1
|
Identification and Quantification of Proliferating Cells in Skeletal Muscle of Glutamine Supplemented Low- and Normal-Birth-Weight Piglets. Cells 2023; 12:cells12040580. [PMID: 36831247 PMCID: PMC9953894 DOI: 10.3390/cells12040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
One way to improve the growth of low-birth-weight (LBW) piglets can be stimulation of the cellular development of muscle by optimized amino acid supply. In the current study, it was investigated how glutamine (Gln) supplementation affects muscle tissue of LBW and normal-birth-weight (NBW) piglets. Longissimus and semitendinosus muscles of 96 male piglets, which were supplemented with 1 g Gln/kg body weight or alanine, were collected at slaughter on day 5 or 26 post natum (dpn), one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Immunohistochemistry was applied to detect proliferating, BrdU-positive cells in muscle cross-sections. Serial stainings with cell type specific antibodies enabled detection and subsequent quantification of proliferating satellite cells and identification of further proliferating cell types, e.g., preadipocytes and immune cells. The results indicated that satellite cells and macrophages comprise the largest fractions of proliferating cells in skeletal muscle of piglets early after birth. The Gln supplementation somewhat stimulated satellite cells. We observed differences between the two muscles, but no influence of the piglets' birth weight was observed. Thus, Gln supplements may not be considered as effective treatment in piglets with low birth weight for improvement of muscle growth.
Collapse
|
2
|
Fu Y, Hao X, Shang P, Chamba Y, Zhang B, Zhang H. Functional Identification of Porcine DLK1 during Muscle Development. Animals (Basel) 2022; 12:ani12121523. [PMID: 35739860 PMCID: PMC9219491 DOI: 10.3390/ani12121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Skeletal muscle is the largest tissue and serves as a protein reservoir and energy reservoir in the human and animal body. It also serves as the main metabolic activity site. The formation of skeletal muscle mainly depends on the differentiation and fusion of myocytes and other complex ordered processes; each step is regulated by various factors. In this study, we investigated the expression profiles, functional identification, and regulatory pathways of Delta-like 1 homolog (DLK1) in pigs and myocytes. We found that DLK1 was highly expressed in the muscle tissues of pigs. DLK1 promoted myocyte proliferation, migration, differentiation, fusion, and muscular hypertrophy, but suppressed muscle degradation. DLK1 also inhibited the Notch signaling pathway by regulating the expression of key factors in the pathway, thereby producing a phenotype in which DLK1 promotes muscle development. These findings provide valuable information to improve our understanding of the functional mechanisms of DLK1 that underly myogenesis to accelerate the process of animal genetic improvement. Abstract DLK1 is paternally expressed and is involved in metabolism switching, stem cell maintenance, cell proliferation, and differentiation. Porcine DLK1 was identified in our previous study as a candidate gene that regulates muscle development. In the present study, we characterized DLK1 expression in pigs, and the results showed that DLK1 was highly expressed in the muscles of pigs. In-vitro cellular tests showed that DLK1 promoted myoblast proliferation, migration, and muscular hypertrophy, and at the same time inhibited muscle degradation. The expression of myogenic and fusion markers and the formation of multinucleated myotubes were both upregulated in myoblasts with DLK1 overexpression. DLK1 levels in cultured myocytes were negatively correlated with the expression of key factors in the Notch pathway, suggesting that the suppression of Notch signaling pathways may mediate these processes. Collectively, our results suggest a biological function of DLK1 as an enhancer of muscle development by the inhibition of Notch pathways.
Collapse
Affiliation(s)
- Yu Fu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.F.); (X.H.)
| | - Xin Hao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.F.); (X.H.)
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (P.S.); (Y.C.)
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (P.S.); (Y.C.)
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.F.); (X.H.)
- Correspondence: (B.Z.); (H.Z.); Tel.: +86-010-62734852 (H.Z.)
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.F.); (X.H.)
- Correspondence: (B.Z.); (H.Z.); Tel.: +86-010-62734852 (H.Z.)
| |
Collapse
|
3
|
Masoudzadeh SH, Mohammadabadi M, Khezri A, Stavetska RV, Oleshko VP, Babenko OI, Yemets Z, Kalashnik OM. Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of Kermani lambs. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Traustadóttir GÁ, Lagoni LV, Ankerstjerne LBS, Bisgaard HC, Jensen CH, Andersen DC. The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor Rev 2019; 46:17-27. [DOI: 10.1016/j.cytogfr.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
|
5
|
Sze L, Tschopp O, Neidert MC, Bernays RL, Ghirlanda C, Zwimpfer C, Wiesli P, Schmid C. Soluble delta-like 1 homolog decreases in patients with acromegaly following pituitary surgery: A potential mediator of adipogenesis suppression by growth hormone? Growth Horm IGF Res 2019; 45:20-24. [PMID: 30818110 DOI: 10.1016/j.ghir.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/23/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE GH excess in acromegaly leads to lower fat mass and insulin resistance; both reverse following pituitary surgery. Soluble delta like-1 homolog (sDlk1) inhibits adipocyte differentiation and may mediate the antiadipogenic effects of GH. It is released into the circulation by ectodomain shedding through 'A Disintegrin And Metalloproteinase domain 17' (ADAM17), which also sheds soluble α-Klotho (sKlotho). Klotho is a transmembrane protein, which influences life span. sKlotho inhibits insulin signalling, and is markedly elevated in acromegaly and decreases after surgery. Therefore, we examined if sDlk1 parallels the course of sKlotho, which could explain the well-known changes in fat mass in patients with acromegaly after surgery. DESIGN We measured serum levels of GH, IGF-1, sDlk1 and sKlotho (both by ELISA) in 42 treatment-naïve acromegaly patients (20 females/22 males) before and 1-3 months after transsphenoidal surgery. Data are presented as median(interquartile range). RESULTS GH decreased in all patients postoperatively (in 32/42 to <1 ng/ml during oral glucose tolerance testing). Likewise, IGF-1 and sKlotho decreased in all patients, from 587 (432-708) to 195 (133-270) ng/ml, and from 4.0 (2.7-5.9) to 0.7 (0.6-1.2) ng/ml, respectively; sDlk1 fell in 40/42 subjects, from 10.7 (5.8-13.4) to 7.1 (3.7-10.4) ng/ml following pituitary surgery. P < 0.0001 for all parameters. CONCLUSIONS sDlk1 declined after pituitary surgery in our patients with acromegaly, but to a lesser extent than sKlotho. It remains to be seen whether this may contribute to the well-known postoperative changes in body composition. Our findings may extend beyond the scope of acromegaly, and thus further elucidate mechanisms in the fields of obesity and anti-ageing.
Collapse
Affiliation(s)
- Lisa Sze
- Division of Endocrinology and Diabetology, Kantonsspital Winterthur, Brauerstrasse 15, CH-8401 Winterthur, Switzerland; Division of Endocrinology and Diabetology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Oliver Tschopp
- Division of Endocrinology and Diabetology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Marian C Neidert
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091 Zurich, Switzerland.
| | - René L Bernays
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091 Zurich, Switzerland; Department of Neurosurgery, Klinik Hirslanden, Witellikerstrasse 40, CH-8032 Zurich, Switzerland.
| | - Claudia Ghirlanda
- Division of Endocrinology and Diabetology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Cornelia Zwimpfer
- Division of Endocrinology and Diabetology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Peter Wiesli
- Division of Endocrinology and Diabetology, Kantonsspital Frauenfeld, Pfaffenholzstrasse 4, CH-8501 Frauenfeld, Switzerland.
| | - Christoph Schmid
- Division of Endocrinology and Diabetology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| |
Collapse
|
6
|
Zhao BH, Jiang Y, Zhu H, Xi FF, Chen Y, Xu YT, Liu F, Wang YY, Hu WS, Lv WG, Luo Q. Placental Delta-Like 1 Gene DNA Methylation Levels Are Related to Mothers' Blood Glucose Concentration. J Diabetes Res 2019; 2019:9521510. [PMID: 31886292 PMCID: PMC6927055 DOI: 10.1155/2019/9521510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE We aim to identify the methylation status of delta-like 1 (DLK1) in the placenta and the correlation between DLK1 methylation and maternal serum glucose level and fetal birth weight. METHODS We analyzed the gene expression of DLK1 gene in both maternal and fetal sides of the placenta in a GDM group (n = 15) and a control group (n = 15) using real-time polymerase chain reaction. With MethylTargetTM technique, we detected the methylation status of DLK1 promotor in the placenta. Furthermore, Pearson's correlation was used to confirm the association of methylation alteration of DLK1 promoter and maternal 2 h OGTT glucose level and fetal birth weight. RESULTS In our study, we found that DLK1 expression in both maternal and fetal sides of the placenta decreased significantly in GDM group compared with control group, and it was caused by hypermethylation of DLK1 promoter region. Additionally, the methylation status of DLK1 gene in the maternal side of the placenta highly correlated with maternal 2 h OGTT glucose level (coefficient = 0.7968, P < 0.0001), while the methylation status in the fetal side of the placenta was closely related to fetal birth weight (coefficient = 0.6233, P < 0.0001). CONCLUSIONS Our results demonstrated that altered expression of DLK1 was caused by the hypermethylation of DLK1 promoter region in the placenta, and intrauterine exposure to GDM has long-lasting effects on the epigenome of the offspring.
