1
|
Chen B, Zhang C, Zhou M, Deng H, Xu J, Yin J, Chen C, Zhang D, Pu Y, Zheng L, Wang B, Fu J. CD4+ T-cell metabolism in the pathogenesis of Sjogren's syndrome. Int Immunopharmacol 2025; 150:114320. [PMID: 39970711 DOI: 10.1016/j.intimp.2025.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The abnormal effector function of CD4+ T cells plays a key role in the pathogenesis of Sjogren's syndrome (SS) and its associated systematic autoimmune response. Cellular metabolism, including glucose metabolism, lipid metabolism and amino acid metabolism, supports proliferation, migration, survival and differentiation into distinct CD4+ T-cell subsets. Different subtypes of T cells have significantly different demands for related metabolic processes, which enables us to finely regulate CD4+ T cells through different metabolic processes in autoimmune diseases such as SS. In this review, we summarize the effects of disturbances in distinct metabolic processes, such as glycolysis, fatty acid metabolism, glutamine decomposition, mitochondrial dynamics, and ferroptosis, on how to support the effector functions of CD4+ T cells in the SS. We also discuss potential drugs with high value in the treatment of SS through metabolic normalization in CD4+ T cells. Finally, we propose possible directions for future targeted therapy for immunometabolism in SS.
Collapse
Affiliation(s)
- Baixi Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chenji Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Mengyuan Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hongyu Deng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jiabao Xu
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg 97255, Germany
| | - Junhao Yin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Changyu Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200001, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yiping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| | - Jiayao Fu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
2
|
Shahsavari A, Liu F. Diagnostic and therapeutic potentials of extracellular vesicles for primary Sjögren's Syndrome: A review. DENTISTRY REVIEW 2024; 4:100150. [PMID: 39310092 PMCID: PMC11416744 DOI: 10.1016/j.dentre.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Primary Sjögren syndrome (pSS) is a chronic autoimmune disease mainly affecting salivary and lacrimal glands. The current pSS biomarkers, serum autoantibodies, are negative in many pSS patients diagnosed with histopathology changes, indicating the need of novel biomarkers. The current therapies of pSS are merely short-term symptomatic relief and can't provide effective long-term remedy. Extracellular vehicles (EVs) are nano-sized lipid bilayer-delimited particles spontaneously released by almost all types of cells and carrying various bioactive molecules to mediate inter-cellular communications. Recent studies found that EVs from salivary gland epithelial cells and immune cells play essential roles in pSS pathogenesis. Correspondingly, EVs and their cargos in plasma and saliva are promising candidate biomarkers for pSS diagnosis. Moreover, EVs from mesenchymal stem cells have shown promises to improve pSS treatment by modulating immune responses. This review summarizes recent findings in roles of EVs in pSS pathogenesis, diagnosis, and treatment of pSS, as well as related challenges and future research directions.
Collapse
Affiliation(s)
- Arash Shahsavari
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| | - Fei Liu
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Ma D, Wu Z, Zhao X, Zhu X, An Q, Wang Y, Zhao J, Su Y, Yang B, Xu K, Zhang L. Immunomodulatory effects of umbilical mesenchymal stem cell-derived exosomes on CD4 + T cells in patients with primary Sjögren's syndrome. Inflammopharmacology 2023:10.1007/s10787-023-01189-x. [PMID: 37012581 DOI: 10.1007/s10787-023-01189-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is an autoimmune disease that leads to the destruction of exocrine glands and multisystem lesions. Abnormal proliferation, apoptosis, and differentiation of CD4+ T cells are key factors in the pathogenesis of pSS. Autophagy is one of the important mechanisms to maintain immune homeostasis and function of CD4+ T cells. Human umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-Exos) may simulate the immunoregulation of MSCs while avoiding the risks of MSCs treatment. However, whether UCMSC-Exos can regulate the functions of CD4+ T cells in pSS, and whether the effects via the autophagy pathway remains unclear. METHODS The study analyzed retrospectively the peripheral blood lymphocyte subsets in pSS patients, and explored the relationship between lymphocyte subsets and disease activity. Next, peripheral blood CD4+ T cells were sorted using immunomagnetic beads. The proliferation, apoptosis, differentiation, and inflammatory factors of CD4+ T cells were determined using flow cytometry. Autophagosomes of CD4+ T cells were detected using transmission electron microscopy, autophagy-related proteins and genes were detected using western blotting or RT-qPCR. RESULTS The study demonstrated that the peripheral blood CD4+ T cells decreased in pSS patients, and negatively correlated with disease activity. UCMSC-Exos inhibited excessive proliferation and apoptosis of CD4+ T cells in pSS patients, blocked them in the G0/G1 phase, inhibited them from entering the S phase, reduced the Th17 cell ratio, elevated the Treg ratio, inhibited IFN-γ, TNF-α, IL-6, IL-17A, and IL-17F secretion, and promoted IL-10 and TGF-β secretion. UCMSC-Exos reduced the elevated autophagy levels in the peripheral blood CD4+ T cells of patients with pSS. Furthermore, UCMSC-Exos regulated CD4+ T cell proliferation and early apoptosis, inhibited Th17 cell differentiation, promoted Treg cell differentiation, and restored the Th17/Treg balance in pSS patients through the autophagy pathway. CONCLUSIONS The study indicated that UCMSC-Exos exerts an immunomodulatory effect on the CD4+ T cells, and maybe as a new treatment for pSS.
Collapse
Affiliation(s)
- Dan Ma
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Zewen Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Xingxing Zhao
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Xueqing Zhu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Qi An
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Yajing Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Jingwen Zhao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Yazhen Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Baoqi Yang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ke Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
4
|
Qi J, Liu C, Bai Z, Li X, Yao G. T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front Immunol 2023; 14:1178792. [PMID: 37187757 PMCID: PMC10175690 DOI: 10.3389/fimmu.2023.1178792] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
T follicular helper (Tfh) cells are heterogeneous and mainly characterized by expressing surface markers CXCR5, ICOS, and PD-1; cytokine IL-21; and transcription factor Bcl6. They are crucial for B-cell differentiation into long-lived plasma cells and high-affinity antibody production. T follicular regulatory (Tfr) cells were described to express markers of conventional T regulatory (Treg) cells and Tfh cells and were able to suppress Tfh-cell and B-cell responses. Evidence has revealed that the dysregulation of Tfh and Tfr cells is positively associated with the pathogenic processes of autoimmune diseases. Herein, we briefly introduce the phenotype, differentiation, and function of Tfh and Tfr cells, and review their potential roles in autoimmune diseases. In addition, we discuss perspectives to develop novel therapies targeting Tfh/Tfr balance.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| | - Chang Liu
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| |
Collapse
|
5
|
Sun T, Liu S, Yang G, Zhu R, Li Z, Yao G, Chen H, Sun L. Mesenchymal stem cell transplantation alleviates Sjögren's syndrome symptoms by modulating Tim-3 expression. Int Immunopharmacol 2022; 111:109152. [PMID: 36007392 DOI: 10.1016/j.intimp.2022.109152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation has been proven to be an effective treatment for Sjögren's syndrome (SS) to improve salivary gland pathology and exocrine function, but the mechanism remains unclear. A recently reported inhibitory receptor, Tim-3, also appears to be closely related to autoimmune diseases. Here, we aimed to explore the roles of Tim-3 in the pathogenesis of SS and MSC treatment. The results showed that Tim-3 was downregulated in T cells of SS patients and nonobese diabetic (NOD) mice, which is correlated with SS pathogenesis. MSC transplantation ameliorated SS-like symptoms and pathological changes in the submandibular glands with modulated Tim-3 expression, resulting in attenuation of localized inflammation, fibrosis, and epithelial-mesenchymal transition. Furthermore, Tim-3 is crucial for the inhibitory effect of MSCs on PBMC proliferation in vitro. Therefore, our work has demonstrated that MSC transplantation effectively mitigates the pathological changes of SS by regulating Tim-3 expression, which provides a novel mechanism of MSC treatment and indicates a brand-new perspective of the combination of inhibitory-receptor-targeted treatment and MSC therapy in SS.
