in the literature to support the findings mentioned above, indicating that our method was reliable. Discussion: In summary, the contributions of this work can be summarized as two aspects as follows. Firstly, we systematically elucidated the material basis and mechanism of BS against NAFLD from multiple perspectives. These findings further enhanced the theoretical foundation of BS on NAFLD. Secondly, a novel computational pharmacology research strategy was proposed, which would assist network pharmacology to uncover the scientific connotation TCMs in a more precise manner.
Collapse
Affiliation(s)
- Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Hantao Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Yanfeng Yi
- Department of Life Sciences and Health, School of Science and Engineering, Huzhou College, Huzhou, China
| | - Diandong Hou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xuyan Fu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Zhang
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Chongbin Liu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xiaochen Ru
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Wang
- School of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|
33
|
Kaleta K, Janik K, Rydz L, Wróbel M, Jurkowska H. Bridging the Gap in Cancer Research: Sulfur Metabolism of Leukemic Cells with a Focus on L-Cysteine Metabolism and Hydrogen Sulfide-Producing Enzymes. Biomolecules 2024; 14:746. [PMID: 39062461 PMCID: PMC11274876 DOI: 10.3390/biom14070746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Leukemias are cancers of the blood-forming system, representing a significant challenge in medical science. The development of leukemia cells involves substantial disturbances within the cellular machinery, offering hope in the search for effective selective treatments that could improve the 5-year survival rate. Consequently, the pathophysiological processes within leukemia cells are the focus of critical research. Enzymes such as cystathionine beta-synthase and sulfurtransferases like thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine gamma-lyase play a vital role in cellular sulfur metabolism. These enzymes are essential to maintaining cellular homeostasis, providing robust antioxidant defenses, and supporting cell division. Numerous studies have demonstrated that cancerous processes can alter the expression and activity of these enzymes, uncovering potential vulnerabilities or molecular targets for cancer therapy. Recent laboratory research has indicated that certain leukemia cell lines may exhibit significant changes in the expression patterns of these enzymes. Analysis of the scientific literature and online datasets has confirmed variations in sulfur enzyme function in specific leukemic cell lines compared to normal leukocytes. This comprehensive review collects and analyzes available information on sulfur enzymes in normal and leukemic cell lines, providing valuable insights and identifying new research pathways in this field.
Collapse
Affiliation(s)
- Konrad Kaleta
- Students’ Scientific Group of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
| | - Klaudia Janik
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Leszek Rydz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| |
Collapse
|
34
|
Huang X, Huang J, Li X, Fan J, Zhou D, Qu HQ, Glessner JT, Ji D, Jia Q, Ding Z, Wang N, Wei W, Lyu X, Li MJ, Liu Z, Liu W, Wei Y, Hakonarson H, Xia Q, Li J. Target genes regulated by CLEC16A intronic region associated with common variable immunodeficiency. J Allergy Clin Immunol 2024; 153:1668-1680. [PMID: 38191060 DOI: 10.1016/j.jaci.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND CLEC16A intron 19 has been identified as a candidate locus for common variable immunodeficiency (CVID). OBJECTIVES This study sought to elucidate the molecular mechanism by which variants at the CLEC16A intronic locus may contribute to the pathogenesis of CVID. METHODS The investigators performed fine-mapping of the CLEC16A locus in a CVID cohort, then deleted the candidate functional SNP in T-cell lines by the CRISPR-Cas9 technique and conducted RNA-sequencing to identify target gene(s). The interactions between the CLEC16A locus and its target genes were identified using circular chromosome conformation capture. The transcription factor complexes mediating the chromatin interactions were determined by proteomic approach. The molecular pathways regulated by the CLEC16A locus were examined by RNA-sequencing and reverse phase protein array. RESULTS This study showed that the CLEC16A locus is an enhancer regulating expression of multiple target genes including a distant gene ATF7IP2 through chromatin interactions. Distinct transcription factor complexes mediate the chromatin interactions in an allele-specific manner. Disruption of the CLEC16A locus affects the AKT signaling pathway, as well as the molecular response of CD4+ T cells to immune stimulation. CONCLUSIONS Through multiomics and targeted experimental approaches, this study elucidated the underlying target genes and signaling pathways involved in the genetic association of CLEC16A with CVID, and highlighted plausible molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinxia Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiumei Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingxian Fan
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Desheng Zhou
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Joseph T Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Dandan Ji
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Jia
- International School of Information Science Engineering, Dalian University of Technology, Dalian, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Jinan, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Jinan, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Lyu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Liu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
35
|
Samson N, Bosoi CR, Roy C, Turcotte L, Tribouillard L, Mouchiroud M, Berthiaume L, Trottier J, Silva HCG, Guerbette T, Plata-Gómez AB, Besse-Patin A, Montoni A, Ilacqua N, Lamothe J, Citron YR, Gélinas Y, Gobeil S, Zoncu R, Caron A, Morissette M, Pellegrini L, Rochette PJ, Estall JL, Efeyan A, Shum M, Audet-Walsh É, Barbier O, Marette A, Laplante M. HSDL2 links nutritional cues to bile acid and cholesterol homeostasis. SCIENCE ADVANCES 2024; 10:eadk9681. [PMID: 38820148 PMCID: PMC11141617 DOI: 10.1126/sciadv.adk9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.