Collapse
Affiliation(s)
- Bai-Hui Zhao
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhu
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital of China Welfare institute, Shanghai, China
| | - Fang-Fang Xi
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Chen
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye-Tao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ya-Yun Wang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen-Sheng Hu
- Department of Obstetrics, Maternal and Child Health Care Hospital, Hangzhou, China
| | - Wei-Guo Lv
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
García-Gutiérrez MS, Navarrete F, Laborda J, Manzanares J. Deletion of Dlk1 increases the vulnerability to developing anxiety-like behaviors and ethanol consumption in mice. Biochem Pharmacol 2018; 158:37-44. [PMID: 30268817 DOI: 10.1016/j.bcp.2018.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022]
Abstract
Anxiety and alcohol use disorders (AUD) often present together, constituting a significant public health problem worldwide. In this study, we investigated the role of DLK1, a ligand of the Delta/NOTCH epidermal growth factor (EGF)-like protein family, reported to play a role in DA neurons differentiation in the striatum, as a neurobiological factor involved in the mechanisms regulating this psychiatric comorbidity. We exposed Dlk1 knockout mice (Dlk1-/- mice) to the open-field (OF), the light-dark box (LBD) and the elevated plus maze (EPM) tests, evaluating motivation to drink and ethanol consumption using the oral ethanol self-administration (OEA) paradigm. Quantitative real time polymerase chain reaction (qPCR) studies were carried out to evaluate alterations in targets closely related to DA neurotransmission in the reward system, tyrosine hydroxylase (Th) in the ventral tegmental area (VTA), and μ-opioid receptor (Oprm1) in the nucleus accumbens (NAc). No differences were observed in the total or peripheral distances travelled by Dlk1-/- compared to wild-type (WT) mice in OF. However, central distance travelled significantly decreased in Dlk1-/- mice. Deletion of Dlk1 increased anxiety-like behaviors in the LDB and EPM, and, Dlk1-/- mice also presented higher ethanol intake and motivation to drink (number of effective responses) in the OEA. In addition, Th and Oprm1 gene expression was reduced in the VTA and NAc of Dlk1-/- mice. We conclude that deletion of Dlk1 increases anxiety-related behaviors and vulnerability to ethanol consumption and modifies the gene expression of key targets closely related with DA neurotransmission involved in the reinforcing actions of ethanol.
Collapse
Affiliation(s)
- María S García-Gutiérrez
- Institute of Neurosciences, Miguel Hernández University-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; Topic-based Network for Cooperative Health Research (RETICS), Substance Abuse Network, Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| | - Francisco Navarrete
- Institute of Neurosciences, Miguel Hernández University-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; Topic-based Network for Cooperative Health Research (RETICS), Substance Abuse Network, Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Laborda
- School of Pharmacy, Regional Center for Biomedical Research (CRIB), Biomedicine Unit UCLM-CSIC, Albacete, Spain
| | - Jorge Manzanares
- Institute of Neurosciences, Miguel Hernández University-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; Topic-based Network for Cooperative Health Research (RETICS), Substance Abuse Network, Health Institute Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
8
|
El Faitwri T, Huber K. Expression pattern of delta-like 1 homolog in developing sympathetic neurons and chromaffin cells. Gene Expr Patterns 2018; 30:49-54. [PMID: 30144579 DOI: 10.1016/j.gep.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 02/03/2023]
Abstract
Delta-like 1 homolog (DLK1) is a member of the epidermal growth factor (EGF)-like family and an atypical notch ligand that is widely expressed during early mammalian development with putative functions in the regulation of cell differentiation and proliferation. During later stages of development, DLK1 is downregulated and becomes increasingly restricted to specific cell types, including several types of endocrine cells. DLK1 has been linked to various tumors and associated with tumor stem cell features. Sympathoadrenal precursors are neural crest derived cells that give rise to either sympathetic neurons of the autonomic nervous system or the endocrine chromaffin cells located in the adrenal medulla or extraadrenal positions. As these cells are the putative cellular origin of neuroblastoma, one of the most common malignant tumors in early childhood, their molecular characterization is of high clinical importance. In this study we have examined the precise spatiotemporal expression of DLK1 in developing sympathoadrenal cells. We show that DLK1 mRNA is highly expressed in early sympathetic neuron progenitors and that its expression depends on the presence of Phox2B. DLK1 expression becomes quickly restricted to a small subpopulation of cells in sympathetic ganglia, while virtually all chromaffin cells in the adrenal medulla and the Organ of Zuckerkandl still express high levels of DLK1 at late gestational stages.
Collapse
Affiliation(s)
- Tehani El Faitwri
- Institute of Anatomy & Cell Biology, Albert-Ludwigs-University Freiburg, Albert-Str. 17, 79104, Freiburg, Germany; Department of Histology and Anatomy, Faculty of Medicine, Benghazi University, Benghazi, Libya
| | - Katrin Huber
- Institute of Anatomy & Cell Biology, Albert-Ludwigs-University Freiburg, Albert-Str. 17, 79104, Freiburg, Germany; Department of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland.
| |
Collapse
|
9
|
Wang S, Zhang Y, Xu Q, Yuan X, Dai W, Shen X, Wang Z, Chang G, Wang Z, Chen G. The differentiation of preadipocytes and gene expression related to adipogenesis in ducks (Anas platyrhynchos). PLoS One 2018; 13:e0196371. [PMID: 29771917 PMCID: PMC5957414 DOI: 10.1371/journal.pone.0196371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022] Open
Abstract
Meat quality is closely related to adipose tissues in ducks, and adipogenesis is controlled by a complex network of transcription factors tightly acting at different stages of differentiation especially in ducks. The aim of this study was to establish the preadipocyte in vitro culture system and understand the biological characteristics of expansion of duck adipocyte tissue at the cellular and molecular level. We isolated pre-adipocytes from the subcutaneous fat of three breeds of duck and differentiated them into mature adipocytes using a mixture of insulin, rosiglitazone, dexamethasone, 3-isobutyl-1-methylxanthine, and oleic acid over 0,2, 4, 6, and 8 days. Successful differentiation was confirmed from the development of lipid droplets and their response to Oil Red O, and increasing numbers of lipid droplets were stained red over time. The expression of key marker genes, including peroxisome proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα), adipocyte fatty acid binding protein 4 (FABP4), and fatty acid synthetase (FAS), gradually increased during pre-adipocyte differentiation. Furthermore, it was verified by interference experiments that the knockdown of PPARγ directly reduced lipid production. Meanwhile we analyzed the role of unsaturated fatty acids in the production of poultry fat using different concentrations of oleic acid and found that lipid droplet deposition was highest when the concentration of oleic acid was 300 μM. We also compared the level of differentiated pre-adipocytes that were isolated from Jianchang ducks (fatty-meat duck), Cherry Valley ducks (lean-meat duck) and White-crested ducks (egg-producing duck). The proliferation and differentiation rate of pre-adipocytes derived from Jianchang ducks was higher than that of White-crested ducks. These results provide the foundation for further research into waterfowl adipogenesis.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoya Yuan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | | | - Xiaokun Shen
- Waterfowl Institute of Zhenjiang City, Dantu, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
10
|
Distinct hypoxic regulation of preadipocyte factor-1 (Pref-1) in preadipocytes and mature adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:334-342. [DOI: 10.1016/j.bbamcr.2017.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/15/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023]
|
11
|
Bello AR, Puertas‐Avendaño RA, González‐Gómez MJ, González‐Gómez M, Laborda J, Damas C, Ruiz‐Hidalgo M, Diaz C. Delta-like protein 1 in the pituitary-adipose axis in the adult male mouse. J Neuroendocrinol 2017; 29:e12507. [PMID: 28718206 PMCID: PMC6084355 DOI: 10.1111/jne.12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/21/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
With the aim of studying delta-like protein 1 (DLK1) with respect to the relationship between adipocyte leptin and adenohypophyseal hormones, we carried out an immunohistochemical study analysing the presence of receptors for these hormones in the pituitary and adipose cells of male wild-type (WT) mice (Dlk1+/+ ) compared to knockout (KO) mice (Dlk1-/- ). The mRNA expression of these molecules was also determined using the reverse transcriptase-polymerase chain reaction. The results obtained showed that, in WT adipose cells, all of the adenohypophyseal hormone receptors were present, with a higher mRNA expression for growth hormone (GH) receptor and thyroid-stimulating hormone (TSH) receptor. Of the total cells in the anterior pituitary lobe, 17.09±0.9% were leptin receptor (LEPR) immunoreactive (-IR), mainly in GH-IR and prolactin (PRL)-IR cells (41.5±3.8%; 13.5±1.7%, respectively). In Dlk1-/- mice, adipocyte cells showed a significant increase in the TSH receptor mRNA expression level. Moreover, the percentage of LEPR-IR GH cells showed a statistically significant increase compared to controls, from 41.5±3.8% to 53.1±4.0%. By contrast, only 3.0±0.6% of LEP-IR anterior pituitary cells were detected in Dlk1 KO mice, as opposed to 6.8±1.1% observed in WT mice. The results suggest that relationships exist between adipocytes and pituitary GH, PRL and TSH cells, in addition to an influence with respect to the synthesis and release of pituitary leptin, particularly in PRL cells.
