1
|
Liu G, Cao S, Huang L, Lin X, Sun Z, Lin G, Zhang L, Lu L, Luo X, Liao X. Relative bioavailability of selenium yeast, selenomethionine, hydroxyl-selenomethionine and nano-selenium for broilers. Front Vet Sci 2025; 11:1542557. [PMID: 39897155 PMCID: PMC11782124 DOI: 10.3389/fvets.2024.1542557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Selenium (Se) is an essential trace element for humans and animals. Development and application of new forms of Se sources with lower toxicity and higher bioavailability has been attracting more attention. However, the bioavailabilities of Se from several new Se sources for broilers remain unclear. Therefore, the aim of this study was to assess the relative bioavailabilities of Se from Se yeast (SY), selenomethionine (SM), hydroxyl-selenomethionine (SO) and nano-Se (NS) relative to sodium selenite (SS) for broilers fed a conventional corn-soybean meal diet. A total of 576 one-day-old Arbor Acres commercial male broilers were randomly assigned to 16 treatments with 6 replicate cages per treatment in a completely randomized design involving a 5 (Se sources: SY, SM, SO, NS and SS) × 3 (added Se levels: 0.15, 0.30 and 0.45 mg Se/kg) factorial design of treatments plus 1 (a Se-unsupplemented control) for 21 d. The relative bioavailabilities of Se sources were estimated based on plasma or tissue Se concentrations as well as selenoprotein mRNA expressions and activities in broilers. The results showed that the Se concentrations and glutathione peroxidase (GPX) activities in plasma, liver, breast muscle, pancreas and kidney as well as Se concentration in erythrocytes of broilers, and Gpx1 and Selenop mRNA expressions in pancreas increased linearly (p < 0.03) as added Se level increased. Furthermore, the differences (p < 0.05) among different Se sources were detected for the Se concentrations in liver, breast muscle, pancreas and erythrocytes, GPX activities in pancreas and kidney. Based on slope ratios from the multiple linear regressions of the above indices, the Se bioavailabilities of SY, SM, SO, NS relative to SS (100%) were 78 to 367%, 67.8 to 471%, 57 to 372%, and 45 to 92%, respectively. The results from this study indicated that the Se from SM, SY and SO are more available to broilers than the Se from SS in enhancing the Se concentrations in liver, breast muscle, pancreas and erythrocytes and GPX activity in pancreas, and the Se from SM had the highest while the Se from NS had the lowest relative bioavailability.
Collapse
Affiliation(s)
- Guoqing Liu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Sumei Cao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuanxu Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Sun
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Shen Y, Huang H, Wang Y, Yang R, Ke X. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease. J Trace Elem Med Biol 2022; 74:127048. [PMID: 35963055 DOI: 10.1016/j.jtemb.2022.127048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Oxidative damage induced by ethanol and its metabolites is one of the factors that fuels the development of alcoholic liver disease (ALD). Selenium (Se) is an effective cofactor for glutathione peroxidase (GPx), and has antioxidant effects that improve ALD. In patients with ALD, ethanol-induced oxidative damage inhibits the synthesis of related Se-containing proteins such as: selenoprotein P (Sepp1), albumin (ALB), and GPx in the liver, thus decreasing the overall Se level in patients. Both Se deficiency and excess can affect the expression of GPx, resulting in damage to the antioxidant defense system. This damage enhances oxidative stress by increasing the levels of reactive oxygen species (ROS) in the body, which aggravates the inflammatory response, lipid metabolism disorder, and lipid peroxidation and worsens ALD symptoms. A cascade of oxidative damages caused by ALD will deplete selenium deposition in the body, stimulate the expression of Gpx1, Sepp1, and Gpx4, and thus mobilize systemic selenoproteins, which can restore GPx activity in the hepatocytes of ALD patients, reduce the levels of reactive oxygen species and alleviate oxidative stress, the inflammatory response, lipid metabolism disorder, and lipid peroxidation, thus helping to mitigate ALD. This review provides a reference for future ALD studies that evaluate the regulation of Se levels and contributes to studies on the potential pathological mechanisms of Se imbalance in ALD.
Collapse
Affiliation(s)
- Yingyan Shen
- Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial, Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu University of Traditional Chinese Medicine, Chendu, China
| | - Hanmei Huang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rongping Yang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China.
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Sex Differences in Glutathione Peroxidase Activity and Central Obesity in Patients with Type 2 Diabetes at High Risk of Cardio-Renal Disease. Antioxidants (Basel) 2019; 8:antiox8120629. [PMID: 31817851 PMCID: PMC6943424 DOI: 10.3390/antiox8120629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Women with type 2 diabetes (T2DM) have an increased susceptibility of developing cardio-renal disease compared to men, the reasons and the mechanisms of this vulnerability are unclear. Since oxidative stress plays a key role in the development of cardio-renal disease, we investigated the relationship between sex, plasma antioxidants status (glutathione peroxidase (GPx-3 activity), vitamin E and selenium), and adiposity in patients with T2DM at high risk of cardio-renal disease. Women compared to men had higher GPx-3 activity (p = 0.02), bio-impedance (p ≤ 0.0001), and an increase in waist circumference in relation to recommended cut off-points (p = 0.0001). Waist circumference and BMI were negatively correlated with GPx-3 activity (p ≤ 0.05 and p ≤ 0.01, respectively) and selenium concentration (p ≤ 0.01 and p ≤ 0.02, respectively). In multiple regression analysis, waist circumference and sex were independent predictors of GPx-3 activity (p ≤ 0.05 and p ≤ 0.05, respectively). The data suggest that increased central fat deposits are associated with reduced plasma antioxidants which could contribute to the future risk of cardio-renal disease. The increased GPx-3 activity in women could represent a preserved response to the disproportionate increase in visceral fat. Future studies should be aimed at evaluating if the modulation of GPx-3 activity reduces cardio-renal risk in men and women with T2DM.
Collapse
|
4
|
Leonardi A, Evke S, Lee M, Melendez JA, Begley TJ. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic Biol Med 2019; 143:573-593. [PMID: 31476365 PMCID: PMC7650020 DOI: 10.1016/j.freeradbiomed.2019.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Here we highlight the role of epitranscriptomic systems in post-transcriptional regulation, with a specific focus on RNA modifying writers required for the incorporation of the 21st amino acid selenocysteine during translation, and the pathologies linked to epitranscriptomic and selenoprotein defects. Epitranscriptomic marks in the form of enzyme-catalyzed modifications to RNA have been shown to be important signals regulating translation, with defects linked to altered development, intellectual impairment, and cancer. Modifications to rRNA, mRNA and tRNA can affect their structure and function, while the levels of these dynamic tRNA-specific epitranscriptomic marks are stress-regulated to control translation. The tRNA for selenocysteine contains five distinct epitranscriptomic marks and the ALKBH8 writer for the wobble uridine (U) has been shown to be vital for the translation of the glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) family of selenoproteins. The reactive oxygen species (ROS) detoxifying selenocysteine containing proteins are a prime examples of how specialized translation can be regulated by specific tRNA modifications working in conjunction with distinct codon usage patterns, RNA binding proteins and specific 3' untranslated region (UTR) signals. We highlight the important role of selenoproteins in detoxifying ROS and provide details on how epitranscriptomic marks and selenoproteins can play key roles in and maintaining mitochondrial function and preventing disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Colleges of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Sara Evke
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - May Lee
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA.