Collapse
Affiliation(s)
- Tian Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Guangxia Yang
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, China
| | - Rujie Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, China
| | - Zutong Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Hongwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
6
|
Chihaby N, Orliaguet M, Le Pottier L, Pers JO, Boisramé S. Treatment of Sjögren's Syndrome with Mesenchymal Stem Cells: A Systematic Review. Int J Mol Sci 2021; 22:10474. [PMID: 34638813 PMCID: PMC8508641 DOI: 10.3390/ijms221910474] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are ubiquitous in the human body. Mesenchymal stem cells were initially isolated from bone marrow and later from other organs such as fatty tissues, umbilical cords, and gingiva. Their secretory capacities give them interesting immunomodulatory properties in cell therapy. Some studies have explored the use of MSCs to treat Sjögren's syndrome (SS), a chronic inflammatory autoimmune disease that mainly affects exocrine glands, including salivary and lacrimal glands, although current treatments are only palliative. This systematic review summarizes the current data about the application of MSCs in SS. Reports show improvements in salivary secretions and a decrease in lymphocytic infiltration in salivary glands in patients and mice with SS after intravenous or infra-peritoneal injections of MSCs. MSC injections led to a decrease in inflammatory cytokines and an increase in anti-inflammatory cytokines. However, the intrinsic mechanism of action of these MSCs currently remains unknown.
Collapse
Affiliation(s)
- Najwa Chihaby
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
| | - Marie Orliaguet
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
| | - Laëtitia Le Pottier
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- Inserm, LBAI, University of Western Brittany, UMR1227, 29609 Brest, France
| | - Jacques-Olivier Pers
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
- Inserm, LBAI, University of Western Brittany, UMR1227, 29609 Brest, France
| | - Sylvie Boisramé
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
| |
Collapse
|
7
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
8
|
Szabó K, Jámbor I, Szántó A, Horváth IF, Tarr T, Nakken B, Szodoray P, Papp G. The Imbalance of Circulating Follicular T Helper Cell Subsets in Primary Sjögren's Syndrome Associates With Serological Alterations and Abnormal B-Cell Distribution. Front Immunol 2021; 12:639975. [PMID: 33815392 PMCID: PMC8018236 DOI: 10.3389/fimmu.2021.639975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Since B-cell hyperactivity and pathologic antibody response are key features in the immunopathogenesis of primary Sjögren's syndrome (pSS), the role of follicular T helper (TFH) cells as efficient helpers in the survival and differentiation of B cells has emerged. Our aim was to investigate whether a change in the balance of circulating (c)TFH subsets and follicular regulatory T (TFR) cells could affect the distribution of B cells in pSS. Peripheral blood of 38 pSS patients and 27 healthy controls was assessed for the frequencies of cTFH cell subsets, TFR cells, and certain B cell subpopulations by multicolor flow cytometry. Serological parameters, including anti-SSA, anti-SSB autoantibodies, immunoglobulin, and immune complex titers were determined as part of the routine diagnostic evaluation. Patients with pSS showed a significant increase in activated cTFH cell proportions, which was associated with serological results. Frequencies of cTFH subsets were unchanged in pSS patients compared to healthy controls. The percentages and number of cTFR cells exhibited a significant increase in autoantibody positive patients compared to patients with seronegative pSS. The proportions of transitional and naïve B cells were significantly increased, whereas subsets of memory B cells were significantly decreased and correlated with autoantibody production. Functional analysis revealed that the simultaneous blockade of cTFH and B cell interaction with anti-IL-21 and anti-CD40 antibodies decreased the production of IgM and IgG. Imbalance in TFH subsets and TFR cells indicates an ongoing over-activated humoral immune response, which contributes to the characteristic serological manifestations and the pathogenesis of pSS.
Collapse
Affiliation(s)
- Krisztina Szabó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilona Jámbor
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Antónia Szántó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Fanny Horváth
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Britt Nakken
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Peter Szodoray
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Gábor Papp
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cell Therapy in Solid Organ Transplantation. Front Immunol 2021; 11:618243. [PMID: 33643298 PMCID: PMC7902912 DOI: 10.3389/fimmu.2020.618243] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Transplantation is the gold-standard treatment for the failure of several solid organs, including the kidneys, liver, heart, lung and small bowel. The use of tailored immunosuppressive agents has improved graft and patient survival remarkably in early post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the development of chronic graft rejection, which ultimately leads to transplant failure. Moreover, prolonged immunosuppression entails severe side effects that severely impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft function without the need for immunosuppression, is considered the Holy Grail of the field of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients is a rare and unpredictable event. Several strategies that include peri-transplant administration of non-hematopoietic immunomodulatory cells can safely and effectively induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult and fetal tissues, are among the most promising candidates. In this review, we will focus on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ transplantation, and discuss the available evidence of their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| |
Collapse
|
10
|
Yang C, Wu M, You M, Chen Y, Luo M, Chen Q. The therapeutic applications of mesenchymal stromal cells from human perinatal tissues in autoimmune diseases. Stem Cell Res Ther 2021; 12:103. [PMID: 33541422 PMCID: PMC7859900 DOI: 10.1186/s13287-021-02158-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The autoimmune diseases are characterized by overactivation of immune cells, chronic inflammation, and immune response to self-antigens, leading to the damage and dysfunction of multiple organs. Patients still do not receive desired clinical outcomes while suffer from various adverse effects imparted by current therapies. The therapeutic strategies based on mesenchymal stromal cell (MSC) transplantation have become the promising approach for the treatment of autoimmune diseases due to the immunomodulation property of MSCs. MSCs derived from perinatal tissues are collectively known as perinatal MSCs (PMSCs), which can be obtained via painless procedures from donors with lower risk of being contaminated by viruses than those MSCs from adult tissue sources. Therefore, PMSCs may be the ideal cell source for the treatment of autoimmune diseases. This article summarizes recent progress and possible mechanisms of PMSCs in treating autoimmune diseases in animal experiments and clinical studies. This review also presents existing challenges and proposes solutions, which may provide new hints on PMSC transplantation as a therapeutic strategy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China.
| | - Mingjun Wu
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China.
