1
|
Jimenez SA, Mendoza FA, Piera-Velazquez S. A review of recent studies on the pathogenesis of Systemic Sclerosis: focus on fibrosis pathways. Front Immunol 2025; 16:1551911. [PMID: 40308583 PMCID: PMC12040652 DOI: 10.3389/fimmu.2025.1551911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology characterized by the development of frequently progressive cutaneous and internal organ fibrosis accompanied by severe vascular alterations. The pathogenesis of SSc is highly complex and, despite extensive investigation, has not been fully elucidated. Numerous studies have suggested that unknown etiologic factors cause multiple alterations in genetically receptive hosts, leading to SSc development and progression. These events may be functionally and pathologically interconnected and include: 1) Structural and functional microvascular and endothelial cell abnormalities; 2) Severe oxidative stress and high reactive oxygen species (3); Frequently progressive cutaneous and visceral fibrosis; 4) Transdifferentiation of various cell types into activated myofibroblasts, the cells ultimately responsible for the fibrotic process; 5) Establishment of a chronic inflammatory process in various affected tissues; 6) Release of cytokines, chemokines, and growth factors from the inflammatory cells; 7) Abnormalities in humoral and cellular immunity with the production of specific autoantibodies; and 8) Epigenetic alterations including changes in multiple non-coding RNAs. These events manifest with different levels of intensity in the affected organs and display remarkable individual variability, resulting in a wide heterogeneity in the extent and severity of clinical manifestations. Here, we will review some of the recent studies related to SSc pathogenesis.
Collapse
Affiliation(s)
- Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Fabian A. Mendoza
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Colina M, Campana G. Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization. J Clin Med 2025; 14:1735. [PMID: 40095875 PMCID: PMC11901317 DOI: 10.3390/jcm14051735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatic diseases encompass a wide range of autoimmune and inflammatory disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriatic arthritis (PsA), and systemic sclerosis (SSc). These conditions often result in chronic pain, disability, and reduced quality of life, with unpredictable disease courses that may lead to joint destruction, organ damage, or systemic complications. Biomarkers, defined as measurable indicators of biological processes or conditions, have the potential to transform clinical practice by improving disease diagnosis, monitoring, prognosis, and treatment decisions. While significant strides have been made in identifying and validating biomarkers in rheumatic diseases, challenges remain in their standardization, clinical utility, and integration into routine practice. This review provides an overview of the current state of biomarkers in rheumatic diseases, their roles in clinical settings, and the emerging advancements in the field.
Collapse
Affiliation(s)
- Matteo Colina
- Rheumatology Service, Section of Internal Medicine, Department of Medicine and Oncology, Ospedale Santa Maria della Scaletta, 40026 Imola, Italy
| | - Gabriele Campana
- Alma Mater Studiorum, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
3
|
Karam HM, Lotfy DM, A Ibrahim A, Mosallam FM, Abdelrahman SS, Abd-ElRaouf A. A new approach of nano-metformin as a protector against radiation-induced cardiac fibrosis and inflammation via CXCL1/TGF-Β pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6919-6927. [PMID: 38592438 PMCID: PMC11422261 DOI: 10.1007/s00210-024-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
The present work investigates the potential role of metformin nanoparticles (MTF-NPs) as a radio-protector against cardiac fibrosis and inflammation induced by gamma radiation via CXCL1/TGF-β pathway. Lethal dose fifty of nano-metformin was determined in mice, then 21 rats (male albino) were equally divided into three groups: normal control (G1), irradiated control (G2), and MTF-NPs + IRR (G3). The possible protective effect of MTF-NPs is illustrated via decreasing cardiac contents of troponin, C-X-C motif Ligand 1 (CXCL1), tumor growth factor β (TGF-β), protein kinase B (AKT), and nuclear factor-κB (NF-κB). Also, the positive effect of MTF-NPs on insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) in heart tissues using immunohistochemical technique is illustrated in the present study. Histopathological examination emphasizes the biochemical findings. The current investigation suggests that MTF-NPs might be considered as a potent novel treatment for the management of cardiac fibrosis and inflammation in patients who receive radiotherapy or workers who may be exposed to gamma radiation.
Collapse
Affiliation(s)
- Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Dina M Lotfy
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ayman A Ibrahim
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L8, Canada
| | - Farag M Mosallam
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Sahar S Abdelrahman
- Anatomic Pathology Department, Faculty of Veterinary medicine, Cairo University, Cairo, Egypt
| | - Amira Abd-ElRaouf
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
4
|
Sun P, Kraus CN, Zhao W, Xu J, Suh S, Nguyen Q, Jia Y, Nair A, Oakes M, Tinoco R, Shiu J, Sun B, Elsensohn A, Atwood SX, Nie Q, Dai X. Single-cell and spatial transcriptomics of vulvar lichen sclerosus reveal multi-compartmental alterations in gene expression and signaling cross-talk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607986. [PMID: 39211101 PMCID: PMC11361165 DOI: 10.1101/2024.08.14.607986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vulvar diseases are a critical yet often neglected area of women's health, profoundly affecting patients' quality of life and frequently resulting in long-term physical and psychological challenges. Lichen sclerosus (LS) is a chronic inflammatory skin disorder that predominantly affects the vulva, leading to severe itching, pain, scarring, and an increased risk of malignancy. Despite its profound impact on affected individuals, the molecular pathogenesis of vulvar LS (VLS) is not well understood, hindering the development of FDA-approved therapies. Here, we utilize single-cell and spatial transcriptomics to analyze lesional and non-lesional skin from VLS patients, as well as healthy control vulvar skin. Our findings demonstrate histologic, cellular, and molecular heterogeneities within VLS, yet highlight unifying molecular changes across keratinocytes, fibroblasts, immune cells, and melanocytes in lesional skin. They reveal cellular stress and damage in fibroblasts and keratinocytes, enhanced T cell activation and cytotoxicity, aberrant cell-cell signaling, and increased activation of the IFN, JAK/STAT, and p53 pathways in specific cell types. Using both monolayer and organotypic culture models, we also demonstrate that knockdown of select genes, which are downregulated in VLS lesional keratinocytes, partially recapitulates VLS-like stress-associated changes. Collectively, these data provide novel insights into the pathogenesis of VLS, identifying potential biomarkers and therapeutic targets for future research.
Collapse
|
5
|
Voisin T, Joannes A, Morzadec C, Lagadic-Gossmann D, Naoures CL, De Latour BR, Rouze S, Jouneau S, Vernhet L. Antifibrotic effects of vitamin D3 on human lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. J Nutr Biochem 2024; 125:109558. [PMID: 38185349 DOI: 10.1016/j.jnutbio.2023.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. Up to now, no treatment can stop the progression of IPF. Vitamin D3 (VD) reduces experimental lung fibrosis in murine models and depletion of vitamin D3 might be associated with the reduced survival of patients with IPF. In this context, we determined if VD can prevent the pro-fibrotic functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and control HLFs were derived from surgical lung biopsies collected from patients with IPF or with primary lung cancer, respectively. VD (3-100 nM) markedly reduced the basal and PDGF-induced proliferation of HLFs. VD also altered cell cycle by increasing the percentage of IPF HLFs arrested in the G0/G1 phase, and by downregulating the expression of various cell cycle regulatory proteins. In addition, VD barely prevented the TGF-β1-induced differentiation in HLFs. At 100 nM, VD slightly reduced the expression of the pro-fibrotic marker α-smooth muscle actin, and had no effect on fibronectin and collagen-1 expression. In contrast, 100 nM VD strongly inhibited the aerobic glycolytic metabolism induced by TGF- β1. Finally, VD reduced both the secretion of lactate, the levels of lactate deshydrogenase mRNA and the activity of intracellular LDH in IPF HLFs. In conclusion, our study shows that VD reduced pro-fibrotic functions of HLFs. These findings suggest that it might be interesting to assess the potential clinical benefits of vitamin D supplementation in patients with IPF, especially on lung function decline.
Collapse
Affiliation(s)
- Tom Voisin
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Audrey Joannes
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Claudie Morzadec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Cécile Le Naoures
- Department of pathology and cytology, Rennes University Hospital, France
| | | | - Simon Rouze
- Department of Thoracic, cardiac and vascular surgery, Rennes University Hospital, France
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France; Department of Respiratory Diseases, Competence Center for Rare Pulmonary Diseases, Rennes University Hospital, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France.
| |
Collapse
|
6
|
Binda M, Moccaldi B, Civieri G, Cuberli A, Doria A, Tona F, Zanatta E. Autoantibodies Targeting G-Protein-Coupled Receptors: Pathogenetic, Clinical and Therapeutic Implications in Systemic Sclerosis. Int J Mol Sci 2024; 25:2299. [PMID: 38396976 PMCID: PMC10889602 DOI: 10.3390/ijms25042299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic sclerosis (SSc) is a multifaceted connective tissue disease whose aetiology remains largely unknown. Autoimmunity is thought to play a pivotal role in the development of the disease, but the direct pathogenic role of SSc-specific autoantibodies remains to be established. The recent discovery of functional antibodies targeting G-protein-coupled receptors (GPCRs), whose presence has been demonstrated in different autoimmune conditions, has shed some light on SSc pathogenesis. These antibodies bind to GPCRs expressed on immune and non-immune cells as their endogenous ligands, exerting either a stimulatory or inhibitory effect on corresponding intracellular pathways. Growing evidence suggests that, in SSc, the presence of anti-GPCRs antibodies correlates with specific clinical manifestations. Autoantibodies targeting endothelin receptor type A (ETAR) and angiotensin type 1 receptor (AT1R) are associated with severe vasculopathic SSc-related manifestations, while anti-C-X-C motif chemokine receptors (CXCR) antibodies seem to be predictive of interstitial lung involvement; anti-muscarinic-3 acetylcholine receptor (M3R) antibodies have been found in patients with severe gastrointestinal involvement and anti-protease-activated receptor 1 (PAR1) antibodies have been detected in patients experiencing scleroderma renal crisis. This review aims to clarify the potential pathogenetic significance of GPCR-targeting autoantibodies in SSc, focusing on their associations with the different clinical manifestations of scleroderma. An extensive examination of functional autoimmunity targeting GPCRs might provide valuable insights into the underlying pathogenetic mechanisms of SSc, thus enabling the development of novel therapeutic strategies tailored to target GPCR-mediated pathways.