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA; RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
5
|
Bueno D, Meinerz D, Waczuk E, de Souza D, Batista Rocha J. Toxicity of organochalcogens in human leukocytes is associated, but not directly related with reactive species production, apoptosis and changes in antioxidant gene expression. Free Radic Res 2018; 52:1158-1169. [DOI: 10.1080/10715762.2018.1536824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Diones Bueno
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daiane Meinerz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Emily Waczuk
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Diego de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - João Batista Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
6
|
Zhu SY, Li XN, Sun XC, Lin J, Li W, Zhang C, Li JL. Biochemical characterization of the selenoproteome in Gallus gallus via bioinformatics analysis: structure–function relationships and interactions of binding molecules. Metallomics 2017; 9:124-131. [DOI: 10.1039/c6mt00254d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
8
|
Varlamova EG. The role of selenium and selenocysteine-containing proteins in the mammalian male reproductive system. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Xia X, Hua C, Xue S, Shi B, Gui G, Zhang D, Wang X, Guo L. Response of selenium-dependent glutathione peroxidase in the freshwater bivalve Anodonta woodiana exposed to 2,4-dichlorophenol,2,4,6-trichlorophenol and pentachlorophenol. FISH & SHELLFISH IMMUNOLOGY 2016; 55:499-509. [PMID: 27291351 DOI: 10.1016/j.fsi.2016.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) pose a health risk to aquatic organism and humans, and are recognized as persistent priority pollutants. Selenium dependent glutathione peroxidase (Se-GPx) belongs to the family of selenoprotein, which acts mainly as an antioxidant role in the cellular defense system. In the current study, a Se-GPx full length cDNA was cloned from Anodonta woodiana and named as AwSeGPx. It had a characteristic codon at 165TGA167 that corresponds to selenocysteine(Sec) amino acid as U44. The full length cDNA consists of 870 bp, an open reading frame (ORF) of 585 bp encoded a polypeptide of 195 amino in which conserved domain (68LGFPCNQF75) and a glutathione peroxide-1 GPx active site (32GKVILVENVASLUGTT47) were observed. Additionally, the eukaryotic selenocysteine insertion sequence (SECIS) was conserved in the 3'UTR. The AwSeGPx amino acid sequence exhibited a high similarity with that of other Se-GPx. Real-time PCR analysis revealed that AwSeGPx mRNA had a widely distribution, but the highest level was observed in hepatopancreas. AwSeGPx mRNA expression was significantly up-regulated in hepatopancreas, gill and hemocytes after 2,4-DCP, 2,4,6-TCP and PCP exposure. Under similar environment, clams A. woodiana showed a more sensitive to PCP than that of 2,4-DCP and 2,4,6-TCP. These results indicate that AwSeGPx plays a protective role in eliminating oxidative stress derived from 2,4-DCP, 2,4,6-TCP and PCP treatment.
Collapse
Affiliation(s)
- Xichao Xia
- Basal Medicine Institution of Nanyang Medical College, Nanyang 473041, Henan Province, China; State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chunxiu Hua
- Basal Medicine Institution of Nanyang Medical College, Nanyang 473041, Henan Province, China
| | - Shipeng Xue
- Basal Medicine Institution of Nanyang Medical College, Nanyang 473041, Henan Province, China
| | - Bingqin Shi
- Basal Medicine Institution of Nanyang Medical College, Nanyang 473041, Henan Province, China
| | - Gaixia Gui
- Basal Medicine Institution of Nanyang Medical College, Nanyang 473041, Henan Province, China
| | - Dongxian Zhang
- Basal Medicine Institution of Nanyang Medical College, Nanyang 473041, Henan Province, China
| | - Xiying Wang
- Basal Medicine Institution of Nanyang Medical College, Nanyang 473041, Henan Province, China
| | - Lianghong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Wang X, Hai C. Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 2016; 43:607-28. [DOI: 10.1007/s11033-016-4022-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
|
11
|
Proteomic analysis of glomeruli from streptozotocin-induced diabetic rats. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Rupérez AI, Gil A, Aguilera CM. Genetics of oxidative stress in obesity. Int J Mol Sci 2014; 15:3118-44. [PMID: 24562334 PMCID: PMC3958901 DOI: 10.3390/ijms15023118] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.
Collapse
Affiliation(s)
- Azahara I Rupérez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, 18100 Armilla, Granada, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, 18100 Armilla, Granada, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, 18100 Armilla, Granada, Spain.
| |
Collapse
|
13
|
Zhang L, Zhou ZQ, Li G, Fu MZ. The effect of deposition Se on the mRNA expression levels of GPxs in goats from a Se-enriched county of China. Biol Trace Elem Res 2013; 156:111-23. [PMID: 24072670 DOI: 10.1007/s12011-013-9830-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/16/2013] [Indexed: 01/18/2023]
Abstract
Previous studies revealed that Se was an important regulatory factor for glutathione peroxidase (GPx) genes. However, the relationship between Se concentrations and mRNA expression levels of GPxs were unclear in goats, especially the goats living in natural Se-enriched area. Thus, the aim of this study was to determine the Se concentrations and the mRNA expression levels of GPx-1, GPx-2, GPx-3, and GPx-4 in goats from Ziyang County (ZY-H and ZY-L goats) and Baoji City (BJ-P goats), which were Se-rich region and Se-poor region in China, respectively. Atomic fluorescence spectrometry was used as an essential method to determine the Se concentrations in heart, liver, spleen, lung, kidney, longissimus, biceps femoris, and serum, and the gene expressions were quantified in mRNA samples extracted from the above tissues by real-time quantitative reverse transcription-polymerase chain reaction. We found that the Se concentrations in ZY-H and ZY-L goats were higher than that in BJ-P goats significantly (P < 0.05), and the pertinence relations of Se levels between serum and heart, liver, spleen, and kidney were significant (P < 0.05). The mRNA levels of GPx-1 in ZY-H and ZY-L goats were higher than that in BJ-P goats very significantly (P < 0.01) except for longissimus (P < 0.05). Our results indicated a significant trend for GPx-2 in the direction of increasing mRNA levels with increasing Se concentrations in goats but had no statistical significance (P > 0.05) in our experimental conditions. As to GPx-3, its mRNA expression in spleen, lung, and kidney (P < 0.05) were upregulated and were consensual to high Se contents in ZY-H goats, but no significant effects were observed in heart, liver, longissimus, and biceps femoris among our three groups (P > 0.05). The mRNA levels of GPx-4 in heart, liver, lung, and kidney of ZY-H and ZY-L goats were higher than that of BJ-P goats (P < 0.05), and the difference was very significant in lung especially (P < 0.01), but no change in spleen, longissimus, and biceps femoris (P > 0.05). In summary, these data suggested that the goats living in Ziyang County were rich in Se, and the deposition Se played important roles in the mRNA expression of GPx-1, GPx-3, and GPx-4 in certain tissues of goats differentially.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang, Shaanxi, 712100, China,
| | | | | | | |
Collapse
|
14
|
Varlamova EG, Goltyaev MV, Novoselov SV, Novoselov VI, Fesenko EE. Characterization of several members of the thiol oxidoreductase family. Mol Biol 2013. [DOI: 10.1134/s0026893313040146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Chang YC, Yu YH, Shew JY, Lee WJ, Hwang JJ, Chen YH, Chen YR, Wei PC, Chuang LM, Lee WH. Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol Med 2013; 5:1165-79. [PMID: 23828861 PMCID: PMC3944459 DOI: 10.1002/emmm.201302679] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
Elevated oxidative stress is closely associated with obesity. Emerging evidence shows that instead of being a consequence of obesity, oxidative stress may also contribute to fat formation. Nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) is a conserved oxidative stress sensor/transducer and deficiency of NPGPx causes accumulation of reactive oxygen species (ROS). In this communication, we show that NPGPx was highly expressed in preadipocytes of adipose tissue. Deficiency of NPGPx promoted preadipocytes to differentiate to adipocytes via ROS-dependent dimerization of protein kinase A regulatory subunits and activation of CCAAT/enhancer-binding protein beta (C/EBPβ). This enhanced adipogenesis was alleviated by antioxidant N-acetylcysteine (NAC). Consistently, NPGPx-deficient mice exhibited markedly increased fat mass and adipocyte hypertrophy, while treatment with NAC ablated these phenotypes. Furthermore, single nucleotide polymorphisms (SNPs) in human NPGPx gene, which correlated with lower NPGPx expression level in adipose tissue, were associated with higher body mass index (BMI) in several independent human populations. These results indicate that NPGPx protects against fat accumulation in mice and human via modulating ROS, and highlight the importance of targeting redox homeostasis in obesity management. Deficiency of the glutathione peroxidase NPGPx increases ROS levels in preadipocytes and promotes adipocyte differentiation via increasing oxidative stress and consequent increased fat mass and adipocyte hypertrophy.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Graduate Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kedzierska K, Sporniak-Tutak K, Bober J, Safranow K, Olszewska M, Jakubowska K, Domański L, Gołembiewska E, Kwiatkowska E, Laszczyńska M, Dołegowska B, Ciechanowski K. Oxidative stress indices in rats under immunosuppression. Transplant Proc 2012; 43:3939-45. [PMID: 22172876 DOI: 10.1016/j.transproceed.2011.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/21/2011] [Accepted: 09/08/2011] [Indexed: 11/30/2022]
Abstract
Immunosuppressants lead to generation of reactive oxygen species (ROS). Oxidative stress (OxS) can initiate chronic allograft nephropathy (CAN). The most active antioxidant enzymes, superoxide dysmutase (SOD) and catalase (CAT), are present in erythrocytes. Glutathione peroxidase (GPx) is produced in the proximal tubules of nephrons. Malonyldialdehyde (MDA) concentrations are a marker of OxS intensity in plasma. In vitro and animal model studies have shown increased or decreased OxS during treatment with tacrolimus (Tac) or cyclosporine (CyA). Results obtained in humans after solid organ transplantation have been contradictory, because of confounding factors such as ischemia-reperfusion injury, donor and recipient ages, endothelial injury, and comorbidity. The aim of this study was to assess the intensity of OxS among rats under chronic immunosuppression (IS) without a transplantation. We examined 49 male Wistar rats. IS started at 12 weeks of age was continued for 6 months: group I were controls (n=7); group II, Tac+sirolimus (Rapamycin [Rapa])+corticosteroids (CS; n=6); group III, CyA+Rapa+CS (n=4 of which 2 died); group IV, Rapa+mycophenolate mofetil (MMF)+CS (n=6); group V, CyA+MMF+CS (n=6); group VI, CsA+MMF+CS for 3 months followed by conversion to Rapa (n=6); group VII, Tac+MMF+CS (n=6 rats); and group VIII, Tac+MMF+CS for 3 months followed by conversion to Rapa (n=6). The drug doses were as follows: Tac 4 mg/kg/d; MMF 20 mg/kg/d; CyA 5mg/kg/d; Rapa 0.5 mg/kg/d; and CS 4 mg/kg/d. Multiple regression analysis revealed that all IS drugs decreased GPx activity (P<.001) except CS, which increased it (P<.0001). Multiple regression analysis showed that CsA and Tac decreased plasma MDA concentrations (P<.01), whereas CS increased them (P<.05). In conclusion, all IS drugs except CS damage proximal tubules of nephrons.