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.
| |
Collapse
|
11
|
Tian J, Hong Y, Zhu Q, Zhou H, Zhang Y, Shen Z, Guo H, Zhang Y, Ai X, Zhao F, Rui K, Xu H, Wang S. Mesenchymal Stem Cell Enhances the Function of MDSCs in Experimental Sjögren Syndrome. Front Immunol 2020; 11:604607. [PMID: 33414787 PMCID: PMC7782428 DOI: 10.3389/fimmu.2020.604607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a progressive systemic autoimmune disease characterized by lymphocytic infiltrates in exocrine glands, leading to the injury of salivary and lachrymal glands. Mesenchymal stem cells (MSCs) have been demonstrated to exert great potential in the treatment of various autoimmune diseases. Although MSCs have provide an effective therapeutic approach for SS treatment, the underlying mechanisms are still elusive. Our previous study has shown the reduced suppressive capacity of myeloid-derived suppressor cells (MDSCs) advanced the progression of experimental Sjögren’s syndrome (ESS). In this study, we found that BM-MSCs significantly enhanced the suppressive function of MDSCs with high levels of Arginase and NO, decreased the levels of CD40, CD80, CD86, and MHC-II expression on MDSCs, thus attenuating the disease progression in ESS mice. Furthermore, the enhanced suppressive function of MDSCs was mediated by BM-MSC-secreted TGF-β, and the therapeutic effect of BM-MSCs in inhibiting ESS was almost abolished after silencing TGF-β in BM-MSCs. Taken together, our results demonstrated that BM-MSCs alleviated the ESS progression by up-regulating the immunosuppressive effect of MDSCs through TGF-β/Smad pathway, offering a novel mechanism for MSCs in the treatment of pSS.
Collapse
Affiliation(s)
- Jie Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Hong
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiugang Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huimin Zhou
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yidan Zhang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ziwei Shen
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hongye Guo
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Xiangyan Ai
- Department of Rheumatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Futao Zhao
- Department of Rheumatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Chen W, Yang F, Xu G, Ma J, Lin J. Follicular helper T cells and follicular regulatory T cells in the immunopathology of primary Sjögren's syndrome. J Leukoc Biol 2020; 109:437-447. [PMID: 33325085 DOI: 10.1002/jlb.5mr1020-057rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease, characterized by lymphocytic infiltration into exocrine glands, which causes dry eyes, dry mouth, and systemic damage. Although the precise etiology of pSS is not clear yet, highly activated B cells, abundant anti-SSA/Ro, and anti-SSB/La autoantibodies are the hallmarks of this disease. Follicular helper T cells (Tfh), a subset of CD4+ T cells, with cell surface receptors PD-1 and CXCR5, express ICOS, transcription factor Bcl-6, and a cytokine IL-21. These cells help in the differentiation of B cells into plasma cells and stimulate the formation of germinal center (GC). Previous studies have demonstrated abundant Tfh cells in the peripheral blood and salivary glands (SGs) of the patients with pSS, correlated with extensive lymphocytic infiltration of the SGs and high disease activity scores. Patients with pSS who are treated with abatacept (CTLA-4 Ig) show fewer circulating Tfh cells, reduced expression of ICOS, and lower disease activity scores. Recently identified follicular regulatory T (Tfr) cells, a subset of regulatory T cells, control the function of Tfh cells and the GC reactions. Here, we summarize the observed alterations in Tfh and Tfr cell numbers, activation state, and circulating subset distribution in pSS. Our goal is to improve the understanding of the roles of Tfh and Tfr cells (surface marker expression, cytokine production, and transcription factors) in the pathogenesis of pSS, thus contributing to the identification of candidate therapeutic agents for this disease.
Collapse
Affiliation(s)
- Weiqian Chen
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fan Yang
- State Key Laboratory of Infectious Diseases Diagnosis and Treatment, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guanhua Xu
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jilin Ma
- Division of Nephrology, Zhejiang Traditional Chinese Medicine and Western Medicine Hospital, Hangzhou, Zhejiang, China
| | - Jin Lin
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Srivastava A, Makarenkova HP. Innate Immunity and Biological Therapies for the Treatment of Sjögren's Syndrome. Int J Mol Sci 2020; 21:E9172. [PMID: 33271951 PMCID: PMC7730146 DOI: 10.3390/ijms21239172] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disorder affecting approximately 3% of the population in the United States. This disease has a female predilection and affects exocrine glands, including lacrimal and salivary glands. Dry eyes and dry mouths are the most common symptoms due to the loss of salivary and lacrimal gland function. Symptoms become more severe in secondary SS, where SS is present along with other autoimmune diseases like systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. It is known that aberrant activation of immune cells plays an important role in disease progression, however, the mechanism for these pathological changes in the immune system remains largely unknown. This review highlights the role of different immune cells in disease development, therapeutic treatments, and future strategies that are available to target various immune cells to cure the disease.
Collapse
Affiliation(s)
| | - Helen P. Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA;
| |
Collapse
|
14
|
Qi J, Tang X, Li W, Chen W, Yao G, Sun L. Mesenchymal stem cells inhibited the differentiation of MDSCs via COX2/PGE2 in experimental sialadenitis. Stem Cell Res Ther 2020; 11:325. [PMID: 32727564 PMCID: PMC7391592 DOI: 10.1186/s13287-020-01837-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) can regulate innate and adaptive immune systems through interacting with immune cells directly and secreting multiple soluble factors. Due to their immunosuppressive properties, MSC transplantation has been applied to treat many clinical and experimental autoimmune diseases. However, the therapeutic effects and mechanisms by which MSCs regulate myeloid cells in Sjögren’s syndrome (SS) still remain elusive. Methods The number and immune-suppressive activity of myeloid-derived suppressor cells (MDSCs), polymorphonuclear MDSCs (PMN-MDSCs), and monocytic MDSCs (M-MDSCs) were determined in non-obese diabetic (NOD) mice with sialadenitis and in NOD mice with human umbilical cord-derived MSC (UC-MSC) transplantation. Bone marrow cells were cultured with MSC-conditioned medium (MSC-CM) for 4 days. The number and immune-suppressive gene of MDSCs were detected by flow cytometry or qRT-PCR. Results The results showed that the number of MDSCs and PMN-MDSCs was higher and M-MDSCs were lower in NOD mice with sialadenitis. UC-MSCs ameliorated SS-like syndrome by reducing MDSCs, PMN-MDSCs, and M-MDSCs and promoting the suppressive ability of MDSCs significantly in NOD mice. UC-MSCs inhibited the differentiation of MDSCs. In addition, UC-MSCs enhanced the suppressive ability of MDSCs in vitro. Mechanistically, MSCs inhibited the differentiation of MDSCs and PMN-MDSCs via secreting prostaglandin E2 (PGE2) and inhibited the differentiation of M-MDSCs through secreting interferon-β (IFN-β). Conclusions Our findings suggested that MSCs alleviated SS-like symptoms by suppressing the aberrant accumulation and improving the suppressive function of MDSCs in NOD mice with sialadenitis.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.,Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Wenchao Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
15
|
Gong W, Wang F, He Y, Zeng X, Zhang D, Chen Q. Mesenchymal Stem Cell Therapy for Oral Inflammatory Diseases: Research Progress and Future Perspectives. Curr Stem Cell Res Ther 2020; 16:165-174. [PMID: 32713335 DOI: 10.2174/1574888x15666200726224132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell (MSC) therapy for clinical diseases associated with inflammation and tissue damage has become a progressive treatment strategy. MSCs have unique biological functions, such as homing, immune regulation, and differentiation capabilities, which provide the prerequisites for the treatment of clinical diseases. Oral diseases are often associated with abnormal immune regulation and epithelial tissue damage. In this review, we summarize previous studies that use MSC therapy to treat various oral inflammatory diseases, including oral ulceration, allergic diseases, chemo/radiotherapy-induced oral mucositis, periodontitis, osteonecrosis of the jaw, Sjögren's syndrome (SS), among other similar diseases. We highlight MSC treatment as a promising approach in the management of oral inflammatory diseases, and discuss the obstacles that remain and must be overcome for MSC treatment to thrive in the future.