Collapse
Affiliation(s)
- Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Giovanni Civieri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Anna Cuberli
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Francesco Tona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| |
Collapse
|
7
|
Bracken SJ, Suthers AN, DiCioccio RA, Su H, Anand S, Poe JC, Jia W, Visentin J, Basher F, Jordan CZ, McManigle WC, Li Z, Hakim FT, Pavletic SZ, Bhuiya NS, Ho VT, Horwitz ME, Chao NJ, Sarantopoulos S. Heightened TLR7 signaling primes BCR-activated B cells in chronic graft-versus-host disease for effector functions. Blood Adv 2024; 8:667-680. [PMID: 38113462 PMCID: PMC10839617 DOI: 10.1182/bloodadvances.2023010362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT Chronic graft-versus-host disease (cGVHD) is a debilitating, autoimmune-like syndrome that can occur after allogeneic hematopoietic stem cell transplantation. Constitutively activated B cells contribute to ongoing alloreactivity and autoreactivity in patients with cGVHD. Excessive tissue damage that occurs after transplantation exposes B cells to nucleic acids in the extracellular environment. Recognition of endogenous nucleic acids within B cells can promote pathogenic B-cell activation. Therefore, we hypothesized that cGVHD B cells aberrantly signal through RNA and DNA sensors such as Toll-like receptor 7 (TLR7) and TLR9. We found that B cells from patients and mice with cGVHD had higher expression of TLR7 than non-cGVHD B cells. Using ex vivo assays, we found that B cells from patients with cGVHD also demonstrated increased interleukin-6 production after TLR7 stimulation with R848. Low-dose B-cell receptor (BCR) stimulation augmented B-cell responses to TLR7 activation. TLR7 hyperresponsiveness in cGVHD B cells correlated with increased expression and activation of the downstream transcription factor interferon regulatory factor 5. Because RNA-containing immune complexes can activate B cells through TLR7, we used a protein microarray to identify RNA-containing antigen targets of potential pathological relevance in cGVHD. We found that many of the unique targets of active cGVHD immunoglobulin G (IgG) were nucleic acid-binding proteins. This unbiased assay identified the autoantigen and known cGVHD target Ro-52, and we found that RNA was required for IgG binding to Ro-52. Herein, we find that BCR-activated B cells have aberrant TLR7 signaling responses that promote potential effector responses in cGVHD.
Collapse
Affiliation(s)
- Sonali J. Bracken
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Amy N. Suthers
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Rachel A. DiCioccio
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Hsuan Su
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sarah Anand
- Division of Hematology and Medical Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Jonathan C. Poe
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Wei Jia
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Jonathan Visentin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
- UMR CNRS 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Fahmin Basher
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Collin Z. Jordan
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham NC
| | - William C. McManigle
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham NC
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Frances T. Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Steven Z. Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Nazmim S. Bhuiya
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Vincent T. Ho
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mitchell E. Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
8
|
Curtiss P, Svigos K, Schwager Z, Lo Sicco K, Franks AG. Part I: Epidemiology, pathophysiology, and clinical considerations of primary and secondary Raynaud's phenomenon. J Am Acad Dermatol 2024; 90:223-234. [PMID: 35809798 DOI: 10.1016/j.jaad.2022.06.1199] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
Abstract
Raynaud's phenomenon (RP) is a relatively common disease with both primary and secondary forms. It is well understood as a vasospastic condition affecting the acral and digital arteries, resulting in characteristic, well-demarcated color changes typically in the hands and feet in response to cold or stress. Secondary RP (SRP) has been described in association with a variety of rheumatologic and nonrheumatologic diseases, environmental exposures, and/or medications. While both primary RP and SRP may impact the quality of life, SRP may lead to permanent and potentially devastating tissue destruction when undiagnosed and untreated. It is therefore crucial for dermatologists to distinguish between primary and secondary disease forms early in clinical evaluation, investigate potential underlying causes, and risk stratify SRP patients for the development of associated autoimmune connective tissue disease. The epidemiology, pathogenesis, and clinical presentation and diagnosis of both forms of RP are described in detail in this review article.
Collapse
Affiliation(s)
- Paul Curtiss
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Katerina Svigos
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Zachary Schwager
- Department of Dermatology, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Kristen Lo Sicco
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York.
| | - Andrew G Franks
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York; Department of Internal Medicine, Division of Rheumatology, New York University School of Medicine, New York, New York
| |
Collapse
|
9
|
Ma F, Tsou PS, Gharaee-Kermani M, Plazyo O, Xing X, Kirma J, Wasikowski R, Hile GA, Harms PW, Jiang Y, Xing E, Nakamura M, Ochocki D, Brodie WD, Pillai S, Maverakis E, Pellegrini M, Modlin RL, Varga J, Tsoi LC, Lafyatis R, Kahlenberg JM, Billi AC, Khanna D, Gudjonsson JE. Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis. Nat Commun 2024; 15:210. [PMID: 38172207 PMCID: PMC10764940 DOI: 10.1038/s41467-023-44645-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Systemic sclerosis (SSc) is a devastating autoimmune disease characterized by excessive production and accumulation of extracellular matrix, leading to fibrosis of skin and other internal organs. However, the main cellular participants in SSc skin fibrosis remain incompletely understood. Here using differentiation trajectories at a single cell level, we demonstrate a dual source of extracellular matrix deposition in SSc skin from both myofibroblasts and endothelial-to-mesenchymal-transitioning cells (EndoMT). We further define a central role of Hippo pathway effectors in differentiation and homeostasis of myofibroblast and EndoMT, respectively, and show that myofibroblasts and EndoMTs function as central communication hubs that drive key pro-fibrotic signaling pathways in SSc. Together, our data help characterize myofibroblast differentiation and EndoMT phenotypes in SSc skin, and hint that modulation of the Hippo pathway may contribute in reversing the pro-fibrotic phenotypes in myofibroblasts and EndoMTs.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Olesya Plazyo
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xianying Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Kirma
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Grace A Hile
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Enze Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mio Nakamura
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Danielle Ochocki
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - William D Brodie
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shiv Pillai
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Matteo Pellegrini
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert L Modlin
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - John Varga
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Dinesh Khanna
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA.
| | | |
Collapse
|
10
|
Jimenez SA, Piera-Velazquez S. Cellular Transdifferentiation: A Crucial Mechanism of Fibrosis in Systemic Sclerosis. Curr Rheumatol Rev 2024; 20:388-404. [PMID: 37921216 DOI: 10.2174/0115733971261932231025045400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 11/04/2023]
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology with a highly complex pathogenesis that despite extensive investigation is not completely understood. The clinical and pathologic manifestations of the disease result from three distinct processes: 1) Severe and frequently progressive tissue fibrosis causing exaggerated and deleterious accumulation of interstitial collagens and other extracellular matrix molecules in the skin and various internal organs; 2) extensive fibroproliferative vascular lesions affecting small arteries and arterioles causing tissue ischemic alterations; and 3) cellular and humoral immunity abnormalities with the production of numerous autoantibodies, some with very high specificity for SSc. The fibrotic process in SSc is one of the main causes of disability and high mortality of the disease. Owing to its essentially universal presence and the severity of its clinical effects, the mechanisms involved in the development and progression of tissue fibrosis have been extensively investigated, however, despite intensive investigation, the precise molecular mechanisms have not been fully elucidated. Several recent studies have suggested that cellular transdifferentiation resulting in the phenotypic conversion of various cell types into activated myofibroblasts may be one important mechanism. Here, we review the potential role that cellular transdifferentiation may play in the development of severe and often progressive tissue fibrosis in SSc.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| | - Sonsoles Piera-Velazquez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| |
Collapse
|
11
|
Santiago S, Enwereji N, Jiang C, Durrani K, Chaudhry S, Lu J. Ocular and eyelid involvement in collagen vascular diseases. Part II. Dermatomyositis, scleroderma, and sarcoidosis. Clin Dermatol 2024; 42:9-16. [PMID: 37913844 DOI: 10.1016/j.clindermatol.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Collagen vascular disease is a heterogeneous group of autoimmune diseases that affect multiple organ systems. Sjögren syndrome, dermatomyositis, scleroderma, systemic lupus erythematosus, and sarcoidosis are collagen vascular diseases that often present with characteristic cutaneous manifestations. Although less known, various ocular manifestations that affect both external and internal structures of the eye can also be seen in these conditions. Multidisciplinary management between dermatologists and ophthalmologists is essential in the early diagnosis and management of collagen vascular diseases affecting both the skin and eye. In part II of our series, we discuss the ocular manifestations, diagnosis, and therapeutic options of dermatomyositis, scleroderma, and sarcoidosis.
Collapse
Affiliation(s)
- Sueheidi Santiago
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ndidi Enwereji
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, Connecticut, USA
| | - Christina Jiang
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Khayyam Durrani
- Division of Ophthalmology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Sona Chaudhry
- Division of Ophthalmology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jun Lu
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
12
|
Ortiz Wilczyñski JM, Mena HA, Ledesma MM, Olexen CM, Podaza E, Schattner M, Negrotto S, Errasti AE, Carrera Silva EA. The synthetic phospholipid C8-C1P determines pro-angiogenic and pro-reparative features in human macrophages restraining the proinflammatory M1-like phenotype. Front Immunol 2023; 14:1162671. [PMID: 37398671 PMCID: PMC10311553 DOI: 10.3389/fimmu.2023.1162671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Monocytes (Mo) are highly plastic myeloid cells that differentiate into macrophages after extravasation, playing a pivotal role in the resolution of inflammation and regeneration of injured tissues. Wound-infiltrated monocytes/macrophages are more pro-inflammatory at early time points, while showing anti-inflammatory/pro-reparative phenotypes at later phases, with highly dynamic switching depending on the wound environment. Chronic wounds are often arrested in the inflammatory phase with hampered inflammatory/repair phenotype transition. Promoting the tissue repair program switching represents a promising strategy to revert chronic inflammatory wounds, one of the major public health loads. We found that the synthetic lipid C8-C1P primes human CD14+ monocytes, restraining the inflammatory activation markers (HLA-DR, CD44, and CD80) and IL-6 when challenged with LPS, and preventing apoptosis by inducing BCL-2. We also observed increased pseudo-tubule formation of human endothelial-colony-forming cells (ECFCs) when stimulated with the C1P-macrophages secretome. Moreover, C8-C1P-primed monocytes skew differentiation toward pro-resolutive-like macrophages, even in the presence of inflammatory PAMPs and DAMPs by increasing anti-inflammatory and pro-angiogenic gene expression patterns. All these results indicate that C8-C1P could restrain M1 skewing and promote the program of tissue repair and pro-angiogenic macrophage.
Collapse
Affiliation(s)
- Juan Manuel Ortiz Wilczyñski
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Hebe Agustina Mena
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Martin Manuel Ledesma
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Cinthia Mariel Olexen
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
- Institute of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Enrique Podaza
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Mirta Schattner
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Soledad Negrotto
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Andrea Emilse Errasti
- Institute of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Eugenio Antonio Carrera Silva
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| |
Collapse
|
13
|
Mozzicafreddo M, Benfaremo D, Paolini C, Agarbati S, Svegliati Baroni S, Moroncini G. Screening and Analysis of Possible Drugs Binding to PDGFRα: A Molecular Modeling Study. Int J Mol Sci 2023; 24:ijms24119623. [PMID: 37298573 DOI: 10.3390/ijms24119623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/12/2023] Open
Abstract
The platelet-derived growth factor receptor (PDGFR) is a membrane tyrosine kinase receptor involved in several metabolic pathways, not only physiological but also pathological, as in tumor progression, immune-mediated diseases, and viral diseases. Considering this macromolecule as a druggable target for modulation/inhibition of these conditions, the aim of this work was to find new ligands or new information to design novel effective drugs. We performed an initial interaction screening with the human intracellular PDGFRα of about 7200 drugs and natural compounds contained in 5 independent databases/libraries implemented in the MTiOpenScreen web server. After the selection of 27 compounds, a structural analysis of the obtained complexes was performed. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses were also performed to understand the physicochemical properties of identified compounds to increase affinity and selectivity for PDGFRα. Among these 27 compounds, the drugs Bafetinib, Radotinib, Flumatinib, and Imatinib showed higher affinity for this tyrosine kinase receptor, lying in the nanomolar order, while the natural products included in this group, such as curcumin, luteolin, and epigallocatechin gallate (EGCG), showed sub-micromolar affinities. Although experimental studies are mandatory to fully understand the mechanisms behind PDGFRα inhibitors, the structural information obtained through this study could provide useful insight into the future development of more effective and targeted treatments for PDGFRα-related diseases, such as cancer and fibrosis.