Collapse
Affiliation(s)
- A. R. Bello
- Cell Biology SectionSchool of Sciences/Institute for Tropical Diseases and Public HealthUniversity of La LagunaTenerifeSpain
| | - R. A. Puertas‐Avendaño
- Cell Biology SectionSchool of Sciences/Institute for Tropical Diseases and Public HealthUniversity of La LagunaTenerifeSpain
| | - M. J. González‐Gómez
- Department of Inorganic and Organic Chemistry and BiochemistrySchool of Medicine/Regional Centre for Biomedical ResearchBiomedicine Unit Spanish National Research Council/University of Castilla‐La ManchaAlbaceteSpain
| | - M. González‐Gómez
- Department of Basic Medical SciencesSchool of MedicineUniversity of La LagunaTenerifeSpain
| | - J. Laborda
- Department of Inorganic and Organic Chemistry and BiochemistrySchool of Medicine/Regional Centre for Biomedical ResearchBiomedicine Unit Spanish National Research Council/University of Castilla‐La ManchaAlbaceteSpain
| | - C. Damas
- Department of PsychobiologySchool of PsychologyUniversity of La LagunaTenerifeSpain
| | - M. Ruiz‐Hidalgo
- Department of Inorganic and Organic Chemistry and BiochemistrySchool of Medicine/Regional Centre for Biomedical ResearchBiomedicine Unit Spanish National Research Council/University of Castilla‐La ManchaAlbaceteSpain
| | - C. Diaz
- Department of Medical SciencesSchool of Medicine/Institute for Research in Neurological DisabilitiesUniversity of Castilla‐La ManchaAlbaceteSpain
| |
Collapse
|
12
|
Traustadóttir GÁ, Jensen CH, Thomassen M, Beck HC, Mortensen SB, Laborda J, Baladrón V, Sheikh SP, Andersen DC. Evidence of non-canonical NOTCH signaling: Delta-like 1 homolog (DLK1) directly interacts with the NOTCH1 receptor in mammals. Cell Signal 2016; 28:246-54. [PMID: 26791579 DOI: 10.1016/j.cellsig.2016.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
Canonical NOTCH signaling, known to be essential for tissue development, requires the Delta-Serrate-LAG2 (DSL) domain for NOTCH to interact with its ligand. However, despite lacking DSL, Delta-like 1 homolog (DLK1), a protein that plays a significant role in mammalian development, has been suggested to interact with NOTCH1 and act as an antagonist. This non-canonical interaction is, however controversial, and evidence for a direct interaction, still lacking in mammals. In this study, we elucidated the putative DLK1-NOTCH1 interaction in a mammalian context. Taking a global approach and using Dlk1(+/+) and Dlk1(-/-) mouse tissues at E16.5, we demonstrated that several NOTCH signaling pathways indeed are affected by DLK1 during tissue development, and this was supported by a lower activation of NOTCH1 protein in Dlk1(+/+) embryos. Likewise, but using a distinct Dlk1-manipulated (siRNA) setup in a mammalian cell line, NOTCH signaling was substantially inhibited by DLK1. Using a mammalian two-hybrid system, we firmly established that the effect of DLK1 on NOTCH signaling was due to a direct interaction between DLK1 and NOTCH1. By careful dissection of this mechanism, we found this interaction to occur between EGF domains 5 and 6 of DLK1 and EGF domains 10-15 of NOTCH1. Thus, our data provide the first evidence for a direct interaction between DLK1 and NOTCH1 in mammals, and substantiate that non-canonical NOTCH ligands exist, adding to the complexity of NOTCH signaling.
Collapse
Affiliation(s)
- Gunnhildur Ásta Traustadóttir
- Laboratory of Molecular and Cellular Cardiology, Dep. of Clinical Biochemistry and Pharmacology, Odense University Hospital (OUH), Winsloewparken 21 3rd, 5000 Odense C, Denmark; Cardiovascular and Renal Research (University of Southern Denmark), OUH, Denmark
| | - Charlotte H Jensen
- Laboratory of Molecular and Cellular Cardiology, Dep. of Clinical Biochemistry and Pharmacology, Odense University Hospital (OUH), Winsloewparken 21 3rd, 5000 Odense C, Denmark; The Danish Centre for Regenerative Medicine (danishcrm@com), OUH, Denmark
| | - Mads Thomassen
- Dep. of Clinical Genetics (OUH), OUH, Denmark; Clinical Institute (University of Southern Denmark), OUH, Denmark
| | - Hans Christian Beck
- Clinical Institute (University of Southern Denmark), OUH, Denmark; Dep. of Clinical Biochemistry and Pharmacology (OUH), OUH, Denmark
| | - Sussi B Mortensen
- Laboratory of Molecular and Cellular Cardiology, Dep. of Clinical Biochemistry and Pharmacology, Odense University Hospital (OUH), Winsloewparken 21 3rd, 5000 Odense C, Denmark; Dep. of Clinical Immunology (OUH), Denmark
| | - Jorge Laborda
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Victoriano Baladrón
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Søren P Sheikh
- Laboratory of Molecular and Cellular Cardiology, Dep. of Clinical Biochemistry and Pharmacology, Odense University Hospital (OUH), Winsloewparken 21 3rd, 5000 Odense C, Denmark; Cardiovascular and Renal Research (University of Southern Denmark), OUH, Denmark; The Danish Centre for Regenerative Medicine (danishcrm@com), OUH, Denmark
| | - Ditte C Andersen
- Laboratory of Molecular and Cellular Cardiology, Dep. of Clinical Biochemistry and Pharmacology, Odense University Hospital (OUH), Winsloewparken 21 3rd, 5000 Odense C, Denmark; Clinical Institute (University of Southern Denmark), OUH, Denmark; The Danish Centre for Regenerative Medicine (danishcrm@com), OUH, Denmark.
| |
Collapse
|
13
|
A Monoclonal Antibody to Human DLK1 Reveals Differential Expression in Cancer and Absence in Healthy Tissues. Antibodies (Basel) 2015. [DOI: 10.3390/antib4020071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance and obesity, as well as progressive liver dysfunction. Recent animal studies have underscored the importance of hepatic growth hormone (GH) signaling in the development of NAFLD. The imprinted Delta-like homolog 1 (Dlk1)/preadipocyte factor 1 (Pref1) gene encodes a complex protein producing both circulating and membrane-tethered isoforms whose expression dosage is functionally important because even modest elevation during embryogenesis causes lethality. DLK1 is up-regulated during embryogenesis, during suckling, and in the mother during pregnancy. We investigated the normal role for elevated DLK1 dosage by overexpressing Dlk1 from endogenous control elements. This increased DLK1 dosage caused improved glucose tolerance with no primary defect in adipose tissue expansion even under extreme metabolic stress. Rather, Dlk1 overexpression caused reduced fat stores, pituitary insulin-like growth factor 1 (IGF1) resistance, and a defect in feedback regulation of GH. Increased circulatory GH culminated in a switch in whole body fuel metabolism and a reduction in hepatic steatosis. We propose that the function of DLK1 is to shift the metabolic mode of the organism toward peripheral lipid oxidation and away from lipid storage, thus mediating important physiological adaptations associated with early life and with implications for metabolic disease resistance.
Collapse
|
15
|
Lottrup G, Nielsen J, Maroun L, Møller L, Yassin M, Leffers H, Skakkebæk N, Rajpert-De Meyts E. Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies, including testicular cancer and Klinefelter syndrome. Hum Reprod 2014; 29:1637-50. [DOI: 10.1093/humrep/deu124] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Meister B, Perez-Manso M, Daraio T. Delta-like 1 homologue is a hypothalamus-enriched protein that is present in orexin-containing neurones of the lateral hypothalamic area. J Neuroendocrinol 2013; 25:617-25. [PMID: 23387476 DOI: 10.1111/jne.12029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/03/2013] [Accepted: 01/30/2013] [Indexed: 01/18/2023]
Abstract
Delta-like 1 homologue (DLK1), also known as preadipocyte factor-1, fetal antigen 1 or pG2, is a transmembrane protein belonging to the epidermal growth factor-like superfamily. The protein becomes soluble and biologically active after cleavage of the tumour necrosis factor-α-converting enzyme. DLK1 is involved in the differentiation of several cell types, including adipocytes. Lack of the dlk1 gene in mice results in adiposity and a polymorphism within the gene encoding DLK1 has been associated with obesity. The dlk1 gene is expressed in restricted areas of the central nervous system with an enrichment of cell bodies expressing DLK1 mRNA in the hypothalamus. Goat and rabbit antisera to DLK1 were used to study the cellular localisation and chemical identity of DLK1-immunoreactive neuronal cell bodies in rat hypothalamus. DLK1 immunoreactivity was demonstrated in the cell bodies of the suprachiasmatic, supraoptic, paraventricular, arcuate nuclei and in the lateral hypothalamus. At the subcellular level, DLK1 immunoreactivity was observed in the cell soma and dendrites, although not in axonal fibres or nerve terminals. Double-labelling of sections from the lateral hypothalamic/perifornical area of colchicine-treated rats (a treatment that increases the content of immunoreactive material in the cell soma) showed that DLK1 was present in the virually all orexin- and dynorphin-containing neurones. By contrast, DLK1 was not demonstrated in any melanin-concentrating hormone or cocaine- and amphetamine-regulated transcript-containing neurones of the lateral hypothalamic/perifornical area. The presence of DLK1 in a population of lateral hypothalamic neurones suggests a functional role for DLK1 in orexin/hypocretin/dynorphin neurones.
Collapse
Affiliation(s)
- B Meister
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| | | | | |
Collapse
|
17
|
Horse serum reduces expression of membrane-bound and soluble isoforms of the preadipocyte marker Delta-like 1 homolog (Dlk1), but is inefficient for adipogenic differentiation of mouse preadipocytes. Acta Histochem 2013; 115:401-6. [PMID: 22975115 DOI: 10.1016/j.acthis.2012.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/18/2012] [Accepted: 08/19/2012] [Indexed: 11/24/2022]
Abstract
Downregulation of the preadipocyte marker Delta-like 1 homologue (Dlk1), an inhibitor of adipogenesis, has been suggested to be a prerequisite for adipogenic differentiation to occur, and low Dlk1 levels are often used to verify adipogenesis. Mouse preadipocytic cell lines such as 3T3-L1, as well as primary derived preadipocytes, are important models to study adipogenic differentiation and obesity. However, in vitro adipogenic differentiation of primary derived preadipocytes remains incomplete, and identification of factors that will improve the adipogenic differentiation process is thus of high value. In this study we show that horse serum fails to improve adipogenic differentiation of mouse preadipocytes (both 3T3-L1 cells and primary derived mouse preadipocytes) as otherwise reported for bone marrow derived adipogenic precursors. Unexpectedly, while Dlk1 levels were indeed decreased using horse serum, this did not correlate with a high degree of adipogenic differentiation. In conclusion, our novel results thus reveal that horse serum clearly is insufficient for adipogenic differentiation of mouse preadipocytes and that low levels of Dlk1 alone are a poor marker of mouse in vitro adipogenesis. We would also like to emphasize that it is very important for the field of cellular differentiation that researchers thoroughly investigate the effect of individual reagents in their protocols. Such data will increase understanding of the limitations and possibilities of individual systems.