Collapse
Affiliation(s)
- Wang Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuqing He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dunfang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Liu Y, Li C, Wang S, Guo J, Guo J, Fu J, Ren L, An Y, He J, Li Z. Human umbilical cord mesenchymal stem cells confer potent immunosuppressive effects in Sjögren's syndrome by inducing regulatory T cells. Mod Rheumatol 2020; 31:186-196. [PMID: 31859545 DOI: 10.1080/14397595.2019.1707996] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Primary Sjögren's syndrome (SS) is a lymphoproliferative disease with a chronic autoimmune disorder characterized by mononuclear cell (MNC) infiltration of notably the lacrimal and salivary glands. As mesenchymal stem cells (MSCs) regulate series of immunological responses partially by regulating proportion of CD4+ T cells and inducing an immunosuppressive local milieu, umbilical cord MSCs (UC-MSCs) are being considered as a novel source for cell-based therapies against primary SS. This study aimed to investigate the feasibility of UC-MSCs in treatment of SS and to explore the possible mechanism(s) with the special emphasis on regulatory T cells (Tregs). METHODS Potent immunosuppressive effects of human UC-MSCs on SS were explored in vivo and in vitro. To study the effects of human UC-MSCs on the development and progression of SS, human UC-MSCs were administered before disease onset (preventive protocol) and after disease occurrence (therapeutic protocol) in non-obese diabetic (NOD) mice. In human study, the effect of human UC-MSCs on T cells from SS patients was studied. RESULTS In both protocols, the histopathology of submandibular and sublingual salivary glands showed decreased inflammatory infiltrates. In vitro, human UC-MSCs exhibited potent suppressive effects on responses of MNCs in NOD mice and T cells in SS patients. Such inhibitory effects were coupled with decreased production of proinflammtory cytokines interferon-γ, interleukin (IL)-6, tumor necrosis factor-α and increased production of IL-10 (n = 10, p < .01). The frequency of CD4+Foxp3+T cells in the spleen of NOD recipients was elevated (n = 6, p < .05). CONCLUSION Human UC-MSCs are capable of inducing CD4+Foxp3+ T cells in both NOD mice and human in vitro. Human UC-MSCs effectively interfere with the autoimmune attack in the course of SS by inducing an in vivo state of T cell unresponsiveness and the upregulation of Tregs.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| | - Chunlei Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| | - Shiyao Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| | - Jing Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| | - Jiangnan Fu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| | - Limin Ren
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| | - Yuan An
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, PR China
| |
Collapse
|
17
|
Abstract
Autoimmune diseases, such as rheumatoid arthritis, systematic lupus erythematosus and Sjögren's syndrome, are a group of diseases characterized by the activation of immune cells and excessive production of autoantibodies. Although the pathogenesis of these diseases is still not completely understood, studies have shown that multiple factors including genetics, environment and immune responses play important roles in the development and progression of the diseases. In China, there are great achievements in the mechanisms of autoimmune diseases during the last decades. These studies provide new insight to understand the diseases and also shed light on the development of novel therapy.
Collapse
Affiliation(s)
- Ru Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| | - Xing Sun
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Liu
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yue Yang
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| |
Collapse
|
18
|
Colicchia M, Jones DA, Beirne AM, Hussain M, Weeraman D, Rathod K, Veerapen J, Lowdell M, Mathur A. Umbilical cord-derived mesenchymal stromal cells in cardiovascular disease: review of preclinical and clinical data. Cytotherapy 2019; 21:1007-1018. [PMID: 31540804 DOI: 10.1016/j.jcyt.2019.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
The human umbilical cord has recently emerged as an attractive potential source of mesenchymal stromal cells (MSCs) to be adopted for use in regenerative medicine. Umbilical cord MSCs (UC-MSCs) not only share the same features of all MSCs such as multi-lineage differentiation, paracrine functions and immunomodulatory properties, they also have additional advantages, such as no need for bone marrow aspiration and higher self-renewal capacities. They can be isolated from various compartments of the umbilical cord (UC) and can be used for autologous or allogeneic purposes. In the past decade, they have been adopted in cardiovascular disease and have shown promising results mainly due to their pro-angiogenic and anti-inflammatory properties. This review offers an overview of the biological properties of UC-MSCs describing available pre-clinical and clinical data with respect to their potential therapeutic use in cardiovascular regeneration, with current challenges and future directions discussed.
Collapse
Affiliation(s)
- Martina Colicchia
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Daniel A Jones
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Anne-Marie Beirne
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Mohsin Hussain
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Deshan Weeraman
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Krishnaraj Rathod
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jessry Veerapen
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Mark Lowdell
- Department of Haematology, Royal Free Hospital and University College London, London, United Kingdom
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
19
|
Wei J, Ouyang X, Tang Y, Li H, Wang B, Ye Y, Jin M, Al Azab M, Li W, Li X. ER-stressed MSC displayed more effective immunomodulation in RA CD4 +CXCR5 +ICOS + follicular helper-like T cells through higher PGE2 binding with EP2/EP4. Mod Rheumatol 2019; 30:509-516. [PMID: 31370727 DOI: 10.1080/14397595.2019.1651446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: To analyze the further immunomodulatory effects of endoplasmic reticulum (ER)-stressed umbilical cord-derived mesenchymal stem cells MSCs (UC-MSCs) on rheumatoid arthritis (RA) CD4+CXCR5+ICOS+ T (follicular helper-like T, Tfh) cells.Methods: MSCs were isolated from umbilical cord and surface markers were identified by flow cytometry. CD4+ T cells were purified from RA patients' peripheral blood mononuclear cells (PBMCs) using immunomagnetic beads. Thapsigargin (Tg)-stimulated or unstimulated MSCs were co-cultured with RA CD4+ T cells. CD4+CXCR5+ICOS+ T cells were analyzed with fluorescence activating cell sorter (FACS) and major soluble factors secreted by MSCs were detected by qRT-PCR as well as ELISA. Receptors of prostanoid E2 (PGE2), known as EP1-4, on CD4+ T cells were tested with RT-PCR and FACS. Proportion of CD4+CXCR5+ICOS+ T cells was determined after EP2/EP4 antagonists and anti-IL-6R antibody was added into co-cultured system, respectively.Results: ER-stressed MSCs further down-regulated peripheral CD4+CXCR5+ICOS+ T cells compared with Tg-stimulated MSCs and CD4+ T co-cultured group. PGE2 and IL-6 increased obviously in the supernatants. EP2/EP4 could be detected on CD4+ T cells and frequencies of CD4+CXCR5+ICOS+ T cells were upregulated when EP2 and/or EP4 antagonists rather than anti-IL-6R antibody were added.Conclusions: ER-stressed MSCs exhibited better inhibition effect on RA CD4+CXCR5+ICOS+ T cells by releasing PGE2, indicating the immunosuppressive effect of MSCs could be enhanced by induction of ER stress.