Collapse
Affiliation(s)
- Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Devis Benfaremo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Silvia Svegliati Baroni
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| |
Collapse
|
14
|
Zhao K, Kong C, Shi N, Jiang J, Li P. Potential angiogenic, immunomodulatory, and antifibrotic effects of mesenchymal stem cell-derived extracellular vesicles in systemic sclerosis. Front Immunol 2023; 14:1125257. [PMID: 37251412 PMCID: PMC10213547 DOI: 10.3389/fimmu.2023.1125257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Systemic sclerosis (SSc) is an intricate systemic autoimmune disease with pathological features such as vascular injury, immune dysregulation, and extensive fibrosis of the skin and multiple organs. Treatment options are limited; however, recently, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been acknowledged in preclinical and clinical trials as being useful in treating autoimmune diseases and are likely superior to MSCs alone. Recent research has also shown that MSC-EVs can ameliorate SSc and the pathological changes in vasculopathy, immune dysfunction, and fibrosis. This review summarizes the therapeutic effects of MSC-EVs on SSc and the mechanisms that have been discovered to provide a theoretical basis for future studies on the role of MSC-EVs in treating SSc.
Collapse
Affiliation(s)
- Kelin Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
15
|
Moccaldi B, De Michieli L, Binda M, Famoso G, Depascale R, Perazzolo Marra M, Doria A, Zanatta E. Serum Biomarkers in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044178. [PMID: 36835590 PMCID: PMC9967966 DOI: 10.3390/ijms24044178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening complication of connective tissue diseases (CTDs) characterised by increased pulmonary arterial pressure and pulmonary vascular resistance. CTD-PAH is the result of a complex interplay among endothelial dysfunction and vascular remodelling, autoimmunity and inflammatory changes, ultimately leading to right heart dysfunction and failure. Due to the non-specific nature of the early symptoms and the lack of consensus on screening strategies-except for systemic sclerosis, with a yearly transthoracic echocardiography as recommended-CTD-PAH is often diagnosed at an advanced stage, when the pulmonary vessels are irreversibly damaged. According to the current guidelines, right heart catheterisation is the gold standard for the diagnosis of PAH; however, this technique is invasive, and may not be available in non-referral centres. Hence, there is a need for non-invasive tools to improve the early diagnosis and disease monitoring of CTD-PAH. Novel serum biomarkers may be an effective solution to this issue, as their detection is non-invasive, has a low cost and is reproducible. Our review aims to describe some of the most promising circulating biomarkers of CTD-PAH, classified according to their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Laura De Michieli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Famoso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Roberto Depascale
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212190
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
16
|
The Molecular Mechanisms of Systemic Sclerosis-Associated Lung Fibrosis. Int J Mol Sci 2023; 24:ijms24032963. [PMID: 36769282 PMCID: PMC9917655 DOI: 10.3390/ijms24032963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disorder that affects the connective tissues and has the highest mortality rate among the rheumatic diseases. One of the hallmarks of SSc is fibrosis, which may develop systemically, affecting the skin and virtually any visceral organ in the body. Fibrosis of the lungs leads to interstitial lung disease (ILD), which is currently the leading cause of death in SSc. The identification of effective treatments to stop or reverse lung fibrosis has been the main challenge in reducing SSc mortality and improving patient outcomes and quality of life. Thus, understanding the molecular mechanisms, altered pathways, and their potential interactions in SSc lung fibrosis is key to developing potential therapies. In this review, we discuss the diverse molecular mechanisms involved in SSc-related lung fibrosis to provide insights into the altered homeostasis state inherent to this fatal disease complication.
Collapse
|
17
|
Jo S, Lee SH, Park J, Nam B, Kim H, Youn J, Lee S, Kim TJ, Sung IH, Choi SH, Park YS, Inman RD, Kim TH. Platelet-Derived Growth Factor B Is a Key Element in the Pathological Bone Formation of Ankylosing Spondylitis. J Bone Miner Res 2023; 38:300-312. [PMID: 36422470 DOI: 10.1002/jbmr.4751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Enthesophyte formation plays a crucial role in the development of spinal ankylosis in ankylosing spondylitis (AS). We aimed to investigate the role of platelet-derived growth factor B (PDGFB) in enthesophyte formation of AS using in vitro and in vivo models and to determine the association between PDGFB and spinal progression in AS. Serum PDGFB levels were measured in AS patients and healthy controls (HC). Human entheseal tissues attached to facet joints or spinous processes were harvested at the time of surgery and investigated for bone-forming activity. The impact of a pharmacological agonist and antagonist of platelet-derived growth factor B receptor (PDGFRB) were investigated respectively in curdlan-treated SKG mice. PDGFB levels were elevated in AS sera and correlated with radiographic progression of AS in the spine. Mature osteoclasts secreting PDGFB proteins were increased in the AS group compared with HC and were observed in bony ankylosis tissues of AS. Expression of PDGFRB was significantly elevated in the spinous enthesis and facet joints of AS compared with controls. Moreover, recombinant PDGFB treatment accelerated bone mineralization of enthesis cells, which was pronounced in AS, whereas PDGFRB inhibition efficiently reduced the PDGFB-induced bone mineralization. Also, PDGFRB inhibition attenuated the severity of arthritis and enthesophyte formation at the joints of curdlan-treated SKG mice. This study suggests that regulating PDGFB/PDGFRB signaling could be a novel therapeutic strategy to block key pathophysiological processes of AS. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, Republic of Korea
| | - Jinsung Park
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, Republic of Korea
| | - Bora Nam
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, Republic of Korea.,Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jeehee Youn
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seunghun Lee
- Department of Radiology, Hanyang University Hospital for Rheumatic Disease, Seoul, Republic of Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Il-Hoon Sung
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Robert D Inman
- Shroeder Arthritis Institute, University Health Network, University of Toronto, Toronto, Canada
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, Republic of Korea.,Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| |
Collapse
|
18
|
Beaven E, Kumar R, Bhatt HN, Esquivel SV, Nurunnabi M. Myofibroblast specific targeting approaches to improve fibrosis treatment. Chem Commun (Camb) 2022; 58:13556-13571. [PMID: 36445310 PMCID: PMC9946855 DOI: 10.1039/d2cc04825f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrosis has been shown to develop in individuals with underlying health conditions, especially chronic inflammatory diseases. Fibrosis is often diagnosed in various organs, including the liver, lungs, kidneys, heart, and skin, and has been described as excessive accumulation of extracellular matrix that can affect specific organs in the body or systemically throughout the body. Fibrosis as a chronic condition can result in organ failure and result in death of the individual. Understanding and identification of specific biomarkers associated with fibrosis has emerging potential in the development of diagnosis and targeting treatment modalities. Therefore, in this review, we will discuss multiple signaling pathways such as TGF-β, collagen, angiotensin, and cadherin and outline the chemical nature of the different signaling pathways involved in fibrogenesis as well as the mechanisms. Although it has been well established that TGF-β is the main catalyst initiating and driving multiple pathways for fibrosis, targeting TGF-β can be challenging as this molecule regulates essential functions throughout the body that help to keep the body in homeostasis. We also discuss collagen, angiotensin, and cadherins and their role in fibrosis. We comprehensively discuss the various delivery systems used to target collagen, angiotensin, and cadherins to manage fibrosis. Nevertheless, understanding the steps by which this molecule drives fibrosis development can aid in the development of specific targets of its cascading mechanism. Throughout the review, we will demonstrate the mechanism of fibrosis targeting to improve targeting delivery and therapy.
Collapse
Affiliation(s)
- Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Stephanie V Esquivel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| |
Collapse
|
19
|
Sun C, Cai D, Chen SY. ADAR1 promotes systemic sclerosis via modulating classic macrophage activation. Front Immunol 2022; 13:1051254. [PMID: 36532023 PMCID: PMC9751044 DOI: 10.3389/fimmu.2022.1051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction As a multisystem autoimmune disorder disease, systemic sclerosis (SSc) is characterized by inflammation and fibrosis in the skin and other internal organs. However, mechanisms underlying the inflammatory response that drives the development of SSc remain largely unknown. Methods ADAR1 heterozygous knockout (AD1+/-) mice and myeloid-specific ADAR1 knockout mice were used to determine the function of ADAR1 in SSc. Histopathological analyses and western blot confirmed the role of ADAR1 in bleomycin-induced increased skin and lung fibrosis. Results In this study, we discover that adenosine deaminase acting on RNA (ADAR1), a deaminase converting adenosine to inosine (i.e., RNA editing) in RNA, is abundantly expressed in macrophages in the early stage of bleomycin-induced SSc. Importantly, ADAR1 is essential for SSc formation and indispensable for classical macrophage activation because ADAR1 deficiency in macrophages significantly ameliorates skin and lung sclerosis and inhibits the expression of inflammation mediator inducible NO synthase (iNOS) and IL-1β in macrophages. Mechanistically, deletion of ADAR1 blocks macrophage activation through diminishing NF-κB signaling. Discussion Our studies reveal that ADAR1 promotes macrophage activation in the onset of SSc. Thus, targeting ADAR1 could be a potential novel therapeutic strategy for treating sclerosis formation.
Collapse
Affiliation(s)
- Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
20
|
Choi S, Ferrari G, Moyle LA, Mackinlay K, Naouar N, Jalal S, Benedetti S, Wells C, Muntoni F, Tedesco FS. Assessing and enhancing migration of human myogenic progenitors using directed iPS cell differentiation and advanced tissue modelling. EMBO Mol Med 2022; 14:e14526. [PMID: 36161772 PMCID: PMC9549733 DOI: 10.15252/emmm.202114526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
Muscle satellite stem cells (MuSCs) are responsible for skeletal muscle growth and regeneration. Despite their differentiation potential, human MuSCs have limited in vitro expansion and in vivo migration capacity, limiting their use in cell therapies for diseases affecting multiple skeletal muscles. Several protocols have been developed to derive MuSC-like progenitors from human induced pluripotent stem (iPS) cells (hiPSCs) to establish a source of myogenic cells with controllable proliferation and differentiation. However, current hiPSC myogenic derivatives also suffer from limitations of cell migration, ultimately delaying their clinical translation. Here we use a multi-disciplinary approach including bioinformatics and tissue engineering to show that DLL4 and PDGF-BB improve migration of hiPSC-derived myogenic progenitors. Transcriptomic analyses demonstrate that this property is conserved across species and multiple hiPSC lines, consistent with results from single cell motility profiling. Treated cells showed enhanced trans-endothelial migration in transwell assays. Finally, increased motility was detected in a novel humanised assay to study cell migration using 3D artificial muscles, harnessing advanced tissue modelling to move hiPSCs closer to future muscle gene and cell therapies.