Collapse
Affiliation(s)
- K Kedzierska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xiong Q, Xie P, Li H, Hao L, Li G, Qiu T, Liu Y. Acute effects of microcystins exposure on the transcription of antioxidant enzyme genes in three organs (liver, kidney, and testis) of male Wistar rats. J Biochem Mol Toxicol 2011; 24:361-7. [PMID: 20665604 DOI: 10.1002/jbt.20347] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microcystins (MCs) induce the production of reactive oxygen species (ROS) in various tissues in mammals, whereas the endogenous antioxidant enzymes are responsible to scavenge the ROS. ROS can modulate the antioxidant enzyme activities by regulating the mRNA levels. The present study was undertaken to find out the relationship between the transcriptional alterations of antioxidant enzymes and MCs stimulation in rats. The time-dependent changes of relative transcription abundance of catalase (CAT), Mn-superoxide dismutase (Mn-SOD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), glutathione reductase (GR), glutathione peroxidase (GPx), and gamma-glutamylcysteine synthetase (γ-GCS) were investigated in three organs (liver, kidney, and testis) of male Wistar rats injected intravenously (i.v.) with 80 μg MC-LR(equivalent)/kg body weight using the quantitative real-time PCR (qPCR) method. We found that MCs could affect the transcriptional activities of these antioxidant enzymes in liver, kidney, and testis of MCs-treated rats and we speculated the possible causation of the transcriptional change. The altered transcription of antioxidant enzymes may play an important role in counteracting the potential deleterious effects of elevated oxidative stress induced by MCs, and this will provide us new insights into the possible role of antioxidant enzymes in the toxicological mechanisms of MCs at molecular level.
Collapse
Affiliation(s)
- Qian Xiong
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Olson GE, Whitin JC, Hill KE, Winfrey VP, Motley AK, Austin LM, Deal J, Cohen HJ, Burk RF. Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am J Physiol Renal Physiol 2009; 298:F1244-53. [PMID: 20015939 DOI: 10.1152/ajprenal.00662.2009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutathione peroxidase-3 (Gpx3), also known as plasma or extracellular glutathione peroxidase, is a selenoprotein secreted primarily by kidney proximal convoluted tubule cells. In this study Gpx3(-/-) mice have been produced and immunocytochemical techniques have been developed to investigate Gpx3 metabolism. Gpx3(-/-) mice maintained the same whole-body content and urinary excretion of selenium as did Gpx3(+/+) mice. They tolerated selenium deficiency without observable ill effects. The simultaneous knockout of Gpx3 and selenoprotein P revealed that these two selenoproteins account for >97% of plasma selenium. Immunocytochemistry experiments demonstrated that Gpx3 binds selectively, both in vivo and in vitro, to basement membranes of renal cortical proximal and distal convoluted tubules. Based on calculations using selenium content, the kidney pool of Gpx3 is over twice as large as the plasma pool. These data indicate that Gpx3 does not serve in the regulation of selenium metabolism. The specific binding of a large pool of Gpx3 to basement membranes in the kidney cortex strongly suggests a need for glutathione peroxidase activity in the cortical peritubular space.
Collapse
Affiliation(s)
- Gary E Olson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Reeves MA, Hoffmann PR. The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 2009; 66:2457-78. [PMID: 19399585 PMCID: PMC2866081 DOI: 10.1007/s00018-009-0032-4] [Citation(s) in RCA: 367] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is a nutritional trace mineral essential for various aspects of human health that exerts its effects mainly through its incorporation into selenoproteins as the amino acid, selenocysteine. Twenty-five selenoprotein genes have been identified in humans and several selenoproteins are broadly classified as antioxidant enzymes. As progress is made on characterizing the individual members of this protein family, however, it is becoming clear that their properties and functions are quite diverse. This review summarizes recent insights into properties of individual selenoproteins such as tissue distribution, subcellular localization, and regulation of expression. Also discussed are potential roles the different selenoproteins play in human health and disease.
Collapse
Affiliation(s)
- M. A. Reeves
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813 USA
| | - P. R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813 USA
| |
Collapse
|
20
|
Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol 2008; 29:20-30. [PMID: 18936159 DOI: 10.1128/mcb.00544-08] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of insulin resistance and type 2 diabetes mellitus and in diabetic vascular complications. Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, improve insulin sensitivity and are currently used for the treatment of type 2 diabetes mellitus. Here, we show that TZD prevents oxidative stress-induced insulin resistance in human skeletal muscle cells, as indicated by the increase in insulin-stimulated glucose uptake and insulin signaling. Importantly, TZD-mediated activation of PPARgamma induces gene expression of glutathione peroxidase 3 (GPx3), which reduces extracellular H(2)O(2) levels causing insulin resistance in skeletal muscle cells. Inhibition of GPx3 expression prevents the antioxidant effects of TZDs on insulin action in oxidative stress-induced insulin-resistant cells, suggesting that GPx3 is required for the regulation of PPARgamma-mediated antioxidant effects. Furthermore, reduced plasma GPx3 levels were found in patients with type 2 diabetes mellitus and in db/db/DIO mice. Collectively, these results suggest that the antioxidant effect of PPARgamma is exclusively mediated by GPx3 and further imply that GPx3 may be a therapeutic target for insulin resistance and diabetes mellitus.
Collapse
|
21
|
Hispard F, de Vaufleury A, Martin H, Devaux S, Cosson RP, Scheifler R, Richert L, Berthelot A, Badot PM. Effects of subchronic digestive exposure to organic or inorganic cadmium on biomarkers in rat tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 70:490-8. [PMID: 17532469 DOI: 10.1016/j.ecoenv.2007.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 03/08/2007] [Accepted: 04/08/2007] [Indexed: 05/15/2023]
Abstract
In an experimental food chain, Wistar rats were fed cadmium (Cd) in an inorganic (CdCl(2)) or organic (mainly associated with metallothionein from Helix aspersa snail viscera) form. After 1 month of exposure to 100 microg inorganic Cd g(-1) in food, an induction of metallothionein was observed in all target tissues. In liver, glutathione peroxidase (GSH-Px) activity decreased and alanine aminotransferase (ALAT) activity increased, suggesting that Cd causes hepatotoxicity. However, lipid peroxidation as well as catalase and caspase 3 (a marker of apoptosis) activities were not modified. At a rather low exposure (2.5 microg Cd g(-1)), metallothionein level in the kidney was found to be the most sensitive biomarker of exposure for both Cd forms. In the small intestine of rats ingesting inorganic Cd, metallothionein expression was significantly higher than that observed for rats fed organic Cd. Present results allowed proposing a simple design to assess the effect of a chemical in a trophic transfer approach.
