1
|
Rani P, Koulmane Laxminarayana SL, Swaminathan SM, Nagaraju SP, Bhojaraja MV, Shetty S, Kanakalakshmi ST. TGF-β: elusive target in diabetic kidney disease. Ren Fail 2025; 47:2483990. [PMID: 40180324 PMCID: PMC11980245 DOI: 10.1080/0886022x.2025.2483990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/17/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Transforming growth factor-beta (TGF-β), a cytokine with near omnipresence, is an integral part of many vital cellular processes across the human body. The family includes three isoforms: Transforming growth factor-beta 1, 2, and 3. These cytokines play a significant role in the fibrosis cascade. Diabetic kidney disease (DKD), a major complication of diabetes, is increasing in prevalence daily, and the classical diagnosis of diabetes is based on the presence of albuminuria. The occurrence of nonalbuminuric DKD has provided new insight into the pathogenesis of this disease. The emphasis on multifactorial pathways involved in developing DKD has highlighted some markers associated with tissue fibrosis. In diabetic nephropathy, TGF-β is significantly involved in its pathology. Its presence in serum and urine means that it could be a diagnostic tool while its regulation provides potential therapeutic targets. Completely blocking TGF-β signaling could reach untargeted regions and cause unanticipated effects. This paper reviews the basic details of TGF-β as a cytokine, its role in DKD, and updates on research carried out to validate its candidacy.
Collapse
Affiliation(s)
- Priya Rani
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
2
|
Cao H, Tao Y, Jin R, Li P, Zhou H, Cheng J. Proteomics reveals the key transcription-related factors mediating obstructive nephropathy in pediatric patients and mice. Ren Fail 2025; 47:2443032. [PMID: 39743726 DOI: 10.1080/0886022x.2024.2443032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Obstructive nephropathy is one of the leading causes of kidney injury in infants and children. Increasing evidence has shown that transcription-related factors (TRFs), including transcription factors and cofactors, are associated with kidney diseases. However, a global landscape of dysregulated TRFs in pediatric patients with obstructive nephropathy is lacking. METHODS We mined the data from our previous proteomic study for the TRF profile in pediatric patients with obstructive nephropathy and unilateral ureteral obstruction (UUO) mice. Gene ontology (GO) analysis was performed to determine pathways that were enriched in the dysregulated TRFs. We then took advantage of kidney samples from patients and UUO mice to verify the selected TRFs by immunoblots. RESULTS The proteomes identified a total of 140 human TRFs with 28 upregulated and 1 downregulated, and 160 murine TRFs with 88 upregulated and 1 downregulated (fold change >2 or <0.5). These dysregulated TRFs were enriched in the inflammatory signalings, such as janus kinase/signal transducer and activator of transcription (JAK-STAT) and tumor necrosis factor (TNF) pathways. Of note, the transforming growth factor (TGF)-β signaling pathway, which is the master regulator of organ fibrosis, was enriched in both patients and mice. Cross-species analysis showed 16 key TRFs that might mediate obstructive nephropathy in patients and UUO mice. Moreover, we verified a significant dysregulation of three previously unexplored TRFs; prohibitin (PHB), regulatory factor X 1 (RFX1), and activity-dependent neuroprotector homeobox protein (ADNP), in patients and mice. CONCLUSIONS Our study uncovered key TRFs in the obstructed kidneys and provided additional molecular insights into obstructive nephropathy.
Collapse
Affiliation(s)
- Hualin Cao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuandong Tao
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Ruyue Jin
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Pin Li
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Huixia Zhou
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Abbad L, Esteve E, Chatziantoniou C. Advances and challenges in kidney fibrosis therapeutics. Nat Rev Nephrol 2025; 21:314-329. [PMID: 39934355 DOI: 10.1038/s41581-025-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Chronic kidney disease (CKD) is a major global health burden that affects more than 10% of the adult population. Current treatments, including dialysis and transplantation, are costly and not curative. Kidney fibrosis, defined as an abnormal accumulation of extracellular matrix in the kidney parenchyma, is a common outcome in CKD, regardless of disease aetiology, and is a major cause of loss of kidney function and kidney failure. For this reason, research efforts have focused on identifying mediators of kidney fibrosis to inform the development of effective anti-fibrotic treatments. Given the prominent role of the transforming growth factor-β (TGFβ) family in fibrosis, efforts have focused on inhibiting TGFβ signalling. Despite hopes raised by the efficacy of this approach in preclinical models, translation into clinical practice has not met expectations. Antihypertensive and antidiabetic drugs slow the decline in kidney function and could slow fibrosis but, owing to the lack of technologies for in vivo renal imaging, their anti-fibrotic effect cannot be truly assessed at present. The emergence of new drugs targeting pro-fibrotic signalling, or enabling cell repair and cell metabolic reprogramming, combined with better stratification of people with CKD and the arrival of nanotechnologies for kidney-specific drug delivery, open up new perspectives for the treatment of this major public health challenge.
Collapse
Affiliation(s)
- Lilia Abbad
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Emmanuel Esteve
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Christos Chatziantoniou
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France.
| |
Collapse
|
4
|
Meng XM, Wang L, Nikolic-Paterson DJ, Lan HY. Innate immune cells in acute and chronic kidney disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00958-x. [PMID: 40263532 DOI: 10.1038/s41581-025-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are inter-related clinical and pathophysiological disorders. Cells of the innate immune system, such as granulocytes and macrophages, can induce AKI through the secretion of pro-inflammatory mediators such as cytokines, chemokines and enzymes, and the release of extracellular traps. In addition, macrophages and dendritic cells can drive the progression of CKD through a wide range of pro-inflammatory and pro-fibrotic mechanisms, and by regulation of the adaptive immune response. However, innate immune cells can also promote kidney repair after acute injury. These actions highlight the multifaceted nature of the way by which innate immune cells respond to signals within the kidney microenvironment, including interaction with the complement and coagulation cascades, cells of the adaptive immune system, intrinsic renal cells and infiltrating mesenchymal cells. The factors and mechanisms that underpin the ability of innate immune cells to contribute to renal injury or repair and to drive the progression of CKD are of great interest for understanding disease processes and for developing new therapeutic approaches to limit AKI and the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, Victoria, Australia
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- Departments of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong, and Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
5
|
Mo GP, Zhu Y, You Y, Chen H, Zhang J, Ku B, Yu H, Peng Z. Diabetic Kidney Disease: Disease Progression Driven by Positive Feedback Loops and Therapeutic Strategies Targeting Pathogenic Pathways. Diabetes Metab Syndr Obes 2025; 18:1073-1085. [PMID: 40226441 PMCID: PMC11994106 DOI: 10.2147/dmso.s513080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus, with its pathogenesis intricately regulated by dynamic feedback mechanisms. This comprehensive review systematically analyzes the hierarchical feedback networks driving DKD progression, spanning from systemic interactions to molecular cross-talks. We reveal that self-amplifying positive feedback loops dominate the disease process, manifested through three key dimensions: (1) The systemic triad of hyperglycemia-hypertension-proteinuria establishes a vicious cycle accelerating renal dysfunction; (2) Cellular homeostasis collapse through cross-amplified cell death modalities (apoptosis, pyroptosis, ferroptosis) and cell cycle dysregulation; (3) Molecular cascades centered on AGE/RAGE signaling that fuel chronic inflammation and fibrotic transformation. Collectively, these form a major positive feedback loop where PKC activation, oxidative stress propagation, and TGF-β-mediated fibrosis induced by hyperglycemia lead to progressive renal deterioration and fibrosis. Therapeutically, we propose a dual intervention strategy targeting both the acute phase through AGE/RAGE axis inhibition, coupled with chronic phase via precision modulation of fibrotic pathways. These findings redefine DKD progression as a self-reinforcing network disorder, providing a roadmap for developing multi-target therapies that disrupt pathological feedback loops while preserving renal repair mechanisms.
Collapse
Affiliation(s)
- Gaozhi P Mo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yao Zhu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yue You
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Hui Chen
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Bunhav Ku
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Haichuan Yu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Research Center for Critical Care Medicine, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
6
|
Ratan Y, Rajput A, Pareek A, Pareek A, Singh G. Comprehending the Role of Metabolic and Hemodynamic Factors Alongside Different Signaling Pathways in the Pathogenesis of Diabetic Nephropathy. Int J Mol Sci 2025; 26:3330. [PMID: 40244213 PMCID: PMC11989741 DOI: 10.3390/ijms26073330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Diabetic nephropathy (DN) is a progressive microvascular disorder of diabetes that contributes as a primary reason for end-stage renal disease worldwide. The pathological hallmarks of DN include diffuse mesangial expansion, thicker basement membrane of glomeruli, and arteriole hyalinosis. Hypertension and chronic hyperglycemia are the primary risk factors contributing to the occurrence of DN. The complex pathophysiology of DN involves the interplay amongst metabolic and hemodynamic pathways, growth factors and cytokines production, oxidative stress, and ultimately impaired kidney function. Hyperglycemia-induced vascular dysfunction is the main pathological mechanism that initiates DN. However, several other pathogenic mechanisms, such as oxidative stress, inflammatory cell infiltration, and fibrosis, contribute to disease progression. Different vasoactive hormone processes, including endothelin and renin-angiotensin, are activated as a part of the pathophysiology of DN, which also involves increased intraglomerular and systemic pressure. The pathophysiology of DN will continue to be better understood because of recent developments in genomics and molecular biology, but attempts to develop a comprehensive theory that explains all existing cellular and biochemical pathways have been thwarted by the disease's multifactorial nature. This review extensively discusses the current understanding regarding the metabolic and hemodynamic pathological mechanisms, along with other signaling pathways and molecules responsible for the pathogenesis of DN. This work will encourage a greater in-depth understanding and investigation of the present status of the biochemical mechanistic processes underlying the pathogenesis of DN, which may assist in the determination of different biomarkers and help in the design and development of novel drug candidates in the near future.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (Y.R.); (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (Y.R.); (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (Y.R.); (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (Y.R.); (A.R.); (A.P.); (A.P.)