Collapse
Affiliation(s)
- SungWoo Choi
- The Francis Crick InstituteLondonUK
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Giulia Ferrari
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Louise A Moyle
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
- Present address:
Institute of Biomedical EngineeringUniversity of TorontoTorontoONCanada
| | - Kirsty Mackinlay
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
- Present address:
Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Naira Naouar
- Institut de Biologie Paris Seine FR3631, Plateforme de Bioinformatique ARTbioSorbonne UniversitéParisFrance
| | - Salma Jalal
- The Francis Crick InstituteLondonUK
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Sara Benedetti
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Christine Wells
- Centre for Stem Cell SystemsThe University of MelbourneMelbourneVICAustralia
| | - Francesco Muntoni
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
- Dubowitz Neuromuscular CentreUCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for ChildrenLondonUK
| | - Francesco Saverio Tedesco
- The Francis Crick InstituteLondonUK
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
- Dubowitz Neuromuscular CentreUCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for ChildrenLondonUK
| |
Collapse
|
21
|
Jia Y, Shao JH, Zhang KW, Zou ML, Teng YY, Tian F, Chen MN, Chen WW, Yuan ZD, Wu JJ, Yuan FL. Emerging Effects of Resveratrol on Wound Healing: A Comprehensive Review. Molecules 2022; 27:molecules27196736. [PMID: 36235270 PMCID: PMC9570564 DOI: 10.3390/molecules27196736] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.
Collapse
Affiliation(s)
- Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Jia-Hao Shao
- Wuxi Clinical Medicine Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ying-Ying Teng
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Fan Tian
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Meng-Nan Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Wei-Wei Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Zheng-Dong Yuan
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
- Correspondence: ; Tel./Fax: +86-510-82603332
| |
Collapse
|
22
|
Bratoiu I, Burlui AM, Cardoneanu A, Macovei LA, Richter P, Rusu-Zota G, Rezus C, Badescu MC, Szalontay A, Rezus E. The Involvement of Smooth Muscle, Striated Muscle, and the Myocardium in Scleroderma: A Review. Int J Mol Sci 2022; 23:ijms231912011. [PMID: 36233313 PMCID: PMC9569846 DOI: 10.3390/ijms231912011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by heterogeneous changes involving numerous organs and systems. The currently available data indicate that muscle injury (both smooth and striated muscles) is widespread and leads to significant morbidity, either directly or indirectly. From the consequences of smooth muscle involvement in the tunica media of blood vessels or at the level of the digestive tract, to skeletal myopathy (which may be interpreted strictly in the context of SSc, or as an overlap with idiopathic inflammatory myopathies), muscular injury in scleroderma translates to a number of notable clinical manifestations. Heart involvement in SSc is heterogenous depending on the definition used in the various studies. The majority of SSc patients experience a silent form of cardiac disease. The present review summarizes certain important features of myocardial, as well as smooth and skeletal muscle involvement in SSc. Further research is needed to fully describe and understand the pathogenic pathways and the implications of muscle involvement in scleroderma.
Collapse
Affiliation(s)
- Ioana Bratoiu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Alexandra Maria Burlui
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Correspondence: (A.M.B.); (C.R.)
| | - Anca Cardoneanu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Luana Andreea Macovei
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Gabriela Rusu-Zota
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (A.M.B.); (C.R.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andreea Szalontay
- Department of Psychiatry, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
23
|
Kawashima-Vasconcelos MY, Santana-Gonçalves M, Zanin-Silva DC, Malmegrim KCR, Oliveira MC. Reconstitution of the immune system and clinical correlates after stem cell transplantation for systemic sclerosis. Front Immunol 2022; 13:941011. [PMID: 36032076 PMCID: PMC9403547 DOI: 10.3389/fimmu.2022.941011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease that includes fibrosis, diffuse vasculopathy, inflammation, and autoimmunity. Autologous hematopoietic stem cell transplantation (auto-HSCT) is considered for patients with severe and progressive SSc. In recent decades, knowledge about patient management and clinical outcomes after auto-HSCT has significantly improved. Mechanistic studies have contributed to increasing the comprehension of how profound and long-lasting are the modifications to the immune system induced by transplantation. This review revisits the immune monitoring studies after auto-HSCT for SSc patients and how they relate to clinical outcomes. This understanding is essential to further improve clinical applications of auto-HSCT and enhance patient outcomes.
Collapse
Affiliation(s)
- Marianna Y. Kawashima-Vasconcelos
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Internal Medicine Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maynara Santana-Gonçalves
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Oncology, Stem Cell and Cell-Therapy Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Djúlio C. Zanin-Silva
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Basic and Applied Immunology Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C. R. Malmegrim
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Human Cytomegalovirus and Human Herpesvirus 6 Coinfection of Dermal Fibroblasts Enhances the Pro-Inflammatory Pathway Predisposing to Fibrosis: The Possible Impact on Systemic Sclerosis. Microorganisms 2022; 10:microorganisms10081600. [PMID: 36014018 PMCID: PMC9415275 DOI: 10.3390/microorganisms10081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease likely triggered by genetic and environmental factors, including viral infections. Human cytomegalovirus (HCMV) and human herpesvirus 6A species (HHV-6A) have been associated with SSc, based on in vivo and in vitro evidence, but the data are still inconclusive. Furthermore, despite both viruses being highly prevalent in humans and able to exacerbate each other’s effects, no data are available on their joint effects. Hence, we aimed to study their simultaneous impact on the expression of cell factors correlated with fibrosis and apoptosis in in vitro coinfected fibroblasts, representing the main target cell type in SSc. The results, obtained by a microarray detecting 84 fibrosis/apoptosis-associated factors, indicated that coinfected cells underwent higher and more sustained expression of fibrosis-associated parameters compared with single-infected cells. Thus, the data, for the first time, suggest that HCMV and HHV-6A may cooperate in inducing alterations potentially leading to cell fibrosis, thus further supporting their joint role in SSc. However, further work is required to definitively answer whether β-herpesviruses are causally linked to the disease and to enable the possible use of targeted antiviral treatments to improve clinical outcomes.
Collapse
|
25
|
Sanges S, Guerrier T, Duhamel A, Guilbert L, Hauspie C, Largy A, Balden M, Podevin C, Lefèvre G, Jendoubi M, Speca S, Hachulla É, Sobanski V, Dubucquoi S, Launay D. Soluble markers of B cell activation suggest a role of B cells in the pathogenesis of systemic sclerosis-associated pulmonary arterial hypertension. Front Immunol 2022; 13:954007. [PMID: 35967377 PMCID: PMC9374103 DOI: 10.3389/fimmu.2022.954007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Soluble markers of B cell activation are interesting diagnostic and prognostic tools in autoimmune diseases. Data in systemic sclerosis (SSc) are scarce and few studies focused on their association with disease characteristics. Methods 1. Serum levels of 14 B cell biomarkers (β2-microglobulin, rheumatoid factor (RF), immunoglobulins (Ig) G, IgA, IgM, BAFF, APRIL, soluble (s)TACI, sBCMA sCD21, sCD23, sCD25, sCD27, CXCL13) were measured in SSc patients and healthy controls (HC). 2. Associations between these biomarkers and SSc characteristics were assessed. 3. The pathophysiological relevance of identified associations was explored by studying protein production in B cell culture supernatant. Results In a discovery panel of 80 SSc patients encompassing the broad spectrum of disease manifestations, we observed a higher frequency of RF positivity, and increased levels of β2-microglobulin, IgG and CXCL13 compared with HC. We found significant associations between several biomarkers and SSc characteristics related to disease phenotype, activity and severity. Especially, serum IgG levels were associated with pulmonary hypertension (PH); β2-microglobulin with Nt-pro-BNP and DLCO; and BAFF with peak tricuspid regurgitation velocity (TRV). In a validation cohort of limited cutaneous SSc patients without extensive ILD, we observed lower serum IgG levels, and higher β2-microglobulin, sBCMA, sCD23 and sCD27 levels in patients with pulmonary arterial hypertension (PAH). BAFF levels strongly correlated with Nt-pro-BNP levels, FVC/DLCO ratio and peak TRV in SSc-PAH patients. Cultured SSc B cells showed increased production of various angiogenic factors (angiogenin, angiopoietin-1, VEGFR-1, PDGF-AA, MMP-8, TIMP-1, L-selectin) and decreased production of angiopoietin-2 compared to HC. Conclusion Soluble markers of B cell activation could be relevant tools to assess organ involvements, activity and severity in SSc. Their associations with PAH could plead for a role of B cell activation in the pathogenesis of pulmonary microangiopathy. B cells may contribute to SSc vasculopathy through production of angiogenic mediators.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Thomas Guerrier
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Alain Duhamel
- Univ. Lille, CHU Lille, ULR2694 – METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Lucile Guilbert
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Carine Hauspie
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Alexis Largy
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Maïté Balden
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Céline Podevin
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
| | - Guillaume Lefèvre
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Manel Jendoubi
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Silvia Speca
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Éric Hachulla
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Vincent Sobanski
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - David Launay
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| |
Collapse
|
26
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
27
|
Zanin-Silva DC, Santana-Gonçalves M, Kawashima-Vasconcelos MY, Lima-Júnior JR, Dias JBE, Moraes DA, Covas DT, Malmegrim KCR, Ramalho L, Oliveira MC. Autologous hematopoietic stem cell transplantation promotes connective tissue remodeling in systemic sclerosis patients. Arthritis Res Ther 2022; 24:95. [PMID: 35488348 PMCID: PMC9052524 DOI: 10.1186/s13075-022-02779-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autologous hematopoietic stem cell transplantation (AHSCT) treats patients with severe and progressive systemic sclerosis (SSc). However, basic mechanisms associated with the therapeutic efficacy of the procedure are not entirely understood. We aimed to evaluate how AHSCT affects skin fibrosis in SSc patients. METHODS Clinical data, serum, and skin samples from 39 SSc patients who underwent AHSCT were retrospectively evaluated. Skin biopsies were analyzed by immunohistochemistry with anti-MMP-1, -MMP-2, -MMP-3, -MMP-9, -TIMP-1, -α-SMA, -TGF-β, and -NF-κB p65 antibodies, and stained with hematoxylin and eosin and picrosirius red to assess skin thickness and collagen density, respectively. Serum samples were evaluated by Multiplex Assay for COL1A1, COL4A1, FGF-1, MMP-1, MMP-3, MMP-12, MMP-13, PDGF-AA, PDGF-BB, S100A9, and TIMP-1 levels and compared to healthy controls. RESULTS After AHSCT, SSc patients showed clinical improvement in skin involvement, assessed by modified Rodnan's skin score (mRSS). Histologically, collagen density and skin thickness decreased after AHSCT. Immunohistochemical analyses showed increased expression of MMP-2, MMP-3, MMP-9, and TIMP-1 after AHSCT, whereas expression of NF-κB p65 decreased. At baseline, serum levels of COL4A1 and S100A9 were higher than in healthy controls. Serum levels of S100A9 normalized after AHCST in SSc patients compared to controls. Serum levels of PDGF-AA, PDGF-BB, TIMP-1, and MMP-1 decreased, while COL1A1 increased after AHSCT in SSc patients. No changes were detected in MMP-3, MMP-12, MMP-13, and FGF-1 serum levels after AHSCT. CONCLUSIONS Our results suggest that the therapeutic effects of AHSCT on skin fibrosis are related to changes in molecules associated with connective tissue maintenance and inflammation in SSc.