Collapse
Affiliation(s)
- F Hispard
- Department of Environmental Biology, University of Franche-Comté, EA 3184 aff. INRA, Place Leclerc, 25030 Besançon cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Glutathione peroxidase-1 (GPX1) represents the first identified mammalian selenoprotein, and our understanding in the metabolic regulation and function of this abundant selenoenzyme has greatly advanced during the past decade. Selenocysteine insertion sequence-associating factors, adenosine, and Abl and Arg tyrosine kinases are potent, Se-independent regulators of GPX1 gene, protein, and activity. Overwhelming evidences have been generated using the GPX1 knockout and transgenic mice for the in vivo protective role of GPX1 in coping with oxidative injury and death mediated by reactive oxygen species. However, GPX1 exerts an intriguing dual role in reactive nitrogen species (RNS)-related oxidative stress. Strikingly, knockout of GPX1 rendered mice resistant to toxicities of drugs including acetaminophen and kainic acid, known as RNS inducers. Intracellular and tissue levels of GPX1 activity affect apoptotic signaling pathway, protein kinase phosphorylation, and oxidant-mediated activation of NFkappaB. Data are accumulating to link alteration or abnormality of GPX1 expression to etiology of cancer, cardiovascular disease, neurodegeneration, autoimmune disease, and diabetes. Future research should focus on the mechanism of GPX1 in the pathogeneses and potential applications of GPX1 manipulation in the treatment of these disorders.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
23
|
Ballihaut G, Mounicou S, Lobinski R. Multitechnique mass-spectrometric approach for the detection of bovine glutathione peroxidase selenoprotein: focus on the selenopeptide. Anal Bioanal Chem 2007; 388:585-91. [PMID: 17437091 DOI: 10.1007/s00216-007-1257-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 03/02/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Glutathione peroxidase (isolated from bovine erythrocytes) and its behaviour during alkylation and enzymatic digestion were studied by various hyphenated techniques: gel electrophoresis-laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS), size-exclusion liquid chromatography-ICP MS, capillary high-performance liquid chromatography (capHPLC)-ICP MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, electrospray MS, and nanoHPLC-electrospray ionization (ESI) MS/MS. ESI TOF MS and MALDI TOF MS allowed the determination of the molecular mass but could not confirm the presence of selenium in the protein. The purity of the protein with respect to selenium species could be evaluated by LA ICP MS and size-exclusion chromatography (SEC)-ICP MS under denaturating and nondenaturating conditions, respectively. SEC-ICP MS and capHPLC-ICP MS turned out to be valuable techniques to study the enzymolysis efficiency, miscleavage and artefact formation during derivatization and tryptic digestion. For the first time the parallel ICP MS and ESI MS/MS data are reported for the selenocysteine-containing peptide extracted from the gel; capHPLC-ICP MS allowed the sensitive detection of the selenopeptide regardless of the matrix and nanoHPLC-electrospray made possible its identification.
Collapse
Affiliation(s)
- Guillaume Ballihaut
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement (UMR 5034), Hélioparc, 2, av. Pr. Angot, 64053, Pau, France
| | | | | |
Collapse
|
24
|
Selenoproteins of the thyroid gland: expression, localization and possible function of glutathione peroxidase 3. Biol Chem 2007; 388:1053-9. [DOI: 10.1515/bc.2007.122] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Doyen P, Vasseur P, Rodius F. Identification, sequencing and expression of selenium-dependent glutathione peroxidase transcript in the freshwater bivalve Unio tumidus exposed to Aroclor 1254. Comp Biochem Physiol C Toxicol Pharmacol 2006; 144:122-9. [PMID: 16945589 DOI: 10.1016/j.cbpc.2006.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/30/2006] [Accepted: 07/04/2006] [Indexed: 01/18/2023]
Abstract
Glutathione peroxidases (GPx) and glutathione S-transferases (GST) are essential enzymes of the cellular defense system. The aim of this work was the identification of GPx transcript in a freshwater bivalve, Unio tumidus, and the effects of Aroclor 1254 on GPx and pi-class GST (pi-GST) expression pattern. The GPx full-length coding sequence was obtained by reverse transcription PCR using degenerated primers followed by 5' and 3' rapid amplification of cDNA ends. The GPx cDNA encodes a protein of 232 amino acids. The 72nd amino acid corresponds to a selenocysteine encoded by a TGA codon. Residues essential to the enzymatic function are conserved in GPx of U. tumidus. Specific amplifications of the Se-GPx mRNA from U. tumidus were performed on the digestive gland, the excretory system and the gills. Se-GPx expression level is highest in the digestive gland. No induction of the Se-GPx was observed at the transcriptional level in the digestive gland and the excretory system of Aroclor-treated mussels, while an increase of the pi-GST mRNA level was observed in the excretory system.
Collapse
Affiliation(s)
- Périne Doyen
- Lab. E.S.E., Ecotoxicité, Santé Environnementale-CNRS UMR 7146, Université de Metz, rue Delestraint, 57070 Metz, France
| | | | | |
Collapse
|
26
|
Yamasaki T, Tahara K, Takano S, Inoue-Murayama M, Rose MT, Minashima T, Aso H, Ito S. Mechanism of plasma glutathione peroxidase production in bovine adipocytes. Cell Tissue Res 2006; 326:139-47. [PMID: 16736198 DOI: 10.1007/s00441-006-0194-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 02/11/2006] [Indexed: 01/06/2023]
Abstract
Plasma glutathione peroxidase (pGPx) is an anti-oxidative enzyme. Using the polymerase chain reaction subtraction method, we have previously identified pGPx as a large part of the genes that are expressed following adipocyte differentiation in a bovine intramuscular preadipocyte (BIP) line. Therefore, we have analyzed the mechanism of production of pGPx in adipocytes. The expression of pGPx and C/EBPdelta increases during adipogenesis, with dexamethasone being the main effector of these genes. The expression of pGPx gene has been clearly detected in BIP cells and human adipocytes, but hardly in 3T3-L1 cells. The production of pGPx in bovine tissues is greatest in kidney and in intraperitoneal fat. We consider that the transcriptional control of pGPx in cattle might be carried out by C/EBPdelta and that the expression of pGPx might be a characteristic phenomenon of bovine adipogenesis.
Collapse
Affiliation(s)
- Tadashi Yamasaki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fukuhara R, Kageyama T. Structure, gene expression, and evolution of primate glutathione peroxidases. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:428-36. [PMID: 15967696 DOI: 10.1016/j.cbpc.2005.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 05/02/2005] [Accepted: 05/03/2005] [Indexed: 02/07/2023]
Abstract
Glutathione peroxidases (GPxs) are a family of enzymes that scavenge peroxides generated in cells. We carried out molecular cloning for cDNAs of four GPx isozymes (GPx-1 through 4) in primate species. The essential residues for the function of these isozymes were well conserved. A phylogenetic tree of GPx isozymes of primates and other mammals showed that GPx-4 diverged first, followed by GPx-3, GPx-2, and GPx-1. Expression of mRNAs for GPx-2 through 4 in various tissues of Japanese monkey was analyzed by Northern blot hybridization. GPx-2 mRNA was detected at 1.7 kb, exclusively in the stomach and small intestine. GPx-3 mRNA was detected at 1.8 kb, intensively in the kidney and adrenal gland, and weakly in the cerebellum, heart, and lung. GPx-4 mRNA was detected at 1.1 kb, very intensively in the testis and weakly in lung, heart, and cerebellum. These results showed that GPx isozymes were expressed under tissue-specific regulations.
Collapse
Affiliation(s)
- Ryoji Fukuhara
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama Aichi, 484-8506, Japan.
| | | |
Collapse
|
28
|
Vernet P, Britan A, Gueux E, Mazur A, Drevet JR. Dietary magnesium depletion does not promote oxidative stress but targets apical cells within the mouse caput epididymidis. Biochim Biophys Acta Gen Subj 2004; 1675:32-45. [PMID: 15535965 DOI: 10.1016/j.bbagen.2004.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 08/09/2004] [Accepted: 08/20/2004] [Indexed: 11/16/2022]
Abstract
It is well documented that a dietary deficiency in magnesium can induce oxidative stress and an inflammatory response in animal models. In our study, we have investigated these responses in the mouse epididymis after mice had been fed a magnesium-deficient diet for a 2-week duration. The extracellular and intracellular concentrations of magnesium where shown to be depleted on this diet. This was followed, however, only in the liver of the Mg-deficient animals, by an increase in both alpha 2-macroglobulin (alpha-2m), an acute phase marker, and interleukin-6 transcripts suggesting that an inflammatory response had been initiated. These changes were correlated with a decrease in circulating neutrophils. To address the question of whether or not peroxidation was induced in mouse epididymis following hypomagnesia, we have monitored the level of endogenous peroxidation, their ability to respond to induced peroxidation as well as the expression and activity of the enzymatic glutathione peroxidase (GPX) antioxidant family. To evaluate if the epididymis had evolved specific protections against peroxidation, other organs such as the liver and the kidney were monitored in parallel. We detected no evidence for increased peroxidation in any of the mouse organs tested. However, GPX activity was found to be significantly lower in the liver and the kidney of Mg-deficient animals while it was unchanged in the epididymides of the same animals during the deficiency. Histological analysis of the epididymis showed no major difference in the overall cytological aspect of the organ. Segment 2 of the caput, however presented a significant increase in the number of apically located cells or blebbing cells. Immunohistochemical analysis proved that these cells were epididymal apical cells and not infiltrated leukocytes. These observations suggested that the mouse caput epididymidis segment 2 specifically responded to Mg deficiency via the apical cells. Finally, a comparative analysis of stress response genes was conducted in control and magnesium-deficient caput epididymidis samples. It brought forward some genes that might be involved in the peculiar response of the caput epithelium following hypomagnesia.