Collapse
|
18
|
DLK1 Protein Expression during Mouse Development Provides New Insights into Its Function. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/628962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Delta-like 1 homolog (DLK1) is a noncanonical ligand in the Delta-Notch signalling pathway. Although Dlk1 mRNA is abundantly present embryonically and declines rapidly just before birth, Dlk1 knockouts display a relatively mild phenotype. To assess whether this mild phenotype was due to posttranscriptional regulation, we studied the expression of DLK1 protein in mouse embryos and found abundant expression in liver, lung, muscle, vertebrae, pancreas, pituitary, and adrenal gland(s). DLK1 expression was absent in heart, stomach, intestine, kidney, epidermis, and central nervous system. DLK1 protein expression, therefore, correlates well with the reported Dlk1 mRNA expression pattern, which shows that its expression is mainly regulated at the pretranslational level. The comparison of the reported expression patterns of Notch mRNA and those of DLK1 in organs where lineage commitment and branching morphogenesis are important developmental processes suggests that DLK1 is a ligand that prevents premature Notch-dependent differentiation, possibly by competing with canonical ligands.
Collapse
|
19
|
Abstract
Preadipocyte factor 1 (Pref-1, also called Dlk1/FA1) is a molecular gatekeeper of adipogenesis which acts by maintaining the preadipocyte state and preventing adipocyte differentiation. Pref-1 is made as an epidermal growth factor-like repeat containing transmembrane protein, and is cleaved by TNFα-converting enzyme (TACE) to generate a soluble form, which acts as an autocrine/paracrine factor. Pref-1 upregulates Sox9 expression by activating the ERK/MAPK pathway and the Pref-1 interaction with fibronectin is required for inhibition of adipogenesis. Pref-1 also prevents brown adipocyte differentiation and its thermogenic function. Here, we highlight the recent evidence for the role of Pref-1 in adipogenesis.
Collapse
Affiliation(s)
- Carolyn S. Hudak
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
- *Correspondence: Hei Sook Sul, Department of Nutritional Sciences and Toxicology, University of California, 219 Morgan Hall, Berkeley, CA 94720, USA e-mail:
| |
Collapse
|
20
|
Abdallah BM, Beck-Nielsen H, Gaster M. FA1 Induces Pro-Inflammatory and Anti-Adipogenic Pathways/Markers in Human Myotubes Established from Lean, Obese, and Type 2 Diabetic Subjects but Not Insulin Resistance. Front Endocrinol (Lausanne) 2013; 4:45. [PMID: 23577002 PMCID: PMC3617402 DOI: 10.3389/fendo.2013.00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/22/2013] [Indexed: 01/04/2023] Open
Abstract
AIMS Delta like 1/fetal antigen 1 (Dlk1/FA1) is a protein secreted by hormone producing cells in adult human and mice that is known to inhibit adipogenesis. Recent studies demonstrated the role of Dlk1/FA1 in inducing insulin resistance in mice. To investigate the involvement of circulating Dlk1/FA1 in insulin resistance and type 2 diabetes in human subjects, we studied the effects of chronic FA1 on the intermediary metabolism in myotubes established from lean, obese, and type 2 diabetic (T2D) subjects. METHODS Myotube cultures were established from lean and obese control subjects, and obese T2D subjects and treated with soluble FA1 for 4 days supplemented with/without palmitate (PA). Lipid- and glucose metabolism were studied with labeled precursors while quantitative expression of genes was analyzed using real-time PCR. RESULTS Diabetic myotubes express significantly reduced insulin stimulated glucose metabolism compared to lean myotubes and a significantly decreased basal PA oxidation. Chronic FA1 exposure did not affect the intermediary metabolism in myotubes. Insulin sensitivity of glucose and lipid metabolism was not affected by chronic FA1 exposure in myotubes established from lean, obese, and T2D subjects. Instead, chronic FA1 exposure induced pro-inflammatory cytokines expression (IL-6 and CCL2) in association with reducing adipogenic markers (ADD1, AP2, CD36, and PPARg2) in myotubes. Consistent with this observation, addition of FA1 to cultured myotubes was show to significantly inhibit their differentiation into adipocyte. CONCLUSION Our results exclude direct effects of FA1 on glucose and lipid metabolism in cultured myotubes established from lean, obese, and T2D subjects. Therefore, the pathogenesis of FA1-induced IR might mainly be mediated via the FA1-induced stimulation of pro-inflammatory cytokines, which on turn inhibit adipogenesis in human myotubes.
Collapse
Affiliation(s)
- Basem M. Abdallah
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern DenmarkOdense, Denmark
- *Correspondence: Basem M. Abdallah, Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Winslows Vej, 25, 1st floor, DK-5000 Odense, Denmark. e-mail:
| | - Henning Beck-Nielsen
- Department of Endocrinology, Odense University Hospital, University of Southern DenmarkOdense, Denmark
| | - Michael Gaster
- Department of Endocrinology, Odense University Hospital, University of Southern DenmarkOdense, Denmark
- Laboratory of Molecular Physiology, Department of Pathology, Odense University Hospital, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
21
|
Appelbe OK, Yevtodiyenko A, Muniz-Talavera H, Schmidt JV. Conditional deletions refine the embryonic requirement for Dlk1. Mech Dev 2012; 130:143-59. [PMID: 23059197 DOI: 10.1016/j.mod.2012.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 09/13/2012] [Accepted: 09/28/2012] [Indexed: 12/21/2022]
Abstract
Numerous studies have implicated Delta-like 1 (DLK1), a transmembrane protein that shares homology with Notch ligands, in embryonic growth and differentiation. Dlk1 expression is widespread, though not ubiquitous, during early development, but is confined to a few specific cell types in adults. Adult Dlk1-expressing tissues include the Insulin-producing β-cells of the pancreas and the Growth hormone-producing somatotrophs of the pituitary gland. Previously generated Dlk1 null mice (Dlk1(Sul-pat)), display a partially penetrant neonatal lethality and a complex pattern of developmental and adult phenotypes. Here we describe the generation of a conditional Dlk1 mouse line (Dlk1(flox)) to facilitate cell type-specific deletion of the Dlk1 gene, providing a powerful system to explore each aspect of the Dlk1 null phenotype. Four tissue-specific Cre mouse lines were used to produce individual Dlk1 deletions in pancreatic β-cells, pituitary somatotrophs and the endothelial cells of the embryo and placenta, key candidates for the Dlk1 phenotype. Contrary to expectations, all of these conditional mice were fully viable, and none recapitulated any aspect of the Dlk1(Sul-pat) null mice. Dlk1 expression is therefore not essential for the normal development of β-cells, somatotrophs and endothelial cells, and the tissues responsible for the Dlk1 null phenotype remain to be identified. Dlk1(flox) mice will continue to provide an important tool for further research into the function of Dlk1.
Collapse
Affiliation(s)
- Oliver K Appelbe
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|
22
|
Andries A, Niemeier A, Støving RK, Abdallah BM, Wolf AM, Hørder K, Kassem M. Serum levels of fetal antigen 1 in extreme nutritional States. ISRN ENDOCRINOLOGY 2012; 2012:592648. [PMID: 22844611 PMCID: PMC3403450 DOI: 10.5402/2012/592648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 05/22/2012] [Indexed: 11/23/2022]
Abstract
Objective. Recent data suggest that fetal antigen (FA1) is linked to disorders of body weight. Thus, we measured FA1 serum levels in two extreme nutritional states of morbid obesity (MO) and anorexia nervosa (AN) and monitored its response to weight changes. Design. FA1 and insulin serum concentrations were assessed in a cross-sectional study design at defined time points after gastric restrictive surgery for 25 MO patients and 15 women with AN. Results. Absolute FA1 serum levels were within the assay normal range and were not different between the groups at baseline. However, the ratio of FA1/BMI was significantly higher in AN. FA1 was inversely correlated with BMI before and after weight change in AN, but not in MO patients. In addition, MO patients displayed a significant concomitant decrease of FA1 and insulin with the first 25% of EWL, while in AN patients a significant increase of FA1 was observed in association with weight gain. Conclusion. FA1 is a sensitive indicator of metabolic adaptation during weight change. While FA1 serum levels in humans generally do not correlate with BMI, our results suggest that changes in FA1 serum levels reflect changes in adipose tissue turnover.
Collapse
Affiliation(s)
- Alin Andries
- KMEB laboratory, Department of Endocrinology and Center for Eating Disorders, Odense University Hospital, 5000 Odense, Denmark
| | | | | | | | | | | | | |
Collapse
|
23
|
Rogers ED, Ramalie JR, McMurray EN, Schmidt JV. Localizing transcriptional regulatory elements at the mouse Dlk1 locus. PLoS One 2012; 7:e36483. [PMID: 22606264 PMCID: PMC3350532 DOI: 10.1371/journal.pone.0036483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/06/2012] [Indexed: 11/25/2022] Open
Abstract
Much effort has focused recently on determining the mechanisms that control the allele-specific expression of genes subject to genomic imprinting, yet imprinting regulation is only one aspect of configuring appropriate expression of these genes. Imprinting control mechanisms must interact with those regulating the tissue-specific expression pattern of each imprinted gene in a cluster. Proper expression of the imprinted Delta-like 1 (Dlk1)-Maternally expressed gene 3 (Meg3) gene pair is required for normal fetal development in mammals, yet the mechanisms that control tissue-specific expression of these genes are unknown. We have used a combination of in vivo and in vitro expression assays to localize cis-regulatory elements that may regulate Dlk1 expression in the mouse embryo. A bacterial artificial chromosome transgene encompassing the Dlk1 gene and 77 kb of flanking sequence conferred expression in most endogenous Dlk1-expressing tissues. In combination with previous transgenic data, these experiments localize the majority of Dlk1 cis-regulatory elements to a 41 kb region upstream of the gene. Cross-species sequence conservation was used to further define potential regulatory elements, several of which functioned as enhancers in a luciferase expression assay. Two of these elements were able to drive expression of a lacZ reporter transgene in Dlk1-expressing tissues in the mouse embryo. The sequence proximal to Dlk1 therefore contains at least two discrete regions that may regulate tissue-specificity of Dlk1 expression.
Collapse
MESH Headings
- Animals
- Base Sequence
- Calcium-Binding Proteins
- Chromosomes, Artificial, Bacterial/genetics
- Conserved Sequence
- DNA Primers/genetics
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Genomic Imprinting
- Intercellular Signaling Peptides and Proteins/genetics
- Lac Operon
- Mice
- Mice, Transgenic
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- RNA, Long Noncoding
- RNA, Untranslated/genetics
- Regulatory Elements, Transcriptional
- Tissue Distribution
Collapse
Affiliation(s)
- Eric D. Rogers
- The Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jenniffer R. Ramalie
- The Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Erin N. McMurray
- The Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jennifer V. Schmidt
- The Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
24
|
Falix FA, Aronson DC, Lamers WH, Gaemers IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:988-95. [PMID: 22353464 DOI: 10.1016/j.bbadis.2012.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.