Collapse
Affiliation(s)
- Djúlio C Zanin-Silva
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Basic and Applied Immunology Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maynara Santana-Gonçalves
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Oncology, Stem cell and Cell-Therapy Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marianna Y Kawashima-Vasconcelos
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Internal Medicine Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João R Lima-Júnior
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Immuno-Oncology, Beckman Research Institute City of Hope, Duarte, CA, USA
| | - Juliana B E Dias
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14048-900, Brazil
| | - Daniela A Moraes
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14048-900, Brazil
| | - Dimas T Covas
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Oncology, Stem cell and Cell-Therapy Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Leandra Ramalho
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Oncology, Stem cell and Cell-Therapy Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14048-900, Brazil.
| |
Collapse
|
28
|
Gultekin O, Gonzalez-Molina J, Hardell E, Moyano-Galceran L, Mitsios N, Mulder J, Kokaraki G, Isaksson A, Sarhan D, Lehti K, Carlson JW. FOXP3+ T cells in uterine sarcomas are associated with favorable prognosis, low extracellular matrix expression and reduced YAP activation. NPJ Precis Oncol 2021; 5:97. [PMID: 34799669 PMCID: PMC8604926 DOI: 10.1038/s41698-021-00236-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/22/2021] [Indexed: 02/03/2023] Open
Abstract
Uterine sarcomas are rare but deadly malignancies without effective treatment. Immunotherapy is a promising new approach to treat these tumors but has shown heterogeneous effects in sarcoma patients. With the goal of identifying key factors for improved patient treatment, we characterized the tumor immune landscape in 58 uterine sarcoma cases with full clinicopathological annotation. Immune cell characterization revealed the overall prevalence of FOXP3+ cells and pro-tumor M2-like macrophages. Hierarchical clustering of patients showed four tumor type-independent immune signatures, where infiltration of FOXP3+ cells and M1-like macrophages associated with favorable prognosis. High CD8+/FOXP3+ ratio in UUS and ESS correlated with poor survival, upregulation of immunosuppressive markers, extracellular matrix (ECM)-related genes and proteins, and YAP activation. This study shows that uterine sarcomas present distinct immune signatures with prognostic value, independent of tumor type, and suggests that targeting the ECM could be beneficial for future treatments.
Collapse
Affiliation(s)
- Okan Gultekin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jordi Gonzalez-Molina
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elin Hardell
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas Mitsios
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Kokaraki
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Isaksson
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. .,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Yamada M, Hirai Y, Inoue D, Komatsu S, Uchida T, Kojima T, Tomiyasu T, Yoshikawa N, Oda T. Increased expression of epimorphin in a peritoneal fibrosis mouse model. Perit Dial Int 2021; 42:522-529. [PMID: 34641723 DOI: 10.1177/08968608211051572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Long-term peritoneal dialysis results in functional and histopathological alterations of the peritoneal membrane, leading to peritoneal fibrosis (PF). The mechanism of PF has not been fully elucidated, and at present there is no effective therapy for PF. Epimorphin is a mesenchymal protein that not only regulates morphogenesis in organ development but is implicated in tissue repair. However, the role of epimorphin in PF has not yet been clarified. METHODS PF was induced in C57/Bl6 mice by intraperitoneal injection of chlorhexidine gluconate (CG-injected mice) three times a week for 3 weeks. The parietal peritoneum was subsequently dissected and assessed by Masson's trichrome staining, and epimorphin expression was analysed by immunohistochemistry and real-time reverse transcription polymerase chain reaction (RT-PCR). Furthermore, epimorphin-positive regions were analysed by multiple immunofluorescence staining using fibrosis-associated markers. In addition, normal rat fibroblast cells (NRK-49F) were treated with transforming growth factor-β (TGF-β) in the presence or absence of epimorphin. The expression of fibrosis-associated markers was assessed by real-time RT-PCR. RESULTS In CG-injected mice, Masson's trichrome staining showed marked thickening of the submesothelial compact zone. Weak epimorphin expression was observed in the narrow submesothelial compact zone beneath the mesothelial cells in control mice; however, epimorphin expression was stronger in the submesothelial compact zone in CG-injected mice. Epimorphin expression was observed mainly in α-smooth muscle actin (α-SMA)-positive myofibroblasts. Epimorphin suppressed the TGF-β-induced upregulation of α-SMA and platelet-derived growth factor receptor-β in cultured cells. CONCLUSIONS Our results suggest that epimorphin may be a therapeutic target for fibrotic diseases of the peritoneum.
Collapse
Affiliation(s)
- Muneharu Yamada
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Dan Inoue
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Shuhei Komatsu
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Takahiro Uchida
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Tadasu Kojima
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Tomohiro Tomiyasu
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Noriko Yoshikawa
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Takashi Oda
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| |
Collapse
|
30
|
Wang Y, Xiao X, Wang X, Guo F, Wang X. Identification of differentially expressed long noncoding RNAs and pathways in liver tissues from rats with hepatic fibrosis. PLoS One 2021; 16:e0258194. [PMID: 34597331 PMCID: PMC8486097 DOI: 10.1371/journal.pone.0258194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
To identify long non-coding RNAs (lncRNAs) and their potential roles in hepatic fibrosis in rat liver issues induced by CCl4, lncRNAs and genes were analyzed in fibrotic rat liver tissues by RNA sequencing and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Differentially expressed (DE) lncRNAs (DE-lncRNAs) and genes were subjected to bioinformatics analysis and used to construct a co-expression network. We identified 10 novel DE-lncRNAs that were downregulated during the hepatic fibrosis process. The cis target gene of DE-lncRNA, XLOC118358, was Met, and the cis target gene of the other nine DE-lncRNAs, XLOC004600, XLOC004605, XLOC004610, XLOC004611, XLOC004568, XLOC004580 XLOC004598, XLOC004601, and XLOC004602 was Nox4. The results of construction of a pathway-DEG co-expression network show that lncRNA-Met and lncRNAs-Nox4 were involved in oxidation-reduction processes and PI3K/Akt signaling pathway. Our results identified 10 DE-lncRNAs related to hepatic fibrosis, and the potential roles of DE-lncRNAs and target genes in hepatic fibrosis might provide new therapeutic strategies for hepatic fibrosis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Traditional Chinese Medicine, The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiong Xiao
- Department of Traditional Chinese Medicine, The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- Department of Liver Disease, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Feng Guo
- Department of Liver Disease, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Xiaozhong Wang
- Department of Liver Disease, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| |
Collapse
|
31
|
Chang CJ, Lin CF, Chen BC, Lin PY, Chen CL. SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 2021; 74:131-142. [PMID: 34590785 DOI: 10.1002/iub.2559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
Chronic respiratory diseases (CRDs), including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), lung cancer, and asthma, are significant global health problems due to their prevalence and rising incidence. The roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in controlling tyrosine phosphorylation of targeting proteins modulate multiple physiological cellular responses and contribute to the pathogenesis of CRDs. Src homology-2 domain-containing PTP2 (SHP2) plays a pivotal role in modulating downstream growth factor receptor signaling and cytoplasmic PTKs, including MAPK/ERK, PI3K/AKT, and JAK/STAT pathways, to regulate cell survival and proliferation. In addition, SHP2 mutation and activation are commonly implicated in tumorigenesis. However, little is known about SHP2 in chronic pulmonary inflammation and fibrosis. This review discusses the potential involvement of SHP2 deregulation in chronic pulmonary inflammation and fibrosis, as well as the therapeutic effects of targeting SHP2 in CRDs.
Collapse
Affiliation(s)
- Chun-Jung Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Yun Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
32
|
Paramos-de-Carvalho D, Martins I, Cristóvão AM, Dias AF, Neves-Silva D, Pereira T, Chapela D, Farinho A, Jacinto A, Saúde L. Targeting senescent cells improves functional recovery after spinal cord injury. Cell Rep 2021; 36:109334. [PMID: 34233184 DOI: 10.1016/j.celrep.2021.109334] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Persistent senescent cells (SCs) are known to underlie aging-related chronic disorders, but it is now recognized that SCs may be at the center of tissue remodeling events, namely during development or organ repair. In this study, we show that two distinct senescence profiles are induced in the context of a spinal cord injury between the regenerative zebrafish and the scarring mouse. Whereas induced SCs in zebrafish are progressively cleared out, they accumulate over time in mice. Depletion of SCs in spinal-cord-injured mice, with different senolytic drugs, improves locomotor, sensory, and bladder functions. This functional recovery is associated with improved myelin sparing, reduced fibrotic scar, and attenuated inflammation, which correlate with a decreased secretion of pro-fibrotic and pro-inflammatory factors. Targeting SCs is a promising therapeutic strategy not only for spinal cord injuries but potentially for other organs that lack regenerative competence.
Collapse
Affiliation(s)
- Diogo Paramos-de-Carvalho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Isaura Martins
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Margarida Cristóvão
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Filipa Dias
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Dalila Neves-Silva
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Telmo Pereira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Diana Chapela
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - António Jacinto
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular - João Lobo Antunes e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
33
|
Buitrago-Molina LE, Dywicki J, Noyan F, Schepergerdes L, Pietrek J, Lieber M, Schlue J, Manns MP, Wedemeyer H, Jaeckel E, Hardtke-Wolenski M. Anti-CD20 Therapy Alters the Protein Signature in Experimental Murine AIH, but Not Exclusively towards Regeneration. Cells 2021; 10:cells10061471. [PMID: 34208308 PMCID: PMC8231180 DOI: 10.3390/cells10061471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Autoimmune hepatitis (AIH) is a chronic autoimmune inflammatory disease that usually requires lifelong immunosuppression. Frequent recurrences after the discontinuation of therapy indicate that intrahepatic immune regulation is not restored by current treatments. Studies of other autoimmune diseases suggest that temporary depletion of B cells can improve disease progression in the long term. Methods: We tested a single administration of anti-CD20 antibodies to reduce B cells and the amount of IgG to induce intrahepatic immune tolerance. We used our experimental murine AIH (emAIH) model and treated the mice with anti-CD20 during the late stage of the disease. Results: After treatment, the mice showed the expected reductions in B cells and serum IgGs, but no improvements in pathology. However, all treated animals showed a highly altered serum protein expression pattern, which was a balance between inflammation and regeneration. Conclusions: In conclusion, anti-CD20 therapy did not produce clinically measurable results because it triggered inflammation, as well as regeneration, at the proteomic level. This finding suggests that anti-CD20 is ineffective as a sole treatment for AIH or emAIH.