Collapse
Affiliation(s)
- Patrick Vernet
- Laboratoire "Epididyme and Maturation des Gamètes", Université Blaise Pascal, CNRS UMR 6547, 24 avenue des Landais, 63177 Aubière cedex, France
| | | | | | | | | |
Collapse
|
29
|
Evenson JK, Wheeler AD, Blake SM, Sunde RA. Selenoprotein mRNA is expressed in blood at levels comparable to major tissues in rats. J Nutr 2004; 134:2640-5. [PMID: 15465760 DOI: 10.1093/jn/134.10.2640] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Liver glutathione peroxidase-1 (GPX1) mRNA is highly regulated by Se status relative to other parameters, but is of limited use for determining Se requirements in humans. To examine the efficacy of using blood for Se status assessment using molecular biology markers, we used a ribonuclease protection assay (RPA) to study mRNA levels in whole blood relative to 16 other rat tissues. Significant amounts of total RNA (>50 microg) were obtained from 1 mL of whole blood. Total RNA from 28-d postweaning Se-adequate (0.2 microg Se/g diet) male rats was analyzed for GPX1, GPX4, GPX3, thioredoxin reductase-1 (TRR1), and selenoprotein-P (SelP). RPA detected significant mRNA expression for at least 1 selenoprotein in all tissues except pancreas. GPX1 mRNA expression using this mix of RPA probes yielded the highest signal for GPX1 relative to the other selenoprotein signals in all tissues except testis; GPX1 expression was 4th highest in blood and similar to the major organs (liver, 1st; heart, 5th; kidney, 6th). Kidney was highest for GPX3, and testes was highest for GPX4, TRR1, and SelP. This study is the first to report the gene expression pattern for a number of selenoproteins and across a comprehensive set of tissues. The mRNA levels for all selenoproteins in blood were comparable to levels in the major organs, and decreases in blood and liver GPX1 mRNA levels in Se deficiency were similar, supporting potential use of whole blood for assessing Se status using molecular biology markers.
Collapse
Affiliation(s)
- Jacqueline K Evenson
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
30
|
Rush JWE, Sandiford SD. Plasma glutathione peroxidase in healthy young adults: influence of gender and physical activity. Clin Biochem 2003; 36:345-51. [PMID: 12849865 DOI: 10.1016/s0009-9120(03)00039-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Oxidative stress is implicated in the pathophysiology of many cardiovascular diseases. Plasma glutathione peroxidase (pl x GPx, GPx3) is an antioxidant enzyme found in the extracellular fluid. This study aimed to determine reference values for serum GPx3 concentration and GPx activity in young healthy males and females of similar aerobic fitness and to determine the impact of acute physical activity on serum GPx. DESIGN AND METHODS 52 young, healthy but not physically trained subjects (24 male, 28 female; age = 20.4 +/- 0.7 yr, cycling VO(2 max) = 39.2 +/- 1.6 mL/kg/min; mean +/- SE) participated in this study. An independent group of 18 subjects participated in an acute, 90 min bout of 50% VO(2 max) cycling exercise. Serum GPx activity and GPx3 protein levels, as well as estradiol and 8-iso- prostaglandin F(2alpha) (8-iso-PGF(2alpha;) an index of lipid peroxidation) were determined. RESULTS Females had significantly higher serum GPx3 concentration (29.1 +/- 1.6 vs. 24.2 +/- 1.3 mg/L, p < 0.01) and serum GPx activity (256.4 +/- 10.4 vs. 222.8 +/- 15.6 U/L, p < 0.05) than males; specific activity (U/mg) was not different between genders. There was no significant gender difference in 8-iso-PGF(2alpha). No significant correlation was found between either GPx activity or GPx3 concentration and serum estradiol or VO(2)(max). The acute, prolonged, mild intensity exercise did not affect serum GPx activity or 8-iso-PGF(2a) levels in males or females. CONCLUSIONS The results of this study suggest that in a young, healthy but not physically well-trained population females are endowed with slightly higher serum GPx3 concentrations and GPx activities than males, but the functional significance of this has not been established. Furthermore, the results indicate that serum GPx levels are not associated with aerobic fitness level, or serum estradiol concentration and that acute, prolonged, mild exercise does not affect the activity of serum GPx in this population.
Collapse
Affiliation(s)
- James W E Rush
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | |
Collapse
|
31
|
Ma S, Caprioli RM, Hill KE, Burk RF. Loss of selenium from selenoproteins: conversion of selenocysteine to dehydroalanine in vitro. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:593-600. [PMID: 12781460 DOI: 10.1016/s1044-0305(03)00141-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Characterization of reduced and alkylated rat selenoprotein P by mass spectrometry yielded selenopeptides from which one or more selenium atoms were missing. Predicted selenopeptide mass peaks were accompanied by peaks corresponding to the conversion of one or more selenocysteine residues to dehydroalanine(s). Experiments were carried out to determine whether this loss of selenium occurred in vitro. A selenopeptide was isolated that contained two selenocysteine residues that were both in selenide-sulfide linkages with cysteine residues. After the peptide had been reduced and alkylated, in addition to the predicted mass peak with both selenocysteine residues present, two mass peaks were detected at positions expected for conversion of one and two selenocysteine residues of this selenopeptide to dehydroalanine residues, which was confirmed by tandem mass spectrometry. Similar findings were obtained from a study of another selenoprotein, rat plasma glutathione peroxidase. These results indicate that selenium atoms are lost from selenoproteins during purification and characterization. The loss of selenium from selenoproteins is probably through the mechanism of oxidation of selenocysteine residue to selenoxide followed by syn-beta-elimination of selenenic acid during sample processing.
Collapse
Affiliation(s)
- Shuguang Ma
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232-6400, USA
| | | | | | | |
Collapse
|
32
|
Takekoshi S, Nagata H, Matsuzaki K, Osamura RY. Involvement of Lipid Peroxidation in the Alteration of Protein Kinase C Signaling. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Hidetaka Nagata
- Department of Pathology, Tokai University School of Medicine
| | | | | |
Collapse
|
33
|
Morales AI, Buitrago JM, Santiago JM, Fernández-Tagarro M, López-Novoa JM, Pérez-Barriocanal F. Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxid Redox Signal 2002; 4:893-8. [PMID: 12573138 DOI: 10.1089/152308602762197434] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactive oxygen species (ROS) have been involved in glomerular filtration rate (GFR) reduction observed after gentamicin treatment. trans-Resveratrol (TR), a natural hydroxystilbene, has been identified to be a potent inhibitor of ROS production. The aim of this work has been to study whether TR has a protective effect on gentamicin-induced nephrotoxicity in vivo and the effect of TR on lipid peroxidation and the oxidative stress induced by gentamicin. Animals that received a daily intraperitoneal injection of gentamicin (100 mg/kg body weight) showed lower GFR and renal blood flow (RBF) and higher urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG) than control rats. Rats receiving TR together with gentamicin showed higher GFR and RBF and lower NAG urinary excretion than rats receiving gentamicin alone. Moreover, renal lipid peroxidation increased in rats receiving gentamicin alone, and this increase was prevented by the administration of TR. The concentration in plasma of antioxidants was higher in the group that received TR with gentamicin than in the gentamicin and control groups. The activities of lactate dehydrogenase and alkaline phosphatase were higher in rats treated with gentamicin than in control rats and were reduced by the treatment with TR. This study demonstrates an improvement in renal function in response to the administration of TR in gentamicin-induced nephrotoxicity. At least a part of this effect of TR could be based on its antioxidant activity.