Collapse
Affiliation(s)
- Farah A Falix
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Kluth SM, Buchheiser A, Houben AP, Geyh S, Krenz T, Radke TF, Wiek C, Hanenberg H, Reinecke P, Wernet P, Kögler G. DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood. Stem Cells Dev 2011; 19:1471-83. [PMID: 20331358 DOI: 10.1089/scd.2010.0070] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In addition to hematopoietic stem cells, cord blood (CB) also contains different nonhematopoietic CD45-, CD34- adherent cell populations: cord blood mesenchymal stromal cells (CB MSC) that behave almost like MSC from bone marrow (BM MSC) and unrestricted somatic stem cells (USSC) that differentiate into cells of all 3 germ layers. Distinguishing between these populations is difficult due to overlapping features such as the immunophenotype or the osteogenic and chondrogenic differentiation pathway. Functional differences in the differentiation potential suggest different developmental stages or different cell populations. Here we demonstrate that the expression of genes and the differentiation toward the adipogenic lineage can discriminate between these 2 populations. USSC, including clonal-derived cells lacking adipogenic differentiation, strongly expressed δ-like 1/preadipocyte factor 1 (DLK-1/PREF1) correlating with high proliferative potential, while CB MSC were characterized by a strong differentiation toward adipocytes correlating with a weak or negative DLK-1/PREF1 expression. Constitutive overexpression of DLK-1/PREF1 in CB MSC resulted in a reduced adipogenic differentiation, whereas silencing of DLK-1 in USSC resulted in adipogenic differentiation.
Collapse
Affiliation(s)
- Simone Maria Kluth
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Andersen DC, Jensen CH, Schneider M, Nossent AY, Eskildsen T, Hansen JL, Teisner B, Sheikh SP. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res 2010; 316:1681-91. [PMID: 20385127 DOI: 10.1016/j.yexcr.2010.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/28/2010] [Accepted: 04/04/2010] [Indexed: 11/16/2022]
Abstract
Delta like 1 homolog (Dlk1) exists in both transmembrane and soluble molecular forms, and is implicated in cellular growth and plays multiple roles in development, tissue regeneration, and cancer. Thus, DLK1 levels are critical for cell function, and abnormal DLK1 expression can be lethal; however, little is known about the underlying mechanisms. We here report that miR-15a modulates DLK1 levels in preadipocytes thus providing a mechanism for DLK1 regulation that further links it to cell cycle arrest and cancer since miR-15a is deregulated in these processes. In preadipocytes, miR-15a increases with cell density, and peaks at the same stage where membrane DLK1(M) and soluble DLK1(S) are found at maximum levels. Remarkably, miR-15a represses the amount of all Dlk1 variants at the mRNA level but also the level of DLK1(M) protein while it increases the amount of DLK1(S) supporting a direct repression of DLK1 and a parallel effect on the protease that cleaves off the DLK1 from the membrane. In agreement with previous studies, we found that miR-15a represses cell numbers, but additionally, we report that miR-15a also increases cell size. Conversely, anti-miR-15a treatment decreases cell size while increasing cell numbers, scenarios that were completely rescued by addition of purified DLK1(S). Our data thus imply that miR-15a regulates cell size and proliferation by fine-tuning Dlk1 among others, and further emphasize miR-15a and DLK1 levels to play important roles in growth signaling networks.
Collapse
Affiliation(s)
- Ditte C Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Biochemistry, Pharmacology and Genetics, Odense University Hospital, University of Southern Denmark, Winsløwparken 21.3, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Pref-1/Dlk1 is made as an epidermal growth factor (EGF) repeat-containing transmembrane protein but is cleaved by tumor necrosis factor alpha converting enzyme (TACE) to generate a biologically active soluble form. Soluble Pref-1 inhibits adipocyte differentiation through the activation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and the subsequent upregulation of Sox9 expression. However, others have implicated Notch in Pref-1 signaling and function. Here, we show that Pref-1 does not interact with, or require, Notch for its function. Instead, we show a direct interaction of Pref-1 and fibronectin via the Pref-1 juxtamembrane domain and fibronectin C-terminal domain. We also show that fibronectin is required for the Pref-1-mediated inhibition of adipocyte differentiation, the activation of ERK/MAPK, and the upregulation of Sox9. Furthermore, disrupting fibronectin binding to integrin by the addition of RGD peptides or by the knockdown of alpha 5 integrin prevents the Pref-1 inhibition of adipocyte differentiation. Pref-1 activates the integrin downstream signaling molecules, FAK and Rac, and ERK activation by Pref-1 is blunted by the knockdown of Rac or by the forced expression of dominant-negative Rac. We conclude that, by interacting with fibronectin, Pref-1 activates integrin downstream signaling to activate MEK/ERK and to inhibit adipocyte differentiation.
Collapse
|
28
|
Wang Y, Hudak C, Sul HS. Role of preadipocyte factor 1 in adipocyte differentiation. ACTA ACUST UNITED AC 2010; 5:109-115. [PMID: 20414356 DOI: 10.2217/clp.09.80] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preadipocyte factor 1 (Pref-1) is an EGF-repeat-containing transmembrane protein that inhibits adipogenesis. The extracellular domain of Pref-1 is cleaved by TNF-α converting enzyme to generate the biologically active soluble form of Pref-1. The role of Pref-1 in adipogenesis has been firmly established by in vitro and in vivo studies. Pref-1 activates ERK/MAPK and upregulates Sox9 expression to inhibit adipocyte differentiation. Sox9 directly binds to the promoter regions of CCAAT/enhancer-binding protein-β and CCAAT/enhancer-binding protein-δ in order to suppress their promoter activities in preventing adipocyte differentiation. Here, we describe the function of Pref-1 in adipocyte differentiation and the recent findings on the mechanisms by which Pref-1 inhibits adipocyte differentiation.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720, USA, Tel.: +1 510 642 3978, ,
| | | | | |
Collapse
|
29
|
Harkness L, Taipaleenmaki H, Mahmood A, Frandsen U, Saamanen AM, Kassem M, Abdallah BM. Isolation and Differentiation of Chondrocytic Cells Derived from Human Embryonic Stem Cells Using dlk1/FA1 as a Novel Surface Marker. Stem Cell Rev Rep 2009; 5:353-68. [DOI: 10.1007/s12015-009-9099-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Fleming-Waddell JN, Olbricht GR, Taxis TM, White JD, Vuocolo T, Craig BA, Tellam RL, Neary MK, Cockett NE, Bidwell CA. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in Callipyge lambs. PLoS One 2009; 4:e7399. [PMID: 19816583 PMCID: PMC2756960 DOI: 10.1371/journal.pone.0007399] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/15/2009] [Indexed: 12/30/2022] Open
Abstract
Callipyge sheep exhibit extreme postnatal muscle hypertrophy in the loin and hindquarters as a result of a single nucleotide polymorphism (SNP) in the imprinted DLK1-DIO3 domain on ovine chromosome 18. The callipyge SNP up-regulates the expression of surrounding transcripts when inherited in cis without altering their allele-specific imprinting status. The callipyge phenotype exhibits polar overdominant inheritance since only paternal heterozygous animals have muscle hypertrophy. Two studies were conducted profiling gene expression in lamb muscles to determine the down-stream effects of over-expression of paternal allele-specific DLK1 and RTL1 as well as maternal allele-specific MEG3, RTL1AS and MEG8, using Affymetrix bovine expression arrays. A total of 375 transcripts were differentially expressed in callipyge muscle and 25 transcripts were subsequently validated by quantitative PCR. The muscle-specific expression patterns of most genes were similar to DLK1 and included genes that are transcriptional repressors or affect feedback mechanisms in beta-adrenergic and growth factor signaling pathways. One gene, phosphodiesterase 7A had an expression pattern similar to RTL1 expression indicating a biological activity for RTL1 in muscle. Only transcripts that localize to the DLK1-DIO3 domain were affected by inheritance of a maternal callipyge allele. Callipyge sheep are a unique model to study over expression of both paternal allele-specific genes and maternal allele-specific non-coding RNA with an accessible and nonlethal phenotype. This study has identified a number of genes that are regulated by DLK1 and RTL1 expression and exert control on postnatal skeletal muscle growth. The genes identified in this model are primary candidates for naturally regulating postnatal muscle growth in all meat animal species, and may serve as targets to ameliorate muscle atrophy conditions including myopathic diseases and age-related sarcopenia.