Collapse
Affiliation(s)
- Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Janine Dywicki
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Lena Schepergerdes
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Julia Pietrek
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Maren Lieber
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Jerome Schlue
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Correspondence: ; Tel.: +49-201-723-6081; Fax: +49-201-723-6915
| |
Collapse
|
34
|
Frith K, Munier CML, Hastings L, Mowat D, Wilson M, Seddiki N, Macintosh R, Kelleher AD, Gray P, Zaunders JJ. The Role of ZEB2 in Human CD8 T Lymphocytes: Clinical and Cellular Immune Profiling in Mowat-Wilson Syndrome. Int J Mol Sci 2021; 22:ijms22105324. [PMID: 34070208 PMCID: PMC8158478 DOI: 10.3390/ijms22105324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The Zeb2 gene encodes a transcription factor (ZEB2) that acts as an important immune mediator in mice, where it is expressed in early-activated effector CD8 T cells, and limits effector differentiation. Zeb2 homozygous knockout mice have deficits in CD8 T cells and NK cells. Mowat–Wilson syndrome (MWS) is a rare genetic disease resulting from heterozygous mutations in ZEB2 causing disease by haploinsufficiency. Whether ZEB2 exhibits similar expression patterns in human CD8 T cells is unknown, and MWS patients have not been comprehensively studied to identify changes in CD8 lymphocytes and NK cells, or manifestations of immunodeficiency. By using transcriptomic assessment, we demonstrated that ZEB2 is expressed in early-activated effector CD8 T cells of healthy human volunteers following vaccinia inoculation and found evidence of a role for TGFß-1/SMAD signaling in these cells. A broad immunological assessment of six genetically diagnosed MWS patients identified two patients with a history of recurrent sinopulmonary infections, one of whom had recurrent oral candidiasis, one with lymphopenia, two with thrombocytopenia and three with detectable anti-nuclear antibodies. Immunoglobulin levels, including functional antibody responses to protein and polysaccharide vaccination, were normal. The MWS patients had a significantly lower CD8 T cell subset as % of lymphocytes, compared to healthy controls (median 16.4% vs. 25%, p = 0.0048), and resulting increased CD4:CD8 ratio (2.6 vs. 1.8; p = 0.038). CD8 T cells responded normally to mitogen stimulation in vitro and memory CD8 T cells exhibited normal proportions of subsets with important tissue-specific homing markers and cytotoxic effector molecules. There was a trend towards a decrease in the CD8 T effector memory subset (3.3% vs. 5.9%; p = 0.19). NK cell subsets were normal. This is the first evidence that ZEB2 is expressed in early-activated human effector CD8 T cells, and that haploinsufficiency of ZEB2 in MWS patients had a slight effect on immune function, skewing T cells away from CD8 differentiation. To date there is insufficient evidence to support an immunodeficiency occurring in MWS patients.
Collapse
Affiliation(s)
- Katie Frith
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (K.F.); (C.M.L.M.); (J.J.Z.)
| | - C. Mee Ling Munier
- The Kirby Institute for Infection and Immunity in Society, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence: (K.F.); (C.M.L.M.); (J.J.Z.)
| | - Lucy Hastings
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
| | - David Mowat
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
| | - Meredith Wilson
- Department of Clinical Genetics, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia;
| | - Nabila Seddiki
- INSERM U955 Eq16, Vaccine Research Institute and Université Paris Est Créteil, F-94010 Créteil, France;
| | - Rebecca Macintosh
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
| | - Anthony D. Kelleher
- The Kirby Institute for Infection and Immunity in Society, UNSW Sydney, Sydney, NSW 2052, Australia;
- Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Paul Gray
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - John James Zaunders
- The Kirby Institute for Infection and Immunity in Society, UNSW Sydney, Sydney, NSW 2052, Australia;
- Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
- Correspondence: (K.F.); (C.M.L.M.); (J.J.Z.)
| |
Collapse
|
35
|
Mendoza FA, Piera-Velazquez S, Jimenez SA. Tyrosine kinases in the pathogenesis of tissue fibrosis in systemic sclerosis and potential therapeutic role of their inhibition. Transl Res 2021; 231:139-158. [PMID: 33422651 DOI: 10.1016/j.trsl.2021.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
Systemic sclerosis (SSc) is an idiopathic autoimmune disease with a heterogeneous clinical phenotype ranging from limited cutaneous involvement to rapidly progressive diffuse SSc. The most severe SSc clinical and pathologic manifestations result from an uncontrolled fibrotic process involving the skin and various internal organs. The molecular mechanisms responsible for the initiation and progression of the SSc fibrotic process have not been fully elucidated. Recently it has been suggested that tyrosine protein kinases play a role. The implicated kinases include receptor-activated tyrosine kinases and nonreceptor tyrosine kinases. The receptor kinases are activated following specific binding of growth factors (platelet-derived growth factor, fibroblast growth factor, or vascular endothelial growth factor). Other receptor kinases are the discoidin domain receptors activated by binding of various collagens, the ephrin receptors that are activated by ephrins and the angiopoetin-Tie-2s receptors. The nonreceptor tyrosine kinases c-Abl, Src, Janus, and STATs have also been shown to participate in SSc-associated tissue fibrosis. Currently, there are no effective disease-modifying therapies for SSc-associated tissue fibrosis. Therefore, extensive investigation has been conducted to examine whether tyrosine kinase inhibitors (TKIs) may exert antifibrotic effects. Here, we review the role of receptor and nonreceptor tyrosine kinases in the pathogenesis of the frequently progressive cutaneous and systemic fibrotic alterations in SSc, and the potential of TKIs as SSc disease-modifying antifibrotic therapeutic agents.
Collapse
Affiliation(s)
- Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
36
|
Zhao M, Wu J, Wu H, Sawalha AH, Lu Q. Clinical Treatment Options in Scleroderma: Recommendations and Comprehensive Review. Clin Rev Allergy Immunol 2021; 62:273-291. [PMID: 33449302 DOI: 10.1007/s12016-020-08831-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
There are two major clinical subsets of scleroderma: (i) systemic sclerosis (SSc) is a complex systemic autoimmune disorder characterized by inflammation, vasculopathy, and excessive fibrosis of the skin and multiple internal organs and (ii) localized scleroderma (LoS), also known as morphea, is confined to the skin and/or subcutaneous tissues resulting in collagen deposition and subsequent fibrosis. SSc is rare but is associated with significant morbidity and mortality compared with other rheumatic diseases. Fatal outcomes in SSc often originate from organ complications of the disease, such as lung fibrosis, pulmonary artery hypertension (PAH), and scleroderma renal crisis (SRC). Current treatment modalities in SSc have focused on targeting vascular damage, fibrosis, and regulation of inflammation as well as autoimmune responses. Some drugs previously used in an attempt to suppress fibrosis, like D-penicillamine (D-Pen) or colchicine, have been disappointing in clinical practice despite anecdotal evidence of their advantages. Some canonical medications, including glucocorticoids, immunosuppressants, and vasodilators, have had some success in treating various manifestations in SSc patients. Increasing evidence suggests that some biologic agents targeting collagen, cytokines, and cell surface molecules might have promising therapeutic effects in SSc. In recent years, hematopoietic stem cell transplantation (HSCT), mostly autologous, has made great progress as a promising treatment option in severe and refractory SSc. Due to the complexity and heterogeneity of SSc, there are currently no optimal treatments for all aspects of the disease. As for LoS, local skin-targeted therapy is generally used, including topical application of glucocorticoids or other immunomodulatory ointments and ultraviolet (UV) irradiation. In addition, systemic immunosuppressants are also utilized in several forms of LoS. Here, we comprehensively discuss current treatment options for scleroderma, encompassing old, new, and future potential treatment options. In addition, we summarize data from new clinical trials that have the potential to modify the disease process and improve long-term outcomes in SSc.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Jiali Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Amr H Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China. .,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China. .,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
37
|
Thooyamani AS, Mukhopadhyay A. PDGFRα mediated survival of myofibroblasts inhibit satellite cell proliferation during aberrant regeneration of lacerated skeletal muscle. Sci Rep 2021; 11:63. [PMID: 33420132 PMCID: PMC7794387 DOI: 10.1038/s41598-020-79771-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant regeneration or fibrosis in muscle is the denouement of deregulated cellular and molecular events that alter original tissue architecture due to accumulation of excessive extracellular matrix. The severity of the insult to the skeletal muscle determines the nature of regeneration. Numerous attempts at deciphering the mechanism underlying fibrosis and the subsequent strategies of drug therapies have yielded temporary solutions. Our intent is to understand the interaction between the myofibroblasts (MFs) and the satellite cells (SCs), during skeletal muscle regeneration. We hypothesize that MFs contribute to the impairment of SCs function by exhibiting an antagonistic influence on their proliferation. A modified laceration based skeletal muscle injury model in mouse was utilized to evaluate the dynamics between the SCs and MFs during wound healing. We show that the decline in MFs’ number through inhibition of PDGFRα signaling consequently promotes proliferation of the SCs and exhibits improved skeletal muscle remodeling. We further conclude that in situ administration of PDGFRα inhibitor prior to onset of fibrosis may attenuate aberrant regeneration. This opens new possibility for the early treatment of muscle fibrosis by specific targeting of MFs rather than transplantation of SCs.
Collapse
Affiliation(s)
- Abinaya Sundari Thooyamani
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India. .,, Abi Nivas, Subbanapalya Extension, Bangalore, 560043, India.
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India. .,, AA-602, Ashabari, Patuli, Kolkata, 700094, India.
| |
Collapse
|
38
|
Utsunomiya A, Oyama N, Hasegawa M. Potential Biomarkers in Systemic Sclerosis: A Literature Review and Update. J Clin Med 2020; 9:E3388. [PMID: 33105647 PMCID: PMC7690387 DOI: 10.3390/jcm9113388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by dysregulation of the immune system, vascular damage, and fibrosis of the skin and internal organs. Patients with SSc show a heterogeneous phenotype and a range of clinical courses. Therefore, biomarkers that are helpful for precise diagnosis, prediction of clinical course, and evaluation of the therapeutic responsiveness of disease are required in clinical practice. SSc-specific autoantibodies are currently used for diagnosis and prediction of clinical features, as other biomarkers have not yet been fully vetted. Krebs von den Lungen-6 (KL-6), surfactant protein-D (SP-D), and CCL18 have been considered as serum biomarkers of SSc-related interstitial lung disease. Moreover, levels of circulating brain natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) can provide diagnostic information and indicate the severity of pulmonary arterial hypertension. Assessment of several serum/plasma cytokines, chemokines, growth factors, adhesion molecules, and other molecules may also reflect the activity or progression of fibrosis and vascular involvement in affected organs. Recently, microRNAs have also been implicated as possible circulating indicators of SSc. In this review, we focus on several potential SSc biomarkers and discuss their clinical utility.