Collapse
Affiliation(s)
- Nolwenn Samson
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Cristina R. Bosoi
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Christian Roy
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laurie Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laura Tribouillard
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Line Berthiaume
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Jocelyn Trottier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Heitor C. G. Silva
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Thomas Guerbette
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aurèle Besse-Patin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Alicia Montoni
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | - Nicolò Ilacqua
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Centre de recherche CERVO, Québec, QC, Canada
| | - Jennifer Lamothe
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Yemima R. Citron
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Yves Gélinas
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | | | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Alexandre Caron
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Mathieu Morissette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Luca Pellegrini
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, QC, Canada
| | - Patrick J. Rochette
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Département d’Ophtalmologie et ORL – chirurgie cervico-faciale, Université Laval, Québec, QC, Canada
| | - Jennifer L. Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michael Shum
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Olivier Barbier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
36
|
Mao X, Gu H, Kim D, Kimura Y, Wang N, Xu E, Kumbhar R, Ming X, Wang H, Chen C, Zhang S, Jia C, Liu Y, Bian H, Karuppagounder SS, Akkentli F, Chen Q, Jia L, Hwang H, Lee SH, Ke X, Chang M, Li A, Yang J, Rastegar C, Sriparna M, Ge P, Brahmachari S, Kim S, Zhang S, Shimoda Y, Saar M, Liu H, Kweon SH, Ying M, Workman CJ, Vignali DAA, Muller UC, Liu C, Ko HS, Dawson VL, Dawson TM. Aplp1 interacts with Lag3 to facilitate transmission of pathologic α-synuclein. Nat Commun 2024; 15:4663. [PMID: 38821932 PMCID: PMC11143359 DOI: 10.1038/s41467-024-49016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid β precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.
Collapse
Affiliation(s)
- Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| | - Hao Gu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Nanjing Brain Hospital, Nanjing, Jiangsu, 210029, PR China
- Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, PR China
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology, College of Medicine, Dong-A University, 32 Daesin Gongwwon-ro, Seo-gu, Busan, 49201, Republic of Korea
| | - Yasuyoshi Kimura
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ning Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Enquan Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Xiaotian Ming
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Haibo Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chan Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Anesthesiology, West China Hospital, Sichuan University. The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
| | - Chunyu Jia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yuqing Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hetao Bian
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fatih Akkentli
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Qi Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Longgang Jia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Heehong Hwang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Su Hyun Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiyu Ke
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amanda Li
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cyrus Rastegar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Manjari Sriparna
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biological Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Shu Zhang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata, 940-2188, Japan
| | - Martina Saar
- Institute for Pharmacy and Molecular Biotechnology IPMB, Department of Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Haiqing Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Sin Ho Kweon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD, 21205, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Ulrike C Muller
- Institute for Pharmacy and Molecular Biotechnology IPMB, Department of Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
37
|
Onuma T, Asare-Werehene M, Fujita Y, Yoshida Y, Tsang BK. Plasma Gelsolin Inhibits Natural Killer Cell Function and Confers Chemoresistance in Epithelial Ovarian Cancer. Cells 2024; 13:905. [PMID: 38891037 PMCID: PMC11171658 DOI: 10.3390/cells13110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Plasma gelsolin (pGSN) overexpression in ovarian cancer (OVCA) disarms immune function, contributing to chemoresistance. The aim of this study was to investigate the immunoregulatory effects of pGSN expression on natural killer (NK) cell function in OVCA. OVCA tissues from primary surgeries underwent immunofluorescent staining of pGSN and the activated NK cell marker natural cytotoxicity triggering receptor 1 to analyze the prognostic impact of pGSN expression and activated NK cell infiltration. The immunoregulatory effects of pGSN on NK cells were assessed using apoptosis assay, cytokine secretion, immune checkpoint-receptor expression, and phosphorylation of STAT3. In OVCA tissue analyses, activated NK cell infiltration provided survival advantages to patients. However, high pGSN expression attenuated the survival benefits of activated NK cell infiltration. In the in vitro experiment, pGSN in OVCA cells induced NK cell death through cell-to-cell contact. pGSN increased T-cell immunoglobulin and mucin-domain-containing-3 expression (TIM-3) on activated NK cells. Further, it decreased interferon-γ production in activated TIM-3+ NK cells, attenuating their anti-tumor effects. Thus, increased pGSN expression suppresses the anti-tumor functions of NK cells. The study provides insights into why immunotherapy is rarely effective in patients with OVCA and suggests novel treatment strategies.