| | | |
Collapse
|
7
|
Alakwaa F, Das V, Majumdar A, Nair V, Fermin D, Dey AB, Slidel T, Reilly DF, Myshkin E, Duffin KL, Chen Y, Bitzer M, Pennathur S, Brosius FC, Kretzler M, Ju W, Karihaloo A, Eddy S. Leveraging complementary multi-omics data integration methods for mechanistic insights in kidney diseases. JCI Insight 2025; 10:e186070. [PMID: 40059827 PMCID: PMC11949029 DOI: 10.1172/jci.insight.186070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/22/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic kidney diseases (CKDs) are a global health concern, necessitating a comprehensive understanding of their complex pathophysiology. This study explores the use of 2 complementary multidimensional -omics data integration methods to elucidate mechanisms of CKD progression as a proof of concept. Baseline biosamples from 37 participants with CKD in the Clinical Phenotyping and Resource Biobank Core (C-PROBE) cohort with prospective longitudinal outcome data ascertained over 5 years were used to generate molecular profiles. Tissue transcriptomic, urine and plasma proteomic, and targeted urine metabolomic profiling were integrated using 2 orthogonal multi-omics data integration approaches, one unsupervised and the other supervised. Both integration methods identified 8 urinary proteins significantly associated with long-term outcomes, which were replicated in an adjusted survival model using 94 samples from an independent validation group in the same cohort. The 2 methods also identified 3 shared enriched pathways: the complement and coagulation cascades, cytokine-cytokine receptor interaction pathway, and the JAK/STAT signaling pathway. Use of different multiscalar data integration strategies on the same data enabled identification and prioritization of disease mechanisms associated with CKD progression. Approaches like this will be invaluable with the expansion of high-dimension data in kidney diseases.
Collapse
Affiliation(s)
- Fadhl Alakwaa
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Viji Nair
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Timothy Slidel
- Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | - Yu Chen
- Eli Lilly & Co., Indianapolis, Indiana, USA
| | - Markus Bitzer
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Ju
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Sean Eddy
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Challoumas D, Simpson C, Arnold M, Mease P, Moots R, Ndosi M, Locher ZR. Janus-kinase inhibitor use in immune-mediated inflammatory diseases beyond licensed indications: A scoping review. Autoimmun Rev 2025; 24:103736. [PMID: 39743122 DOI: 10.1016/j.autrev.2024.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION The use of Janus kinase inhibitors (JAKis) in immune-mediated inflammatory diseases (IMIDs) beyond licence is expanding rapidly. The aim of this scoping review was to identify and present the available evidence on the efficacy of JAKis in all conditions without marketing authorisation. METHODS Through a systematic literature search we identified studies including 5 or more patients that assessed the use of any JAKi for any efficacy outcome. Quantitative analyses in the form of pairwise meta-analyses were performed for eligible data from randomised controlled trials (RCTs) only. RESULTS Eighty-three (n = 83) studies in total were included in our review, assessing efficacy of JAKis in 34 IMIDs. In most conditions, JAKis exhibited generally positive effects, though the majority of evidence came from observational, non-comparative studies. Pairwise meta-analyses were possible for hidradenitis suppurativa and systemic lupus erythematosus (SLE). For hidradenitis suppurativa, we found a clear benefit of treatment with JAKis compared with placebo in achieving clinical response [OR 2.35, 95 % CI (1.24 to 4.46)]. For treatment-resistant SLE, the results were equivocal; JAKi showed some benefit over placebo but statistical significance was only reached for one of the two meta-analysed outcome measures [SLE Responder Index 4, OR 1.41, 95 % CI (1.01 to 1.98); SLE Disease Activity Index 2000; OR 1.36, 95 % CI (0.99 to 1.88)]. CONCLUSIONS There is a rapidly increasing use of JAKis beyond current licencing in most IMIDs. Large comparative trials are necessary to confirm efficacy and guide future licencing decisions.
Collapse
Affiliation(s)
- Dimitris Challoumas
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK; West of Scotland Trauma and Orthopaedic Training Programme, NHS Greater Glasgow and Clyde, Glasgow, UK.
| | - Cameron Simpson
- West of Scotland Trauma and Orthopaedic Training Programme, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Matthew Arnold
- West of Scotland Trauma and Orthopaedic Training Programme, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Philip Mease
- Rheumatology Research, Providence Swedish Medical Center and University of Washington, Seattle, USA
| | - Robert Moots
- Rheumatology Department, Aintree University Hospital, Liverpool University Hospitals NHS Trust and Faculty of Health, Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Mwidimi Ndosi
- College of Health, Science and Society, University of the West of England, Bristol, UK
| | - Zoe Rutter Locher
- Rheumatology Department, Guy's and St Thomas' NHS Trust, London, United Kingdom
| |
Collapse
|
9
|
Wang J, Shi H, Yang Y, Gong X. Crosstalk between ferroptosis and innate immune in diabetic kidney disease: mechanisms and therapeutic implications. Front Immunol 2025; 16:1505794. [PMID: 40092979 PMCID: PMC11906378 DOI: 10.3389/fimmu.2025.1505794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent complication of diabetes mellitus (DM), and its incidence is increasing alongside the number of diabetes cases. Effective treatment and long-term management of DKD present significant challenges; thus, a deeper understanding of its pathogenesis is essential to address this issue. Chronic inflammation and abnormal cell death in the kidney closely associate with DKD development. Recently, there has been considerable attention focused on immune cell infiltration into renal tissues and its inflammatory response's role in disease progression. Concurrently, ferroptosis-a novel form of cell death-has emerged as a critical factor in DKD pathogenesis, leading to increased glomerular filtration permeability, proteinuria, tubular injury, interstitial fibrosis, and other pathological processes. The cardiorenal benefits of SGLT2 inhibitors (SGLT2-i) in DKD patients have been demonstrated through numerous large clinical trials. Moreover, further exploratory experiments indicate these drugs may ameliorate serum and urinary markers of inflammation, such as TNF-α, and inhibit ferroptosis in DKD models. Consequently, investigating the interplay between ferroptosis and innate immune and inflammatory responses in DKD is essential for guiding future drug development. This review presents an overview of ferroptosis within the context of DKD, beginning with its core mechanisms and delving into its potential roles in DKD progression. We will also analyze how aberrant innate immune cells, molecules, and signaling pathways contribute to disease progression. Finally, we discuss the interactions between ferroptosis and immune responses, as well as targeted therapeutic agents, based on current evidence. By analyzing the interplay between ferroptosis and innate immunity alongside its inflammatory responses in DKD, we aim to provide insights for clinical management and drug development in this area.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Geriatric Integrative, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haonan Shi
- School of Medicine, Shanghai University, Shanghai, China
| | - Ye Yang
- Department of Geriatric Integrative, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xueli Gong
- Department of Pathophysiology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
10
|
Zhao M, Cao Y, Ma L. New insights in the treatment of DKD: recent advances and future prospects. BMC Nephrol 2025; 26:72. [PMID: 39934650 DOI: 10.1186/s12882-025-03953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Diabetic kidney disease (DKD) represents the predominant and severe microvascular complication associated with diabetes, frequently culminating in End-Stage Kidney Disease (ESKD). The escalating prevalence of diabetes has correspondingly led to a rise in DKD incidence, imposing significant challenges on both individuals and society. The etiology of DKD is multifaceted and remains devoid of definitive therapeutic interventions. This article examines the pharmacological actions and mechanisms of different drugs used for the prevention and treatment of DKD that are currently in clinical use or undergoing development. The goal is to offer insights for early intervention based on therapeutic combinations to potentially slow kidney disease progression.
Collapse
Affiliation(s)
- Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
11
|
Konzett V, Smolen JS, Nash P, Aletaha D, Winthrop K, Dörner T, Fleischmann R, Tanaka Y, Primdahl J, Baraliakos X, McInnes IB, Trauner M, Sattar N, de Wit M, Schoones JW, Kerschbaumer A. Efficacy of Janus kinase inhibitors in immune-mediated inflammatory diseases-a systematic literature review informing the 2024 update of an international expert consensus statement. Ann Rheum Dis 2025:S0003-4967(25)00079-2. [PMID: 39934019 DOI: 10.1016/j.ard.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 02/13/2025]
Abstract
OBJECTIVE This systematic literature review (SLR) on efficacy outcomes was performed to inform the 2024 update of the expert consensus statement on the treatment of immune-mediated inflammatory diseases (IMIDs) with Janus kinase inhibitors (JAKi). METHODS An update of the 2019 SLR was performed in MEDLINE, Embase, and the Cochrane Library. For efficacy, randomised, placebo (PLC)- or active-controlled trials on all JAKi investigated in IMIDs, as well as cohort and claims data for conditions where such studies were not available, were included. RESULTS In total, 10,556 records were screened, and 182 articles were included in the final analysis, investigating 21 JAKi in 51 IMIDs. Forty-three phase 2 and 59 phase 3 trials as well as 9 strategic trials and 72 pilot or cohort studies and case series were considered. JAKi demonstrated efficacy both in PLC-controlled trials as well as in head-to-head comparisons against active comparators, with 93 of 102 randomised controlled trials (RCTs) meeting their primary endpoints. Since 2019, 8 JAKi have received approval by the Federal Drug Agency and the European Medicine Agency for treatment of 11 IMIDs; of these, for 2, no approved disease-modifying antirheumatic drug (DMARD) therapy had previously been available. CONCLUSIONS JAKi are effective for treating IMIDs, and various compounds have recently been approved. The impact of Janus kinase (JAK) selectivity for distinct JAK-STAT pathways needs further investigation, and few data are also available on sustained disease control upon tapering or withdrawal or on the optimal strategic placement of JAKi in international treatment algorithms.
