1
|
Štarhová Serbina L, Burckhardt D, Petráková Dušátková L, Queiroz DL, Goldenberg R, Schuler H, Percy DM, Malenovský I. Deciphering the patterns and timing of diversification of the genus Melanastera (Hemiptera: Psylloidea: Liviidae) in the Neotropics. Mol Phylogenet Evol 2025; 208:108347. [PMID: 40199425 DOI: 10.1016/j.ympev.2025.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Even after decades of research on diversification in the Neotropics, our understanding of the evolutionary processes that shaped Neotropical clades is still incomplete. In the present study, we used different divergence times and likelihood-based methods to investigate the influence of biogeography and host plant associations on the diversification of the most species-rich psyllid genus Melanastera (Liviidae) from the Neotropics as a model group of herbivorous insects. We used molecular phylogenetic data from seven gene fragments (four mitochondrial and three nuclear). The putatively monophyletic group of Neotropical Melanastera species has an estimated crown node age of 20.2 Ma (ML, CI 20.2-30.6) or 23.2 Ma (BI, 95 % HPD 16.6-32.6), with diversification occurring mainly in the Upper Miocene, although some species groups diversified in the Pliocene or Pleistocene. Biogeographic analysis suggests that the Neotropical Melanastera originated from the Pacific region of South and Central America. We detected a shift in diversification rates that likely occurred either at the time of origin of Melanastera or during the main colonisation of the Atlantic and Amazon Forests, followed by a subsequent slowdown in speciation rates. State-dependent speciation and extinction models revealed a significant relationship between this diversification shift and the shift of Melanastera to the plant families Melastomataceae and Annonaceae, reflecting the impact of host switching on speciation rates in this group. This period also coincides with several independent dispersal events from the Atlantic and Amazon Forests to other parts of the Neotropics. Taken together, the results of the current study suggest that diversification of Melanastera was facilitated by shifts to new host families, which may have promoted the dispersal of Melanastera into new adaptive zones with subsequent processes of local speciation.
Collapse
Affiliation(s)
- Liliya Štarhová Serbina
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic; Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany.
| | - Daniel Burckhardt
- Naturhistorisches Museum, Augustinergasse 2, 4001 Basel, Switzerland
| | - Lenka Petráková Dušátková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Dalva L Queiroz
- Embrapa Florestas, Estrada da Ribeira, km 111, C. postal 319, 83411-000 Colombo, PR, Brazil
| | - Renato Goldenberg
- Universidade Federal do Paraná, P.O. Box 19.020, 81531-980 Curitiba, PR, Brazil
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Science, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; Competence Centre for Plant Health, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Diana M Percy
- Department of Botany, Faculty of Science, University of British Columbia, V6T 1Z4 Vancouver, Canada
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.
| |
Collapse
|
2
|
Dan Z, Zhang Y, Chen Z. Characterization of the Complete Mitochondrial Genome of Three Satyrid Butterfly Species (Satyrinae:Amathusiini) and Reconstructed Phylogeny of Satyrinae. Int J Mol Sci 2025; 26:2609. [PMID: 40141251 PMCID: PMC11942455 DOI: 10.3390/ijms26062609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Satyrinae, one of the most species-rich groups within the Nymphalidae family, has traditionally relied on morphological characteristics for classification. However, this approach encounters challenges due to issues such as cryptic species and paraphyletic groups. Recent molecular phylogenetic studies have revealed the complex evolutionary history of Satyrinae, leading to the reclassification of the originally polyphyletic Satyrini into multiple independent tribes and confirming the monophyletic status of groups such as Amathusiini. Nevertheless, the phylogenetic relationships and divergence times of certain tribes remain contentious. This study focuses on three species of the Amathusiini tribe (Faunis aerope, Stichophthalma howqua, and Aemona lena), constructing a phylogenetic tree by sequencing the complete mitochondrial genome and integrating 13 protein-coding genes, including COI and ND5. The results indicate that the mitogenome lengths for the three satyrid species are 15,512 bp for Faunis aerope, 13,914 bp for Stichophthalma howqua, and 15,288 bp for Aemona lena. The genetic composition and sequencing of the newly obtained mitogenomes exhibit high conservation and are distinctive to this group of butterflies. Each of the three mitogenomes contains a characteristic collection of 37 genes along with an AT-rich region. Notably, the tRNA genes across these mitogenomes display a conventional cloverleaf configuration; however, the tRNASer stem (AGN) lacks the dihydrouridine (DHU) arm. The three species exhibit varying lengths of AT-rich regions, resulting in differences in their mitochondrial genome sizes. Finally, the phylogenetic analysis supports the relationships among the four tribes of Satyrinae as: (Satyrini + (Amathusiini + Elymniini)) + Melanitini.
Collapse
Affiliation(s)
- Zhicuo Dan
- School of Life Sciences, Qinghai Normal University, Xi’ning 810008, China;
| | - Ying Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhenning Chen
- School of Life Sciences, Qinghai Normal University, Xi’ning 810008, China;
| |
Collapse
|
3
|
Mo S, Zhu Y, Braga MP, Lohman DJ, Nylin S, Moumou A, Wheat CW, Wahlberg N, Wang M, Ma F, Zhang P, Wang H. Rapid Evolution of Host Repertoire and Geographic Range in a Young and Diverse Genus of Montane Butterflies. Syst Biol 2025; 74:141-157. [PMID: 39484941 PMCID: PMC11809587 DOI: 10.1093/sysbio/syae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/14/2024] [Accepted: 11/05/2024] [Indexed: 11/03/2024] Open
Abstract
Evolutionary changes in geographic distribution and larval host plants may promote the rapid diversification of montane insects, but this scenario has been rarely investigated. We studied the rapid radiation of the butterfly genus Colias, which has diversified in mountain ecosystems in Eurasia, Africa, and the Americas. Based on a data set of 150 nuclear protein-coding genetic loci and mitochondrial genomes, we constructed a time-calibrated phylogenetic tree of Colias species with broad taxon sampling. We then inferred their ancestral geographic ranges, historical diversification rates, and the evolution of host use. We found that the most recent common ancestor of Colias was likely geographically widespread and originated ~3.5 Ma. The group subsequently diversified in different regions across the world, often in tandem with geographic expansion events. No aspect of elevation was found to have a direct effect on diversification. The genus underwent a burst of diversification soon after the divergence of the Neotropical lineage, followed by an exponential decline in diversification rate toward the present. The ancestral host repertoire included the legume genera Astragalus and Trifolium but later expanded to include a wide range of Fabaceae genera and plants in more distantly related families, punctuated with periods of host range expansion and contraction. We suggest that the widespread distribution of the ancestor of all extant Colias lineages set the stage for diversification by isolation of populations that locally adapted to the various different environments they encountered, including different host plants. In this scenario, elevation is not the main driver but might have accelerated diversification by isolating populations.