Collapse
Affiliation(s)
- Toshimichi Onuma
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Meshach Asare-Werehene
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yuko Fujita
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Benjamin K. Tsang
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
38
|
Nazzari M, Romitti M, Kip AM, Kamps R, Costagliola S, van de Beucken T, Moroni L, Caiment F. Impact of benzo[a]pyrene, PCB153 and sex hormones on human ESC-Derived thyroid follicles using single cell transcriptomics. ENVIRONMENT INTERNATIONAL 2024; 188:108748. [PMID: 38763096 DOI: 10.1016/j.envint.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Endocrine disruptors are compounds of manmade origin able to interfere with the endocrine system and constitute an important environmental concern. Indeed, detrimental effects on thyroid physiology and functioning have been described. Differences exist in the susceptibility of human sexes to the incidence of thyroid disorders, like autoimmune diseases or cancer. METHODS To study how different hormonal environments impact the thyroid response to endocrine disruptors, we exposed human embryonic stem cell-derived thyroid organoids to physiological concentrations of sex hormones resembling the serum levels of human females post-ovulation or males of reproductive age for three days. Afterwards, we added 10 µM benzo[a]pyrene or PCB153 for 24 h and analyzed the transcriptome changes via single-cell RNA sequencing with differential gene expression and gene ontology analysis. RESULTS The sex hormones receptors genes AR, ESR1, ESR2 and PGR were expressed at low levels. Among the thyroid markers, only TG resulted downregulated by benzo[a]pyrene or benzo[a]pyrene with the "male" hormones mix. Both hormone mixtures and benzo[a]pyrene alone upregulated ribosomal genes and genes involved in oxidative phosphorylation, while their combination decreased the expression compared to benzo[a]pyrene alone. The "male" mix and benzo[a]pyrene, alone or in combination, upregulated genes involved in lipid transport and metabolism (APOA1, APOC3, APOA4, FABP1, FABP2, FABP6). The combination of "male" hormones and benzo[a]pyrene induced also genes involved in inflammation and NFkB targets. Benzo[a]pyrene upregulated CYP1A1, CYP1B1 and NQO1 irrespective of the hormonal context. The induction was stronger in the "female" mix. Benzo[a]pyrene alone upregulated genes involved in cell cycle regulation, response to reactive oxygen species and apoptosis. PCB153 had a modest effect in presence of "male" hormones, while we did not observe any changes with the "female" mix. CONCLUSION This work shows how single cell transcriptomics can be applied to selectively study the in vitro effects of endocrine disrupters and their interaction with different hormonal contexts.