Collapse
Affiliation(s)
- Victoria Konzett
- Department of Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - Josef S Smolen
- Department of Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Peter Nash
- Griffith University School of Medicine, Gold Coast, QLD, Australia
| | - Daniel Aletaha
- Department of Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Dörner
- Rheumatology, Charite Medical Faculty Berlin, Berlin, Germany
| | - Roy Fleischmann
- Metroplex Clinical Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Jette Primdahl
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark
| | | | - Iain B McInnes
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael Trauner
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Naveed Sattar
- Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Maarten de Wit
- Stichting Tools, Patient Research Partner, Amsterdam, The Netherlands
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Kerschbaumer
- Department of Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Konzett V, Smolen JS, Nash P, Winthrop K, Aletaha D, Dörner T, Fleischmann R, Tanaka Y, Primdahl J, Baraliakos X, McInnes IB, Trauner M, Sattar N, de Wit M, Schoones JW, Kerschbaumer A. Safety of Janus kinase inhibitors in immune-mediated inflammatory diseases-a systematic literature review informing the 2024 update of an international expert consensus statement. Ann Rheum Dis 2025:S0003-4967(25)00080-9. [PMID: 39934016 DOI: 10.1016/j.ard.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 02/13/2025]
Abstract
OBJECTIVES This systematic literature review (SLR) on safety outcomes was performed to inform the 2024 update of the expert consensus statement on the treatment of immune-mediated inflammatory diseases (IMIDs) with Janus kinase inhibitors (JAKi). METHODS An update of the 2019 SLR was performed in MEDLINE, Embase, and the Cochrane Library. For safety, randomised, placebo-controlled or active-controlled trials on all JAKi investigated in IMIDs, long-term extension (LTE) studies, pooled trial data analyses, and cohort and claims studies were included. RESULTS We screened 13,905 records, of which 209 were finally included. Three safety trials and 13 post hoc analyses, 83 efficacy randomised controlled trials (RCTs) with adequate safety reporting, 56 integrated safety analyses and LTE of RCTs, 20 additional conference abstracts on RCT data, as well as 37 real-world cohort studies were presented to the task force. Safety profiles of JAKi were overall consistent across compounds and indications, but impacts of patient profiles, treatment dosing, and other cofactors like background medications on drug safety could be observed. Furthermore, differential effects of variously selective JAKi on distinct adverse events of special interest (AESI) and laboratory outcomes were discerned. CONCLUSION A substantial amount of literature was published on JAKi safety since 2019. A comprehensive overview of these data supports the optimal use of JAKi in patients with IMIDs, by consideration and balance of their benefits as well as risks in every patient.
Collapse
Affiliation(s)
- Victoria Konzett
- Department of Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - Josef S Smolen
- Department of Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Peter Nash
- Griffith University School of Medicine, Gold Coast, QLD, Australia
| | | | - Daniel Aletaha
- Department of Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Dörner
- Rheumatology, Charite Medical Faculty Berlin, Berlin, Germany
| | - Roy Fleischmann
- Metroplex Clinical Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Jette Primdahl
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark
| | | | - Iain B McInnes
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael Trauner
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Naveed Sattar
- Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Maarten de Wit
- Stichting Tools, Patient Research Partner, Amsterdam, the Netherlands
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, the Netherlands
| | - Andreas Kerschbaumer
- Department of Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Jia Y, Gu Y, Wang L, Jiang N, Yu X, Tian H. Critical analysis of hot topics in diabetic nephropathy related experimental research: A bibliometric analysis from 2018 to 2024. J Tissue Viability 2025; 34:100854. [PMID: 39764975 DOI: 10.1016/j.jtv.2025.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and a leading cause of end-stage renal disease worldwide. Understanding trends in experimental research on DN is crucial for advancing knowledge and clinical management. OBJECTIVE This study aimed to explore current trends in DN related experimental research, utilizing CiteSpace, VOSviewer, and Bibliometrix to identify key contributors, influential countries, and noteworthy topics. The objective was to provide valuable insights for healthcare professionals and researchers in the field. METHODS Relevant publications from the Web of Science Core Collection Science Citation Index Expanded were retrieved for the period between 2018 and 2024. CiteSpace, VOSviewer, and Bibliometrix were employed for data analysis, including identifying top authors, institutions, countries, keywords, co-cited authors, journals, references, and research trends. RESULTS A total of 1501 relevant articles were included in the study. DN related experimental research exhibited an upward trend, reaching its peak in 2023. Key contributors such as Kretzler Matthias, Li Ping, and Rossing Peter emerged. China, the United States and Japan have the most publications. Keyword analysis revealed "activated protein kinase" as the most central keyword, while "diabetic nephropathy" had the highest citation rate. Recent focus shifted towards keywords like "Traditional Chinese Medicine" and "molecular docking." CONCLUSION This bibliometric analysis provides insights into trends in experimental research on DN from 2018 to 2024. Notable contributors and influential countries were identified, emphasizing global collaboration. Key topics demonstrate diverse approaches and emerging trends, supporting informed decision-making and innovation in combatting DN and enhancing patient outcomes.
Collapse
Affiliation(s)
- Youduo Jia
- Nephrology Department, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Yunfei Gu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijun Wang
- Nephrology and Rheumatology Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Jiang
- Hemodialysis Department, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Xiumei Yu
- Nephrology Department, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China.
| | - Hu Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
14
|
Zhang Z, Zhao Z, Qi C, Zhang X, Xiao Y, Chen C, Zou Y, Chen X, Gu L, Huang J, Huang K, Xiang M, Zhang T, Tong Q, Zhang Y. Butyrolactone I blocks the transition of acute kidney injury to chronic kidney disease in mice by targeting JAK1. MedComm (Beijing) 2025; 6:e70064. [PMID: 39845897 PMCID: PMC11751251 DOI: 10.1002/mco2.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Chronic kidney disease (CKD) is a disease that affects more than 850 million people. Acute kidney injury (AKI) is a common cause of CKD, and blocking the AKI-CKD transition shows promising therapeutic potential. Herein, we found that butyrolactone I (BLI), a natural product, exerts significant nephroprotective effects, including maintenance of kidney function, inhibition of inflammatory response, and prevention of fibrosis, in both folic acid- and ureteral obstruction-induced AKI-CKD transition mouse models. Notably, BLI showed greater blood urea nitrogen reduction and anti-inflammatory effects than telmisartan. Bioinformatics analysis and target confirmation assays suggested that BLI directly binds to JAK1, and kinase inhibition assay confirmed it is a potent JAK1inhibitor with an IC50 of 0.376 µM. Experiments in JAK1-knockdown mice also proved that BLI targets JAK1 to work. Furthermore, BLI demonstrated nephroprotective effects and safety comparable to ivarmacitinib, the well-known JAK1 inhibitor. Mechanistically, BLI targets JAK1 and inhibits its phosphorylation and JAK-STAT activation, subsequently regulating the downstream signaling pathways to inhibit reactive oxygen species production, inflammation, and ferroptosis, thereby preventing the occurrence of kidney fibrosis and blocking the AKI-CKD transition process. This study demonstrates for the first time that BLI is a JAK1 inhibitor and a promising candidate for delaying CKD progression, which warrants further investigation.
Collapse
Affiliation(s)
- Zijun Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaotian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Function of Natural MedicineInstitute of Materia MedicaChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yu Zou
- Institute of Pharmaceutical ProcessHubei Province Key Laboratory of Occupational Hazard Identification and ControlSchool of MedicineWuhan University of Science and TechnologyWuhanChina
| | - Xia Chen
- Institute of Pharmaceutical ProcessHubei Province Key Laboratory of Occupational Hazard Identification and ControlSchool of MedicineWuhan University of Science and TechnologyWuhanChina
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianzheng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kun Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural MedicineInstitute of Materia MedicaChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
15
|
Perco P, Ley M, Kęska-Izworska K, Wojenska D, Bono E, Walter SM, Fillinger L, Kratochwill K. Computational Drug Repositioning in Cardiorenal Disease: Opportunities, Challenges, and Approaches. Proteomics 2025:e202400109. [PMID: 39888210 DOI: 10.1002/pmic.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Affiliation(s)
- Paul Perco
- Delta4 GmbH, Vienna, Austria
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Ley
- Delta4 GmbH, Vienna, Austria
- Comprehensive Center for Pediatrics, Department of, Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | | | | | - Enrico Bono
- Delta4 GmbH, Vienna, Austria
- Comprehensive Center for Pediatrics, Department of, Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | | | | | - Klaus Kratochwill
- Delta4 GmbH, Vienna, Austria
- Comprehensive Center for Pediatrics, Department of, Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Bhadange R, Gaikwad AB. Repurposing the familiar: Future treatment options against chronic kidney disease. J Pharm Pharmacol 2025:rgaf002. [PMID: 39832316 DOI: 10.1093/jpp/rgaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects. Therefore, identifying new therapeutic targets or improving existing treatments for CKD is crucial. Drug repurposing is a promising strategy in the drug discovery process that involves screening existing approved drugs for new therapeutic applications. KEY FINDINGS This review discusses the pharmacological mechanisms and clinical evidence that support the efficacy of these repurposed drugs. Various drugs classes such as inodilators, endothelin-1 type A (ET-1A) receptor antagonists, bisphosphonates, mineralocorticoid receptor (MR) antagonists, DNA demethylating agents, nuclear factor erythroid 2-related factor 2 (NRF2) activators, P2X7 inhibitors, autophagy modulators, hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) are discussed that could remarkably contribute against CKD. SUMMARY The review critically examines the potential for repurposing well-established drugs to slow the progression of CKD and enhance patient outcomes. This review emphasizes the importance of a multidisciplinary approach in advancing the field of drug repurposing, ultimately paving the way for innovative and effective therapies for patients suffering from CKD.