Collapse
Affiliation(s)
- Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Xunli Ouyang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Han Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yunshan Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Mahmoud Al Azab
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Weiping Li
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| |
Collapse
|
20
|
Haque N, Ramasamy TS, Kasim NHA. Mechanisms of Mesenchymal Stem Cells for Autoimmune Disease Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-23421-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Zhang J, Yang C, Chen J, Luo M, Qu Y, Mu D, Chen Q. Umbilical cord mesenchymal stem cells and umbilical cord blood mononuclear cells improve neonatal rat memory after hypoxia-ischemia. Behav Brain Res 2019; 362:56-63. [PMID: 30639506 DOI: 10.1016/j.bbr.2019.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
Abstract
Current treatment options for hypoxic-ischemic encephalopathy (HIE) are limited. Human umbilical cord mesenchymal stem cells (UC-MSCs) and cord blood mononuclear cells (CB-MNCs) offer great potential for the treatment of many neurological diseases. The aim of the present study was to identify which cell type is more effective for the treatment of HIE. PKH26-labeled UC-MSCs and CB-MNCs were transplanted into rats with hypoxia-ischemia (HI)-induced brain damage. Apoptotic cell numbers in the brain, as labeled by TUNEL, were assessed. Myelination and gliosis were investigated using myelin basic protein and glial fibrillary acidic protein immunohistochemistry, respectively. The Morris water maze was used to assess animal learning abilities. Our data show that transplantation of UC-MSCs or CB-MNCs after HI reduced astrogliosis, prevented neuronal loss in the striatum, and markedly improved functional brain outcomes after a 28-day recovery period. Moreover, treatment with CB-MNCs increased the proportion of mature oligodendrocytes and improved myelination in cortical areas. Both UC-MSCs and CB-MNCs may result in the recovery of neurological function in HI rats. Based on our data, UC-MSCs and UCB-MNCs may be particularly effective stem cell subsets for treatment of neonatal HIE.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Cord Blood Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, 610037, Sichuan, China
| | - Juan Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Cord Blood Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, 610037, Sichuan, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Cord Blood Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, 610037, Sichuan, China
| |
Collapse
|
22
|
Yang SN, Pu X, Xiang SL, Chen JP, Pei L. [Brain derived neurotrophic factor enhances the role of mesenchymal stem cells in inhibiting follicular helper T cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 39:37-40. [PMID: 29551031 PMCID: PMC7343120 DOI: 10.3760/cma.j.issn.0253-2727.2018.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
目的 探讨脑源性神经营养因子(BDNF)增强间充质干细胞(MSC)抑制滤泡辅助性T细胞(Tfh细胞)的作用及机制。 方法 ELISA法检测MSC培养上清中吲哚胺2,3-二加氧酶(IDO)、IL-10、TGF-β和IL-21的含量;采集健康志愿者的外周血标本,采用人淋巴细胞分离液分离外周血中的淋巴细胞;采用Transwell小室进行MSC和淋巴细胞共培养,流式细胞术检测CD4+CXCR5+ Tfh细胞及其亚群的比例。 结果 ①BDNF组(BDNF刺激的MSC)培养上清IL-10、TGF-β、IDO浓度均高于对照组(加入等体积磷酸盐缓冲液)[IL-10:(42.1±4.4)ng/ml对(19.3±2.1)ng/ml,t=4.761,P=0.009;TGF-β:(13.9±1.7)ng/ml对(5.3±0.6)ng/ml,t=5.129,P=0.008;IDO:(441.3±56.9)ng/ml对(226.7±37.6)ng/ml,t=3.130,P=0.035];②BDNF组(淋巴细胞与BDNF刺激的MSC共培养)与MSC组(淋巴细胞与MSC共培养)比较:CD4+CXCR5+Tfh细胞比例降低[(3.37±0.21)%对(6.51±0.27)%,t=9.353,P<0.001],CD4+ CXCR5+ CXCR3+ CCR6−Tfh1细胞比例升高[(41.14±2.04)%对(26.72±2.57)%,t=4.383,P=0.012],CD4+CXCR5+CXCR3−CCR6−Tfh2细胞和CD4+CXCR5+CXCR3−CCR6+Tfh17细胞比例降低[Tfh2:(30.16±5.38)%对(43.26±4.11)%,t=4.426,P=0.012;Tfh17:(15.61±1.52)%对(22.32±0.72)%,t=4.202,P=0.014],CD4+CXCR5+Foxp3+ Tfr细胞比例升高[(4.95±0.22)%对(2.32±0.16)%,t=10.241,P<0.001],淋巴细胞培养上清中IL-21浓度降低[(0.28±0.03)ng/ml对(0.85±0.08)ng/ml,t=6.675,P=0.003]。 结论 BDNF能够增强MSC抑制Tfh细胞的作用,机制是抑制淋巴细胞中Tfh细胞比例升高及其向Tfh2和Tfh17亚群的分化。
Collapse
Affiliation(s)
- S N Yang
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
23
|
de Oliveira FR, Fantucci MZ, Adriano L, Valim V, Cunha TM, Louzada-Junior P, Rocha EM. Neurological and Inflammatory Manifestations in Sjögren's Syndrome: The Role of the Kynurenine Metabolic Pathway. Int J Mol Sci 2018; 19:ijms19123953. [PMID: 30544839 PMCID: PMC6321004 DOI: 10.3390/ijms19123953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
For decades, neurological, psychological, and cognitive alterations, as well as other glandular manifestations (EGM), have been described and are being considered to be part of Sjögren's syndrome (SS). Dry eye and dry mouth are major findings in SS. The lacrimal glands (LG), ocular surface (OS), and salivary glands (SG) are linked to the central nervous system (CNS) at the brainstem and hippocampus. Once compromised, these CNS sites may be responsible for autonomic and functional disturbances that are related to major and EGM in SS. Recent studies have confirmed that the kynurenine metabolic pathway (KP) can be stimulated by interferon-γ (IFN-γ) and other cytokines, activating indoleamine 2,3-dioxygenase (IDO) in SS. This pathway interferes with serotonergic and glutamatergic neurotransmission, mostly in the hippocampus and other structures of the CNS. Therefore, it is plausible that KP induces neurological manifestations and contributes to the discrepancy between symptoms and signs, including manifestations of hyperalgesia and depression in SS patients with weaker signs of sicca, for example. Observations from clinical studies in acquired immune deficiency syndrome (AIDS), graft-versus-host disease, and lupus, as well as from experimental studies, support this hypothesis. However, the obtained results for SS are controversial, as discussed in this study. Therapeutic strategies have been reexamined and new options designed and tested to regulate the KP. In the future, the confirmation and application of this concept may help to elucidate the mosaic of SS manifestations.