Collapse
Affiliation(s)
- Shifang Mo
- Department of Entomology, College of Plant Protection, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510000, China
| | - Yaowei Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Haizhu District, Guangzhou, 510275, China
| | - Mariana P Braga
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16 Uppsala, 75649, Sweden
| | - David J Lohman
- Department of Biology, City College of New York, City University of New York, 160 Convent Ave., New York, NY 10031, USA
- PhD Program in Biology, Graduate Center, City University of New York, 365 5th Ave., New York, NY 10016, USA
- Entomology Section, National Museum of Natural History, Rizal Park, T.W. Kalaw St., Manila, 1000, Philippines
| | - Sören Nylin
- Department of Zoology, Svante Arrhenius väg 18B, Stockholm University, Stockholm, SE-10691, Sweden
| | - Ashraf Moumou
- Department of Biology, City College of New York, City University of New York, 160 Convent Ave., New York, NY 10031, USA
| | - Christopher W Wheat
- Department of Zoology, Svante Arrhenius väg 18B, Stockholm University, Stockholm, SE-10691, Sweden
| | - Niklas Wahlberg
- Department of Biology, Kontaktvägen 10, Lund University, Lund, SWE-22362, Sweden
| | - Min Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510000, China
| | - Fangzhou Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 8 Jiangwangmiao Road, Xuanwu District, Nanjing, 210000, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Haizhu District, Guangzhou, 510275, China
| | - Houshuai Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510000, China
| |
Collapse
|
4
|
Halali S, Yapar E, Wheat CW, Wahlberg N, Gotthard K, Chazot N, Nylin S, Lehmann P. Tempo and mode of winter diapause evolution in butterflies. Evol Lett 2025; 9:125-136. [PMID: 39906583 PMCID: PMC11790229 DOI: 10.1093/evlett/qrae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 02/06/2025] Open
Abstract
Quantifying the tempo and mode via modern phylogenetic comparative methods can provide key insights into how selection and constraints shape trait evolution on a macroevolutionary time scale. Here, we elucidate the evolution of hibernation (winter) diapause, a complex and defining life-history trait that allows temporal escape from harsh winters in temperate regions for many insects, including our model system, butterflies. Butterflies can diapause in all major life stages, and the availability of global-scale phylogenies makes them an ideal model system for studying diapause evolution. First, using a thorough literature survey, we scored the developmental stage of hibernation diapause (egg, larva, pupa, adult) vs. absence of diapause. We find that larval diapause is most common, while pupal, egg, and adult diapause are relatively rare. Next, we determined that the loss of diapause occurred at a much higher rate and that gains primarily occurred from the non-diapause state. While ancestral state estimation at deeper nodes remained uncertain, we found consistent patterns for some families and strong evidence for extensive convergence in diapause evolution. Contrary to expectations, we find no support for increased gain of diapause during the Eocene-Oligocene glaciation (~35 million years ago). Overall, the evolution of diapause in butterflies has a complex history, has evolved convergently, and has likely predated the major glaciation event consistent with the deep history of diapause evolution in insects. This study advances our understanding of the evolution of a complex and important life-history trait and establishes a macroevolutionary foundation for future studies on the ultimate and proximate basis of diapause evolution.
Collapse
Affiliation(s)
| | - Etka Yapar
- Department of Biology, Lund University, Sweden
| | | | | | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Nicolas Chazot
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Animal physiology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Hu W, Wang Y, Chen X, Huang J, Kuang J, Wang L, Mao K, Dou L. Genome assembly of an endemic butterfly (Minois Aurata) shed light on the genetic mechanisms underlying ecological adaptation to arid valley habitat. BMC Genomics 2024; 25:1134. [PMID: 39580397 PMCID: PMC11585952 DOI: 10.1186/s12864-024-11058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Hengduan Mountains, one of the global biodiversity hotspots with exceptional species richness and high endemism, contains numerous arid valleys that create a distinctive geographical and ecological landscape. However, the adaptive evolutionary mechanisms of organism in the arid valley remain poorly understood. Minois aurata, an endemic butterfly species found exclusively in the arid valley of the upper Minjiang River, represents an attractive model system for studying adaptive evolutionary mechanisms to arid valley environments. RESULTS Here, we present the first chromosome-level genome assembly for Minois aurata, with a total size of approximately 609.17 Mb, and a scaffold N50 size of 23.88 Mb. These scaffolds were further clustered and anchored onto 29 chromosomes based on Hi-C data. A total of 16,163 protein-coding genes were predicted, of which 91.83% were functionally annotated. The expansion of transposable elements (TEs) accounts for the relatively large genome size of M. aurata, potentially aiding its adaptation to environmental conditions. Phylogenomic analyses based on 3,785 single-copy genes revealed that M. aurata is most closely related to Hipparchia semele. Further mitochondrial genome analysis of four Minois species placed M. aurata in a basal position within the genus, supporting it as an independent species. A total of 185 rapidly evolving and 232 specific gene families were identified in M. aurata. Functional enrichment analysis indicated that these gene families were mainly associated with ultraviolet radiation, heat and hypoxia responses. We also identified 234 positive selected genes in M. aurata, some of which are related to compound eye photoreceptor development, osmotic stress, and light stimulus response. Demographic analysis indicated that the effective population size of M. aurata decreased around 0.4 and 0.04 million years ago, respectively, coinciding with the localized sub-glaciation. CONCLUSION The chromosome-level genome offers a comprehensive genomic basis for understanding the evolutionary and adaptive strategies of Minois aurata in the unique arid valley environment of the Hengduan Mountains, while also providing valuable insights into the broader mechanisms of organism adaptation to such habitats.