Collapse
Affiliation(s)
| | - Gayla R. Olbricht
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Tasia M. Taxis
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Animal Sciences Division, University of Missouri, Columbia, Missouri, United States of America
| | - Jason D. White
- School of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Tony Vuocolo
- CSIRO Livestock Industries, St. Lucia, Queensland, Australia
| | - Bruce A. Craig
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Ross L. Tellam
- CSIRO Livestock Industries, St. Lucia, Queensland, Australia
| | - Mike K. Neary
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Noelle E. Cockett
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Christopher A. Bidwell
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
31
|
DLK is a novel immunohistochemical marker for adrenal gland tumors. Virchows Arch 2009; 455:295-9. [DOI: 10.1007/s00428-009-0819-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/19/2009] [Accepted: 07/30/2009] [Indexed: 11/30/2022]
|
32
|
Andersen DC, Petersson SJ, Jørgensen LH, Bollen P, Jensen PB, Teisner B, Schroeder HD, Jensen CH. Characterization of DLK1+ cells emerging during skeletal muscle remodeling in response to myositis, myopathies, and acute injury. Stem Cells 2009; 27:898-908. [PMID: 19353518 DOI: 10.1634/stemcells.2008-0826] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delta like 1 (DLK1) has been proposed to act as a regulator of cell fate determination and is linked to the development of various tissues including skeletal muscle. Herein we further investigated DLK1 expression during skeletal muscle remodeling. Although practically absent in normal adult muscle, DLK1 was upregulated in all human myopathies analyzed, including Duchenne- and Becker muscular dystrophies. Substantial numbers of DLK1(+) satellite cells were observed in normal neonatal and Duchenne muscle, and furthermore, myogenic DLK1(+) cells were identified during muscle regeneration in animal models in which the peak expression of Dlk1 mRNA and protein coincided with that of myoblast differentiation and fusion. In addition to perivascular DLK1(+) cells, interstitial DLK1(+) cells were numerous in regenerating muscle, and in agreement with colocalization studies of DLK1 and CD90/DDR2, qPCR of fluorescence-activated cell sorting DLK1(+) and DLK1(-) cells revealed that the majority of DLK1(+) cells isolated at day 7 of regeneration had a fibroblast-like phenotype. The existence of different DLK1(+) populations was confirmed in cultures of primary derived myogenic cells, in which large flat nonmyogenic DLK1(+) cells and small spindle-shaped cells coexpressing DLK1 and muscle-specific markers were observed. Myogenic differentiation was achieved when sorted DLK1(+) cells were cocultured together with primary myoblasts revealing a myogenic potential that was 10% of the DLK1(-) population. Transplantation of DLK1(+) cells into lacerated muscle did, however, not give rise to DLK1(+) cell-derived myofibers. We suggest that the DLK1(+) subpopulations identified herein each may contribute at different levels/time points to the processes involved in muscle development and remodeling.
Collapse
Affiliation(s)
- Ditte C Andersen
- Department of Clinical Pathology, Odense University Hospital, Odense C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Preadipocyte factor-1 [Pref-1; also called Dlk1 (Delta-like protein 1)] is made as an epidermal growth factor-repeat containing transmembrane protein that produces a biologically active soluble form by TNF-alpha-converting enzyme (TACE)-mediated cleavage. Soluble Pref-1 activates the MAPK kinase/ERK pathway. In adipose tissue, Pref-1 is specifically expressed in preadipocytes but not in adipocytes and thus is used as a preadipocyte marker. Inhibition of adipogenesis by Pref-1 has been well established in vitro as well as in vivo by ablation and overexpression of Pref-1. SRY (sex determining region Y)-box 9 (Sox9), a transcription factor expressed in preadipocytes to suppress CCAAT enhancer binding protein beta and (C/EBP) delta expression, is required to be down-regulated before adipocyte differentiation can proceed. By activating MAPK kinase/ERK, Pref-1 prevents down-regulation of Sox9, resulting in inhibition of adipogenesis. Furthermore, by inducing Sox9, Pref-1 promotes chondrogenic induction of mesenchymal cells but prevents chondrocyte maturation as well as osteoblast differentiation. Thus, Pref-1 directs multipotent mesenchymal cells toward the chondrogenic lineage but inhibits differentiation into adipocytes as well as osteoblasts and chondrocytes. Pref-1, encoded by an imprinted gene, has also been detected in progenitor cells in various tissues during regeneration and therefore may have a more general role in maintaining cells in an undifferentiated state.
Collapse
Affiliation(s)
- Hei Sook Sul
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
34
|
Barbu A, Hedlund GP, Lind J, Carlsson C. Pref-1 and adipokine expression in adipose tissues of GK and Zucker rats. Mol Cell Endocrinol 2009; 299:163-71. [PMID: 19084046 DOI: 10.1016/j.mce.2008.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 11/21/2022]
Abstract
In view of the central role of preadipocyte factor-1, adiponectin and leptin in white adipose tissue function, the aim of the present study was to analyze the mRNA expression of these proteins and of the inflammatory markers interleukin-6 and tumor necrosis factor-alpha in visceral and subcutaneous fat pads of rats with different metabolic disorders. We demonstrated highly divergent expression of preadipocyte factor-1, upregulated expression of adiponectin, interleukin-6 and TNF-alpha mRNA in adipose tissues of the diabetic Goto Kakizaki rat compared to the obese Zucker rat. This was correlated to an increased number of large adipocytes and serum levels of adiponectin. Furthermore, in all four strains studied (as above plus Wistar Furth and Zucker Lean), significant heterogeneity was evident in adipokine expression within specific adipose tissues previously defined as belonging to the visceral or subcutaneous fat depots. These results suggest that significantly increased levels of inflammation and redistribution of adipocyte size are mechanisms contributing to the development of type 2 diabetes in the GK rat.
Collapse
Affiliation(s)
- Andreea Barbu
- Department of Medical Cell Biology, BMC, Husargatan 3, Box 571, Uppsala University, 751 23 Uppsala, Sweden.
| | | | | | | |
Collapse
|
35
|
Human serum levels of fetal antigen 1 (FA1/Dlk1) increase with obesity, are negatively associated with insulin sensitivity and modulate inflammation in vitro. Int J Obes (Lond) 2008; 32:1122-9. [PMID: 18392037 DOI: 10.1038/ijo.2008.40] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate fetal antigen 1 (FA1) protein within the context of human obesity and its relation with insulin sensitivity. SUBJECTS Cross-sectional study that analyses circulating levels of FA1 in two selected human cohorts: n=127 men for the study of FA1 circulating levels in the context of obesity and insulin sensitivity (S(i)); and n=61 severely obese women before and after bariatric surgery. The response in vitro to FA1 protein on human cell lines of monocytes, preadipocytes and mature adipocytes was studied. MEASUREMENTS Anthropometrical parameters: body mass index, waist-to-hip ratio, waist circumference, fat-free mass and fat mass. Clinical parameters: lipid profile (high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol, triglycerides), glycemic profile (fasting glucose, insulin, S(i), HOMA-IR (Homeostasis Model Assessment of Insulin Resistance), cytokines (sIL-6), adipokines (adiponectin) and circulating soluble fractions of tumor necrosis factor-alpha receptors 1 and 2 (sTNFR1 and sTNFR2). RESULTS IN the obesity study, levels of FA1 in serum were found to increase with obesity. The S(i) index was negatively dependent on FA1 levels. In severe obesity, serum levels of FA1 decreased 1.4-fold 6 months after bariatric surgery. In vitro assays with FA1 protein on human monocytes and adipocytes cell lines modified the expression of pro-inflammatory cytokines and adipokines (tumor necrosis factor-alpha (TNFalpha), monocyte chemoattractant protein-1 (MCP-1), IL-6 (interleukin-6) and adiponectin). CONCLUSION FA1 serum levels were increased in obese subjects and might influence S(i). The stimulatory effect of FA1 protein on pro-inflammatory cytokines on both immune and adipose cell types could contribute to worsening the inflammatory environment observed in obesity.
Collapse
|
36
|
Imprinted Genes, Postnatal Adaptations and Enduring Effects on Energy Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:41-61. [DOI: 10.1007/978-0-387-77576-0_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Bauer M, Szulc J, Meyer M, Jensen CH, Terki TA, Meixner A, Kinkl N, Gasser T, Aebischer P, Ueffing M. Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons. J Neurochem 2007; 104:1101-15. [PMID: 17986227 DOI: 10.1111/j.1471-4159.2007.05037.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Delta-like 1 (Dlk1), a member of the Delta/Notch protein family, is expressed in the mouse ventral midbrain (VM) as early as embryonic day 11.5 (E11.5) followed by exclusive expression in tyrosine 3-monooxygenase (TH) positive neurons from E12.5 onwards. To further elucidate the yet unknown function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro. Dlk1 treatment during expansion increased DA progenitor proliferation and the proportion of NR4A2+ neurons expressing TH after differentiation, whereas Dlk1 treatment during the course of DA precursor differentiation did not alter TH+ neuron counts. In contrast, silencing of endogenously expressed Dlk1 prior to DA precursor differentiation partially prevented the expression of DA neuron markers, which was not accompanied with alteration of overall or local proliferation. Due to the latter finding in combination with the absence of Dlk1 negative DA neurons in differentiated cultures, we suggest that Dlk1 expression might have a permissive effect on DA neuron differentiation in vitro. The study presented here is the first publication identifying Dlk1 effects on ventral midbrain-derived DA precursor differentiation.
Collapse
Affiliation(s)
- Matthias Bauer
- GSF - National Research Center for Environment and Health, Institute of Human Genetics, Munich-Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abdallah BM, Ding M, Jensen CH, Ditzel N, Flyvbjerg A, Jensen TG, Dagnaes-Hansen F, Gasser JA, Kassem M. Dlk1/FA1 is a novel endocrine regulator of bone and fat mass and its serum level is modulated by growth hormone. Endocrinology 2007; 148:3111-21. [PMID: 17446189 DOI: 10.1210/en.2007-0171] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fat and bone metabolism are two linked processes regulated by several hormonal factors. Fetal antigen 1 (FA1) is the soluble form of dlk1 (delta-like 1), which is a member of the Notch-Delta family. We previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1 mice) using the hydrodynamic-based gene transfer procedure. We found that increased serum FA1 levels led to a significant reduction in total body weight, fat mass, and bone mass in a dose-dependent manner. Reduced bone mass in FA1 mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58 and 72%, respectively. Because FA1 is colocalized with GH in the pituitary gland, we explored the possible modulation of serum FA1 by GH. Serum levels of IGF-I and IGF binding proteins did not change in FA1 mice, whereas increasing serum GH in normal mice using hydrodynamic-based gene transfer procedure dramatically reduced serum FA1 levels by 60%. Conversely, serum FA1 was increased 450% in hypophysectomized mice, and this high level was reduced by 40% during GH treatment. In conclusion, our data identify the FA1 as a novel endocrine factor regulating bone mass and fat mass in vivo, and its serum levels are regulated by GH. FA1 thus provides a novel class of developmental molecules that regulate physiological functions of the postnatal organisms.