Collapse
Affiliation(s)
- Marta Nazzari
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Anna M Kip
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht, the Netherlands
| | - Rick Kamps
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Twan van de Beucken
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht, the Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
39
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
40
|
Yang Q, Xie Y, Pan B, Cheng Y, Zhu Y, Fei X, Li X, Yu J, Chen Z, Li J, Xiong X. The Expression and Epigenetic Characteristics of the HSF2 Gene in Cattle-Yak and the Correlation with Its Male Sterility. Animals (Basel) 2024; 14:1410. [PMID: 38791628 PMCID: PMC11117389 DOI: 10.3390/ani14101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Aberrant expression of the heat shock proteins and factors was revealed to be closely associated with male reproduction. Heat shock factor 2 (HSF2) is a transcription factor that is involved in the regulation of diverse developmental pathways. However, the role and the corresponding molecular mechanism of HSF2 in male cattle-yak sterility are still poorly understood. Therefore, the aim of this study was to obtain the sequence and the biological information of the cattle-yak HSF2 gene and to investigate the spatiotemporal expression profiles of the locus during the development of cattle-yak testes. Additionally, the differential expression was analyzed between the cattle-yak and the yak, and the methylation of corresponding promoter regions was compared. Our results showed an additional 54 bp fragment and a missense mutation (lysine to glutamic acid) were presented in the cattle-yak HSF2 gene, which correlated with enriched expression in testicular tissue. In addition, the expression of the HSF2 gene showed dynamic changes during the growth of the testes, reaching a peak in adulthood. The IHC indicated that HSF2 protein was primarily located in spermatocytes (PS), spermatogonia (SP), and Sertoli cells (SC) in cattle-yak testes, compared with the corresponding cells of cattle and the yak. Furthermore, bisulfite-sequencing PCR (BSP) revealed that the methylated CpG sites in the promoter region of the cattle-yak HSF2 were more numerous than in the yak counterpart, which suggests hypermethylation of this region in the cattle-yak. Taken together, the low expression abundance and hypermethylation of HSF2 may underpin the obstruction of spermatogenesis, which leads to male cattle-yak infertility. Our study provided a basic guideline for the HSF2 gene in male reproduction and a new insight into the mechanisms of male cattle-yak sterility.
Collapse
Affiliation(s)
- Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Yumian Xie
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Yuying Cheng
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Xupeng Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Jun Yu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Zhuo Chen
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Jian Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Xianrong Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| |
Collapse
|
41
|
Kawano S, Noda C, Itoh S, Urabe A, Fujii C, Ogawa I, Suzuki R, Hida S. Staphylococcal superantigen-like protein 3 triggers murine mast cell adhesion by binding to CD43 and augments mast cell activation. Genes Cells 2024; 29:397-416. [PMID: 38454012 DOI: 10.1111/gtc.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Staphylococcus aureus is a noteworthy pathogen in allergic diseases, as four staphylococcal exotoxins activate mast cells, a significant contributor to inflammation, in an IgE-independent manner. Although the adhesion of mast cells is an essential process for their immune responses, only a small number of exotoxins have been reported to affect the process. Here, we demonstrated that staphylococcal superantigen-like (SSL) 3, previously identified as a toll-like receptor 2 agonist, induced the adhesion of murine bone marrow-derived mast cells to culture substratum. SSL3-induced adhesion was mediated by fibronectin in an Arg-Gly-Asp (RGD) sequence-dependent manner, suggesting the integrins were involved in the process. Additionally, SSL3 was found to bind to an anti-adhesive surface protein CD43. SSL3 induced the adhesion of HEK293 cells expressing exogenous CD43, suggesting that CD43 is the target molecule for adhesion induced by SSL3. Evaluation of SSL3-derived mutants showed that the C-terminal region (253-326), specifically T285 and H307, are necessary to induce adhesion. SSL3 augmented the IL-13 production of mast cells in response to immunocomplex and SSL12. These findings reveal a novel function of SSL3, triggering cell adhesion and enhancing mast cell activation. This study would clarify the correlation between S. aureus and allergic diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Sae Kawano
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chisaki Noda
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ayaka Urabe
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chifumi Fujii
- Department of Biotechnology, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano Prefecture, Japan
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
- Center for Medical Education and Clinical Training, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
| | - Isamu Ogawa
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ryo Suzuki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa Prefecture, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| |
Collapse
|
42
|
Lin M, Hu L, Shen S, Liu J, Liu Y, Xu Y, Chen H, Sugimoto K, Li J, Kamitsukasa I, Hiwasa T, Wang H, Xu A. Atherosclerosis-related biomarker PABPC1 predicts pan-cancer events. Stroke Vasc Neurol 2024; 9:108-125. [PMID: 37311641 PMCID: PMC11103157 DOI: 10.1136/svn-2022-002246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) and tumours are the leading causes of death worldwide and share common risk factors, detection methods and molecular markers. Therefore, searching for serum markers shared by AS and tumours is beneficial to the early diagnosis of patients. METHODS The sera of 23 patients with AS-related transient ischaemic attack were screened by serological identification of antigens through recombinant cDNA expression cloning (SEREX), and cDNA clones were identified. Pathway function enrichment analysis was performed on cDNA clones to identify their biological pathways and determine whether they were related to AS or tumours. Subsequently, gene-gene and protein-protein interactions were performed and AS-associated markers would be discovered. The expression of AS biomarkers in human normal organs and pan-cancer tumour tissues were explored. Then, immune infiltration level and tumour mutation burden of various immune cells were evaluated. Survival curves analysis could show the expression of AS markers in pan-cancer. RESULTS AS-related sera were screened by SEREX, and 83 cDNA clones with high homology were obtained. Through functional enrichment analysis, it was found that their functions were closely related to AS and tumour functions. After multiple biological information interaction screening and the external cohort validating, poly(A) binding protein cytoplasmic 1 (PABPC1) was found to be a potential AS biomarker. To assess whether PABPC1 was related to pan-cancer, its expression in different tumour pathological stages and ages was screened. Since AS-associated proteins were closely related to cancer immune infiltration, we investigated and found that PABPC1 had the same role in pan-cancer. Finally, analysis of Kaplan-Meier survival curves revealed that high PABPC1 expression in pan-cancer was associated with high risk of death. CONCLUSIONS Through the findings of SEREX and bioinformatics pan-cancer analysis, we concluded that PABPC1 might serve as a potential biomarker for the prediction and diagnosis of AS and pan-cancer.