Collapse
Affiliation(s)
| | | | - Minoru Hasegawa
- Department of Dermatology, Divison of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (A.U.); (N.O.)
| |
Collapse
|
39
|
Juhl P, Bondesen S, Hawkins CL, Karsdal MA, Bay-Jensen AC, Davies MJ, Siebuhr AS. Dermal fibroblasts have different extracellular matrix profiles induced by TGF-β, PDGF and IL-6 in a model for skin fibrosis. Sci Rep 2020; 10:17300. [PMID: 33057073 PMCID: PMC7560847 DOI: 10.1038/s41598-020-74179-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Different stimulants might induce different extracellular matrix profiles. It is essential to gain an understanding and quantification of these changes to allow for focused anti-fibrotic drug development. This study investigated the expression of extracellular matrix by dermal fibroblast mimicking fibrotic skin diseases as SSc using clinically validated biomarkers. Primary healthy human dermal fibroblasts were grown in media containing FICOLL. The cells were stimulated with PDGF-AB, TGF-β1, or IL-6. Anti-fibrotic compounds (iALK-5, Nintedanib) were added together with growth factors. Biomarkers of collagen formation and degradation together with fibronectin were evaluated by ELISAs in the collected supernatant. Immunohistochemical staining was performed to visualize fibroblasts and proteins, while selected gene expression levels were examined through qPCR. TGF-β and PDGF, and to a lesser extent IL-6, increased the metabolic activity of the fibroblasts. TGF-β primarily increased type I collagen and fibronectin protein and gene expression together with αSMA. PDGF stimulation resulted in increased type III and VI collagen formation and gene expression. IL-6 decreased fibronectin levels. iALK5 could inhibit TGF-β induced fibrosis while nintedanib could halt fibrosis induced by TGF-β or PDGF. Tocilizumab could not inhibit fibrosis induced in this model. The extent and nature of fibrosis are dependent on the stimulant. The model has potential as a pre-clinical model as the fibroblasts fibrotic phenotype could be reversed by an ALK5 inhibitor and Nintedanib.
Collapse
Affiliation(s)
- Pernille Juhl
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biomarkers and Research, Nordic Bioscience, Herlev hovedgade 207, 2730, Herlev, Denmark.
| | - Sandie Bondesen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biomarkers and Research, Nordic Bioscience, Herlev hovedgade 207, 2730, Herlev, Denmark
| | - Clare Louise Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Asser Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev hovedgade 207, 2730, Herlev, Denmark
| | | | | | - Anne Sofie Siebuhr
- Biomarkers and Research, Nordic Bioscience, Herlev hovedgade 207, 2730, Herlev, Denmark
| |
Collapse
|
40
|
Liakouli V, Ciaffi J, Ursini F, Ruscitti P, Meliconi R, Ciccia F, Cipriani P, Giacomelli R. Efficacy and safety of imatinib mesylate in systemic sclerosis. A systematic review and meta-analysis. Expert Rev Clin Immunol 2020; 16:931-942. [PMID: 32893688 DOI: 10.1080/1744666x.2020.1813569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To synthetize the available evidence concerning efficacy and safety of imatinib mesylate, a tyrosine kinase inhibitor, in systemic sclerosis (SSc). METHODS A systematic search following the PRISMA-statement in PubMed/MEDLINE, Cochrane CENTRAL, and Web of Science databases up to 7 February 2020 was conducted. Considering the substantial heterogeneity expected, a random-effects model to pool data from selected studies was adopted. RESULTS After a treatment period ranging from 6 to 12 months, the pooled analysis revealed that imatinib mesylate significantly improved modified Rodnan skin score (mRSS) (mean difference [MD] = -3.091, 95%CI -6.081 to -0.102, p = 0.043), whereas health-related assessment questionnaire (HAQ) remains unchanged (-0.096; 95 CI -0.197 to -0.006). Data regarding change in pulmonary function tests were insufficiently consistent to be considered eligible for meta-analysis. Finally, regarding safety, the authors found a pooled dropout rate due to all adverse events of 22% and a rate of serious adverse events of 17%. CONCLUSION The significant change within the range of clinical relevance of mRSS suggests the possible use of imatinib mesylate in SSc, whereas it is still not possible to draw firm conclusions regarding the efficacy of the drug on lung involvement. Specifically designed and powered studies are needed to investigate imatinib mesylate therapy in SSc.
Collapse
Affiliation(s)
- Vasiliki Liakouli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | | | - Francesco Ursini
- IRRCS Istituto Ortopedico Rizzoli , Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila , L'Aquila, Italy
| | - Riccardo Meliconi
- IRRCS Istituto Ortopedico Rizzoli , Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Francesco Ciccia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila , L'Aquila, Italy
| | - Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila , L'Aquila, Italy
| |
Collapse
|
41
|
Senécal JL, Hoa S, Yang R, Koenig M. Pathogenic roles of autoantibodies in systemic sclerosis: Current understandings in pathogenesis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:103-129. [PMID: 35382028 PMCID: PMC8922609 DOI: 10.1177/2397198319870667] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/29/2019] [Indexed: 09/12/2023]
Abstract
The potential pathogenic role for autoantibodies in systemic sclerosis has captivated researchers for the past 40 years. This review answers the question whether there is yet sufficient knowledge to conclude that certain serum autoantibodies associated with systemic sclerosis contribute to its pathogenesis. Definitions for pathogenic, pathogenetic and functional autoantibodies are formulated, and the need to differentiate these autoantibodies from natural autoantibodies is emphasized. In addition, seven criteria for the identification of pathogenic autoantibodies are proposed. Experimental evidence is reviewed relevant to the classic systemic sclerosis antinuclear autoantibodies, anti-topoisomerase I and anticentromere, and to functional autoantibodies to endothelin 1 type A receptor, angiotensin II type 1 receptor, muscarinic receptor 3, platelet-derived growth factor receptor, chemokine receptors CXCR3 and CXCR4, estrogen receptor α, and CD22. Pathogenic evidence is also reviewed for anti-matrix metalloproteinases 1 and 3, anti-fibrillin 1, anti-IFI16, anti-eIF2B, anti-ICAM-1, and anti-RuvBL1/RuvBL2 autoantibodies. For each autoantibody, objective evidence for a pathogenic role is scored qualitatively according to the seven pathogenicity criteria. It is concluded that anti-topoisomerase I is the single autoantibody specificity with the most evidence in favor of a pathogenic role in systemic sclerosis, followed by anticentromere. However, these autoantibodies have not been demonstrated yet to fulfill completely the seven proposed criteria for pathogenicity. Their contributory roles to the pathogenesis of systemic sclerosis remain possible but not yet conclusively demonstrated. With respect to functional autoantibodies and other autoantibodies, only a few criteria for pathogenicity are fulfilled. Their common presence in healthy and disease controls suggests that major subsets of these immunoglobulins are natural autoantibodies. While some of these autoantibodies may be pathogenetic in systemic sclerosis, establishing that they are truly pathogenic is a work in progress. Experimental data are difficult to interpret because high serum autoantibody levels may be due to polyclonal B-cell activation. Other limitations in experimental design are the use of total serum immunoglobulin G rather than affinity-purified autoantibodies, the confounding effect of other systemic sclerosis autoantibodies present in total immunoglobulin G and the lack of longitudinal studies to determine if autoantibody titers fluctuate with systemic sclerosis activity and severity. These intriguing new specificities expand the spectrum of autoantibodies observed in systemic sclerosis. Continuing elucidation of their potential mechanistic roles raises hope of a better understanding of systemic sclerosis pathogenesis leading to improved therapies.
Collapse
Affiliation(s)
- Jean-Luc Senécal
- Scleroderma Research Chair, Université de Montréal, Montreal, QC, Canada
- Division of Rheumatology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Autoimmunity Research Laboratory, Research Centre of the Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Sabrina Hoa
- Division of Rheumatology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Autoimmunity Research Laboratory, Research Centre of the Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Roger Yang
- Division of Rheumatology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Martial Koenig
- Autoimmunity Research Laboratory, Research Centre of the Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Division of Internal Medicine, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
42
|
Tsai CY, Hsieh SC, Wu TH, Li KJ, Shen CY, Liao HT, Wu CH, Kuo YM, Lu CS, Yu CL. Pathogenic Roles of Autoantibodies and Aberrant Epigenetic Regulation of Immune and Connective Tissue Cells in the Tissue Fibrosis of Patients with Systemic Sclerosis. Int J Mol Sci 2020; 21:ijms21093069. [PMID: 32349208 PMCID: PMC7246753 DOI: 10.3390/ijms21093069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a multi-system autoimmune disease with tissue fibrosis prominent in the skin and lung. In this review, we briefly describe the autoimmune features (mainly autoantibody production and cytokine profiles) and the potential pathogenic contributors including genetic/epigenetic predisposition, and environmental factors. We look in detail at the cellular and molecular bases underlying tissue-fibrosis which include trans-differentiation of fibroblasts (FBs) to myofibroblasts (MFBs). We also state comprehensively the pro-inflammatory and pro-fibrotic cytokines relevant to MFB trans-differentiation, vasculopathy-associated autoantibodies, and fibrosis-regulating microRNAs in SSc. It is conceivable that tissue fibrosis is mainly mediated by an excessive production of TGF-β, the master regulator, from the skewed Th2 cells, macrophages, fibroblasts, myofibroblasts, and keratinocytes. After binding with TGF-β receptors on MFB, the downstream Wnt/β-catenin triggers canonical Smad 2/3 and non-canonical Smad 4 signaling pathways to transcribe collagen genes. Subsequently, excessive collagen fiber synthesis and accumulation as well as tissue fibrosis ensue. In the later part of this review, we discuss limited data relevant to the role of long non-coding RNAs (lncRNAs) in tissue-fibrosis in SSc. It is expected that these lncRNAs may become the useful biomarkers and therapeutic targets for SSc in the future. The prospective investigations in the development of novel epigenetic modifiers are also suggested.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
- Correspondence: (C.-Y.T.); (C.-L.Y.); Fax: +886-2-28717483 (C.-Y.T.); +886-2-23957801 (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
| | - Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Cheng-Shiun Lu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Fax: +886-2-28717483 (C.-Y.T.); +886-2-23957801 (C.-L.Y.)
| |
Collapse
|
43
|
Chung MP, Chung L. Drugs in phase I and phase II clinical trials for systemic sclerosis. Expert Opin Investig Drugs 2020; 29:349-362. [PMID: 32178544 DOI: 10.1080/13543784.2020.1743973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Systemic sclerosis (SSc) is an autoimmune connective tissue disease that is characterized by excessive collagen deposition, vascular dysfunction, and fibrosis of cutaneous and visceral organs. Current therapeutic options are limited and provide only modest benefit.Areas covered: This review summarizes investigational agents in recent Phase I and II clinical trials evaluated for the treatment of SSc with a focus on skin in patients with early diffuse disease and interstitial lung disease. We performed a search on Pubmed and https://clinicaltrials.gov with keywords systemic sclerosis, Phase I clinical trial, and Phase II clinical trial to identify relevant studies from 2015 to 2019.Expert opinion: Therapeutic interventions in SSc should be guided by the level of disease activity and the degree of organ involvement. While most novel agents have failed to meet the primary endpoints of reducing skin thickening as measured by the modified Rodnan skin score, some have shown promise in improving the Composite Response Index for Clinical Trials in Early Diffuse Cutaneous Systemic Sclerosis (CRISS), reducing lung function decline, or improving patient-reported outcomes. However, most of the current evidence is based on small or open-label clinical trials. Well-designed, large, randomized, Phase III clinical trials are necessary to define the roles of investigational agents in treating SSc.