Collapse
Affiliation(s)
- Basem M Abdallah
- Department of Endocrinology, Clinic for Molecular Endocrinology Treatment Laboratory, Odense University Hospital, Medical Biotechnology Center, University of South Denmark, DK-5000 Odense C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Romero DG, Yanes LL, de Rodriguez AF, Plonczynski MW, Welsh BL, Reckelhoff JF, Gomez-Sanchez EP, Gomez-Sanchez CE. Disabled-2 is expressed in adrenal zona glomerulosa and is involved in aldosterone secretion. Endocrinology 2007; 148:2644-52. [PMID: 17303656 DOI: 10.1210/en.2006-1509] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The differentiation of the adrenal cortex into functionally specific zones is probably due to differential temporal gene expression during fetal growth, development, and adulthood. In our search for adrenal zona glomerulosa-specific genes, we found that Disabled-2 (Dab2) is expressed in the zona glomerulosa of the rat adrenal gland using a combination of laser capture microdissection, mRNA amplification, cDNA microarray hybridization, and real-time RT-PCR. Dab2 is an alternative spliced mitogen-regulated phosphoprotein with features of an adaptor protein and functions in signal transduction, endocytosis, and tissue morphogenesis during embryonic development. We performed further studies to analyze adrenal Dab2 localization, regulation, and role in aldosterone secretion. We found that Dab2 is expressed in the zona glomerulosa and zona intermedia of the rat adrenal cortex. Low-salt diet treatment increased Dab2-long isoform expression at the mRNA and protein level in the rat adrenal gland, whereas high-salt diet treatment did not cause any significant modification. Angiotensin II infusion caused a transient increase in both Dab2 isoform mRNAs in the rat adrenal gland. Dab2 overexpression in H295R human adrenocortical cells caused an increase in aldosterone synthase expression and up-regulated aldosterone secretion under angiotensin II-stimulated conditions. In conclusion, Dab2 is an adrenal gland zona glomerulosa- and intermedia-expressed gene that is regulated by aldosterone secretagogues such as low-salt diet or angiotensin II and is involved in aldosterone synthase expression and aldosterone secretion. Dab2 may therefore be a modulator of aldosterone secretion and be involved in mineralocorticoid secretion abnormalities.
Collapse
Affiliation(s)
- Damian G Romero
- Division of Endocrinology, Department of Medicine, Montgomery VA Medical Center and The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abdallah BM, Boissy P, Tan Q, Dahlgaard J, Traustadottir GA, Kupisiewicz K, Laborda J, Delaisse JM, Kassem M. dlk1/FA1 Regulates the Function of Human Bone Marrow Mesenchymal Stem Cells by Modulating Gene Expression of Pro-inflammatory Cytokines and Immune Response-related Factors. J Biol Chem 2007; 282:7339-51. [PMID: 17182623 DOI: 10.1074/jbc.m607530200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
dlk1/FA1 (delta-like 1/fetal antigen-1) is a member of the epidermal growth factor-like homeotic protein family whose expression is known to modulate the differentiation signals of mesenchymal and hematopoietic stem cells in bone marrow. We have demonstrated previously that Dlk1 can maintain the human bone marrow mesenchymal stem cells (hMSC) in an undifferentiated state. To identify the molecular mechanisms underlying these effects, we compared the basal gene expression pattern in Dlk1-overexpressing hMSC cells (hMSC-dlk1) versus control hMSC (negative for Dlk1 expression) by using Affymetrix HG-U133A microarrays. In response to Dlk1 expression, 128 genes were significantly up-regulated (with >2-fold; p < 0.001), and 24% of these genes were annotated as immune response-related factors, including pro-inflammatory cytokines, in addition to factors involved in the complement system, apoptosis, and cell adhesion. Also, addition of purified FA1 to hMSC up-regulated the same factors in a dose-dependent manner. As biological consequences of up-regulating these immune response-related factors, we showed that the inhibitory effects of dlk1 on osteoblast and adipocyte differentiation of hMSC are associated with Dlk1-induced cytokine expression. Furthermore, Dlk1 promoted B cell proliferation, synergized the immune response effects of the bacterial endotoxin lipopolysaccharide on hMSC, and led to marked transactivation of the NF-kappaB. Our data suggest a new role for Dlk1 in regulating the multiple biological functions of hMSC by influencing the composition of their microenvironment "niche." Our findings also demonstrate a role for Dlk1 in mediating the immune response.
Collapse
Affiliation(s)
- Basem M Abdallah
- KMEB Laboratory, Medical Biotechnology Center, Odense University Hospital, Southern Denmark University, DK-5000 Odense, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fleming-Waddell JN, Wilson LM, Olbricht GR, Vuocolo T, Byrne K, Craig BA, Tellam RL, Cockett NE, Bidwell CA. Analysis of gene expression during the onset of muscle hypertrophy in callipyge lambs. Anim Genet 2007; 38:28-36. [PMID: 17257185 DOI: 10.1111/j.1365-2052.2006.01562.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The callipyge mutation causes postnatal muscle hypertrophy in heterozygous lambs that inherit a paternal callipyge allele (+/CLPG). Our hypothesis was that the up-regulation of one or both of the affected paternally expressed genes (DLK1 or PEG11) initiates changes in biochemical and physiological pathways in skeletal muscle to induce hypertrophy. The goal of this study was to identify changes in gene expression during the onset of muscle hypertrophy to identify the pathways that are involved in the expression of the callipyge phenotype. Gene expression was analysed in longissimus dorsi total RNA from lambs at 10, 20, and 30 days of age using the Affymetrix Bovine Expression Array. An average of 40.6% of probe sets on the array was detected in sheep muscle. Data were normalized and analysed using a two-way anova for genotype and age effects with a false discovery rate of 0.10. From the anova, 13 genes were significant for the effect of genotype and 13 were significant for effect of age (P < 0.10). No significant age-by-genotype interactions were detected (P > 0.10). Of the 13 genes indicating an effect of genotype, quantitative PCR assays were developed for all of them and tested on a larger group of animals from 10 to 200 days of age. Nine genes had significantly elevated transcript levels in callipyge lambs. These genes included phosphofructokinase, a putative methyltransferase protein, a cAMP phosphodiesterase, and the transcription factor DNTTIP1.
Collapse
Affiliation(s)
- J N Fleming-Waddell
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2042, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Preadipocyte factor 1 (Pref-1) belongs to the Notch/Delta/Serrate family of epidermal growth factor-like repeat-containing proteins. Pref-1 is highly expressed in 3T3-L1 cells but is extinguished during adipocyte differentiation. Pref-1 serves as an excellent marker for preadipocytes. Furthermore, Pref-1 is an inhibitor of adipogenesis. Constitutive expression of Pref-1 inhibits, whereas antisense Pref-1 enhances, 3T3-L1 adipocyte differentiation. We found that Pref-1 is synthesized as a transmembrane protein but processed to generate soluble forms, including a large 50-kDa soluble form and the small soluble forms. Furthermore, only the large soluble form, but not the small soluble or the transmembrane forms of Pref-1, is biologically active to inhibit adipogenesis. We recently elucidated that the 50-kDa soluble form of Pref-1 is released by an ADAM family member, tumor necrosis factor-alpha converting enzyme (ADMA 17). In vivo, mice lacking Pref-1 show accelerated fat deposition; conversely, mice overexpressing soluble Pref-1 in adipose tissue show a decrease in fat mass, reduced expression of adipocyte markers, and lower adipocyte-secreted factors. These findings clearly demonstrate the inhibitory effect of Pref-1 on adipogenesis in vivo.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
43
|
Yin D, Xie D, Sakajiri S, Miller CW, Zhu H, Popoviciu ML, Said JW, Black KL, Koeffler HP. DLK1: increased expression in gliomas and associated with oncogenic activities. Oncogene 2006; 25:1852-1861. [PMID: 16288219 DOI: 10.1038/sj.onc.1209219] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 09/20/2005] [Accepted: 10/02/2005] [Indexed: 11/08/2022]
Abstract
DLK1 (delta-like) is a transmembrane and secreted protein in the epidermal growth factor-like homeotic family. Although expressed widely during embryonic development, only a few tissues retain the expression in adults. Neuroendocrine tumors often highly express this protein; therefore, we hypothesized that brain tumors might also express it. This study found that the expression of DLK1 in gliomas was higher than that in normal brain (P < 0.05). After stable transfection of a DLK1 cDNA expression vector into GBM cell lines, their proliferation was increased. Furthermore, they lost contact inhibition, had enhanced anchorage-independent growth in soft agar, and had significantly greater capacity to migrate. Western blot studies showed that expression of cyclin D1, CDK2, and E2F4 were increased, and Rb levels were decreased in these cells. DLK1 was found on the cell surface and secreted in the medium from the transfected GBM cells. DLK1-enriched condition medium stimulated the growth of glioblastoma multiforme cell lines and explants. DLK1 antibody blocked cell growth stimulated by DLK1. In summary, these results suggest that DLK1 may play a role in the formation or progression of gliomas.
Collapse
Affiliation(s)
- D Yin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yevtodiyenko A, Schmidt JV. Dlk1 expression marks developing endothelium and sites of branching morphogenesis in the mouse embryo and placenta. Dev Dyn 2006; 235:1115-23. [PMID: 16456855 DOI: 10.1002/dvdy.20705] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The protein product of the Delta-like 1 (Dlk1) gene belongs to the Delta-Notch family of signaling molecules, proteins involved in cell fate determination in many tissues during development. The DLK1 protein is believed to function as a growth factor, maintaining the proliferative state of undifferentiated cells, and is usually down-regulated as immature cells differentiate. The expression pattern of the DLK1 protein has been described in certain human tissues; however, Dlk1 expression is not well understood in the mouse, the most tractable mammalian genetic model system. To better understand the role of Dlk1 in embryonic development, the tissue-specific expression pattern of Dlk1 mRNA during mouse embryogenesis was analyzed by in situ hybridization. In embryonic day 12.5 (e12.5) embryos, high levels of Dlk1 were found in the developing pituitary, pancreas, lung, adrenal, and many mesodermally derived tissues. Strikingly, Dlk1 expression also marks the growing branches of organs that develop through the process of branching morphogenesis. At e16.5, Dlk1 expression is down-regulated in most tissues but remains in the pituitary, the adrenal gland, and in skeletal muscle. In the placenta, expression of Dlk1 is detected in endothelial cells lining the fetal blood vessels of the labyrinth. This pattern is distinct from that seen in the human placenta and suggests a role for Dlk1 in regulating maternal-fetal interactions.