Collapse
Affiliation(s)
- Miao Lin
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liubing Hu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Si Shen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jiyue Liu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanyan Liu
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yixian Xu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Honglin Chen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Kazuo Sugimoto
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jianshuang Li
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Ikuo Kamitsukasa
- Department of Neurology, Chiba Rosai Hospital, Chiba, Japan
- Department of Neurology, Chibaken Saiseikai Narashino Hospital, Chiba, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Anding Xu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Zhao X, Wang S, Du T, Jiang Y, Zhao Y, Ma Y, Shen D, Shen Y, Ma J. Demystifying the landscape of endometrial immune microenvironment in luteal-phase from cuprotosis: Implications for the mechanism and treatment of RPL. Gene 2024; 903:148191. [PMID: 38253297 DOI: 10.1016/j.gene.2024.148191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Adaptive changes in the endometrial immune microenvironment during the luteal phase are essential for pregnancy, and their abnormalities are associated with recurrent pregnancy loss (RPL). Nevertheless, the specific mechanism is still unknown. Cuprotosis, an innovatively discovered type of programmed cell death, provides us with a pioneering perspective to decipher the landscape of luteal-phase endometrial immune microenvironment in RPL. This study aimed to analyze the immune landscape of luteal-phase endometrial microenvironment in RPL and explore the association of cuprotosis with it through integrative bioinformatics analysis. METHODS The microarrays involving the luteal phase endometrial tissue of RPL were obtained from the GEO database. Differentially expressed genes (DEGs) of RPL were screened and key modules were detected by WGCNA. GO, KEGG, and GSEA immune enrichment analyses were performed on the DEGs in the most relevant modules to RPL. Then, the endometrial immune microenvironment landscape of RPL was analyzed, including immune infiltration analysis and correlation analysis between immune cells or immune functions. The interaction of cuprotosis-related genes (CRGs), the expression level between groups, the immune localization and their correlation with immune cells and immune function were analyzed. LASSO regression and Nomogram evaluated the diagnostic value of immune-related CRGS in RPL. Functional enrichment analysis was performed on the RPL signature CRGs. And RPL samples were grouped according to the expression of 7 RPL signature CRGs through unsupervised clustering analysis. After that, we analyzed the expression level of CRGs and immune infiltration, as well as performed immune function enrichment analysis in subtypes. In addition, we also screened potential drugs that might act on CRGs to improve the pathological mechanism of RPL. RESULTS In this study, we uncovered that DEGs and genes in key modules derived from weighted gene co-expression network analysis (WGCNA) were involved in immune regulation. And the immune infiltration landscape of RPL was significantly different from healthy controls. Furthermore, six hub genes were screened from CRGs based on Cytohubba, and their expression profilings were verified in RPL and normal mouse samples. Besides, seven CRGs closely associated with the immune regulation of RPL were identified by Spearman correlation analysis, including SLC31A1, LIAS, DLD, DLAT, DBT, ATP7B, and ATP7A, named as immune-related CRGs. Furthermore, three subgroups clustered according to these seven genes showed significant differences in immune landscape, suggesting a remarkable effect of CRGs on immune regulation. Last but not least, we analyzed the regulation network of transcription factors, miRNAs, and CRGs, and screened potential compounds for the treatment of RPL by targeting CRGs. CONCLUSIONS The abnormal endometrial immune microenvironment in the luteal phase was associated with the pathomechanism of RPL, and cuprotosis was closely involved in the immune microenvironment in the luteal phase endometrium of RPL. Collectively, this study revealed the potential contribution of CRGs to the pathogenesis of RPL, providing a novel breakthroughs in insights into the pathogenesis, diagnosis, and treatment of RPL.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sihui Wang
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Du
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuepeng Jiang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiming Ma
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Shen
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Ma
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
44
|