Collapse
Affiliation(s)
- Rohan Bhadange
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| |
Collapse
|
17
|
Kattamuri L, Duggal S, Aparece JP, Sairam S. Cardiovascular Risk Factor and Atherosclerosis in Rheumatoid Arthritis (RA). Curr Cardiol Rep 2025; 27:31. [PMID: 39831939 DOI: 10.1007/s11886-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE OF REVIEW To highlight advancements in managing traditional and rheumatoid arthritis (RA) specific risk factors and the impact of RA treatments on cardiovascular outcomes. RECENT FINDINGS Advancements in rheumatoid arthritis management have paralleled declining trends in cardiovascular disease risks. Biomarkers like CRP, Lipoprotein(a), Apolipoprotein B 100, and imaging tools such as coronary artery calcium scoring enhance cardiovascular risk stratification, particularly in intermediate-risk RA patients. While effective RA treatments, have demonstrated substantial cardiovascular benefits, subclass differences were noted in high-risk patients. Increased risk of cardiovascular disease is driven by chronic inflammation, altered lipid metabolism, and traditional risk factors. Effective RA treatment significantly lowers cardiovascular events. Standard treatment of hypertension, diabetes and hypercholesterolemia are effective and lowers RA disease activity and inflammatory markers. While RA is considered a risk enhancing state in calculating CV risk scores, currently there exists no RA disease -specific blood pressure, blood sugar or lipid targets.
Collapse
Affiliation(s)
- Lakshmi Kattamuri
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, 4800 Alberta Ave, El Paso, TX, 79935, USA
| | - Shivangini Duggal
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, 4800 Alberta Ave, El Paso, TX, 79935, USA
| | - John Paul Aparece
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, 4800 Alberta Ave, El Paso, TX, 79935, USA
| | - Shrilekha Sairam
- Division of Rheumatology, Department of Internal Medicine, Texas Tech Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, USA.
| |
Collapse
|
18
|
Checa-Ros A, Locascio A, Steib N, Okojie OJ, Malte-Weier T, Bermúdez V, D’Marco L. In silico medicine and -omics strategies in nephrology: contributions and relevance to the diagnosis and prevention of chronic kidney disease. Kidney Res Clin Pract 2025; 44:49-57. [PMID: 39034863 PMCID: PMC11838848 DOI: 10.23876/j.krcp.23.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 07/23/2024] Open
Abstract
Chronic kidney disease (CKD) has been increasing over the last years, with a rate between 0.49% to 0.87% new cases per year. Currently, the number of affected people is around 850 million worldwide. CKD is a slowly progressive disease that leads to irreversible loss of kidney function, end-stage kidney disease, and premature death. Therefore, CKD is considered a global health problem, and this sets the alarm for necessary efficient prediction, management, and disease prevention. At present, modern computer analysis, such as in silico medicine (ISM), denotes an emergent data science that offers interesting promise in the nephrology field. ISM offers reliable computer predictions to suggest optimal treatments in a case-specific manner. In addition, ISM offers the potential to gain a better understanding of the kidney physiology and/or pathophysiology of many complex diseases, together with a multiscale disease modeling. Similarly, -omics platforms (including genomics, transcriptomics, metabolomics, and proteomics), can generate biological data to obtain information on gene expression and regulation, protein turnover, and biological pathway connections in renal diseases. In this sense, the novel patient-centered approach in CKD research is built upon the combination of ISM analysis of human data, the use of in vitro models, and in vivo validation. Thus, one of the main objectives of CKD research is to manage the disease by the identification of new disease drivers, which could be prevented and monitored. This review explores the wide-ranging application of computational medicine and the application of -omics strategies in evaluating and managing kidney diseases.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- School of Life & Health Sciences, Aston University, Birmingham, United Kingdom
| | - Antonella Locascio
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Nelia Steib
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Owahabanun-Joshua Okojie
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Totte Malte-Weier
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
19
|
Gubernatorova EO, Samsonov MY, Drutskaya MS, Lebedeva S, Bukhanova D, Materenchuk M, Mutig K. Targeting inerleukin-6 for renoprotection. Front Immunol 2024; 15:1502299. [PMID: 39723211 PMCID: PMC11668664 DOI: 10.3389/fimmu.2024.1502299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Sterile inflammation has been increasingly recognized as a hallmark of non-infectious kidney diseases. Induction of pro-inflammatory cytokines in injured kidney tissue promotes infiltration of immune cells serving to clear cell debris and facilitate tissue repair. However, excessive or prolonged inflammatory response has been associated with immune-mediated tissue damage, nephron loss, and development of renal fibrosis. Interleukin 6 (IL-6) is a cytokine with pleiotropic effects including a major role in inflammation. IL-6 signals either via membrane-bound (classic signaling) or soluble receptor forms (trans-signaling) thus affecting distinct cell types and eliciting various metabolic, cytoprotective, or pro-inflammatory reactions. Antibodies neutralizing IL-6 or its receptor have been developed for therapy of autoimmune and chronic non-renal inflammatory diseases. Small molecule inhibitors of Janus kinases acting downstream of the IL-6 receptor, as well as recombinant soluble glycoprotein 130 variants suppressing the IL-6 trans-signaling add to the available therapeutic options. Animal data and accumulating clinical experience strongly suggest that suppression of IL-6 signaling pathways bears therapeutic potential in acute and chronic kidney diseases. The present work analyses the renoprotective potential of clinically relevant IL-6 signaling inhibitors in acute kidney injury, chronic kidney disease, and kidney transplantation with focus on current achievements and future prospects.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Maria Materenchuk
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
20
|
Kennedy C, Doyle R, Gough O, Mcevoy C, McAnallen S, Hughes M, Sheng X, Crifo B, Andrews D, Gaffney A, Rodriguez J, Kennedy S, Dillon E, Crean D, Zhang W, Yi Z, Nair V, Susztak K, Hirschhorn J, Florez J, Groop PH, Sandholm N, Kretzler M, McKay GJ, McKnight AJ, Maxwell AP, Matallanas D, Dorman A, Martin F, Conlon PJ, Sadlier DM, Brennan E, Godson C. A Novel Role for FERM Domain-Containing Protein 3 in CKD. KIDNEY360 2024; 5:1799-1812. [PMID: 39450948 PMCID: PMC11687992 DOI: 10.34067/kid.0000000602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Key Points We have identified a transcriptional signature of 93 genes associated with CKD severity and progression. Protein 4.1, ezrin, radixin, moesin domain-containing protein 3 gene expression is reduced in the context of more severe kidney disease and in individuals who go on to develop progressive disease. Protein 4.1, ezrin, radixin, moesin domain-containing protein 3 interacts with proteins of the cell cytoskeleton and cell-cell junctions in proximal tubule epithelial cells. Background Currently, there are limited methods to link disease severity and risk of disease progression in CKD. To better understand this potential relationship, we interrogated the renal transcriptomic profile of individuals with CKD with measures of CKD severity and identified protein 4.1, ezrin, radixin, moesin-domain containing protein 3 (FRMD3 ) as a candidate gene for follow-up study. Methods RNA-sequencing was used to profile the transcriptome of CKD biopsies from the North Dublin Renal BioBank, the results of which were correlated with clinical parameters. The potential function of FRMD3 was explored by interrogating the FRMD3 interactome and assessing the effect of lentiviral mediated FRMD3 knock down on human renal proximal tubule epithelial cells by assessing cell viability, metabolic activity, and structural markers. Results We identified a subset of 93 genes which are significantly correlated with eGFR and percentage tubulointerstitial fibrosis at time of biopsy and with CKD progression 5 years postbiopsy. These results were validated against transcriptomic data from an external cohort of 432 nephrectomy samples. One of the top-ranking genes from this subset, FRMD3, has previously been associated with the risk of developing diabetic kidney disease. Interrogating the interactome of FRMD3 in tubule epithelial cells revealed interactions with cytoskeletal components of cell-cell junctions. Knockdown of FRMD3 expression in tubule epithelial cells resulted in increased proapoptotic activity within the cells, as well as dysregulation of E-Cadherin. Conclusions We have identified a panel of kidney-specific transcripts correlated with severity and progression of kidney disease, and from this, we have identified a possible role for FRMD3 in tubule cell structure and health.
Collapse
Affiliation(s)
- Ciarán Kennedy
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Oisin Gough
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Caitriona Mcevoy
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
- Tallaght University Hospital, Dublin; and Trinity Kidney Centre, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Susan McAnallen
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Maria Hughes
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Xin Sheng
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Bianca Crifo
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Darrell Andrews
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Andrew Gaffney
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Susan Kennedy
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- TriviumVet, Waterford, Ireland
| | - Eugene Dillon
- UCD Conway Institute Core Technologies, University College Dublin, Dublin, Ireland
| | - Daniel Crean
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Weijia Zhang
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhengzi Yi
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Katalin Susztak
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joel Hirschhorn
- Endocrine Division and Diabetes Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jose Florez
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gareth J. McKay
- Centre for Public Health, Queens University of Belfast, Northern Ireland, United Kingdom
| | - Amy Jayne McKnight
- Centre for Public Health, Queens University of Belfast, Northern Ireland, United Kingdom
| | - Alexander P. Maxwell
- Centre for Public Health, Queens University of Belfast, Northern Ireland, United Kingdom
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Finian Martin
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Peter J. Conlon
- National Kidney Transplant Service, Department of Nephrology and Kidney Transplantation, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Denise M. Sadlier
- School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Lei X, Zou F, Tang X, He F, Wang J, Cheng S, Lei X. CD3D silencing alleviates diabetic nephropathy via inhibition of JAK/STAT pathway. FASEB J 2024; 38:e70169. [PMID: 39530557 DOI: 10.1096/fj.202401879r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes that poses a significant burden to global health. This investigation aims to illustrate the functional role of CD3D and its relevant mechanisms in DN progression. The pivotal genes between the GSE47183 and GSE30528 datasets were identified using bioinformatics methods. The effects of CD3D silencing on renal damage, inflammatory response, and lipid metabolism were validated in DN mice. Furthermore, the impacts of CD3D knockdown on cell viability, apoptotic rate, inflammation, and lipid levels were investigated in HK-2 cells under high glucose (HG) conditions. Additionally, RO8191 was employed to investigate the role of CD3D in the JAK/STAT pathway in HG-treated cells. A total of 5 focal genes were identified through bioinformatics and were found to be upregulated in renal tissues from DN mice. CD3D silencing mitigated pathological damage to kidneys, reduced inflammatory response, and decreased lipid accumulation in DN mice. HG stimulation restrained viability, increased apoptosis, promoted the release of inflammatory cytokines, and affected expressions of hallmarks related to lipid metabolism in HG-treated cells; these changes were partially abolished by CD3D knockdown. Mechanistically, CD3D downregulation ameliorated HG-induced injury in HK-2 cells by blocking the JAK/STAT pathway. This study underscores that CD3D silencing has significant potential as a promising candidate in the treatment of DN.