Collapse
Affiliation(s)
- Ana I Morales
- Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Hospital Clínico Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Kyriakopoulos A, Behne D. Selenium-containing proteins in mammals and other forms of life. Rev Physiol Biochem Pharmacol 2002; 145:1-46. [PMID: 12224526 DOI: 10.1007/bfb0116430] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A Kyriakopoulos
- Hahn-Meitner-Institut Berlin, Department Molecular Trace Element Research in the Life Sciences, Glienicker Str. 100, 14109 Berlin, Germany
| | | |
Collapse
|
35
|
Kühn H, Borchert A. Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med 2002; 33:154-72. [PMID: 12106812 DOI: 10.1016/s0891-5849(02)00855-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
For a long time lipid peroxidation has only been considered a deleterious process leading to disruption of biomembranes and thus, to cellular dysfunction. However, when restricted to a certain cellular compartment and tightly regulated, lipid peroxidation may have beneficial effects. Early on during evolution of living organisms special lipid peroxidizing enzymes, called lipoxygenases, appeared and they have been conserved during phylogenesis of plants and animals. In fact, a diverse family of lipoxygenase isoforms has evolved starting from a putative ancient precursor. As with other enzymes, lipoxygenases are regulated on various levels of gene expression and there are endogenous antagonists controlling their cellular activity. Among the currently known mammalian lipoxygenase isoforms only 12/15-lipoxygenases are capable of directly oxygenating ester lipids even when they are bound to membranes and lipoproteins. Thus, these enzymes represent the pro-oxidative part in the cellular metabolism of complex hydroperoxy ester lipids. Its metabolic counterplayer, representing the antioxidative part, appears to be the phospholipid hydroperoxide glutathione peroxidase. This enzyme is unique among glutathione peroxidases because of its capability of reducing ester lipid hydroperoxides. Thus, 12/15-lipoxygenase and phospholipid hydroperoxide glutathione peroxidase constitute a pair of antagonizing enzymes in the metabolism of hydroperoxy ester lipids, and a balanced regulation of the two proteins appears to be of major cell physiological importance. This review is aimed at summarizing the recent developments in the enzymology and molecular biology of 12/15-lipoxygenase and phospholipid hydroperoxide glutathione peroxidase, with emphasis on cytokine-dependent regulation and their regulatory interplay.
Collapse
Affiliation(s)
- Hartmut Kühn
- Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany.
| | | |
Collapse
|
36
|
Abstract
Mammalian selenium-containing proteins can be divided into three groups: proteins containing nonspecifically incorporated selenium, specific selenium-binding proteins, and specific selenocysteine-containing selenoproteins. Selenoproteins with known functions identified so far include five glutathione peroxidases, two deiodinases, several thioredoxin reductases, and selenophosphate synthetase 2. Alternative splicing leads to a greater variety of selenoproteins, as was shown in the cases of a specific sperm nuclei glutathione peroxidase and some thioredoxin reductases. Selenoprotein P, selenoprotein W, a 15-kDa selenoprotein, an 18-kDa selenoprotein, and several selenoproteins identified in silico from nucleotide sequence databases were found to contain selenocysteine but their functions are not known. Gel electrophoretic separation of tissue samples from rats labeled in vivo with (75)Se showed the existence of further selenium-containing proteins.
Collapse
Affiliation(s)
- D Behne
- Department Molecular Trace Element Research in the Life Sciences, Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, D-14109 Berlin, Germany.
| | | |
Collapse
|
37
|
Komatsu H, Okayasu I, Mitomi H, Imai H, Nakagawa Y, Obata F. Immunohistochemical detection of human gastrointestinal glutathione peroxidase in normal tissues and cultured cells with novel mouse monoclonal antibodies. J Histochem Cytochem 2001; 49:759-66. [PMID: 11373322 DOI: 10.1177/002215540104900609] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This is the first report to describe the successful detection of human gastrointestinal glutathione peroxidase in normal tissues by Western blotting and immunohistochemical staining techniques. Four hybridoma clones producing monoclonal antibodies (MAbs) against the human gastrointestinal glutathione peroxidase were established from mice immunized with a gastrointestinal glutathione peroxidase-derived peptide. The MAbs did not crossreact with other members of the glutathione peroxidase family, be it cellular glutathione peroxidase, phospholipid hydroperoxide glutathione peroxidase, or extracellular glutathione peroxidase. Although the MAbs were found to react with a 24-kD protein in a Western blotting assay using gastric carcinoma cell extracts as antigen, they did not react with a B-lymphoblastoid cell extract. Immunohistochemical staining showed gastrointestinal glutathione peroxidase localized in the cytoplasm and in the nucleus of gastric carcinoma cells. Moreover, gastrointestinal glutathione peroxidase was detected in tissue extracts of human stomach, small intestine, large intestine, liver, and gallbladder by Western blotting, and its localization was immunohistochemically confirmed in the mucosal epithelia of the basal area of gastric pits and intestinal crypts.
Collapse
Affiliation(s)
- H Komatsu
- Department of Immunology, School of Allied Health Sciences, Kitasato University, Minato, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Asayama K, Nakane T, Dobashi K, Kodera K, Hayashibe H, Uchida N, Nakazawa S. Effect of obesity and troglitazone on expression of two glutathione peroxidases: cellular and extracellular types in serum, kidney and adipose tissue. Free Radic Res 2001; 34:337-47. [PMID: 11328671 DOI: 10.1080/10715760100300291] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To determine the effect of obesity on expression of cellular- (C-) and extracellular (EC-) glutathione peroxidase (GPX) in serum, kidney and adipose tissue, we measured GPX in serum, kidneys and adipose tissue of the obese Otsuka-Long-Evans-Tokushima Fatty (OLETF) rat and its lean counterpart (LETO). We also investigated the effect of troglitazone. Five each of OLETF and LETO rats were fed diet with or without 0.2% troglitazone for 10 days. Final body weight, kidney weight, blood glucose and serum tumor necrosis factor-alpha (TNF-alpha) level were higher in OLETF rats than in LETO rats. Serum and kidney GPX activities were higher, but adipose tissue GPX activity was lower, in OLETF rats than in LETO rats. Troglitazone treatment decreased adipose tissue GPX activity and abolished overproduction of TNF-alpha in OLETF rats. Immunoblot analysis, for the first time, revealed that both obesity and troglitazone suppressed the protein signals for C-GPX and EC-GPX in adipose tissue. Serum protein carbonyl groups were increased in OLETF rats and troglitazone completely blocked this increase. Increased serum GPX activity in obese rat was due to the increased secretion of EC-GPX from the kidney. Troglitazone protected against the enhanced oxidative stress induced by obesity independently of the serum GPX concentration.
Collapse
Affiliation(s)
- K Asayama
- Department of Pediatrics, Yamanashi Medical University, 1110 Shimokato, Tamahocho, Nakakomagun, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Pedraza-Chaverrí J, Maldonado PD, Medina-Campos ON, Olivares-Corichi IM, Granados-Silvestre MA, Hernández-Pando R, Ibarra-Rubio ME. Garlic ameliorates gentamicin nephrotoxicity: relation to antioxidant enzymes. Free Radic Biol Med 2000; 29:602-11. [PMID: 11033412 DOI: 10.1016/s0891-5849(00)00354-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species are involved in gentamicin (GM) nephrotoxicity, and garlic is effective in preventing or ameliorating oxidative stress. Therefore, the effect of garlic on GM nephrotoxicity was investigated in this work. Four groups of rats were studied: (i) fed normal diet (CT), (ii) treated with GM (GM), (iii) fed 2% garlic diet (GA), and (iv) treated with GM and 2% garlic diet (GM + GA). Rats were placed in metabolic cages and GM nephrotoxicity was induced by injections of GM (75 mg/kg every 12 h) for 6 d. Lipoperoxidation and enzyme determinations were made in renal cortex on day 7. GM nephrotoxicity was made evident on day 7 by (i) tubular histological damage, (ii) enhanced BUN and urinary excretion of N-acetyl-beta-D-glucosaminidase, and (iii) decreased creatinine clearance. These alterations were prevented or ameliorated in GM + GA group. The rise in lipoperoxidation and the decrease in Mn-SOD and glutathione peroxidase (GPx) activities observed in the GM group, were prevented in the GM + GA group. Cu, Zn-SOD activity and Mn-SOD and Cu,Zn-SOD content did not change. CAT activity and content decreased in the GM, GA, and GM + GA groups. CAT mRNA levels decreased in the GM group. The protective effect of garlic is associated with the prevention of the decrease of Mn-SOD and GPx activities and with the rise of lipoperoxidation in renal cortex.