Saravanan KS, Satish KS, Saraswathy GR, Kuri U, Vastrad SJ, Giri R, Dsouza PL, Kumar AP, Nair G. Innovative target mining stratagems to navigate drug repurposing endeavours. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:303-355. [PMID: 38789185 DOI: 10.1016/bs.pmbts.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The conventional theory linking a single gene with a particular disease and a specific drug contributes to the dwindling success rates of traditional drug discovery. This requires a substantial shift focussing on contemporary drug design or drug repurposing, which entails linking multiple genes to diverse physiological or pathological pathways and drugs. Lately, drug repurposing, the art of discovering new/unlabelled indications for existing drugs or candidates in clinical trials, is gaining attention owing to its success rates. The rate-limiting phase of this strategy lies in target identification, which is generally driven through disease-centric and/or drug-centric approaches. The disease-centric approach is based on exploration of crucial biomolecules such as genes or proteins underlying pathological cascades of the disease of interest. Investigating these pathological interplays aids in the identification of potential drug targets that can be leveraged for novel therapeutic interventions. The drug-centric approach involves various strategies such as exploring the mechanism of adverse drug reactions that can unearth potential targets, as these untoward reactions might be considered desirable therapeutic actions in other disease conditions. Currently, artificial intelligence is an emerging robust tool that can be used to translate the aforementioned intricate biological networks to render interpretable data for extracting precise molecular targets. Integration of multiple approaches, big data analytics, and clinical corroboration are essential for successful target mining. This chapter highlights the contemporary strategies steering target identification and diverse frameworks for drug repurposing. These strategies are illustrated through case studies curated from recent drug repurposing research inclined towards neurodegenerative diseases, cancer, infections, immunological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Kamatchi Sundara Saravanan
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kshreeraja S Satish
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Ganesan Rajalekshmi Saraswathy
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India.
| | - Ushnaa Kuri
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Soujanya J Vastrad
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Ritesh Giri
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Prizvan Lawrence Dsouza
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Adusumilli Pramod Kumar
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Gouri Nair
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| |
Collapse
|
45
|
Wang Y, Du Y. Graph neural network model GGDisnet for identifying genes in gastrointestinal cancer and single-cell analysis. Comput Biol Med 2024; 172:108285. [PMID: 38503088 DOI: 10.1016/j.compbiomed.2024.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Gastrointestinal cancer, a highly prevalent form of cancer, has been the subject of extensive research resulting in the identification of numerous pathogenic genes. However, validation and exploration of these findings often require traditional biological experiments, which are time-consuming and limit the ability to make extensive assessments promptly. To address this challenge, this paper introduces GGDisnet, a novel model for identifying genes associated with gastrointestinal cancer. GGDisnet efficiently screens human genes, providing a set of genes with a high correlation to gastrointestinal cancer for reference. Comparative analysis with other models demonstrates GGDisnet's superior performance. Furthermore, we conducted enrichment and single-cell analyses based on GGDisnet-predicted genes, offering valuable clinical insights.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaqi Du
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
46
|
Zhang X, Zhang X, Yang Q, Han R, Fadhul W, Sachdeva A, Zhang X. Comprehensive analysis of ADGRE5 gene in human tumors: Clinical relevance, prognostic implications, and potential for personalized immunotherapy. Heliyon 2024; 10:e27459. [PMID: 38501000 PMCID: PMC10945187 DOI: 10.1016/j.heliyon.2024.e27459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose The Adhesion G protein receptor E5 (ADGRE5) gene is involved in a wide range of biological functions in human tumors; however, its specific molecular mechanism and significance in the analysis of human tumors have not yet been determined. Here, we provide a comprehensive genomic architecture of ADGRE5 in the tumor immune microenvironment and its clinical relevance across a broad range of solid tumors. Methods In this study, we used publicly available bioinformatics databases, with a primary focus on The Cancer Genome Atlas (TCGA) database and GTEx data, to conduct a comprehensive analysis of the impact on patient prognosis associated with ADGRE5. Results Statistics of more than 30 solid tumors from TCGA and Cancer Cell Line Encyclopedia (CCLE) were examined. ADGRE5 was differentially expressed in several cancers and was significantly associated with survival outcomes. Higher ADGRE5 levels were associated with worse prognosis in adrenocortical carcinoma, low grade glioma of the brain (LGG), lung squamous cell carcinoma, liver hepatocellular carcinoma, and uveal melanoma (UVM). Additionally, ADGRE5 was found to be an independent risk factor for LGG and UVM. The clinical relevance of ADGRE5 in tumor immunogenicity was further investigated. The expression level of ADGRE5 was not only strongly associated with tumor infiltration, such as tumor-infiltrating immune cells and immune subtypes, but also with tumor mutation burden, pyroptosis, and epithelial-mesenchymal transition in various types of cancer (P < 0.05). Furthermore, we noted that ADGRE5 exhibited a positive association with targeted drug sensitivity and conversely, a negative association with traditional chemotherapeutic drug sensitivity. Thus, ADGRE5 is expected to be a guiding marker gene for clinical prognosis and personalized tumor immunotherapy.