Collapse
Affiliation(s)
- Wenqian Hu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yi Wang
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, 610081, China
| | - Xiaoxiao Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jialong Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jingge Kuang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Lei Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Liang Dou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
6
|
de-Dios T, Fontsere C, Renom P, Stiller J, Llovera L, Uliano-Silva M, Sánchez-Gracia A, Wright C, Lizano E, Caballero B, Navarro A, Civit S, Robbins RK, Blaxter M, Marquès T, Vila R, Lalueza-Fox C. Whole genomes from the extinct Xerces Blue butterfly can help identify declining insect species. eLife 2024; 12:RP87928. [PMID: 39365295 PMCID: PMC11466284 DOI: 10.7554/elife.87928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The Xerces Blue (Glaucopsyche xerces) is considered to be the first butterfly to become extinct in historical times. It was notable for its chalky lavender wings with conspicuous white spots on the ventral wings. The last individuals were collected in their restricted habitat, in the dunes near the Presidio military base in San Francisco, in 1941. We sequenced the genomes of four 80- to 100-year-old Xerces Blue, and seven historical and one modern specimens of its closest relative, the Silvery Blue (Glaucopsyche lygdamus). We compared these to a novel annotated genome of the Green-Underside Blue (Glaucopsyche alexis). Phylogenetic relationships inferred from complete mitochondrial genomes indicate that Xerces Blue was a distinct species that diverged from the Silvery Blue lineage at least 850,000 years ago. Using nuclear genomes, both species experienced population growth during the Eemian interglacial period, but the Xerces Blue decreased to a very low effective population size subsequently, a trend opposite to that observed in the Silvery Blue. Runs of homozygosity and deleterious load in the former were significantly greater than in the later, suggesting a higher incidence of inbreeding. These signals of population decline observed in Xerces Blue could be used to identify and monitor other insects threatened by human activities, whose extinction patterns are still not well known.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Evolutionary BiologyBarcelonaSpain
- Institute of Genomics, University of TartuTartuEstonia
| | - Claudia Fontsere
- Institute of Evolutionary BiologyBarcelonaSpain
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Pere Renom
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of CopenhagenCopenhagenDenmark
| | | | | | - Alejandro Sánchez-Gracia
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | | | - Esther Lizano
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Arcadi Navarro
- Institute of Evolutionary BiologyBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Sergi Civit
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | - Robert K Robbins
- Department of Entomology, National Museum of Natural History, Smithsonian InstitutionWashingtonUnited States
| | - Mark Blaxter
- Wellcome Sanger InstituteSaffron WaldenUnited Kingdom
| | - Tomàs Marquès
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Roger Vila
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Carles Lalueza-Fox
- Institute of Evolutionary BiologyBarcelonaSpain
- Museu de Ciències Naturals de BarcelonaBarcelonaSpain
| |
Collapse
|
7
|
Dort H, van der Bijl W, Wahlberg N, Nylin S, Wheat CW. Genome-Wide Gene Birth-Death Dynamics Are Associated with Diet Breadth Variation in Lepidoptera. Genome Biol Evol 2024; 16:evae095. [PMID: 38976568 PMCID: PMC11229701 DOI: 10.1093/gbe/evae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 07/10/2024] Open
Abstract
Comparative analyses of gene birth-death dynamics have the potential to reveal gene families that played an important role in the evolution of morphological, behavioral, or physiological variation. Here, we used whole genomes of 30 species of butterflies and moths to identify gene birth-death dynamics among the Lepidoptera that are associated with specialist or generalist feeding strategies. Our work advances this field using a uniform set of annotated proteins for all genomes, investigating associations while correcting for phylogeny, and assessing all gene families rather than a priori subsets. We discovered that the sizes of several important gene families (e.g. those associated with pesticide resistance, xenobiotic detoxification, and/or protein digestion) are significantly correlated with diet breadth. We also found 22 gene families showing significant shifts in gene birth-death dynamics at the butterfly (Papilionoidea) crown node, the most notable of which was a family of pheromone receptors that underwent a contraction potentially linked with a shift to visual-based mate recognition. Our findings highlight the importance of uniform annotations, phylogenetic corrections, and unbiased gene family analyses in generating a list of candidate genes that warrant further exploration.
Collapse
Affiliation(s)
- Hanna Dort
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Wouter van der Bijl
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | | | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
8
|
Lähteenaro M, Benda D, Straka J, Nylander JAA, Bergsten J. Phylogenomic analysis of Stylops reveals the evolutionary history of a Holarctic Strepsiptera radiation parasitizing wild bees. Mol Phylogenet Evol 2024; 195:108068. [PMID: 38554985 DOI: 10.1016/j.ympev.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Holarctic Stylops is the largest genus of the enigmatic insect order Strepsiptera, twisted winged parasites. Members of Stylops are obligate endoparasites of Andrena mining bees and exhibit extreme sexual dimorphism typical of Strepsiptera. So far, molecular studies on Stylops have focused on questions on species delimitation. Here, we utilize the power of whole genome sequencing to infer the phylogeny of this morphologically challenging genus from thousands of loci. We use a species tree method, concatenated maximum likelihood analysis and Bayesian analysis with a relaxed clock model to reconstruct the phylogeny of 46 Stylops species, estimate divergence times, evaluate topological consistency across methods and infer the root position. Furthermore, the biogeographical history and coevolutionary patterns with host species are assessed. All methods recovered a well resolved topology with close to all nodes maximally supported and only a handful of minor topological variations. Based on the result, we find that included species can be divided into 12 species groups, seven of them including only Palaearctic species, three Nearctic and two were geographically mixed. We find a strongly supported root position between a clade formed by the spreta, thwaitesi and gwynanae species groups and the remaining species and that the sister group of Stylops is Eurystylops or Eurystylops + Kinzelbachus. Our results indicate that Stylops originated in the Western Palaearctic or Western Palaearctic and Nearctic in the early Neogene or late Paleogene, with four independent dispersal events to the Nearctic. Cophylogenetic analyses indicate that the diversification of Stylops has been shaped by both significant coevolution with the mining bee hosts and host-shifting. The well resolved and strongly supported phylogeny will provide a valuable phylogenetic basis for further studies into the fascinating world of Strepsipterans.
Collapse
Affiliation(s)
- Meri Lähteenaro
- Department of Zoology, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden; Department of Zoology, Faculty of Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Daniel Benda
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ-128 44, Prague 2, Czech Republic; Department of Entomology, National Museum of the Czech Republic, Cirkusová 1740, CZ-19300 Prague 9, Czech Republic.
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ-128 44, Prague 2, Czech Republic.
| | - Johan A A Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, SE-106 91 Stockholm, Sweden.
| | - Johannes Bergsten
- Department of Zoology, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden; Department of Zoology, Faculty of Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
9
|
Budd GE, Mann RP. Two Notorious Nodes: A Critical Examination of Relaxed Molecular Clock Age Estimates of the Bilaterian Animals and Placental Mammals. Syst Biol 2024; 73:223-234. [PMID: 37695319 PMCID: PMC11129587 DOI: 10.1093/sysbio/syad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
The popularity of relaxed clock Bayesian inference of clade origin timings has generated several recent publications with focal results considerably older than the fossils of the clades in question. Here, we critically examine two such clades: the animals (with a focus on the bilaterians) and the mammals (with a focus on the placentals). Each example displays a set of characteristic pathologies which, although much commented on, are rarely corrected for. We conclude that in neither case does the molecular clock analysis provide any evidence for an origin of the clade deeper than what is suggested by the fossil record. In addition, both these clades have other features (including, in the case of the placental mammals, proximity to a large mass extinction) that allow us to generate precise expectations of the timings of their origins. Thus, in these instances, the fossil record can provide a powerful test of molecular clock methodology, and why it goes astray, and we have every reason to think these problems are general. [Cambrian explosion; mammalian evolution; molecular clocks.].