Collapse
Affiliation(s)
- Xianghong Lei
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Fangqin Zou
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xianhu Tang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Fengxia He
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Jiyang Wang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Shengyu Cheng
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiangxin Lei
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Giardini E, Moore D, Sadlier D, Godson C, Brennan E. The dual role of lipids in chronic kidney disease: Pathogenic culprits and therapeutic allies. Atherosclerosis 2024; 398:118615. [PMID: 39370307 DOI: 10.1016/j.atherosclerosis.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Chronic kidney disease (CKD) is a significant health burden, with rising incidence and prevalence, attributed in part to increasing obesity and diabetes rates. Lipid accumulation in the kidney parenchyma and chronic, low-grade inflammation are believed to significantly contribute to the development and progression of CKD. The effect of dysregulated kidney lipid metabolism in CKD progression, including altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury through the activation of oxidative stress and inflammatory signalling cascades. In contrast, classes of endogenous specialized pro-resolving lipid mediators (SPMs) have been described that act to limit the inflammatory response and promote the resolution of inflammation. This review highlights our current understanding of how lipids can cause damage within the kidney, and classes of protective lipid metabolites that offer therapeutic benefits.
Collapse
Affiliation(s)
- Elena Giardini
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Dean Moore
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Denise Sadlier
- Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
23
|
Jagdale AD, Angal MM, Patil RS, Tupe RS. Exploring the glycation association with dyslipidaemia: Novel approach for diabetic nephropathy. Biochem Pharmacol 2024; 229:116513. [PMID: 39218042 DOI: 10.1016/j.bcp.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The transcription factor known as sterol regulatory element-binding protein (SREBP) and the glycation pathways, specifically the formation of Advanced Glycation End Products (AGEs), have a significant and deleterious impact on the kidney. They alter renal lipid metabolism and promote glomerulosclerosis, mesangial cell expansion, tubulointerstitial fibrosis, and inflammation, leading to diabetic nephropathy (DN) progression. Although several pieces of scientific evidence are reported for potential causes of glycation and lipotoxicity in DN, the underlying mechanism of renal lipid accumulation still needs to be fully understood. We provide a rationalized view on how AGEs exert multiple effects that cause SREBP activation and inflammation, contributing to DN through Receptor for AGEs (RAGE) signaling, AGE-R1-dependent downregulation of Sirtuin 1 (SIRT-1), and increased SREBP Cleavage Activating Protein (SCAP) glycosylation. This review emphasizes the association between glycation and the SREBP pathway and how it affects the onset of DN associated with obesity. Finally, we discuss the correlation of glycation and the SREBP pathway with insulin resistance (IR), oxidative stress, endoplasmic reticulum stress, inflammation, and existing and emerging therapeutic approaches toward better controlling obesity-related DN.
Collapse
Affiliation(s)
- Ashwini D Jagdale
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Mukul M Angal
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India.
| |
Collapse
|
24
|
Guo M, He F, Zhang C. Molecular Therapeutics for Diabetic Kidney Disease: An Update. Int J Mol Sci 2024; 25:10051. [PMID: 39337537 PMCID: PMC11431964 DOI: 10.3390/ijms251810051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes mellitus (DM). With the increasing prevalence of DM worldwide, the incidence of DKD remains high. If DKD is not well controlled, it can develop into chronic kidney disease or end-stage renal disease (ESRD), which places considerable economic pressure on society. Traditional therapies, including glycemic control, blood pressure control, blood lipid control, the use of renin-angiotensin system blockers and novel drugs, such as sodium-glucose cotransporter 2 inhibitors, mineralocorticoid receptor inhibitors and glucagon-like peptide-1 receptor agonists, have been used in DKD patients. Although the above treatment strategies can delay the progression of DKD, most DKD patients still ultimately progress to ESRD. Therefore, new and multimodal treatment methods need to be explored. In recent years, researchers have continuously developed new treatment methods and targets to delay the progression of DKD, including miRNA therapy, stem cell therapy, gene therapy, gut microbiota-targeted therapy and lifestyle intervention. These new molecular therapy methods constitute opportunities to better understand and treat DKD. In this review, we summarize the progress of molecular therapeutics for DKD, leading to new treatment strategies.
Collapse
Affiliation(s)
| | - Fangfang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
25
|
Olabisi OA, Barrett NJ, Lucas A, Smith M, Bethea K, Soldano K, Croall S, Sadeghpour A, Chakraborty H, Wolf M. Design and Rationale of the Phase 2 Baricitinib Study in Apolipoprotein L1-Mediated Kidney Disease (JUSTICE). Kidney Int Rep 2024; 9:2677-2684. [PMID: 39291185 PMCID: PMC11403079 DOI: 10.1016/j.ekir.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Individuals of recent West African ancestry develop focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (HTN-ESKD) at 4 times the rate of White Americans. Two protein-coding variants of the Apolipoprotein L1 (APOL1) gene, G1 and G2, explain 50% to 70% of the excess risk of HTN-ESKD and FSGS among this group. Increased expression of G1 and G2 in the kidney, mediated by Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling, drive pathogenesis of these kidney diseases. Baricitinib is an orally active inhibitor of JAK1/2 that blocks APOL1 synthesis. The Janus kinase-STAT Inhibition to Reduce APOL1-Associated Kidney Disease (JUSTICE) trial is evaluating the antiproteinuric efficacy and safety of baricitinib in patients with APOL1-associated FSGS and HTN-attributed chronic kidney disease (HTN-CKD). Methods JUSTICE is a single-center, randomized, double-blind, placebo-controlled, pilot phase 2 trial of baricitinib in patients with proteinuria, APOL1-associated FSGS or APOL1-associated HTN-CKD without diabetes. A total of 75 African American patients with APOL1-associated CKD, including 25 with FSGS and 50 with HTN-CKD, aged 18 to 70 years will be randomized 2:1 to daily treatment with baricitinib or placebo, respectively. Results The primary efficacy end point will be percent change in urine albumin-to-creatinine ratio (UACR) from baseline to end of month 6. The primary safety end point will be incidence of clinically significant decreases in hemoglobin of ≥ 1g/dl. Conclusion The phase 2 JUSTICE study will characterize the antiproteinuric efficacy and safety of JAK1/2 inhibition with baricitinib in patients with APOL1-associated FSGS and APOL1-associated HTN-CKD.
Collapse
Affiliation(s)
- Opeyemi A Olabisi
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nadine J Barrett
- Atrium Health/Wake Forest Comprehensive Cancer Center and Maya Angelo Center for Health Equity, Wake Forest School of Medicine, Wake Forest, North Carolina, USA
- Department of Social Science and Health Policy, Division of Population Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Maya Angelo Center for Health Equity, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anika Lucas
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maurice Smith
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kenisha Bethea
- Duke Clinical and Translational Science Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Karen Soldano
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stephanie Croall
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Azita Sadeghpour
- Duke Precision Medicine Program, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Myles Wolf
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
26
|
Huang H, Peng Z, Yuan Q. Research progress in anti-renal fibrosis drugs. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1353-1362. [PMID: 39788524 PMCID: PMC11628227 DOI: 10.11817/j.issn.1672-7347.2024.240284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 01/12/2025]
Abstract
Renal fibrosis is the common pathological basis for the progressive development of chronic kidney disease (CKD) caused by various etiologies. It is characterized by the persistent deposition of extracellular matrix, leading to renal tissue damage and impaired renal function, and ultimately progressing to kidney failure. Current clinical treatments for CKD mainly focus on managing the primary diseases, with no specific drugs targeting renal fibrosis. The pathogenesis of renal fibrosis is complex, and there are currently no drugs available to reverse it. A comprehensive overview of the pathogenesis of renal fibrosis, alongside a summary of current anti-fibrotic therapies, including some that are already used clinically to slow renal function progression, new drugs in clinical trials, and emerging targeted therapies, could provide new theoretical foundations and perspectives for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hanwei Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008.
- Hunan Provincial Key Laboratory of Organ Fibrosis, Changsha 410008, China.
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008
- Hunan Provincial Key Laboratory of Organ Fibrosis, Changsha 410008, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008.
- Hunan Provincial Key Laboratory of Organ Fibrosis, Changsha 410008, China.
| |
Collapse
|
27
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
28
|
Yang LYY, Wang YL, Zuo YG. Pemphigoid diseases in patients with end-stage kidney diseases: pathogenesis and treatment. Front Immunol 2024; 15:1427943. [PMID: 39050843 PMCID: PMC11266006 DOI: 10.3389/fimmu.2024.1427943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background Pemphigoid diseases constitute a group of autoimmune blistering disorders characterized by subepithelial blistering. The association between pemphigoid diseases and both end-stage kidney disease (ESKD) and its treatment is notable. However, there is limited evidence about the management of pemphigoid diseases in patients with ESKD. This systematic review compiled case reports and relevant studies, summarized the underlying mechanisms of pemphigoid diseases in patients with ESKD, and summarized the efficacy of various therapies. Methods A systematic search of PubMed and Embase was performed for articles published between 1982 to June 2, 2024. Results Fifty-three case reports and eight relevant studies were included. Triggers for pemphigoids in patients with ESKD included materials used to treat ESKD, immune dysregulation of patients with ESKD, and rejection of renal allograft. Treatment for these patients included removing triggers, as well as administering of corticosteroids, mycophenolate mofetil (MMF), tetracyclines, rituximab, methotrexate, dapsone, azathioprine, cyclosporine, intravenous immunoglobin (IVIG), plasmapheresis, and Janus kinase inhibitors. Conclusion Removing triggers is the most effective strategy. Despite their suboptimal efficacy, corticosteroids remain the most commonly used agents in this patient population. MMF, tetracyclines, and rituximab are less used but with benefits. There are significant adverse effects associated with methotrexate treatment. Other treatment may also be beneficial and require further investigation. These findings may enable clinicians to optimize the therapeutic approach for these patients.