Collapse
Affiliation(s)
- Aleksey Yevtodiyenko
- Department of Biological Sciences, The University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | |
Collapse
|
45
|
Hsiao CC, Huang CC, Sheen JM, Tai MH, Chen CM, Huang LLH, Chuang JH. Differential expression of delta-like gene and protein in neuroblastoma, ganglioneuroblastoma and ganglioneuroma. Mod Pathol 2005; 18:656-62. [PMID: 15605081 DOI: 10.1038/modpathol.3800335] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroblastoma is an extremely malignant solid tumor in children, characterized by spontaneous differentiation and regression. An epidermal growth factor-like homeotic protein, delta-like (dlk), has been involved in differentiation of neuroblastoma cell lines, but is unknown in in vivo expression of neuroblastoma. By using in situ hybridization and immunohistochemistry, dlk mRNA and protein expression were studied in formalin-fixed archival tissues from 10 patients with neuroblastoma, five with ganglioneuroblastoma, and five with ganglioneuroma. Three adrenal tissues from children died of diseases other than adrenal tumors and one from an adult with pheochromocytoma were severed as normal and disease controls. The results showed strong immunoreactive dlk staining in endothelial cells in neuroblastoma, ganglioneuroblastoma and ganglioneuroma. Dlk was detectable in mature neuromatous stroma and gangliocytes of ganglioneuroma, but not in neuroblasts of neuroblastoma and ganglioneuroblastoma, neither in gangliocytes of ganglioneuroblastoma. In contrast, dlk mRNA expression was mainly observed in the gangliocytes, but was less intense in the neuroblasts and neuromatous stroma cells. Endothelial cells were essentially devoid of dlk mRNA expression. The findings indicated that there is differential expression of dlk gene and protein among neuroblastoma, ganglioneuroblastoma and ganglioneuroma. The stronger expression of dlk in gangliocytes in ganglioneuroma, in contrast to weaker or no expression in gangliocytes in ganglioneuroblastoma and neuroblasts in neuroblastoma, suggests upregulation of dlk during differentiation of neuroblastoma into more benign form. Furthermore, higher dlk protein expression in the tumor endothelium than in the endothelium of normal adrenal gland implies that dlk may regulate the endothelial function in neuroblastic tumors.
Collapse
Affiliation(s)
- Chih-Cheng Hsiao
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang H, Nøohr J, Jensen CH, Petersen RK, Bachmann E, Teisner B, Larsen LK, Mandrup S, Kristiansen K. Insulin-like growth factor-1/insulin bypasses Pref-1/FA1-mediated inhibition of adipocyte differentiation. J Biol Chem 2003; 278:20906-14. [PMID: 12651852 DOI: 10.1074/jbc.m300022200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pref-1 is a highly glycosylated Delta-like transmembrane protein containing six epidermal growth factor-like repeats in the extracellular domain. Pref-1 is abundantly expressed in preadipocytes, but expression is down-regulated during adipocyte differentiation. Forced expression of Pref-1 in 3T3-L1 cells was reported to inhibit adipocyte differentiation. Here we show that efficient and regulated processing of Pref-1 occurs in 3T3-L1 preadipocytes releasing most of the extracellular domain as a 50-kDa heterogeneous protein, previously isolated and characterized as FA1. Unexpectedly, we found that forced expression of the soluble form, FA1, or full-length Pref-1 did not inhibit adipocyte differentiation of 3T3-L1 cells when differentiation was induced by standard treatment with methylisobutylxanthine, dexamethasone, and high concentrations of insulin. However, forced expression of either form of Pref-1/FA1 in 3T3-L1 or 3T3-F442A cells inhibited adipocyte differentiation when insulin or insulin-like growth factor-1 (IGF-1) was omitted from the differentiation mixture. We demonstrate that the level of the mature form of the IGF-1 receptor is reduced and that IGF-1-dependent activation of p42/p44 mitogen-activated protein kinases (MAPKs) is compromised in preadipocytes with forced expression of Pref-1. This is accompanied by suppression of clonal expansion and terminal differentiation. Accordingly, supplementation with insulin or IGF-1 rescued p42/p44 MAPK activation, clonal expansion, and adipocyte differentiation in a dose-dependent manner.
Collapse
Affiliation(s)
- Hongbin Zhang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M., Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee K, Villena JA, Moon YS, Kim KH, Lee S, Kang C, Sul HS. Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1). J Clin Invest 2003; 111:453-61. [PMID: 12588883 PMCID: PMC151920 DOI: 10.1172/jci15924] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Preadipocyte factor-1 (Pref-1) is a transmembrane protein highly expressed in preadipocytes. Pref-1 expression is, however, completely abolished in adipocytes. The extracellular domain of Pref-1 undergoes two proteolytic cleavage events that generate 50 and 25 kDa soluble products. To understand the function of Pref-1, we generated transgenic mice that express the full ectodomain corresponding to the large cleavage product of Pref-1 fused to human immunoglobulin-gamma constant region. Mice expressing the Pref-1/hFc transgene in adipose tissue, driven by the adipocyte fatty acid-binding protein (aP2, also known as aFABP) promoter, showed a substantial decrease in total fat pad weight. Moreover, adipose tissue from transgenic mice showed reduced expression of adipocyte markers and adipocyte-secreted factors, including leptin and adiponectin, whereas the preadipocyte marker Pref-1 was increased. Pref-1 transgenic mice with a substantial, but not complete, loss of adipose tissue exhibited hypertriglyceridemia, impaired glucose tolerance, and decreased insulin sensitivity. Mice expressing the Pref-1/hFc transgene exclusively in liver under the control of the albumin promoter also showed a decrease in adipose mass and adipocyte marker expression, suggesting an endocrine mode of action of Pref-1. These findings demonstrate the inhibition of adipogenesis by Pref-1 in vivo and the resulting impairment of adipocyte function that leads to the development of metabolic abnormalities.
Collapse
Affiliation(s)
- Kichoon Lee
- Department of Nutritional Sciences and Toxicology, and. Cancer Research Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Samulewicz SJ, Seitz A, Clark L, Heber-Katz E. Expression of preadipocyte factor-1(Pref-1), a delta-like protein, in healing mouse ears. Wound Repair Regen 2002; 10:215-21. [PMID: 12191003 DOI: 10.1046/j.1524-475x.2002.10404.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preadipocyte factor-1 (Pref-1), a delta-like protein containing epidermal growth factor-repeats, is expressed in proliferating cells in a variety of tissues and is believed to be involved in maintaining the undifferentiated state of these cells. Using microarray analysis, reverse transcriptase-polymerase chain reaction, in-situ hybridization, and immunohistochemistry, we have identified Pref-1 expression in the healing ears of two strains of mice, MRL and C57BL/6. MRL is unusual in that ear punches completely regenerate the ear tissue along with new cartilage with no scarring. Pref-1 is more highly expressed in the MRL wounds, is uniquely found in a condensation of cells within the regenerating tissue of the blastema, and may contribute to the regenerative capacity of the MRL ear wound.
Collapse
|
49
|
Mei B, Zhao L, Chen L, Sul HS. Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing. Biochem J 2002; 364:137-44. [PMID: 11988086 PMCID: PMC1222555 DOI: 10.1042/bj3640137] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We originally identified preadipocyte factor-1 (Pref-1) as an inhibitor of adipogenesis by the fact that constitutive expression of full-length Pref-1A inhibits differentiation of 3T3-L1 cells into adipocytes. Subsequently, we found that the membrane form of Pref-1 is proteolytically processed at two sites in the extracellular domain, resulting in the larger (50 kDa) and smaller (25 kDa) soluble forms. A specific form(s) of Pref-1, which is active in inhibiting adipocyte differentiation, has not been elucidated. Here, various artificial constructs and alternative-splicing variants of Pref-1 were stably transfected into 3T3-L1 cells, or conditioned media from COS cells transfected with the various forms were added into differentiating 3T3-L1 cells. Judging by Oil Red O staining for lipid accumulation and expression of adipocyte markers, we determined that, unlike the full-length Pref-1A and the constructed large soluble form, the artificial membrane form of Pref-1 lacking the processing site proximal to the membrane was not effective in inhibiting adipogenesis. Furthermore, conditioned media from COS cells transfected with the construct containing only the first three epidermal growth factor repeats, corresponding to the small soluble form, was not effective in inhibiting adipocyte differentiation. Of the four alternative-splicing products, Pref-1A and Pref-1B, which generate both large and small soluble forms, inhibited adipogenesis, whereas Pref-1C and Pref-1D, which lack the processing site proximal to the membrane and therefore generate only the smaller soluble form, did not show any effect. We conclude that only the large soluble form, and not the transmembrane or the small soluble form, of Pref-1 is biologically active and that alternative splicing therefore determines Pref-1 function in adipocyte differentiation.
Collapse
Affiliation(s)
- Baisong Mei
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
50
|
Jensen CH, Meyer M, Schroder HD, Kliem A, Zimmer J, Teisner B. Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk. Neuroreport 2001; 12:3959-63. [PMID: 11742219 DOI: 10.1097/00001756-200112210-00021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The gene DLK1 encodes a member of the epidermal growth factor (EGF) superfamily, delta-like (dlk). When exposed in vivo to the action of an unknown protease, this type 1 membrane protein generates a soluble peptide referred to as Fetal antigen 1 (FA1). By acting in juxtacrine as well as paracrine/autocrine manners, both forms have been shown to be active in the differentiation/proliferation process of various cell types. In adults, FA1/dlk has been demonstrated mainly within (neuro) endocrine tissues. In this study we investigated the presence of FA1/dlk in other parts of the developing and adult rat and human CNS. Using immunocytochemistry and in situ hybridization we found that in both species FA1/dlk was expressed in neurons of the Edinger-Westphal's nucleus as well as in substantia nigra, ventral tegmental area (VTA), locus coeruleus and in certain parts of the raphe nuclei.
Collapse
Affiliation(s)
- C H Jensen
- Department of Immunology and Microbiology, University of Southern Denmark, Winslowparken 21, DK-5000 Odense C, Denmark
| | | | | | | | | | | |
Collapse
|