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16 SE 75236, Sweden
| | - Richard P Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Carvalho APS, Owens HL, St Laurent RA, Earl C, Dexter KM, Messcher RL, Willmott KR, Aduse-Poku K, Collins SC, Homziak NT, Hoshizaki S, Hsu YF, Kizhakke AG, Kunte K, Martins DJ, Mega NO, Morinaka S, Peggie D, Romanowski HP, Sáfián S, Vila R, Wang H, Braby MF, Espeland M, Breinholt JW, Pierce NE, Kawahara AY, Lohman DJ. Comprehensive phylogeny of Pieridae butterflies reveals strong correlation between diversification and temperature. iScience 2024; 27:109336. [PMID: 38500827 PMCID: PMC10945170 DOI: 10.1016/j.isci.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Temperature is thought to be a key factor influencing global species richness patterns. We investigate the link between temperature and diversification in the butterfly family Pieridae by combining next generation DNA sequences and published molecular data with fine-grained distribution data. We sampled nearly 600 pierid butterfly species to infer the most comprehensive molecular phylogeny of the family and curated a distribution dataset of more than 800,000 occurrences. We found strong evidence that species in environments with more stable daily temperatures or cooler maximum temperatures in the warm seasons have higher speciation rates. Furthermore, speciation and extinction rates decreased in tandem with global temperatures through geological time, resulting in a constant net diversification.
Collapse
Affiliation(s)
- Ana Paula S. Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | - Hannah L. Owens
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ryan A. St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Chandra Earl
- Department of Natural Sciences, Bernice Pauahi Bishop Museum, Honolulu, HI, USA
| | - Kelly M. Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | - Rebeccah L. Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | - Keith R. Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | | | | | - Nicholas T. Homziak
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Sugihiko Hoshizaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yu-Feng Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, R.O.C
| | - Athulya G. Kizhakke
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Dino J. Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
- Insect Committee of Nature Kenya, The East Africa Natural History Society, Nairobi, Kenya
| | - Nicolás O. Mega
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sadaharu Morinaka
- Saitama Study Center, The Open University of Japan, Omiya-ku, Saitama City, Japan
| | - Djunijanti Peggie
- Museum Zoologi Bogor, Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Cibinong, Bogor, Indonesia
| | - Helena P. Romanowski
- Laboratório de Ecologia de Insetos, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Szabolcs Sáfián
- African Butterfly Research Institute, Karen, Nairobi, Kenya
- Institute of Silviculture and Forest Protection, University of Sopron, Sopron, Hungary
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Houshuai Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Michael F. Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
- Australian National Insect Collection, National Research Collections Australia, Canberra, ACT, Australia
| | - Marianne Espeland
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Jesse W. Breinholt
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Intermountain Healthcare, Intermountain Precision Genomics, St. George, UT, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - David J. Lohman
- Department of Biology, City University of New York, New York, NY, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
- Entomology Section, National Museum of Natural History, Manila, Philippines
| |
Collapse
|
11
|
Wei X, Zhu J, Hoffmann AA, Jia J, Xiao M, Duan F, Zhang Y, Zhong H, Ge J, Yu W, Zhang L, Jiang W. Wolbachia infection status and molecular diversity in the species of tribe Tagiadini Mabille, 1878 (Lepidoptera: Hesperiidae) collected in China. Ecol Evol 2024; 14:e11279. [PMID: 38633519 PMCID: PMC11021859 DOI: 10.1002/ece3.11279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Wolbachia, one of the most ubiquitous heritable symbionts in lepidopteran insects, can cause mitochondrial introgression in related host species. We recently found mito-nuclear discordance in the Lepidopteran tribe Tagiadini Mabille 1878 from which Wolbachia has not been reported. In this study, we found that 13 of the 46 species of Tagiadini species tested were positive for Wolbachia. Overall, 14% (15/110) of Tagiadini specimens were infected with Wolbachia and nine new STs were found from 15 isolates. A co-phylogenetic comparison, divergence time estimation and Wolbachia recombination analysis revealed that mito-nuclear discordance in Tagiadini species is not mediated by Wolbachia, but Wolbachia acquisition in Tagiadini appears to have occurred mainly through horizontal transmission rather than codivergence.
Collapse
Affiliation(s)
- Xiaoying Wei
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | | | - Ary A. Hoffmann
- School of BioSciences, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Jiqin Jia
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Mengqi Xiao
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Feiyu Duan
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yimin Zhang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Huimin Zhong
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jingyan Ge
- Shanghai No. 3 Girl's High SchoolShanghaiChina
| | - Weidong Yu
- College of Continuing EducationShanghai Normal UniversityShanghaiChina
| | - Lei Zhang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Weibin Jiang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
12
|
Peris D, Condamine FL. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nat Commun 2024; 15:552. [PMID: 38253644 PMCID: PMC10803743 DOI: 10.1038/s41467-024-44784-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Interactions with angiosperms have been hypothesised to play a crucial role in driving diversification among insects, with a particular emphasis on pollinator insects. However, support for coevolutionary diversification in insect-plant interactions is weak. Macroevolutionary studies of insect and plant diversities support the hypothesis that angiosperms diversified after a peak in insect diversity in the Early Cretaceous. Here, we used the family-level fossil record of insects as a whole, and insect pollinator families in particular, to estimate diversification rates and the role of angiosperms on insect macroevolutionary history using a Bayesian process-based approach. We found that angiosperms played a dual role that changed through time, mitigating insect extinction in the Cretaceous and promoting insect origination in the Cenozoic, which is also recovered for insect pollinator families only. Although insects pollinated gymnosperms before the angiosperm radiation, a radiation of new pollinator lineages began as angiosperm lineages increased, particularly significant after 50 Ma. We also found that global temperature, increases in insect diversity, and spore plants were strongly correlated with origination and extinction rates, suggesting that multiple drivers influenced insect diversification and arguing for the investigation of different explanatory variables in further studies.
Collapse
Affiliation(s)
- David Peris
- Institut Botànic de Barcelona (CSIC-CMCNB), 08038, Barcelona, Spain.