Collapse
Affiliation(s)
- Fabíola Reis de Oliveira
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Marina Zilio Fantucci
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Leidiane Adriano
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Valéria Valim
- Espírito Santo Federal University, Vitoria, ES 29075-910, Brazil.
| | - Thiago Mattar Cunha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Paulo Louzada-Junior
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Eduardo Melani Rocha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| |
Collapse
|
24
|
Shi B, Qi J, Yao G, Feng R, Zhang Z, Wang D, Chen C, Tang X, Lu L, Chen W, Sun L. Mesenchymal stem cell transplantation ameliorates Sjögren's syndrome via suppressing IL-12 production by dendritic cells. Stem Cell Res Ther 2018; 9:308. [PMID: 30409219 PMCID: PMC6225717 DOI: 10.1186/s13287-018-1023-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/01/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been demonstrated to be effective in treating autoimmune diseases including Sjögren’s syndrome (SS). We aim to compare the effects of MSC transplantation (MSCT) and the role of serum interleukin-12 (IL-12) in SS. Methods IL-12 levels were measured by ELISA. IL-12 mRNA transcripts in dendritic cells (DCs) were determined by RT-PCR. After co-culturing with MSCs, IL-12 mRNA transcripts in mouse and human DCs were detected. Non-obese diabetic (NOD) mice received MSCT, recombinant IL-12, or anti-IL-12 mAb treatment, respectively. Then, salivary flow rates, histopathology of salivary glands, and splenic lymphocyte subsets were examined in these mice. Results IL-12 levels in the serum were significantly increased in SS patients and positively correlated with the EULAR 2010 Sjögren’s syndrome disease activity index. DCs from SS patients produced more IL-12 than those from the control. Likewise, IL-12 treatment in NOD mice significantly decreased salivary flow rates and promoted lymphocyte infiltration in salivary glands. IL-12 antibodies downregulated Th1, Th17, and Tfh cell. MSCT enhanced salivary flow rates and decreased lymphocyte infiltrations in salivary glands of NOD mice. MSCT downregulated Th17 and Tfh cells but upregulated regulatory T cells. MSCT reduced IL-12 productions in both SS patients and mice. Conclusion Our results indicate that MSCs ameliorate SS possibly via suppressing IL-12 production in DCs and that IL-12 could be a potential therapeutic target of SS. Trial registration NTC00953485. Registered June 2009. Electronic supplementary material The online version of this article (10.1186/s13287-018-1023-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bingyu Shi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingjing Qi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ruihai Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhuoya Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Liwei Lu
- Department of Pathology and Center of Infection and Immunology, University of Hong Kong, Hong Kong, China
| | - Wanjun Chen
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
25
|
Mesenchymal Stem Cells in Primary Sjögren's Syndrome: Prospective and Challenges. Stem Cells Int 2018; 2018:4357865. [PMID: 30305818 PMCID: PMC6165618 DOI: 10.1155/2018/4357865] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic systemic inflammatory autoimmune disease characterized by lymphocytic infiltrates in exocrine glands. Current approaches do not control harmful autoimmune attacks or prevent irreversible damage and have considerable side effects. Mesenchymal stem cells (MSCs) have been effective in the treatment of several autoimmune diseases. The objective of this review is to illustrate the potential therapeutic role of MSCs in pSS. We summarize the recent advances in what is known about their immunomodulatory function and therapeutic applications in pSS. MSC transfusion can suppress autoimmunity and restore salivary gland secretory function in mouse models and patients with pSS by inducing regulatory T cells, suppressing Th1, Th17, and T follicular helper cell responses. In addition, MSCs can differentiate into salivary epithelial cells, presenting an option as a suitable alternative treatment. We also discuss current bioengineering methods which improve functions of MSCs for pSS. However, there remain many challenges to overcome before their wide clinical application.
Collapse
|
26
|
Inhibitory Effects of iPSC-MSCs and Their Extracellular Vesicles on the Onset of Sialadenitis in a Mouse Model of Sjögren's Syndrome. Stem Cells Int 2018; 2018:2092315. [PMID: 29736173 PMCID: PMC5875028 DOI: 10.1155/2018/2092315] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023] Open
Abstract
No effective treatment for Sjögren's syndrome (SS), a chronic autoimmune disease affecting mainly salivary and lacrimal glands, is available now. Systemic infusion of allogeneic mesenchymal stem cells (MSCs) isolated from tissues such as bone marrow (BM) alleviated SS in mouse models and a small clinical trial, but further research and application of this MSC therapy were hindered by limited expandability, significant donor variations, and safety concerns of tissue-derived MSCs. To circumvent these issues, we derived MSCs from human iPSCs using an optimized protocol that can be easily scaled up to produce a huge amount of standardized MSCs. Our iPSC-MSCs inhibited the onset of lymphocyte infiltration into salivary glands in the NOD mouse model of SS in the same way as BM-MSCs. Extracellular vesicles (EVs) carry bioactive molecules in the same way as their originating cells and are more stable and considered much safer than cells for therapies. We found that EVs derived from BM-MSCs and iPSC-MSCs suppressed activation of immune cells and expression of proinflammation factors essential for SS progression in vitro and that infusion of iPSC-MSC EVs at the predisease stage decreased the lymphocyte infiltration in salivary glands and serum autoantibody levels in the same way as infusion of BM-MSCs and iPSC-MSCs. These data suggested that iPSC-MSC EVs have the potential to prevent the progression of SS before the onset of sialadenitis.