Collapse
Affiliation(s)
- J Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), 04510, Distrito Federal, Mexico.
| | | | | | | | | | | | | |
Collapse
|
40
|
Moat SJ, Bonham JR, Cragg RA, Powers HJ. Elevated plasma homocysteine elicits an increase in antioxidant enzyme activity. Free Radic Res 2000; 32:171-9. [PMID: 10653487 DOI: 10.1080/10715760000300171] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Elevated plasma homocysteine is considered to be a risk factor for cardiovascular disease. The mechanisms for this effect are not fully understood but there is some evidence for a role for reactive oxygen species (ROS). This study was conducted to explore the effects of elevated plasma total homocysteine (tHcy) concentration on activity of antioxidant enzymes in the circulation. The study group consisted of 10 patients with inherited defects of homocysteine metabolism, from whom 41 blood samples were collected over a period of six months. Blood samples were also collected from 13 of their obligate heterozygous parents. For data analysis samples were classified as those with plasma tHcy < 20 microM or > 20 microM. The activity of erythrocyte superoxide dismutase (SOD) and plasma glutathione peroxidase (GSHPx) was elevated in samples with plasma tHcy > 20 microM. Moreover, a significant correlation was demonstrated between plasma GSHPx activity, plasma glutathione peroxidase protein and plasma tHcy. III vitro studies confirmed that this observation was not due to a simple chemical enhancement of enzyme activity. Homocysteine protected GSHPx from loss of activity following incubation at 37 degrees C. A similar effect was seen with another thiol-containing amino acid, cysteine. Results suggest that elevated plasma tHcy represents an oxidative stress, resulting in an adaptive increase in activity of antioxidant enzymes in the circulation.
Collapse
Affiliation(s)
- S J Moat
- Division of Child Health, University of Sheffield, UK
| | | | | | | |
Collapse
|
41
|
Tyrberg B, Eizirik DL, Marklund SL, Olejnicka B, Madsen OD, Andersson A. Human islets in mixed islet grafts protect mouse pancreatic beta-cells from alloxan toxicity. PHARMACOLOGY & TOXICOLOGY 1999; 85:269-75. [PMID: 10628902 DOI: 10.1111/j.1600-0773.1999.tb02021.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that human beta-cells are resistant to the toxic effects of alloxan. In order to further clarify this characteristic of human islets, we investigated whether these cells might transfer their alloxan resistance to alloxan-sensitive rat or mouse islets. Islets from two species (human-mouse or rat-mouse) were mixed into one graft, which was implanted into the subcapsular kidney space of nude mice. Alloxan or saline was injected intravenously two weeks after implantation and one week thereafter the mice were killed. The number of grafted and endogenous beta-cells were evaluated by a semi-quantitative method after immunohistochemistry. Human islet production of the scavenging enzymes extracellular superoxide dismutase and plasma glutathione peroxidase were analyzed with ELISA-techniques, and mouse and human islet hydrogen peroxide breakdown activity were monitored with a horseradish peroxidase-dependent assay. Mouse beta-cells transplanted together with human islets were protected against alloxan cytotoxicity. Rat islets did not protect mouse beta-cells against alloxan, suggesting that the mixing procedure as such did not impose the protection. Production of extracellular superoxide dismutase and plasma glutathione peroxidase by human islets was very low. Moreover, H2O2 breakdown in vitro, did not differ between human and mouse islets. Alloxan-insensitive human islets protect mouse beta-cells against alloxan-induced lesions, suggesting that yet to be identified extracellular factors are involved in human islet resistance to alloxan toxicity.
Collapse
Affiliation(s)
- B Tyrberg
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | | | | | | | | | | |
Collapse
|
42
|
Juurlink BH. Management of oxidative stress in the CNS: the many roles of glutathione. Neurotox Res 1999; 1:119-40. [PMID: 12835108 DOI: 10.1007/bf03033276] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An outline is given of mechanisms that generate oxidative stress and inflammation. Considered are the metabolic mechanisms that give rise to peroxides, the source of strong oxidants; the production of dicarbonyls that interact with macromolecules to form advanced glycation endproducts; and the role that activation of the transcription factor NF(Kappa)B has in the expression of pro-inflammatory genes. Management of oxidative stress is considered by outlining the central role of reduced glutathione (GSH) in peroxide scavenging, dicarbonyl scavenging and activation of NF(Kappa)B. Cellular GSH levels are dictated by the balance between consumption, oxidation of GSH, reduction of oxidized-glutathione, and synthesis. The rate-limiting enzyme in GSH synthesis is L-gamma-glutamyl-L-cysteine synthase, a phase II enzyme. Phase II enzyme inducers are found in many fruits and vegetables. It is suggested that dietary phase II enzyme inducers be investigated for their potential for preventing or retarding the development of degenerative diseases that have an underlying oxidative stress and inflammatory component.
Collapse
Affiliation(s)
- B H Juurlink
- Department of Anatomy and Cell Biology, The Cameco Multiple Sclerosis and Neuroscience Research Centre, College of Medicine, University of Saskatchewan, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5 Canada.
| |
Collapse
|
43
|
Vernet P, Rock E, Mazur A, Rayssiguier Y, Dufaure JP, Drevet JR. Selenium-independent epididymis-restricted glutathione peroxidase 5 protein (GPX5) can back up failing Se-dependent GPXs in mice subjected to selenium deficiency. Mol Reprod Dev 1999; 54:362-70. [PMID: 10542376 DOI: 10.1002/(sici)1098-2795(199912)54:4<362::aid-mrd6>3.0.co;2-#] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have previously characterized and cloned a secreted sperm-bound selenium-independent glutathione peroxidase protein (GPX5), the expression of which was found to be restricted to the mouse caput epididymidis. Because of the lack of selenium (Se) in the active site of this enzyme, unlike the other animal GPXs characterized to date, it was suspected that GPX5 does not function in the epididymis as a true glutathione peroxidase in vivo. In the present report, following dietary selenium deprivation which is known to reduce antioxidant defenses and favor oxidative stress in relation with depressed Se-dependent GPX activities, we show that the epididymis is still efficiently protected against increasing peroxidative conditions. In this model, the caput epididymides of selenium-deficient animals showed a limited production of lipid peroxides, a total GPX activity which was not dramatically affected by the shortage in selenium availability and an increase in GPX5 mRNA and protein levels. Altogether, these data strongly suggest that the selenium-independent GPX5 could function as a back-up system for Se-dependent GPXs.
Collapse
Affiliation(s)
- P Vernet
- Reproduction & Developpement, Laboratoire de Biologie Cellulaire, Université Blaise Pascal, CNRS UMR 6547 - GEEM, Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The family of glutathione peroxidases comprises four distinct mammalian selenoproteins. The classical enzyme (cGPx) is ubiquitously distributed. According to animal, cell culture and inverse genetic studies, its primary function is to counteract oxidative attack. It is dispensible in unstressed animals, and accordingly ranks low in the hierarchy of glutathione peroxidases. The gastrointestinal isoenzyme (GI-GPx) is most related to cGPx and is exclusively expressed in the gastrointestinal tract. It might provide a barrier against hydroperoxides derived from the diet or from metabolism of ingested xenobiotics. The extreme stability in selenium deficiency ranks this glutathione peroxidase highest in the hierarchy of selenoproteins and points to a more vital function than that of cGPx. Plasma GPx (pGPx) behaves similar to cGPx in selenium deficiency. It is directed to extracellular compartments and is expressed in various tissues in contact with body fluids, e.g., kidney, ciliary body, and maternal/fetal interfaces. It has to be rated as an efficient extracellular antioxidant device, though with low capacity because of the limited extracellular content of potential thiol substrates. Phospholipid hydroperoxide glutathione peroxidase (PHGPx), originally presumed to be a universal antioxidant enzyme protecting membrane lipids, appears to have adopted a variety of specific roles like silencing lipoxygenases and becoming an enzymatically inactive structural component of the mitochondrial capsule during sperm maturation. Thus, all individual isoenzymes are efficient peroxidases in principle, but beyond their mere antioxidant potential may exert cell- and tissue-specific roles in metabolic regulation, as is evident for PHGPx and may be expected for others.