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| |
Collapse
|
13
|
Marino A, Reboud EL, Chevalier E, Tilak MK, Contreras-Garduño J, Nabholz B, Condamine FL. Genomics of the relict species Baronia brevicornis sheds light on its demographic history and genome size evolution across swallowtail butterflies. G3 (BETHESDA, MD.) 2023; 13:jkad239. [PMID: 37847748 PMCID: PMC10700114 DOI: 10.1093/g3journal/jkad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Relict species, like coelacanth, gingko, tuatara, are the remnants of formerly more ecologically and taxonomically diverse lineages. It raises the questions of why they are currently species-poor, have restrained ecology, and are often vulnerable to extinction. Estimating heterozygosity level and demographic history can guide our understanding of the evolutionary history and conservation status of relict species. However, few studies have focused on relict invertebrates compared to vertebrates. We sequenced the genome of Baronia brevicornis (Lepidoptera: Papilionidae), which is an endangered species, the sister species of all swallowtail butterflies, and is the oldest lineage of all extant butterflies. From a dried specimen, we were able to generate both long-read and short-read data and assembled a genome of 406 Mb for Baronia. We found a fairly high level of heterozygosity (0.58%) compared to other swallowtail butterflies, which contrasts with its endangered and relict status. Taking into account the high ratio of recombination over mutation, demographic analyses indicated a sharp decline of the effective population size initiated in the last million years. Moreover, the Baronia genome was used to study genome size variation in Papilionidae. Genome sizes are mostly explained by transposable elements activities, suggesting that large genomes appear to be a derived feature in swallowtail butterflies as transposable elements activity is recent and involves different transposable elements classes among species. This first Baronia genome provides a resource for assisting conservation in a flagship and relict insect species as well as for understanding swallowtail genome evolution.
Collapse
Affiliation(s)
- Alba Marino
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Eliette L Reboud
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Emmanuelle Chevalier
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Jorge Contreras-Garduño
- Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores, campus Morelia, Antigua Carretera a Pátzcuaro #8701, Col. Ex-Hacienda San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - Benoit Nabholz
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
14
|
Piwczyński M, Granjon L, Trzeciak P, Carlos Brito J, Oana Popa M, Daba Dinka M, Johnston NP, Boratyński Z. Unraveling phylogenetic relationships and species boundaries in the arid adapted Gerbillus rodents (Muridae: Gerbillinae) by RAD-seq data. Mol Phylogenet Evol 2023; 189:107913. [PMID: 37659480 DOI: 10.1016/j.ympev.2023.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Gerbillus is one of the most speciose genera among rodents, with ca. 51 recognized species. Previous attempts to reconstruct the evolutionary history of Gerbillus mainly relied on the mitochondrial cyt-b marker as a source of phylogenetic information. In this study, we utilize RAD-seq genomic data from 37 specimens representing 11 species to reconstruct the phylogenetic tree for Gerbillus, applying concatenation and coalescence methods. We identified four highly supported clades corresponding to the traditionally recognized subgenera: Dipodillus, Gerbillus, Hendecapleura and Monodia. Only two uncertain branches were detected in the resulting trees, with one leading to diversification of the main lineages in the genus, recognized by quartet sampling analysis as uncertain due to possible introgression. We also examined species boundaries for four pairs of sister taxa, including potentially new species from Morocco, using SNAPP. The results strongly supported a speciation model in which all taxa are treated as separate species. The dating analyses confirmed the Plio-Pleistocene diversification of the genus, with the uncertain branch coinciding with the beginning of aridification of the Sahara at the the Plio-Pleistocene boundary. This study aligns well with the earlier analyses based on the cyt-b marker, reaffirming its suitability as an adequate marker for estimating genetic diversity in Gerbillus.
Collapse
Affiliation(s)
- Marcin Piwczyński
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Lwowska 1, PL-87-100 Toruń, Poland.
| | - Laurent Granjon
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Paulina Trzeciak
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Lwowska 1, PL-87-100 Toruń, Poland
| | - José Carlos Brito
- CIBIO-InBio, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Madalina Oana Popa
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Lwowska 1, PL-87-100 Toruń, Poland; "Stejarul" Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Alexandru cel Bun 6, RO-610004, Piatra Neamţ, Romania
| | - Mergi Daba Dinka
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Lwowska 1, PL-87-100 Toruń, Poland
| | - Nikolas P Johnston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW 2500, Australia
| | - Zbyszek Boratyński
- CIBIO-InBio, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
15
|
Hausharter J, Rashid S, Wessely J, Strutzenberger P, Moser D, Gattringer A, Fiedler K, Hülber K, Dullinger S. Niche breadth explains the range size of European-centred butterflies, but dispersal ability does not. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2023; 32:1535-1548. [PMID: 38505836 PMCID: PMC10946795 DOI: 10.1111/geb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 03/21/2024]
Abstract
Aim The breadth of ecological niches and dispersal abilities have long been discussed as important determinants of species' range sizes. However, studies directly comparing the relative effects of both factors are rare, taxonomically biased and revealed inconsistent results. Location Europe. Time Period Cenozoic. Major Taxa Butterflies, Lepidoptera. Methods We relate climate, diet and habitat niche breadth and two indicators of dispersal ability, wingspan and a dispersal tendency index, to the global range size of 369 European-centred butterfly species. The relative effects of these five predictors and their variation across the butterfly phylogeny were assessed by means of phylogenetic generalized least squares models and phylogenetically weighted regressions respectively. Results Climate niche breadth was the most important single predictor, followed by habitat and diet niche breadth, while dispersal tendency and wingspan showed no relation to species' range size. All predictors together explained 59% of the variation in butterfly range size. However, the effects of each predictor varied considerably across families and genera. Main Conclusions Range sizes of European-centred butterflies are strongly correlated with ecological niche breadth but apparently independent of dispersal ability. The magnitude of range size-niche breadth relationships is not stationary across the phylogeny and is often negatively correlated across the different dimensions of the ecological niche. This variation limits the generalizability of range size-trait relationships across broad taxonomic groups.
Collapse
Affiliation(s)
- Johannes Hausharter
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Sonia Rashid
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE)University of ViennaViennaAustria
| | - Johannes Wessely
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Dietmar Moser
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Department of Biological Diversity and Nature ConservationEnvironment Agency AustriaViennaAustria
| | - Andreas Gattringer
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Konrad Fiedler
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Karl Hülber
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
16
|
Traut W, Sahara K, ffrench-Constant RH. Lepidopteran Synteny Units reveal deep chromosomal conservation in butterflies and moths. G3 (BETHESDA, MD.) 2023; 13:jkad134. [PMID: 37310934 PMCID: PMC10411566 DOI: 10.1093/g3journal/jkad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
DNA is compacted into individual particles or chromosomes that form the basic units of inheritance. However, different animals and plants have widely different numbers of chromosomes. This means that we cannot readily tell which chromosomes are related to which. Here, we describe a simple technique that looks at the similarity of genes on each chromosome and thus gives us a true picture of their homology or similarity through evolutionary time. We use this new system to look at the chromosomes of butterflies and moths or Lepidoptera. We term the associated synteny units, Lepidopteran Synteny Units (LSUs). Using a sample of butterfly and moth genomes from across evolutionary time, we show that LSUs form a simple and reliable method of tracing chromosomal homology back through time. Surprisingly, this technique reveals that butterfly and moth chromosomes show conserved blocks dating back to their sister group the Trichoptera. As Lepidoptera have holocentric chromosomes, it will be interesting to see if similar levels of synteny are shown in groups of animals with monocentric chromosomes. The ability to define homology via LSU analysis makes it considerably easier to approach many questions in chromosomal evolution.