Collapse
Affiliation(s)
- Liu-Yi-Yi Yang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Lu Wang
- Department of Dermatology, Xiajin Country People’s Hospital, Dezhou, Shandong, China
| | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 2024; 29:95. [PMID: 38606791 PMCID: PMC11025031 DOI: 10.3892/mmr.2024.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, TNF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction.
Collapse
Affiliation(s)
- Fani-Niki Varra
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
- Medical School, Dimocritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michail Varras
- Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece
| | | | | |
Collapse
|
30
|
Ghose S, Satariano M, Korada S, Cahill T, Shah R, Raina R. Advancements in diabetic kidney disease management: integrating innovative therapies and targeted drug development. Am J Physiol Endocrinol Metab 2024; 326:E791-E806. [PMID: 38630049 DOI: 10.1152/ajpendo.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease and affects approximately 40% of individuals with diabetes . Cases of DKD continue to rise globally as the prevalence of diabetes mellitus increases, with an estimated 415 million people living with diabetes in 2015 and a projected 642 million by 2040. DKD is associated with significant morbidity and mortality, representing 34% and 36% of all chronic kidney disease deaths in men and women, respectively. Common comorbidities including hypertension and ageing-related nephron loss further complicate disease diagnosis and progression. The progression of DKD involves several mechanisms including glomerular endothelial cell dysfunction, inflammation, and fibrosis. Targeting these mechanisms has formed the basis of several therapeutic agents. Renin-angiotensin-aldosterone system (RAAS) blockers, specifically angiotensin receptor blockers (ARBs), demonstrate significant reductions in macroalbuminuria. Sodium-glucose transporter type 2 (SGLT-2) inhibitors demonstrate kidney protection independent of diabetes control while also decreasing the incidence of cardiovascular events. Emerging agents including glucagon-like peptide 1 (GLP-1) agonists, anti-inflammatory agents like bardoxolone, and mineralocorticoid receptor antagonists show promise in mitigating DKD progression. Many novel therapies including monoclonal antibodies CSL346, lixudebart, and tozorakimab; mesenchymal stem/stromal cell infusion; and cannabinoid-1 receptor inverse agonism via INV-202 are currently in clinical trials and present opportunities for further drug development.
Collapse
Affiliation(s)
- Shaarav Ghose
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Matthew Satariano
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Saichidroopi Korada
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Thomas Cahill
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Raghav Shah
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Rupesh Raina
- Department of Medicine, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio, United States
- Department of Nephrology, Akron Children's Hospital, Akron, Ohio, United States
| |
Collapse
|
31
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
32
|
Wang N, Zhang C. Recent Advances in the Management of Diabetic Kidney Disease: Slowing Progression. Int J Mol Sci 2024; 25:3086. [PMID: 38542060 PMCID: PMC10970506 DOI: 10.3390/ijms25063086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 01/03/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of chronic kidney disease (CKD), and it heightens the risk of cardiovascular incidents. The pathogenesis of DKD is thought to involve hemodynamic, inflammatory, and metabolic factors that converge on the fibrotic pathway. Genetic predisposition and unhealthy lifestyle practices both play a significant role in the development and progression of DKD. In spite of the recent emergence of angiotensin receptors blockers (ARBs)/angiotensin converting enzyme inhibitor (ACEI), sodium-glucose cotransporter 2 (SGLT2) inhibitors, and nonsteroidal mineralocorticoid receptors antagonists (NS-MRAs), current therapies still fail to effectively arrest the progression of DKD. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), a promising class of agents, possess the potential to act as renal protectors, effectively slowing the progression of DKD. Other agents, including pentoxifylline (PTF), selonsertib, and baricitinib hold great promise as potential therapies for DKD due to their anti-inflammatory and antifibrotic properties. Multidisciplinary treatment, encompassing lifestyle modifications and drug therapy, can effectively decelerate the progression of DKD. Based on the treatment of heart failure, it is recommended to use multiple drugs in combination rather than a single-use drug for the treatment of DKD. Unearthing the mechanisms underlying DKD is urgent to optimize the management of DKD. Inflammatory and fibrotic factors (including IL-1, MCP-1, MMP-9, CTGF, TNF-a and TGF-β1), along with lncRNAs, not only serve as diagnostic biomarkers, but also hold promise as therapeutic targets. In this review, we delve into the potential mechanisms and the current therapies of DKD. We also explore the additional value of combing these therapies to develop novel treatment strategies. Drawing from the current understanding of DKD pathogenesis, we propose HIF inhibitors, AGE inhibitors, and epigenetic modifications as promising therapeutic targets for the future.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
33
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
34
|
Song J, Zhang B, Zhang H, Cheng W, Liu P, Kang J. Quantitative Proteomics Combined with Network Pharmacology Analysis Unveils the Biological Basis of Schisandrin B in Treating Diabetic Nephropathy. Comb Chem High Throughput Screen 2024; 27:284-297. [PMID: 37151069 DOI: 10.2174/1386207326666230505111903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major complication of diabetes. Schisandrin B (Sch) is a natural pharmaceutical monomer that was shown to prevent kidney damage caused by diabetes and restore its function. However, there is still a lack of comprehensive and systematic understanding of the mechanism of Sch treatment in DN. OBJECTIVE We aim to provide a systematic overview of the mechanisms of Sch in multiple pathways to treat DN in rats. METHODS Streptozocin was used to build a DN rat model, which was further treated with Sch. The possible mechanism of Sch protective effects against DN was predicted using network pharmacology and was verified by quantitative proteomics analysis. RESULTS High dose Sch treatment significantly downregulated fasting blood glucose, creatinine, blood urea nitrogen, and urinary protein levels and reduced collagen deposition in the glomeruli and tubule-interstitium of DN rats. The activities of superoxide dismutase (SOD) and plasma glutathione peroxidase (GSH-Px) in the kidney of DN rats significantly increased with Sch treatment. In addition, the levels of IL-6, IL-1β, and TNF-α were significantly reduced in DN rats treated with Sch. 11 proteins that target both Sch and DN were enriched in pathways such as MAPK signaling, PI3K-Akt signaling, renal cell carcinoma, gap junction, endocrine resistance, and TNF signaling. Furthermore, quantitative proteomics showed that Xaf1 was downregulated in the model vs. control group and upregulated in the Sch-treated vs. model group. Five proteins, Crb3, Tspan4, Wdr45, Zfp512, and Tmigd1, were found to be upregulated in the model vs. control group and downregulated in the Sch vs. model group. Three intersected proteins between the network pharmacology prediction and proteomics results, Crb3, Xaf1, and Tspan4, were identified. CONCLUSION Sch functions by relieving oxidative stress and the inflammatory response by regulating Crb3, Xaf1, and Tspan4 protein expression levels to treat DN disease.
Collapse
Affiliation(s)
- Jianying Song
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Bo Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd., 58 Yuanmei Road, Shanghai, 200233, People's Republic of China
| | - Wenbo Cheng
- Tianjin Key Laboratory of Medical Mass Spectrometry for Accurate Diagnosis, Tianjin, 300399, People's Republic of China
| | - Peiyuan Liu
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Jun Kang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| |
Collapse
|
35
|
Gao F, Litchfield B, Wu H. Adipose tissue lymphocytes and obesity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:5. [PMID: 38455510 PMCID: PMC10919906 DOI: 10.20517/jca.2023.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Obesity is associated with chronic inflammation in adipose tissue (AT), mainly evidenced by infiltration and phenotypic changes of various types of immune cells. Macrophages are the major innate immune cells and represent the predominant immune cell population within AT. Lymphocytes, including T cells and B cells, are adaptive immune cells and constitute another important immune cell population in AT. In obesity, CD8+ effector memory T cells, CD4+ Th1 cells, and B2 cells are increased in AT and promote AT inflammation, while regulatory T cells and Th2 cells, which usually function as immune regulatory or type 2 inflammatory cells, are reduced in AT. Immune cells may regulate the metabolism of adipocytes and other cells through various mechanisms, contributing to the development of metabolic diseases, including insulin resistance and type 2 diabetes. Efforts targeting immune cells and inflammation to prevent and treat obesity-linked metabolic disease have been explored, but have not yielded significant success in clinical studies. This review provides a concise overview of the changes in lymphocyte populations within AT and their potential role in AT inflammation and the regulation of metabolic functions in the context of obesity.
Collapse
Affiliation(s)
- Feng Gao
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
Yang M, Zhang C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J Pharm Anal 2024; 14:39-51. [PMID: 38352948 PMCID: PMC10859537 DOI: 10.1016/j.jpha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
Collapse
Affiliation(s)
- Min Yang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
37
|
Pour-Reza-Gholi F, Assadiasl S. Immunological Approaches in the Treatment of Diabetic Nephropathy. Curr Diabetes Rev 2024; 21:e061123223172. [PMID: 37936470 DOI: 10.2174/0115733998267893231016062205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023]
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, has no definite treatment so far. In fact, a combination of metabolic, hemodynamic, and immunological factors are involved in the pathogenesis of DN; therefore, effective disease management requires a holistic approach to all predisposing contributors. Due to the recent findings about the role of inflammation in the initiation and progression of kidney injury in diabetic patients and considerable advances in immunotherapy methods, it might be useful to revise and reconsider the current knowledge of the potential of immunomodulation in preventing and attenuating DN. In this review, we have summarized the findings of add-on therapeutic methods that have concentrated on regulating inflammatory responses in diabetic nephropathy, including phosphodiesterase inhibitors, nuclear factor-kB inhibitors, Janus kinase inhibitors, chemokine inhibitors, anti-cytokine antibodies, cell therapy, and vaccination.