Collapse
|
27
|
Verstappen GM, Meiners PM, Corneth OBJ, Visser A, Arends S, Abdulahad WH, Hendriks RW, Vissink A, Kroese FGM, Bootsma H. Attenuation of Follicular Helper T Cell-Dependent B Cell Hyperactivity by Abatacept Treatment in Primary Sjögren's Syndrome. Arthritis Rheumatol 2017; 69:1850-1861. [DOI: 10.1002/art.40165] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Gwenny M. Verstappen
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Petra M. Meiners
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | | | - Annie Visser
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Suzanne Arends
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Wayel H. Abdulahad
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | | | - Arjan Vissink
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Frans G. M. Kroese
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Hendrika Bootsma
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
28
|
Abstract
Autoimmune dacryoadenitis, such as Sjögren syndrome, comprises multifactorial and complex diseases. Inflammation of the lacrimal gland plays a key role in the pathogenesis of diseases. Unfortunately, current treatment strategies, including artificial tears, anti-inflammatory drugs, punctual occlusion, and immunosuppressive drugs, are only palliative, and long-term administration of these strategies is associated with adverse effects that limit their utility. Hence, an effective and safe treatment for autoimmune dacryoadenitis is urgently needed. Mesenchymal stem cells (MSCs) have emerged as a promising tool for treating autoimmune dacryoadenitis, owing to their immunosuppressive properties, tissue repair functions, and powerful differentiation capabilities. A large number of studies have focused on the effect of MSCs on autoimmune diseases, such as autoimmune uveitis, inflammatory bowel disease, and collagen-induced arthritis, but few studies have, to date, unequivocally established the efficacy of MSCs for treating autoimmune dacryoadenitis. In this review, we discuss recent advances in MSC treatment for autoimmune dacryoadenitis.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Xilian Wang
- Tianjin Beichen Hospital, No. 7, Beiyi Road, Beichen District, Tianjin, 300400, China
| | - Hong Nian
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Dan Yang
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Ruihua Wei
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
29
|
Ruan GF, Zheng L, Huang JS, Huang WX, Gong BD, Fang XX, Zhang XY, Tang JP. Effect of mesenchymal stem cells on Sjögren-like mice and the microRNA expression profiles of splenic CD4+ T cells. Exp Ther Med 2017; 13:2828-2838. [PMID: 28587347 PMCID: PMC5450633 DOI: 10.3892/etm.2017.4313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) serve immuno-regulatory functions and offer a promising novel treatment for certain autoimmune diseases. The present study investigated the therapeutic effect of mice bone marrow (BM)-MSCs on mice with relatively late stage of Sjögren-like disease and the impact of BM-MSCs on the microRNA (miRNA) expression profiles of splenic CD4+ T cells. Female NOD/Ltj mice were randomized into two groups: The disease group (n=8) and the MSC-treated group (n=8). Female ICR mice served as the healthy control group (n=8). The MSC-treated group received an injection of MSCs when they were 26 weeks old. Water intake, blood glucose and salivary flow rate were measured and submandibular glands were resected and stained with hematoxylin and eosin to calculate the focus score. The concentrations of interleukin (IL)-2, IL-6, hepatocyte growth factor, interferon γ, IL-10, prostaglandin E2, transforming growth factor β1 and tumor necrosis factor-α in serum were measured using ELISA. The expression of miRNAs in splenic CD4+ T cells were measured using deep sequencing. The results demonstrated that treatment with BM-MSCs prevented a decline in the salivary flow rate and lymphocyte infiltration in the salivary glands of NOD mice, indicating that MSC-treatment had a therapeutic effect on NOD mice with relatively late stage of Sjögren-like disease. ELISA and deep sequencing results showed that the three groups of mice had different serum concentrations of cytokines/growth factors and different miRNA expression profiles of splenic CD4+ T cells. This implies that the alteration in serum levels of cytokines/growth factors and miRNA expression profiles of splenic CD4+ T cells may explain the therapeutic effect MSCs have on Sjögren's syndrome.
Collapse
Affiliation(s)
- Guang-Feng Ruan
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Ling Zheng
- Department of Respiratory Medicine, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Jia-Shu Huang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Wan-Xue Huang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Bang-Dong Gong
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Xing-Xing Fang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Xiao-Yu Zhang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Jian-Ping Tang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
30
|
Zhang Z, Feng R, Niu L, Huang S, Deng W, Shi B, Yao G, Chen W, Tang X, Gao X, Feng X, Sun L. Human Umbilical Cord Mesenchymal Stem Cells Inhibit T Follicular Helper Cell Expansion Through the Activation of iNOS in Lupus-Prone B6.MRL- Faslpr Mice. Cell Transplant 2017; 26:1031-1042. [PMID: 28105982 DOI: 10.3727/096368917x694660] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aberrant generation or activation of T follicular helper (Tfh) cells contributes to the pathogenesis of systemic lupus erythematosus (SLE), yet little is known about how these cells are regulated. In this study, we demonstrated that the frequency of Tfh cells was increased in lupus-prone B6.MRL-Faslpr (B6.lpr) mice and positively correlated to plasma cell proportions and serum total IgG as well as anti-dsDNA antibody levels. Transplantation of mesenchymal stem cells derived from Wharton's jelly of human umbilical cords (hUC-MSCs) ameliorated lupus symptoms in B6.lpr mice, along with decreased percentages of Tfh cells. In vitro studies showed that the differentiation and proliferation of Tfh cells were markedly suppressed by hUC-MSCs. The production of inducible nitric oxide synthase (iNOS) was dramatically upregulated in hUC-MSCs when cocultured with CD4+ T cells directly, while adding the specific inhibitor of iNOS into the coculture system significantly reversed the inhibitory effect of hUC-MSCs on Tfh cell generation. Interestingly, the efficacy of hUC-MSCs in inhibiting Tfh cells was impaired in the Transwell system, with the reduction of iNOS in both mRNA and protein levels. Taken together, our findings suggest that hUC-MSCs could effectively inhibit Tfh cell expansion through the activation of iNOS in lupus-prone B6.lpr mice, which is highly dependent on cell-to-cell contacts.
Collapse
|
31
|
Verstappen GM, Kroese FGM, Meiners PM, Corneth OB, Huitema MG, Haacke EA, van der Vegt B, Arends S, Vissink A, Bootsma H, Abdulahad WH. B Cell Depletion Therapy Normalizes Circulating Follicular Th Cells in Primary Sjögren Syndrome. J Rheumatol 2016; 44:49-58. [PMID: 28042126 DOI: 10.3899/jrheum.160313] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the effect of B cell depletion therapy on effector CD4+ T cell homeostasis and its relation to objective measures of disease activity in patients with primary Sjögren syndrome (pSS). METHODS Twenty-four patients with pSS treated with rituximab (RTX) and 24 healthy controls (HC) were included. Frequencies of circulating effector CD4+ T cell subsets were examined by flow cytometry at baseline and 16, 24, 36, and 48 weeks after the first RTX infusion. Th1, Th2, follicular Th (TFH), and Th17 cells were discerned based on surface marker expression patterns. Additionally, intracellular cytokine staining was performed for interferon-γ, interleukin (IL)-4, IL-21, and IL-17 and serum levels of these cytokines were analyzed. RESULTS In patients with pSS, frequencies of circulating TFH cells and Th17 cells were increased at baseline compared with HC, whereas frequencies of Th1 and Th2 cells were unchanged. B cell depletion therapy resulted in a pronounced decrease in circulating TFH cells, whereas Th17 cells were only slightly lowered. Frequencies of IL-21-producing and IL-17-producing CD4+ T cells and serum levels of IL-21 and IL-17 were also reduced. Importantly, the decrease in circulating TFH cells was associated with lower systemic disease activity over time, as measured by the European League Against Rheumatism Sjögren's Syndrome Disease Activity Index scores and serum IgG levels. CONCLUSION B cell depletion therapy in patients with pSS results in normalization of the elevated levels of circulating TFH cells. This reduction is associated with improved objective clinical disease activity measures. Our observations illustrate the pivotal role of the crosstalk between B cells and TFH cells in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Gwenny M Verstappen
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands. .,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen.