Collapse
Affiliation(s)
- Walther Traut
- Institut für Biologie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Ken Sahara
- Laboratory of Molecular Entomology, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka 020-8550, Japan
| | | |
Collapse
|
17
|
McLellan CF, Cuthill IC, Montgomery SH. Warning Coloration, Body Size, and the Evolution of Gregarious Behavior in Butterfly Larvae. Am Nat 2023; 202:64-77. [PMID: 37384762 DOI: 10.1086/724818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractMany species gain antipredator benefits by combining gregarious behavior with warning coloration, yet there is debate over which trait evolves first and which is the secondary adaptive enhancement. Body size can also influence how predators receive aposematic signals and potentially constrain the evolution of gregarious behavior. To our knowledge, the causative links between the evolution of gregariousness, aposematism, and larger body sizes have not been fully resolved. Here, using the most recently resolved butterfly phylogeny and an extensive new dataset of larval traits, we reveal the evolutionary interactions between important traits linked to larval gregariousness. We show that larval gregariousness has arisen many times across butterflies, and aposematism is a likely prerequisite for gregariousness to evolve. We also find that body size may be an important factor for determining the coloration of solitary, but not gregarious, larvae. Additionally, by exposing artificial larvae to wild avian predation, we show that undefended, cryptic larvae are heavily predated when aggregated but benefit from solitariness, whereas the reverse is true for aposematic prey. Our data reinforce the importance of aposematism for gregarious larval survival while identifying new questions about the roles of body size and toxicity in the evolution of grouping behavior.
Collapse
|
18
|
McLellan CF, Cuthill IC, Montgomery SH. Pattern variation is linked to anti-predator coloration in butterfly larvae. Proc Biol Sci 2023; 290:20230811. [PMID: 37357867 PMCID: PMC10291709 DOI: 10.1098/rspb.2023.0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Prey animals typically try to avoid being detected and/or advertise to would-be predators that they should be avoided. Both anti-predator strategies primarily rely on colour to succeed, but the specific patterning used is also important. While the role of patterning in camouflage is relatively clear, the design features of aposematic patterns are less well understood. Here, we use a comparative approach to investigate how pattern use varies across a phylogeny of 268 species of cryptic and aposematic butterfly larvae, which also vary in social behaviour. We find that longitudinal stripes are used more frequently by cryptic larvae, and that patterns putatively linked to crypsis are more likely to be used by solitary larvae. By contrast, aposematic larvae are more likely to use horizontal bands and spots, but we find no differences in the use of individual pattern elements between solitary and gregarious aposematic species. However, solitary aposematic larvae are more likely to display multiple pattern elements, whereas those with no pattern are more likely to be gregarious. Our study advances our understanding of how pattern variation, coloration and social behaviour covary across lepidopteran larvae, and highlights new questions about how patterning affects larval detectability and predator responses to aposematic prey.
Collapse
Affiliation(s)
- Callum F. McLellan
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
19
|
Hou Y, Cao C, Chiba H, Chang Z, Huang S, Zhu L, Kunte K, Zhenfu H, Wang M, Fan X. Molecular phylogeny, historical biogeography, and classification of Pseudocoladenia butterflies (Lepidoptera: Hesperiidae). Mol Phylogenet Evol 2023:107865. [PMID: 37352994 DOI: 10.1016/j.ympev.2023.107865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
The range of the butterfly genus Pseudocoladenia includes several biodiversity hotspots, such as the Himalayas, mountains of Southwest China, and Sundaland. However, the status of some of its species/subspecies remain controversial, and no previous phylogenetic or biogeographic analyses have been conducted. Herein, we determined the systematic relationships and biogeographic history of this genus by reconstructing its phylogeny based on six genes and 76 specimens as representatives of all known species/subspecies. Two species delimitation methods (Bayes Poisson Tree Processes and Bayesian Phylogenetics and Phylogeography) were also employed to assess the status of each taxon. Based on these results and morphological evidence, we identified 12 species and three subspecies in the genus and subsequently classified these into three species groups: P. fatih, P. dea, and P. dan. Five taxa, P. sadakoe (Sonan & Mitono, 1936) stat. nov., P. celebica (Fruhstorfer, 1909) stat. nov., P. fulvescens (Elwes & Edwarda, 1897) stat. nov., P. eacus (Latreille, 1823) stat. nov., and P. fabia (Evans, 1949) stat. nov. were all recognized as independent species. Additionally, two taxa: P. eacus sumatrana (Fruhstorfer, 1909) comb. nov. and P. eacus dhyana (Fruhstorfer, 1909) comb. nov., were placed under P. eacus (Latreille, 1823) stat. nov. as subspecies. Another new species distributed in N. Yunnan, Pseudocoladenia yunnana Fan, Cao & Hou sp. nov., was also discovered and described. Divergence time and ancestral range estimation indicated that the most recent common ancestor of Pseudocoladenia was distributed in the Himalayas-Hengduan Mountain region and Indochina and diverged approximately 14.00 Ma. Continuous and episodic dispersal, vicariance, and extinction were used to determine the current geographic distribution of the genus. The P. fatih group had a prominently disjunct distribution between the Himalaya-Hengduan Mountain and Taiwan. Meanwhile, the P. dan group was first derived in Indochina and subsequently dispersed into the Southeast Asian archipelagoes. This study provides a reference for the evolutionary route of transoceanic distributed species in Asia and elaborates on the causes of biodiversity.