Collapse
|
45
|
Dobashi K, Asayama K, Nakane T, Hayashibe H, Kodera K, Uchida N, Nakazawa S. Effect of peroxisome proliferator on extracellular glutathione peroxidase in rat. Free Radic Res 1999; 31:181-90. [PMID: 10499774 DOI: 10.1080/10715769900300731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glutathione peroxidase (GPX) activity measured using tert-butyl hydroperoxide as a substrate detects solely cellular/classical GPX (cGPX) in rat liver and kidney, and extracellular/plasma glutathione peroxidase (EC-GPX) in rat serum. To investigate the effect of peroxisome proliferator on EC-GPX, we measured activities of GPX and catalase in rat liver, kidney and serum, and then we performed immunoblot and Northern blot analyses in the kidney. Rats were fed on a diet containing either 2% (w/w) di-2-ethylhexyl phthalate (DEHP) or 0.25% (w/w) clofibrate for two or three weeks, respectively. Catalase activity was increased 1.4-fold (p < 0.001) in the treated liver, but not in the kidney. GPX activity was decreased to 59.2% (DEHP) and 70.4% (clofibrate) of the control (p < 0.001) in the serum but was unaltered in the liver and kidney. The immunoreactivity for EC-GPX was also significantly decreased in the DEHP-treated kidney compared with the control. The mRNA levels of EC-GPX and cGPX were unaltered. The immunostaining for 4-hydroxy-2-nonenal, a maker of lipid peroxide, was more intense in the treated kidney compared with the control. These results suggest that EC-GPX is post-transcriptionally decreased by peroxisome proliferator through the oxidative stress in the renal tubules. This may be a new deleterious effect of an endocrine disruptor DEHP.
Collapse
Affiliation(s)
- K Dobashi
- Department of Pediatrics, Yamanashi Medical University, Tamahocho, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Schwaab V, Faure J, Dufaure JP, Drevet JR. GPx3: the plasma-type glutathione peroxidase is expressed under androgenic control in the mouse epididymis and vas deferens. Mol Reprod Dev 1998; 51:362-72. [PMID: 9820194 DOI: 10.1002/(sici)1098-2795(199812)51:4<362::aid-mrd2>3.0.co;2-l] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report here-using northern experiments, western blotting, and immunohistochemistry-on the findings that the plasma type glutathione peroxidase, GPx3, a major enzyme in reducing lipid hydroperoxides and hydrogen peroxide in plasma, is also expressed at significant levels in tissues of the male genital tract including epididymis and vas deferens. Within the epididymis and the kidney, the accumulation of the GPx3 mRNA and protein were investigated during postnatal development and found to be temporally regulated in a tissue-specific manner. Furthermore, we show here that androgen withdrawal by castration down regulates the expression of the GPx3 gene both in the epididymis and vas deferens while GPx3 expression in the kidney was found to be androgen-independent. Finally, immunohistochemistry data reveals that within the epididymis GPx3 distribution is quite peculiar suggesting the existence in this organ of complex traductional and/or transcriptional regulatory processes.
Collapse
Affiliation(s)
- V Schwaab
- Laboratoire de Biologie Cellulaire, UMR CNRS 6547-GEEM, Reproduction & Developpement Research Group, Université Blaise Pascal, Aubière, France
| | | | | | | |
Collapse
|
47
|
Whitin JC, Tham DM, Bhamre S, Ornt DB, Scandling JD, Tune BM, Salvatierra O, Avissar N, Cohen HJ. Plasma glutathione peroxidase and its relationship to renal proximal tubule function. Mol Genet Metab 1998; 65:238-45. [PMID: 9851889 DOI: 10.1006/mgme.1998.2760] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selenium-dependent extracellular glutathione peroxidase (E-GPx) is found in plasma and other extracellular fluids. Previous studies have indicated that patients with chronic renal failure on dialysis have low plasma GPx activity. In this study, dialysis patients had approximately 40% of control plasma GPx activity, while anephric individuals had lowest plasma GPx activities ranging from 2 to 22% of control. The residual plasma GPx activity in anephric individuals could be completely precipitated by anti-E-GPx antibodies, indicating that all plasma GPx activity can be attributed to E-GPx in both normal and anephric individuals. Plasma GPx activity rises rapidly following kidney transplantation, often reaching normal values within 10 days. The plasma GPx activity in some transplanted patients rises to levels higher than the normal range, followed by a return to the normal range. Since E-GPx in the kidney is primarily synthesized in the proximal tubules, we investigated whether nephrotoxic agents known to disrupt proximal tubule function also affected plasma GPx activity. The beta-lactam antibiotic cephaloglycin rapidly caused a decrease in plasma GPx activity in rabbits. In addition, the chemotherapeutic agent ifosfamide caused a decrease in plasma GPx activity in pediatric osteosarcoma patients. Fanconi syndrome associated with either ifosfamide therapy or valproic acid therapy also caused a decrease in plasma GPx activity. Thus plasma GPx activity is related to kidney function and is decreased in certain situations where nephrotoxic drugs are administered. Monitoring plasma GPx activity may have predictive value in evaluating the function of transplanted kidneys or in predicting those patients particularly at risk of nephrotoxic injury associated with certain medications.
Collapse
Affiliation(s)
- J C Whitin
- Department of Pediatrics, Stanford University Medical Center, Stanford, California, 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakane T, Asayama K, Kodera K, Hayashibe H, Uchida N, Nakazawa S. Effect of selenium deficiency on cellular and extracellular glutathione peroxidases: immunochemical detection and mRNA analysis in rat kidney and serum. Free Radic Biol Med 1998; 25:504-11. [PMID: 9741586 DOI: 10.1016/s0891-5849(98)00078-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To determine the effect of selenium (Se) deficiency on expression of glutathione peroxidase (GSH-Px) 1 and 2, we measured GSH-Px activity in rat serum, liver and kidneys, serum immunoreactive GSH-Px 2, and the mRNAs of kidney GSH-Px 1 and 2. We purified rat GSH-Px 2 and raised polyclonal antibodies. Immunoreactive GSH-Px 2 was measured by rocket immunoelectrophoresis. GSH-Px 2 was purified 1470-fold with a specific activity of 250 units/mg. Immunoblotting detected only GSH-Px 2 in rat serum, and much less GSH-Px 2 than GSH-Px 1 in kidney. Immunoblot signal of kidney GSH-Px 1 and 2 decreased progressively in Se deficient rats. Serum GSH-Px activity in Se deficient rats at 1, 2, 3, and 4 weeks declined to 33, 20, 10, and 9% of the control, while the serum level of immunoreactive GSH-Px 2 was 58, 24, 15, and 10% of the control, suggesting the presence of an inactive protein at week 1. GSH-Px activity declined to 4 and 11% of the control in the liver and kidney at 4 weeks. The mRNAs of kidney GSH-Px 1 and 2 showed similar decreases, and were 24 and 23% of the control at 4 weeks. GSH-Px mRNA levels were better preserved than GSH-Px activity, suggesting that GSH-Px expression was regulated at both pre-translational and translational levels.
Collapse
Affiliation(s)
- T Nakane
- Department of Pediatrics, Yamanashi Medical University, Tamahocho, Japan
| | | | | | | | | | | |
Collapse
|
49
|
de Haan JB, Bladier C, Griffiths P, Kelner M, O'Shea RD, Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart PM, Hertzog PJ, Kola I. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 1998; 273:22528-36. [PMID: 9712879 DOI: 10.1074/jbc.273.35.22528] [Citation(s) in RCA: 312] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione peroxidases have been thought to function in cellular antioxidant defense. However, some recent studies on Gpx1 knockout (-/-) mice have failed to show a role for Gpx1 under conditions of oxidative stress such as hyperbaric oxygen and the exposure of eye lenses to high levels of H2O2. These findings have, unexpectedly, raised the issue of the role of Gpx1, especially under conditions of oxidative stress. Here we demonstrate a role for Gpx1 in protection against oxidative stress by showing that Gpx1 (-/-) mice are highly sensitive to the oxidant paraquat. Lethality was already detected within 24 h in mice exposed to paraquat at 10 mg.kg-1 (approximately (1)/(7) the LD50 of wild-type controls). The effects of paraquat were dose-related. In the 30 mg.kg-1-treated group, 100% of mice died within 5 h, whereas the controls showed no evidence of toxicity. We further demonstrate that paraquat transcriptionally up-regulates Gpx1 in normal cells, reinforcing a role for Gpx1 in protection against paraquat toxicity. Finally, we show that cortical neurons from Gpx1 (-/-) mice are more susceptible to H2O2; 30% of neurons from Gpx1 (-/-) mice were killed when exposed to 65 microM H2O2, whereas the wild-type controls were unaffected. These data establish a function for Gpx1 in protection against some oxidative stressors and in protection of neurons against H2O2. Further, they emphasize the need to elucidate the role of Gpx1 in protection against different oxidative stressors and in different disease states and suggest that Gpx1 (-/-) mice may be valuable for studying the role of H2O2 in neurodegenerative disorders.
Collapse
Affiliation(s)
- J B de Haan
- Molecular Genetics and Development Group, Institute of Reproduction and Development, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reduction of phosphatidylcholine hydroperoxide by apolipoprotein A-I: purification of the hydroperoxide-reducing proteins from human blood plasma. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32537-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|