Collapse
Affiliation(s)
- Fatemeh Pour-Reza-Gholi
- Department of Nephrology, Labbafinezhad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Otoda T, Sekine A, Uemoto R, Tsuji S, Hara T, Tamaki M, Yuasa T, Tamaki T, Matsuhisa M, Aihara KI. Albuminuria and Serum Tumor Necrosis Factor Receptor Levels in Patients with Type 2 Diabetes on SGLT2 Inhibitors: A Prospective Study. Diabetes Ther 2024; 15:127-143. [PMID: 37883001 PMCID: PMC10786751 DOI: 10.1007/s13300-023-01488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Large-scale clinical trials of sodium-glucose cotransporter 2 inhibitors (SGLT2i) demonstrate proteinuria-reducing effects in diabetic kidney disease, even after treatment with renin-angiotensin inhibitors. The precise mechanism for this favorable effect remains unclear. This prospective open-label single-arm study investigated factors associated with a reduction in proteinuria after SGLT2i administration. METHODS Patients with type 2 diabetes (T2DM) who had glycated hemoglobin (HbA1c) levels ≥ 6.5% despite dietary and/or oral hypoglycemic monotherapy were recruited and administered the recommended daily dose of SGLT2i for 4 months. Dual primary outcomes were changes in the urine albumin-to-creatinine ratio (uACR) and urine liver-type fatty acid-binding protein (L-FABP)-to-creatinine ratio (uL-FABPCR) at month 4 from baseline. Changes in kidney injury, inflammation, and oxidative stress biomarkers were investigated as secondary endpoints to examine the effects of this treatment on the kidney. The correlation between renal outcomes and clinical indicators, including circulating tumor necrosis factor receptors (TNFR) 1 and 2, was evaluated using univariate and multivariate analyses. RESULTS Participants (n = 123) had a mean age of 64.1 years (SD 13.4), with 50.4% being male. The median BMI was 25.8 kg/m2 (interquartile range (IQR) 23.1-28.9), and the median HbA1c level was 7.3% (IQR 6.9-8.3). After SGLT2i administration, the uACR declined from 19.2 mg/gCr (IQR 7.1-48.7) to 13.3 mg/gCr (IQR 7.5-31.6), whereas the uL-FABPCR was not influenced. In univariate analysis, the change in log-transformed uACR due to SGLT2i administration showed a positive correlation with the change in serum TNFR1 level (R = 0.244, p < 0.01). Multivariate regression analysis, including confounding factors, showed that the changes in serum TNFR1 level were independently associated with the changes in the log-transformed uACR (independent t = 2.102, p < 0.05). CONCLUSION After the 4-month SGLT2i administration, decreased albuminuria level was associated with decreased serum TNFR level in patients with T2DM. TRIAL REGISTRATION NUMBER UMIN000031947.
Collapse
Affiliation(s)
- Toshiki Otoda
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Akiko Sekine
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ryoko Uemoto
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Seijiro Tsuji
- Department of Internal Medicine, Anan Medical Center, 6-1, Kawahara, Takarada-cho, Anan City, Tokushima, 774-0045, Japan
| | - Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Motoyuki Tamaki
- Department of Diabetes and Endocrinology, Tamaki Aozora Hospital, 56-1, Kitakashiya, Aza Hayabuchi, Kokufu-cho, Tokushima, 779-3125, Japan
| | - Tomoyuki Yuasa
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Toshiaki Tamaki
- Department of Urology, Anan Medical Center, 6-1, Kawahara, Takarada-cho, Anan City, Tokushima, 774-0045, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ken-Ichi Aihara
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 18-15, 3 Chome, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
39
|
Prieto I, Kavanagh M, Jimenez-Castilla L, Pardines M, Lazaro I, Herrero del Real I, Flores-Muñoz M, Egido J, Lopez-Franco O, Gomez-Guerrero C. A mutual regulatory loop between miR-155 and SOCS1 influences renal inflammation and diabetic kidney disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102041. [PMID: 37842165 PMCID: PMC10571033 DOI: 10.1016/j.omtn.2023.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, a global health issue. Hyperglycemia, in concert with cytokines, activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway to induce inflammation and oxidative stress contributing to renal damage. There is evidence of microRNA-155 (miR-155) involvement in diabetes complications, but the underlying mechanisms are unclear. In this study, gain- and loss-of-function experiments were conducted to investigate the interplay between miR-155-5p and suppressor of cytokine signaling 1 (SOCS1) in the regulation of the JAK/STAT pathway during renal inflammation and DKD. In experimental models of mesangial injury and diabetes, miR-155-5p expression correlated inversely with SOCS1 and positively with albuminuria and expression levels of cytokines and prooxidant genes. In renal cells, miR-155-5p mimic downregulated SOCS1 and promoted STAT1/3 activation, cytokine expression, and cell proliferation and migration. Conversely, both miR-155-5p antagonism and SOCS1 overexpression protected cells from inflammation and hyperglycemia damage. In vivo, SOCS1 gene delivery decreased miR-155-5p and kidney injury in diabetic mice. Moreover, therapeutic inhibition of miR-155-5p suppressed STAT1/3 activation and alleviated albuminuria, mesangial damage, and renal expression of inflammatory and fibrotic genes. In conclusion, modulation of the miR-155/SOCS1 axis protects kidneys against diabetic damage, thus highlighting its potential as therapeutic target for DKD.
Collapse
Affiliation(s)
- Ignacio Prieto
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - María Kavanagh
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Marisa Pardines
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
| | - Iolanda Lazaro
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute-IMIM, 08003 Barcelona, Spain
| | - Isabel Herrero del Real
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
| | - Monica Flores-Muñoz
- Translational Medicine Lab, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91140, Veracruz, Mexico
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Oscar Lopez-Franco
- Translational Medicine Lab, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91140, Veracruz, Mexico
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
40
|
Li J, Li L, Zhang Z, Chen P, Shu H, Yang C, Chu Y, Liu J. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol 2023; 14:1294317. [PMID: 38111578 PMCID: PMC10725962 DOI: 10.3389/fimmu.2023.1294317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a chronic inflammatory disease that affects millions of diabetic patients worldwide. The key to treating of DN is early diagnosis and prevention. Once the patient enters the clinical proteinuria stage, renal damage is difficult to reverse. Therefore, developing early treatment methods is critical. DN pathogenesis results from various factors, among which the immune response and inflammation play major roles. Ferroptosis is a newly discovered type of programmed cell death characterized by iron-dependent lipid peroxidation and excessive ROS production. Recent studies have demonstrated that inflammation activation is closely related to the occurrence and development of ferroptosis. Moreover, hyperglycemia induces iron overload, lipid peroxidation, oxidative stress, inflammation, and renal fibrosis, all of which are related to DN pathogenesis, indicating that ferroptosis plays a key role in the development of DN. Therefore, this review focuses on the regulatory mechanisms of ferroptosis, and the mutual regulatory processes involved in the occurrence and development of DN and inflammation. By discussing and analyzing the relationship between ferroptosis and inflammation in the occurrence and development of DN, we can deepen our understanding of DN pathogenesis and develop new therapeutics targeting ferroptosis or inflammation-related regulatory mechanisms for patients with DN.
Collapse
Affiliation(s)
- Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Haiying Shu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
41
|
Hilley P, Con D, Choy MC, Srinivasan A, De Cruz P. Upadacitinib in end stage renal disease: A case of acute severe ulcerative colitis. JGH Open 2023; 7:1012-1015. [PMID: 38162859 PMCID: PMC10757473 DOI: 10.1002/jgh3.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
Recent data, indicating that inflammatory bowel disease (IBD) may be a risk factor for future chronic kidney disease, highlight the need to study the safety and clinical effectiveness of advanced IBD therapies in patients with end stage renal disease (ESRD), defined as an eGFR <15 mL/min/1.73m2. Upadacitinib, a selective oral Janus kinase (JAK) 1 inhibitor, has demonstrated efficacy in the management of moderate to severe ulcerative colitis. There is also emerging data indicating that JAK inhibition may be clinically effective in the setting of steroid-refractory acute severe ulcerative colitis (ASUC). There is, however, a lack of "real-world" data documenting the use of JAK inhibitors in patients with ESRD. Here, we report the use of upadacitinib in a patient with ESRD for the management of steroid-refractory ASUC, demonstrating, for the first time, the safe and clinically effective use of upadacitinib in this population.
Collapse
Affiliation(s)
- Patrick Hilley
- Department of GastroenterologyAustin HealthHeidelbergVictoriaAustralia
| | - Danny Con
- Department of GastroenterologyAustin HealthHeidelbergVictoriaAustralia
| | - Matthew C. Choy
- Department of GastroenterologyAustin HealthHeidelbergVictoriaAustralia
- Austin Academic CentreUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ashish Srinivasan
- Department of GastroenterologyAustin HealthHeidelbergVictoriaAustralia
- Austin Academic CentreUniversity of MelbourneParkvilleVictoriaAustralia
| | - Peter De Cruz
- Department of GastroenterologyAustin HealthHeidelbergVictoriaAustralia
- Austin Academic CentreUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
42
|
Bilen Y, Almoushref A, Alkwatli K, Osman O, Mehdi A, Sawaf H. Treatment and practical considerations of diabetic kidney disease. Front Med (Lausanne) 2023; 10:1264497. [PMID: 38105902 PMCID: PMC10722293 DOI: 10.3389/fmed.2023.1264497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023] Open
Abstract
Diabetic kidney disease (DKD) is a complication of diabetes that can lead to kidney failure. Over the years, several drugs have been developed to combat this disease. In the early 90s, angiotensin blockade (ACEi and ARBs) was introduced, which revolutionized the treatment of DKD. In recent years, newer drugs such as sodium-glucose co-transporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, endothelin antagonists, and mineralocorticoid receptor antagonists (MRA) have shown great promise in reducing albuminuria and protecting the kidneys. These drugs are being used in combination with lifestyle modifications, patient education, and risk factor modification to effectively manage DKD. In this review, we will explore the latest pharmacological options, their efficacy, and their potential to revolutionize the management of this debilitating disease.