Collapse
Affiliation(s)
- Yongxiang Hou
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chenglong Cao
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China; Information Engineering College, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Hideyuki Chiba
- B. P. Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii, USA
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Siyao Huang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China; Leibniz Institute for the Analysis of Biodiversity Change Museum Koenig, Adenauerallee 127, Bonn, Germany
| | - Lijuan Zhu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK 7 Campus, Bellary Road, Bengaluru, India
| | - Huang Zhenfu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Min Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoling Fan
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Kawahara AY, Storer C, Carvalho APS, Plotkin DM, Condamine FL, Braga MP, Ellis EA, St Laurent RA, Li X, Barve V, Cai L, Earl C, Frandsen PB, Owens HL, Valencia-Montoya WA, Aduse-Poku K, Toussaint EFA, Dexter KM, Doleck T, Markee A, Messcher R, Nguyen YL, Badon JAT, Benítez HA, Braby MF, Buenavente PAC, Chan WP, Collins SC, Rabideau Childers RA, Dankowicz E, Eastwood R, Fric ZF, Gott RJ, Hall JPW, Hallwachs W, Hardy NB, Sipe RLH, Heath A, Hinolan JD, Homziak NT, Hsu YF, Inayoshi Y, Itliong MGA, Janzen DH, Kitching IJ, Kunte K, Lamas G, Landis MJ, Larsen EA, Larsen TB, Leong JV, Lukhtanov V, Maier CA, Martinez JI, Martins DJ, Maruyama K, Maunsell SC, Mega NO, Monastyrskii A, Morais ABB, Müller CJ, Naive MAK, Nielsen G, Padrón PS, Peggie D, Romanowski HP, Sáfián S, Saito M, Schröder S, Shirey V, Soltis D, Soltis P, Sourakov A, Talavera G, Vila R, Vlasanek P, Wang H, Warren AD, Willmott KR, Yago M, Jetz W, Jarzyna MA, Breinholt JW, Espeland M, Ries L, Guralnick RP, Pierce NE, Lohman DJ. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat Ecol Evol 2023; 7:903-913. [PMID: 37188966 PMCID: PMC10250192 DOI: 10.1038/s41559-023-02041-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.
Collapse
Affiliation(s)
- Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Caroline Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ana Paula S Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - David M Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier), Montpellier, France
| | - Mariana P Braga
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily A Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ryan A St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Xuankun Li
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Center for Biodiversity Research, Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Vijay Barve
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Liming Cai
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Chandra Earl
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Hannah L Owens
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Kwaku Aduse-Poku
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Department of Life and Earth Sciences, Perimeter College, Georgia State University, Decatur, GA, USA
| | - Emmanuel F A Toussaint
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, Natural History Museum of Geneva, Geneva, Switzerland
| | - Kelly M Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Tenzing Doleck
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Amanda Markee
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Rebeccah Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Y-Lan Nguyen
- Biology Department, City College of New York, City University of New York, New York, NY, USA
| | - Jade Aster T Badon
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Hugo A Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Michael F Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
- Australian National Insect Collection, Canberra, Australian Capital Territory, Australia
| | | | - Wei-Ping Chan
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | | | - Richard A Rabideau Childers
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Even Dankowicz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rod Eastwood
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Zdenek F Fric
- Biology Centre CAS, České Budějovice, Czech Republic
| | - Riley J Gott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Jason P W Hall
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nate B Hardy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Rachel L Hawkins Sipe
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alan Heath
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Iziko South African Museum, Cape Town, South Africa
| | - Jomar D Hinolan
- Botany and National Herbarium Division, National Museum of the Philippines, Manila, Philippines
| | - Nicholas T Homziak
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Yu-Feng Hsu
- College of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Micael G A Itliong
- Biology Department, City College of New York, City University of New York, New York, NY, USA
| | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Michael J Landis
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Elise A Larsen
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Jing V Leong
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Biology Centre CAS, České Budějovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, České Budějovice, Czech Republic
| | - Vladimir Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
| | - Crystal A Maier
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jose I Martinez
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Dino J Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | | | - Sarah C Maunsell
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Nicolás Oliveira Mega
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexander Monastyrskii
- Vietnam Programme, Fauna & Flora International, Hanoi, Vietnam
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ana B B Morais
- Centro de Ciências Naturais e Exatas, Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Mark Arcebal K Naive
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Arts and Sciences, Jose Rizal Memorial State University, Tampilisan, Philippines
| | | | - Pablo Sebastián Padrón
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology Laboratory, Museo de Zoología, Universidad del Azuay, Cuenca, Ecuador
| | - Djunijanti Peggie
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong-Bogor, Indonesia
| | | | - Szabolcs Sáfián
- Institute of Silviculture and Forest Protection, University of West Hungary, Sopron, Hungary
| | - Motoki Saito
- The Research Institute of Evolutionary Biology (Insect Study Division), Setagaya, Japan
| | | | - Vaughn Shirey
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Doug Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Andrei Sourakov
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Gerard Talavera
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Petr Vlasanek
- T.G. Masaryk Water Research Institute, Prague, Czech Republic
| | - Houshuai Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Andrew D Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Keith R Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Masaya Yago
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Walter Jetz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Marta A Jarzyna
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Marianne Espeland
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Leslie Ries
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, USA.
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA.
- Entomology Section, National Museum of Natural History, Manila, Philippines.
| |
Collapse
|
21
|
Espeland M, Chazot N, Condamine FL, Lemmon AR, Lemmon EM, Pringle E, Heath A, Collins S, Tiren W, Mutiso M, Lees DC, Fisher S, Murphy R, Woodhall S, Tropek R, Ahlborn SS, Cockburn K, Dobson J, Bouyer T, Kaliszewska ZA, Baker CCM, Talavera G, Vila R, Gardiner AJ, Williams M, Martins DJ, Sáfián S, Edge DA, Pierce NE. Rapid radiation of ant parasitic butterflies during the Miocene aridification of Africa. Ecol Evol 2023; 13:e10046. [PMID: 37193112 PMCID: PMC10182571 DOI: 10.1002/ece3.10046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto-predaceous Lepidochrysops butterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time-calibrated phylogeny for Lepidochrysops and its closest, non-parasitic relatives in the Euchrysops section (Poloyommatini). We estimated ancestral areas across the phylogeny with process-based biogeographical models and diversification rates relying on time-variable and clade-heterogeneous birth-death models. The Euchrysops section originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non-parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto-predaceous Lepidochrysops lineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of the Euchrysops section, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto-predaceous life history in species of Lepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.