Collapse
Affiliation(s)
- Melody P Chung
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lorinda Chung
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Rheumatology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
44
|
Adler M, Mayo A, Zhou X, Franklin RA, Meizlish ML, Medzhitov R, Kallenberger SM, Alon U. Principles of Cell Circuits for Tissue Repair and Fibrosis. iScience 2020; 23:100841. [PMID: 32058955 PMCID: PMC7005469 DOI: 10.1016/j.isci.2020.100841] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Tissue repair is a protective response after injury, but repetitive or prolonged injury can lead to fibrosis, a pathological state of excessive scarring. To pinpoint the dynamic mechanisms underlying fibrosis, it is important to understand the principles of the cell circuits that carry out tissue repair. In this study, we establish a cell-circuit framework for the myofibroblast-macrophage circuit in wound healing, including the accumulation of scar-forming extracellular matrix. We find that fibrosis results from multistability between three outcomes, which we term "hot fibrosis" characterized by many macrophages, "cold fibrosis" lacking macrophages, and normal wound healing. This framework clarifies several unexplained phenomena including the paradoxical effect of macrophage depletion, the limited time-window in which removing inflammation leads to healing, and why scar maturation takes months. We define key parameters that control the transition from healing to fibrosis, which may serve as potential targets for therapeutic reduction of fibrosis.
Collapse
Affiliation(s)
- Miri Adler
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Avi Mayo
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xu Zhou
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruth A Franklin
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Matthew L Meizlish
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefan M Kallenberger
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Uri Alon
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
45
|
Jones DL, Haak AJ, Caporarello N, Choi KM, Ye Z, Yan H, Varelas X, Ordog T, Ligresti G, Tschumperlin DJ. TGFβ-induced fibroblast activation requires persistent and targeted HDAC-mediated gene repression. J Cell Sci 2019; 132:jcs.233486. [PMID: 31527052 DOI: 10.1242/jcs.233486] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue fibrosis is a chronic disease driven by persistent fibroblast activation that has recently been linked to epigenetic modifications. Here, we screened a small library of epigenetic small-molecule modulators to identify compounds capable of inhibiting or reversing TGFβ-mediated fibroblast activation. We identified pracinostat, an HDAC inhibitor, as a potent attenuator of lung fibroblast activation and confirmed its efficacy in patient-derived fibroblasts isolated from fibrotic lung tissue. Mechanistically, we found that HDAC-dependent transcriptional repression was an early and essential event in TGFβ-mediated fibroblast activation. Treatment of lung fibroblasts with pracinostat broadly attenuated TGFβ-mediated epigenetic repression and promoted fibroblast quiescence. We confirmed a specific role for HDAC-dependent histone deacetylation in the promoter region of the anti-fibrotic gene PPARGC1A (PGC1α) in response to TGFβ stimulation. Finally, we identified HDAC7 as a key factor whose siRNA-mediated knockdown attenuates fibroblast activation without altering global histone acetylation. Together, these results provide novel mechanistic insight into the essential role HDACs play in TGFβ-mediated fibroblast activation via targeted gene repression.
Collapse
Affiliation(s)
- Dakota L Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew J Haak
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung M Choi
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Huihuang Yan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University, Boston, MA 02118, USA
| | - Tamas Ordog
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
46
|
The Use of Antifibrotic Recombinant nAG Protein in a Rat Liver Fibrosis Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9846919. [PMID: 31275996 PMCID: PMC6582902 DOI: 10.1155/2019/9846919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022]
Abstract
Objectives The “nAG” protein is the key protein mediating the regeneration of amputated limbs in salamanders. The senior author (MMA) developed the original hypothesis that since “nAG” is a “regenerative” protein, it must be also an “antifibrotic' protein. The antifibrotic properties were later confirmed in a rabbit skin hypertrophic scar model as well as in a rat spinal cord injury model. The aim of this study is to evaluate the potential therapeutic properties of the nAG protein in a rat liver fibrosis model. Methodology Liver fibrosis was induced using intraperitoneal injections of carbon tetrachloride (CCL4). A total of 45 rats were divided equally into 3 groups: Group I (the control group) received normal saline injections for 8 weeks, Group II received CCL4 for 8 weeks, and Group III received CCL4 and nAG for 8 weeks. At the end of the experiment, the serum levels of 6 proteins (hyaluronic acid, PDGF-AB, TIMP-1, laminin, procollagen III N-terminal peptide, and collagen IV-alpha 1 chain) were measured. Liver biopsies were also taken and the stages of live fibrosis were assessed histologically. Results The CCL4 treatment resulted in a significant increase in the serum levels of all 6 measured proteins. The nAG treatment significantly reduced these high levels. The degree of liver fibrosis was also significantly reduced in the CCL4/nAG group compared to the CCL4 group. Conclusions nAG treatment was able to significantly reduce the serum levels of several protein markers of liver fibrosis and also significantly reduced the histological degree of liver fibrosis.
Collapse
|
47
|
Ma WT, Gao F, Gu K, Chen DK. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol 2019; 10:1140. [PMID: 31178867 PMCID: PMC6543461 DOI: 10.3389/fimmu.2019.01140] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Monocytes (Mo) and macrophages (Mϕ) are key components of the innate immune system and are involved in regulation of the initiation, development, and resolution of many inflammatory disorders. In addition, these cells also play important immunoregulatory and tissue-repairing roles to decrease immune reactions and promote tissue regeneration. Several lines of evidence have suggested a causal link between the presence or activation of these cells and the development of autoimmune diseases. In addition, Mo or Mϕ infiltration in diseased tissues is a hallmark of several autoimmune diseases. However, the detailed contributions of these cells, whether they actually initiate disease or perpetuate disease progression, and whether their phenotype and functional alteration are merely epiphenomena are still unclear in many autoimmune diseases. Additionally, little is known about their heterogeneous populations in different autoimmune diseases. Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Gao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kui Gu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
48
|
Prospects for Stratified and Precision Medicine in Systemic Sclerosis Treatment. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019. [DOI: 10.1007/s40674-019-00124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Takata M, Pachera E, Frank-Bertoncelj M, Kozlova A, Jüngel A, Whitfield ML, Assassi S, Calcagni M, de Vries-Bouwstra J, Huizinga TW, Kurreeman F, Kania G, Distler O. OTUD6B-AS1 Might Be a Novel Regulator of Apoptosis in Systemic Sclerosis. Front Immunol 2019; 10:1100. [PMID: 31156645 PMCID: PMC6533854 DOI: 10.3389/fimmu.2019.01100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Antisense long non-coding RNAs (AS lncRNAs) have increasingly been recognized as important regulators of gene expression and they have been found to play key roles in several diseases. However, very little is known about the role of AS lncRNAs in fibrotic diseases such as systemic sclerosis (SSc). Our recent screening experiments by RNA sequencing showed that ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) and its sense gene OTUD6B were significantly downregulated in SSc skin biopsies. Therefore, we aimed to identify key regulators of OTUD6B-AS1 and to analyze the functional relevance of OTUD6B-AS1 in SSc. OTUD6B-AS1 and OTUD6B expression in SSc and healthy control (HC) dermal fibroblasts (Fb) after stimulation with transforming growth factor-β (TGFβ), Interleukin (IL)-4, IL-13, and platelet-derived growth factor (PDGF) was analyzed by qPCR. To identify the functional role of OTUD6B-AS1, dermal Fb or human pulmonary artery smooth muscle cells (HPASMC) were transfected with a locked nucleic acid antisense oligonucleotide (ASO) targeting OTUD6B-AS1. Proliferation was measured by BrdU and real-time proliferation assay. Apoptosis was measured by Caspase 3/7 assay and Western blot for cleaved caspase 3. While no difference was recorded at the basal level between HC and SSc dermal Fb, the expression of OTUD6B-AS1 and OTUD6B was significantly downregulated in both SSc and HC dermal Fb after PDGF stimulation in a time-dependent manner. Only mild and inconsistent effects were observed with TGFβ, IL-4, and IL-13. OTUD6B-AS1 knockdown in Fb and HPASMC did not affect extracellular matrix or pro-fibrotic/proinflammatory cytokine production. However, OTUD6B-AS1 knockdown significantly increased Cyclin D1 expression at the mRNA and protein level. Moreover, silencing of OTUD6B-AS1 significantly reduced proliferation and suppressed apoptosis in both dermal Fb and HPASMC. OTUD6B-AS1 knockdown did not affect OTUD6B expression at the mRNA level and protein level. Our data suggest that OTUD6B-AS1 regulates proliferation and apoptosis via cyclin D1 expression in a sense gene independent manner. This is the first report investigating the function of OTUD6B-AS1. Our data shed light on a novel apoptosis resistance mechanism in Fb and vascular smooth muscle cells that might be relevant for pathogenesis of SSc.
Collapse
Affiliation(s)
- Miki Takata
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Elena Pachera
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Mojca Frank-Bertoncelj
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Anastasiia Kozlova
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Astrid Jüngel
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Michael L Whitfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Shervin Assassi
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zürich, Zurich, Switzerland
| | | | - Tom W Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Fina Kurreeman
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Gabriela Kania
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| |
Collapse
|
50
|
Hadjicharalambous MR, Roux BT, Csomor E, Feghali-Bostwick CA, Murray LA, Clarke DL, Lindsay MA. Long intergenic non-coding RNAs regulate human lung fibroblast function: Implications for idiopathic pulmonary fibrosis. Sci Rep 2019; 9:6020. [PMID: 30988425 PMCID: PMC6465406 DOI: 10.1038/s41598-019-42292-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/28/2019] [Indexed: 12/23/2022] Open
Abstract
Phenotypic changes in lung fibroblasts are believed to contribute to the development of Idiopathic Pulmonary Fibrosis (IPF), a progressive and fatal lung disease. Long intergenic non-coding RNAs (lincRNAs) have been identified as novel regulators of gene expression and protein activity. In non-stimulated cells, we observed reduced proliferation and inflammation but no difference in the fibrotic response of IPF fibroblasts. These functional changes in non-stimulated cells were associated with changes in the expression of the histone marks, H3K4me1, H3K4me3 and H3K27ac indicating a possible involvement of epigenetics. Following activation with TGF-β1 and IL-1β, we demonstrated an increased fibrotic but reduced inflammatory response in IPF fibroblasts. There was no significant difference in proliferation following PDGF exposure. The lincRNAs, LINC00960 and LINC01140 were upregulated in IPF fibroblasts. Knockdown studies showed that LINC00960 and LINC01140 were positive regulators of proliferation in both control and IPF fibroblasts but had no effect upon the fibrotic response. Knockdown of LINC01140 but not LINC00960 increased the inflammatory response, which was greater in IPF compared to control fibroblasts. Overall, these studies demonstrate for the first time that lincRNAs are important regulators of proliferation and inflammation in human lung fibroblasts and that these might mediate the reduced inflammatory response observed in IPF-derived fibroblasts.
Collapse
Affiliation(s)
- Marina R Hadjicharalambous
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Benoit T Roux
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Eszter Csomor
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Carol A Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, USA
| | | | - Deborah L Clarke
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, United Kingdom.,Boehringer Ingelheim Ltd, Ellesfield Avenue, Bracknell, Berkshire, RG12 8YS, United Kingdom
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|