Collapse
Affiliation(s)
- Xiangjian Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinxin Zhang
- Department of Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuhui Yang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruokuo Han
- Department of Surgical Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Walaa Fadhul
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Alisha Sachdeva
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xianbo Zhang
- Department of Surgical Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
47
|
Nataf S, Guillen M, Pays L. The Immunometabolic Gene N-Acetylglucosamine Kinase Is Uniquely Involved in the Heritability of Multiple Sclerosis Severity. Int J Mol Sci 2024; 25:3803. [PMID: 38612613 PMCID: PMC11011344 DOI: 10.3390/ijms25073803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The clinical severity of multiple sclerosis (MS), an autoimmune disorder of the central nervous system, is thought to be determined by environmental and genetic factors that have not yet been identified. In a recent genome-wide association study (GWAS), a single nucleotide polymorphism (SNP), rs10191329, has been associated with MS severity in two large independent cohorts of patients. Different approaches were followed by the authors to prioritize the genes that are transcriptionally regulated by such an SNP. It was concluded that the identified SNP regulates a group of proximal genes involved in brain resilience and cognitive abilities rather than immunity. Here, by conducting an alternative strategy for gene prioritization, we reached the opposite conclusion. According to our re-analysis, the main target of rs10191329 is N-Acetylglucosamine Kinase (NAGK), a metabolic gene recently shown to exert major immune functions via the regulation of the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) pathway. To gain more insights into the immunometabolic functions of NAGK, we analyzed the currently known list of NAGK protein partners. We observed that NAGK integrates a dense network of human proteins that are involved in glucose metabolism and are highly expressed by classical monocytes. Our findings hold potentially major implications for the understanding of MS pathophysiology.
Collapse
Affiliation(s)
- Serge Nataf
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
- Stem-Cell and Brain Research Institute, 18 Avenue du Doyen Lépine, F-69500 Bron, France
- Lyon-Est School of Medicine, University Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, F-69100 Villeurbanne, France
| | - Marine Guillen
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
- Stem-Cell and Brain Research Institute, 18 Avenue du Doyen Lépine, F-69500 Bron, France
| | - Laurent Pays
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
- Stem-Cell and Brain Research Institute, 18 Avenue du Doyen Lépine, F-69500 Bron, France
- Lyon-Est School of Medicine, University Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, F-69100 Villeurbanne, France
| |
Collapse
|
48
|
Jiang Y, Zhong S, Tan H, Fu Y, Lai J, Liu L, Weng J, Chen H, He S. Study on the mechanism of action of Saposhnikovia divaricata and its key phytochemical on rheumatoid arthritis based on network pharmacology and bioinformatics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117586. [PMID: 38104871 DOI: 10.1016/j.jep.2023.117586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saposhnikovia divaricata (Turcz.) Schischk (SD; called "fangfeng" in China) has been widely used in the clinical treatment of rheumatoid arthritis (RA) and has shown well therapeutic effects, but the specific mechanisms of action of its bioactive phytochemicals remain unclear. AIM OF THE STUDY This study aimed to investigate the molecular biological mechanism of SD in treating RA through a pharmacology-based strategy. The SD-specific core ingredient Prangenidin was screened for further in-depth study. MATERIALS AND METHODS The bioactive phytochemicals of SD and potential targets for the treatment of RA were screened by network pharmacology, and phytochemicals-related parameters such as pharmacology, and toxicology were evaluated. The protein interaction network was established to screen the core targets, and the correlation between the core targets and RA was further validated by bioinformatics strategy. Finally, molecular docking of core components and corresponding targets was performed. The in vitro experiments were performed to elucidate the regulation of Prangenidin on MH7A cells and on the PI3K/AKT pathway, and the in vivo therapeutic effect of Prangenidin was validated in collagen-induced arthritis (CIA) mice. RESULTS A total of 18 bioactive phytochemicals and 66 potential target genes intersecting with the screened RA disease target genes were identified from SD. Finally, core ingredients such as wogonin, beta-sitosterol, 5-O-Methylvisamminol, and prangenidin and core targets such