Collapse
Affiliation(s)
- Yara Bilen
- Cleveland Clinic, Department of Internal Medicine, Cleveland, OH, United States
| | - Allaa Almoushref
- Cleveland Clinic, Department of Kidney Medicine, Cleveland, OH, United States
| | - Kenda Alkwatli
- Cleveland Clinic, Department of Endocrinology, Cleveland, OH, United States
| | - Omar Osman
- Cleveland Clinic, Department of Kidney Medicine, Cleveland, OH, United States
| | - Ali Mehdi
- Cleveland Clinic, Department of Kidney Medicine, Cleveland, OH, United States
| | - Hanny Sawaf
- Cleveland Clinic, Department of Kidney Medicine, Cleveland, OH, United States
| |
Collapse
|
43
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
44
|
Dou F, Liu Q, Lv S, Xu Q, Wang X, Liu S, Liu G. FN1 and TGFBI are key biomarkers of macrophage immune injury in diabetic kidney disease. Medicine (Baltimore) 2023; 102:e35794. [PMID: 37960829 PMCID: PMC10637504 DOI: 10.1097/md.0000000000035794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
The pathogenesis of diabetic kidney disease (DKD) is complex, and the existing treatment methods cannot control disease progression well. Macrophages play an important role in the development of DKD. This study aimed to search for biomarkers involved in immune injury induced by macrophages in DKD. The GSE96804 dataset was downloaded and analyzed by the CIBERSORT algorithm to understand the differential infiltration of macrophages between DKD and normal controls. Weighted gene co-expression network analysis was used to explore the correlation between gene expression modules and macrophages in renal tissue of DKD patients. Protein-protein interaction network and machine learning algorithm were used to screen the hub genes in the key modules. Subsequently, the GSE30528 dataset was used to further validate the expression of hub genes and analyze the diagnostic effect by the receiver operating characteristic curve. The clinical data were applied to explore the prognostic significance of hub genes. CIBERSORT analysis showed that macrophages increased significantly in DKD renal tissue samples. A total of ten modules were generated by weighted gene co-expression network analysis, of which the blue module was closely associated with macrophages. The blue module mainly played an important role in biological processes such as immune response and fibrosis. Fibronectin 1 (FN1) and transforming growth factor beta induced (TGFBI) were identified as hub genes of DKD patients. Receiver operating characteristic curve analysis was performed in the test cohort: FN1 and TGFBI had larger area under the curve values (0.99 and 0.88, respectively). Clinical validation showed that 2 hub genes were negatively correlated with the estimated glomerular filtration rate in DKD patients. In addition, FN1 and TGFBI showed a strong positive correlation with macrophage alternative activation. FN1 and TGFBI are promising biomarkers for the diagnosis and treatment of DKD patients, which may participate in immune response and fibrosis induced by macrophages.
Collapse
Affiliation(s)
- Fulin Dou
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Qingzhen Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Shasha Lv
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Qiaoying Xu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Xueling Wang
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Shanshan Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Gang Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
45
|
Gao Q, Jin H, Xu W, Wang Y. Predicting diagnostic gene biomarkers in patients with diabetic kidney disease based on weighted gene co expression network analysis and machine learning algorithms. Medicine (Baltimore) 2023; 102:e35618. [PMID: 37904449 PMCID: PMC10615450 DOI: 10.1097/md.0000000000035618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023] Open
Abstract
The present study was designed to identify potential diagnostic markers for diabetic kidney disease (DKD). Two publicly available gene expression profiles (GSE142153 and GSE30528 datasets) from human DKD and control samples were downloaded from the GEO database. Differentially expressed genes (DEGs) were screened between 23 DKD and 10 control samples using the gene data from GSE142153. Weighted gene co expression network analysis was used to find the modules related to DKD. The overlapping genes of DEGs and Turquoise modules were narrowed down and using the least absolute shrinkage and selection operator regression model and support vector machine-recursive feature elimination analysis to identify candidate biomarkers. The area under the receiver operating characteristic curve value was obtained and used to evaluate discriminatory ability using the gene data from GSE30528. A total of 110 DEGs were obtained: 64 genes were significantly upregulated and 46 genes were significantly downregulated. Weighted gene co expression network analysis found that the turquoise module had the strongest correlation with DKD (R = -0.58, P = 4 × 10-4). Thirty-eight overlapping genes of DEGs and turquoise modules were extracted. The identified DEGs were mainly involved in p53 signaling pathway, HIF-1 signaling pathway, JAK - STAT signaling pathway and FoxO signaling pathway between and the control. C-X-C motif chemokine ligand 3 was identified as diagnostic markers of DKD with an area under the receiver operating characteristic curve of 0.735 (95% CI 0.487-0.932). C-X-C motif chemokine ligand 3 was identified as diagnostic biomarkers of DKD and can provide new insights for future studies on the occurrence and the molecular mechanisms of DKD.
Collapse
Affiliation(s)
- Qian Gao
- Affiliated Hospital of Shaoxing University of Edocrine and Metabolism Department, Zhejiang, China
| | - Huawei Jin
- Affiliated Hospital of Shaoxing University of Edocrine and Metabolism Department, Zhejiang, China
| | - Wenfang Xu
- Affiliated Hospital of Shaoxing University of Clinical Laboratory, Zhejiang, China
| | - Yanan Wang
- Affiliated Hospital of Shaoxing University of Clinical Laboratory, Zhejiang, China
| |
Collapse
|
46
|
Jiang S, Su H. Cellular crosstalk of mesangial cells and tubular epithelial cells in diabetic kidney disease. Cell Commun Signal 2023; 21:288. [PMID: 37845726 PMCID: PMC10577991 DOI: 10.1186/s12964-023-01323-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage renal disease and imposes a heavy global economic burden; however, little is known about its complicated pathophysiology. Investigating the cellular crosstalk involved in DKD is a promising avenue for gaining a better understanding of its pathogenesis. Nonetheless, the cellular crosstalk of podocytes and endothelial cells in DKD is better understood than that of mesangial cells (MCs) and renal tubular epithelial cells (TECs). As the significance of MCs and TECs in DKD pathophysiology has recently become more apparent, we reviewed the existing literature on the cellular crosstalk of MCs and TECs in the context of DKD to acquire a comprehensive understanding of their cellular communication. Insights into the complicated mechanisms underlying the pathophysiology of DKD would improve its early detection, care, and prognosis. Video Abstract.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
47
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
48
|
Laursen JC, Rotbain Curovic V, Kroonen MYAM, Jongs N, Zobel EH, Hansen TW, Frimodt-Møller M, Laverman GD, Kooy A, Persson F, Heerspink HJL, Hansen CS, Rossing P. Effects of baricitinib, empagliflozin, linagliptin and telmisartan on cardiovascular autonomic neuropathy in type 1 diabetes: An exploratory, randomized, open-label, crossover trial. Diabetes Obes Metab 2023; 25:3064-3067. [PMID: 37385968 DOI: 10.1111/dom.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Affiliation(s)
| | | | - Marjolein Y A M Kroonen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Niels Jongs
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | - Adriaan Kooy
- Bethesda Diabetes Research Center, Hoogeveen, The Netherlands
- Department of Internal Medicine, University of Groningen, Groningen, The Netherlands
| | | | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Sang Y, Tsuji K, Nakanoh H, Fukushima K, Kitamura S, Wada J. Role of Semaphorin 3A in Kidney Development and Diseases. Diagnostics (Basel) 2023; 13:3038. [PMID: 37835781 PMCID: PMC10572269 DOI: 10.3390/diagnostics13193038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney diseases are worldwide public health problems affecting millions of people. However, there are still limited therapeutic options against kidney diseases. Semaphorin 3A (SEMA3A) is a secreted and membrane-associated protein, which regulates diverse functions, including immune regulation, cell survival, migration and angiogenesis, thus involving in the several pathogeneses of diseases, including eyes and neurons, as well as kidneys. SEMA3A is expressed in podocytes and tubular cells in the normal adult kidney, and recent evidence has revealed that excess SEMA3A expression and the subsequent signaling pathway aggravate kidney injury in a variety of kidney diseases, including nephrotic syndrome, diabetic nephropathy, acute kidney injury, and chronic kidney disease. In addition, several reports have demonstrated that the inhibition of SEMA3A ameliorated kidney injury via a reduction in cell apoptosis, fibrosis and inflammation; thus, SEMA3A may be a potential therapeutic target for kidney diseases. In this review article, we summarized the current knowledge regarding the role of SEMA3A in kidney pathophysiology and their potential use in kidney diseases.
Collapse
Affiliation(s)
- Yizhen Sang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Rheumatology and Immunology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| |
Collapse
|
50
|
Martin WP, Docherty NG. A Systems Nephrology Approach to Diabetic Kidney Disease Research and Practice. Nephron Clin Pract 2023; 148:127-136. [PMID: 37696257 PMCID: PMC7617272 DOI: 10.1159/000531823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Diagnosis and staging of diabetic kidney disease (DKD) via the serial assessment of routine laboratory indices lacks the granularity required to resolve the heterogeneous disease mechanisms driving progression in the individual patient. A systems nephrology approach may help resolve mechanisms underlying this clinically apparent heterogeneity, paving a way for targeted treatment of DKD. SUMMARY Given the limited access to kidney tissue in routine clinical care of patients with DKD, data derived from renal tissue in preclinical model systems, including animal and in vitro models, can play a central role in the development of a targeted systems-based approach to DKD. Multi-centre prospective cohort studies, including the Kidney Precision Medicine Project (KPMP) and the European Nephrectomy Biobank (ENBiBA) project, will improve access to human diabetic kidney tissue for research purposes. Integration of diverse data domains from such initiatives including clinical phenotypic data, renal and retinal imaging biomarkers, histopathological and ultrastructural data, and an array of molecular omics (transcriptomics, proteomics, etc.) alongside multi-dimensional data from preclinical modelling offers exciting opportunities to unravel individual-level mechanisms underlying progressive DKD. The application of machine and deep learning approaches may particularly enhance insights derived from imaging and histopathological/ultrastructural data domains. KEY MESSAGES Integration of data from multiple model systems (in vitro, animal models, and patients) and from diverse domains (clinical phenotypic, imaging, histopathological/ultrastructural, and molecular omics) offers potential to create a precision medicine approach to DKD care wherein the right treatments are offered to the right patients at the right time.
Collapse
Affiliation(s)
- William P. Martin
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| |
Collapse
|