| | - Frans G M Kroese
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| | - Petra M Meiners
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| | - Odilia B Corneth
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| | - Minke G Huitema
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| | - Erlin A Haacke
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| | - Bert van der Vegt
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| | - Suzanne Arends
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| | - Arjan Vissink
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| | - Hendrika Bootsma
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| | - Wayel H Abdulahad
- From the departments of Rheumatology and Clinical Immunology, Oral and Maxillofacial Surgery, and Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen; the Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands.,G.M. Verstappen, MSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; F.G. Kroese, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; P.M. Meiners, MD, PhD, DMD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; O.B. Corneth, PhD, Department of Pulmonary Medicine, Erasmus MC; M.G. Huitema, BSc, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; E.A. Haacke, MD, departments of Rheumatology and Clinical Immunology, and departments of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; B. van der Vegt, MD, PhD, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen; S. Arends, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; A. Vissink, DMD, MD, PhD, Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen; H. Bootsma, MD, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen; W.H. Abdulahad, PhD, departments of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen
| |
Collapse
|
32
|
Bai L, Li D, Li J, Luo Z, Yu S, Cao S, Shen L, Zuo Z, Ma X. Bioactive molecules derived from umbilical cord mesenchymal stem cells. Acta Histochem 2016; 118:761-769. [PMID: 27692875 DOI: 10.1016/j.acthis.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/05/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023]
Abstract
Umbilical cord mesenchymal stem cells (UCMSCs) retain their intrinsic stem cell potential while at the same time displaying high proliferation rates, powerful differentiation capacity, and low immunogenicity. They can also secrete multiple bioactive molecules that exert specific physiological functions. Thus, UCMSCs represent excellent candidates for cell therapy in regenerative medicine and tissue engineering. Abundant preclinical research on different disease models has shown that UCMSCs can accelerate wound or nerve damage recovery and suppress tumor progression. In fact, UCMSCs are thought to possess a higher therapeutic potential than MSCs derived from other tissues. Increasing evidence suggests that the mechanism underlying UCSMCs efficacy depends mostly on cell secretions, in contrast to the early paradigm of cell replacement and differentiation. In this review, we discuss UCMSCs biological characteristics, their secretome-based therapeutic mechanism, and potential applications.
Collapse
|
33
|
Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int 2016; 2016:6901286. [PMID: 27651799 PMCID: PMC5019943 DOI: 10.1155/2016/6901286] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
Abstract
The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
| | - Andrey Elchaninov
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, No. 1, Ostrovitianov Street, Moscow 117997, Russia
| | - Andrey Makarov
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, No. 1, Ostrovitianov Street, Moscow 117997, Russia
| |
Collapse
|
34
|
Hoffman AM, Dow SW. Concise Review: Stem Cell Trials Using Companion Animal Disease Models. Stem Cells 2016; 34:1709-29. [PMID: 27066769 DOI: 10.1002/stem.2377] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/26/2016] [Indexed: 12/13/2022]
Abstract
Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729.
Collapse
Affiliation(s)
- Andrew M Hoffman
- Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Steven W Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
35
|
Romani R, Pirisinu I, Calvitti M, Pallotta MT, Gargaro M, Bistoni G, Vacca C, Di Michele A, Orabona C, Rosati J, Pirro M, Giovagnoli S, Matino D, Prontera P, Rosi G, Grohmann U, Talesa VN, Donti E, Puccetti P, Fallarino F. Stem cells from human amniotic fluid exert immunoregulatory function via secreted indoleamine 2,3-dioxygenase1. J Cell Mol Med 2015; 19:1593-605. [PMID: 25783564 PMCID: PMC4511357 DOI: 10.1111/jcmm.12534] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/17/2014] [Indexed: 12/12/2022] Open
Abstract
Although human amniotic fluid does contain different populations of foetal-derived stem cells, scanty information is available on the stemness and the potential immunomodulatory activity of in vitro expanded, amniotic fluid stem cells. By means of a methodology unrequiring immune selection, we isolated and characterized different stem cell types from second-trimester human amniotic fluid samples (human amniotic fluid stem cells, HASCs). Of those populations, one was characterized by a fast doubling time, and cells were thus designated as fHASCs. Cells maintained their original phenotype under prolonged in vitro passaging, and they were able to originate embryoid bodies. Moreover, fHASCs exhibited regulatory properties when treated with interferon (IFN)-γ, including induction of the immunomodulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO1). On coculture with human peripheral blood mononuclear cells, IFN-γ-treated fHASCs caused significantly decreased T-cell proliferation and increased frequency in CD4(+) CD25(+) FOXP3(+) regulatory T cells. Both effects required an intact IDO1 function and were cell contact-independent. An unprecedented finding in our study was that purified vesicles from IFN-γ-treated fHASCs abundantly expressed the functional IDO1 protein, and those vesicles were endowed with an fHASC-like regulatory function. In vivo, fHASCs were capable of immunoregulatory function, promoting allograft survival in a mouse model of allogeneic skin transplantation. This was concurrent with the expansion of CD4(+) CD25(+) Foxp3(+) T cells in graft-draining lymph nodes from recipient mice. Thus fHASCs, or vesicles thereof, may represent a novel opportunity for immunoregulatory maneuvers both in vitro and in vivo.
Collapse
Affiliation(s)
- Rita Romani
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Irene Pirisinu
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | | | - Marco Gargaro
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giovanni Bistoni
- Plastic Surgery Unit, Hospital Universitario de la RiberaValencia, Spain
- Department of Surgery, ‘La Sapienza’ UniversityRome, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | | | - Ciriana Orabona
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Jessica Rosati
- iPS-Cellular Reprogramming Unit, Fondazione Casa Sollievo della Sofferenza, MendelRome, Italy
| | - Matteo Pirro
- Department of Medicine, University of PerugiaPerugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of PerugiaPerugia, Italy
| | - Davide Matino
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Paolo Prontera
- Department of Surgery and Biomedical Sciences, University of PerugiaPerugia, Italy
| | - Gabriella Rosi
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Vincenzo N Talesa
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Emilio Donti
- Department of Surgery and Biomedical Sciences, University of PerugiaPerugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | | |
Collapse
|
36
|
Arutyunyan IV, Makarov AV, Elchaninov AV, Fatkhudinov TK. Umbilical cord-derived multipotent mesenchymal stromal cells: biological properties and clinical applications. GENES & CELLS 2015; 10:30-38. [DOI: 10.23868/gc120474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The article presents the current literature evidence and own data on the origin and properties of human umbilical cord-derived multipotent mesenchymal stromal cells including proliferative potential, plasticity, stability of caryotype and phenotype, and immunomodulatory activity A review of clinical trials using this cell type is performed Prospects for the use of multipotent stromal cells, derived from umbilical cord, in cell transplantation associate with the need for specialized biobanking and transplant standardization criteria
Collapse
Affiliation(s)
- I. V Arutyunyan
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
| | - A. V Makarov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
| | - A. V Elchaninov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
| | - T. Kh Fatkhudinov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
| |
Collapse
|