as PTGS2, RELA, and AKT1 were obtained. The underlying mechanism of SD in treating RA might be achieved by regulating pathways such as PI3K/AKT, IL-17 pathway, apoptosis, and multiple biological processes to exert anti-inflammatory and immunomodulatory effects. Molecular docking confirmed that all core ingredients and key targets had great docking activity. Prangenidin inhibited viability, migration, and invasion, and induced apoptosis in MH7A cells. Prangenidin also reduced the production of IL-1β, IL-6, IL-8, MMP-1, and MMP-3. Molecular analysis showed that Prangenidin exerts its regulatory effect on MH7A cells by inhibiting PI3K/AKT pathway. Treatment with Prangenidin ameliorated synovial inflammation in the joints of mice with CIA. CONCLUSION Our findings provide insights into the therapeutic effects of SD on RA, successfully predicting the effective ingredients and potential targets, which could suggest a novel theoretical basis for further exploration of its molecular mechanisms. It also revealed that Prangenidin inhibited viability, migration, invasion, cytokine, and MMPs expression, and induced apoptosis in RA FLSs via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yong Jiang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Shuxin Zhong
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Huangsheng Tan
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yuanfei Fu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Juyi Lai
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Lijin Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Juanling Weng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Hanwei Chen
- Department of Radiology, Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, 511495, China.
| | - Shenghua He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| |
Collapse
|
49
|
Singh S, Dransfeld U, Ambaw Y, Lopez-Scarim J, Farese RV, Walther TC. PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586175. [PMID: 38562702 PMCID: PMC10983895 DOI: 10.1101/2024.03.21.586175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, in particular gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including Alzheimer's disease risk, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.
Collapse
Affiliation(s)
- Shubham Singh
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Ulrich Dransfeld
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes Ambaw
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Joshua Lopez-Scarim
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Robert V. Farese
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Tobias C. Walther
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
50
|
Hu Y, Wang Y, He Y, Ye M, Yuan J, Ren C, Wang X, Wang S, Guo Y, Cao Q, Zhou S, Wang B, He A, Hu J, Guo X, Shu W, Huo R. Maternal KLF17 controls zygotic genome activation by acting as a messenger for RNA Pol II recruitment in mouse embryos. Dev Cell 2024; 59:613-626.e6. [PMID: 38325372 DOI: 10.1016/j.devcel.2024.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 09/01/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Initiation of timely and sufficient zygotic genome activation (ZGA) is crucial for the beginning of life, yet our knowledge of transcription factors (TFs) contributing to ZGA remains limited. Here, we screened the proteome of early mouse embryos after cycloheximide (CHX) treatment and identified maternally derived KLF17 as a potential TF for ZGA genes. Using a conditional knockout (cKO) mouse model, we further investigated the role of maternal KLF17 and found that it promotes embryonic development and full fertility. Mechanistically, KLF17 preferentially binds to promoters and recruits RNA polymerase II (RNA Pol II) in early 2-cell embryos, facilitating the expression of major ZGA genes. Maternal Klf17 knockout resulted in a downregulation of 9% of ZGA genes and aberrant RNA Pol II pre-configuration, which could be partially rescued by introducing exogenous KLF17. Overall, our study provides a strategy for screening essential ZGA factors and identifies KLF17 as a crucial TF in this process.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | | | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Maosheng Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jie Yuan
- Bioinformatics Center of AMMS, Beijing, China
| | - Chao Ren
- Bioinformatics Center of AMMS, Beijing, China
| | - Xia Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Siqi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Qiqi Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Shuai Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Anlan He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | | | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing, China.
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China; Innovation Center of Suzhou Nanjing Medical University, Suzhou, China.
| |
Collapse
|