Collapse
Affiliation(s)
- Marianne Espeland
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Evolutionary Change – Museum KoenigBonnGermany
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Nicolas Chazot
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Fabien L. Condamine
- CNRSUMR 5554 Institut des Sciences de l'Evolution de MontpellierMontpellierFrance
| | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | | | | | - Alan Heath
- Lepidopterists' Society of AfricaKnysnaSouth Africa
| | | | | | | | - David C. Lees
- Department of Life SciencesNatural History MuseumLondonUK
| | | | | | | | - Robert Tropek
- Department of Ecology, Faculty of ScienceCharles UniversityPragueCzechia
- Institute of Entomology, Biology CentreCzech Academy of SciencesCeske BudejoviceCzechia
| | - Svenja S. Ahlborn
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Evolutionary Change – Museum KoenigBonnGermany
| | | | | | | | - Zofia A. Kaliszewska
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Christopher C. M. Baker
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)BarcelonaSpain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐UPF)BarcelonaSpain
| | | | | | - Dino J. Martins
- Turkana Basin InstituteStony Brook UniversityStony BrookNew YorkUSA
| | - Szabolcs Sáfián
- Institute of Silviculture and Forest ProtectionUniversity of SopronSopronHungary
| | | | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
22
|
Daru BH, Rodriguez J. Mass production of unvouchered records fails to represent global biodiversity patterns. Nat Ecol Evol 2023:10.1038/s41559-023-02047-3. [PMID: 37127769 DOI: 10.1038/s41559-023-02047-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
The ever-increasing human footprint even in very remote places on Earth has inspired efforts to document biodiversity vigorously in case organisms go extinct. However, the data commonly gathered come from either primary voucher specimens in a natural history collection or from direct field observations that are not traceable to tangible material in a museum or herbarium. Although both datasets are crucial for assessing how anthropogenic drivers affect biodiversity, they have widespread coverage gaps and biases that may render them inefficient in representing patterns of biodiversity. Using a large global dataset of around 1.9 billion occurrence records of terrestrial plants, butterflies, amphibians, birds, reptiles and mammals, we quantify coverage and biases of expected biodiversity patterns by voucher and observation records. We show that the mass production of observation records does not lead to higher coverage of expected biodiversity patterns but is disproportionately biased toward certain regions, clades, functional traits and time periods. Such coverage patterns are driven by the ease of accessibility to air and ground transportation, level of security and extent of human modification at each sampling site. Conversely, voucher records are vastly infrequent in occurrence data but in the few places where they are sampled, showed relative congruence with expected biodiversity patterns for all dimensions. The differences in coverage and bias by voucher and observation records have important implications on the utility of these records for research in ecology, evolution and conservation research.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - Jordan Rodriguez
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
23
|
McLellan CF, Montgomery SH. Towards an integrative approach to understanding collective behaviour in caterpillars. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220072. [PMID: 36802788 PMCID: PMC9939266 DOI: 10.1098/rstb.2022.0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 02/21/2023] Open
Abstract
To evolve, and remain adaptive, collective behaviours must have a positive impact on overall individual fitness. However, these adaptive benefits may not be immediately apparent owing to an array of interactions with other ecological traits, which can depend on a lineage's evolutionary past and the mechanisms controlling group behaviour. A coherent understanding of how these behaviours evolve, are exhibited, and are coordinated across individuals, therefore requires an integrative approach spanning traditional disciplines in behavioural biology. Here, we argue that lepidopteran larvae are well placed to serve as study systems for investigating the integrative biology of collective behaviour. Lepidopteran larvae display a striking diversity in social behaviour, which illustrates critical interactions between ecological, morphological and behavioural traits. While previous, often classic, work has provided an understanding of how and why collective behaviours evolve in Lepidoptera, much less is known about the developmental and mechanistic basis of these traits. Recent advances in the quantification of behaviour, and the availability of genomic resources and manipulative tools, allied with the exploitation of the behavioural diversity of tractable lepidopteran clades, will change this. In doing so, we will be able to address previously intractable questions that can reveal the interplay between levels of biological variation. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Callum F. McLellan
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | |
Collapse
|
24
|
Wee JLQ, Murugesan SN, Wheat CW, Monteiro A. The genetic basis of wing spots in Pieris canidia butterflies. BMC Genomics 2023; 24:169. [PMID: 37016295 PMCID: PMC10074818 DOI: 10.1186/s12864-023-09261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Spots in pierid butterflies and eyespots in nymphalid butterflies are likely non-homologous wing colour pattern elements, yet they share a few features in common. Both develop black scales that depend on the function of the gene spalt, and both might have central signalling cells. This suggests that both pattern elements may be sharing common genetic circuitry. Hundreds of genes have already been associated with the development of nymphalid butterfly eyespot patterns, but the genetic basis of the simpler spot patterns on the wings of pierid butterflies has not been investigated. To facilitate studies of pierid wing patterns, we report a high-quality draft genome assembly for Pieris canidia, the Indian cabbage white. We then conducted transcriptomic analyses of pupal wing tissues sampled from the spot and non-spot regions of P. canidia at 3-6 h post-pupation. A total of 1352 genes were differentially regulated between wing tissues with and without the black spot, including spalt, Krüppel-like factor 10, genes from the Toll, Notch, TGF-β, and FGFR signalling pathways, and several genes involved in the melanin biosynthetic pathway. We identified 14 genes that are up-regulated in both pierid spots and nymphalid eyespots and propose that spots and eyespots share regulatory modules despite their likely independent origins.
Collapse
Affiliation(s)
- Jocelyn Liang Qi Wee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | | | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
25
|
Tunström K, Woronik A, Hanly JJ, Rastas P, Chichvarkhin A, Warren AD, Kawahara AY, Schoville SD, Ficarrotta V, Porter AH, Watt WB, Martin A, Wheat CW. Evidence for a single, ancient origin of a genus-wide alternative life history strategy. SCIENCE ADVANCES 2023; 9:eabq3713. [PMID: 36947619 PMCID: PMC10032607 DOI: 10.1126/sciadv.abq3713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Understanding the evolutionary origins and factors maintaining alternative life history strategies (ALHS) within species is a major goal of evolutionary research. While alternative alleles causing discrete ALHS are expected to purge or fix over time, one-third of the ~90 species of Colias butterflies are polymorphic for a female-limited ALHS called Alba. Whether Alba arose once, evolved in parallel, or has been exchanged among taxa is currently unknown. Using comparative genome-wide association study (GWAS) and population genomic analyses, we placed the genetic basis of Alba in time-calibrated phylogenomic framework, revealing that Alba evolved once near the base of the genus and has been subsequently maintained via introgression and balancing selection. CRISPR-Cas9 mutagenesis was then used to verify a putative cis-regulatory region of Alba, which we identified using phylogenetic foot printing. We hypothesize that this cis-regulatory region acts as a modular enhancer for the induction of the Alba ALHS, which has likely facilitated its long evolutionary persistence.
Collapse
Affiliation(s)
- Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Alyssa Woronik
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Anton Chichvarkhin
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Palchevskogo 17, Vladivostok 690022, Russia
| | - Andrew D. Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent Ficarrotta
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Adam H. Porter
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ward B. Watt
- Department of Biology, University of South Carolina, Columbia, SC 29208, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | |
Collapse
|
26
|
Schirmer SC, Gawryszewski FM, Cardoso MZ, Pessoa DMA. Melanism and color saturation of butterfly assemblages: A comparison between a tropical rainforest and a xeric white forest. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.932755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The study of butterfly coloration has helped to identify the ecological pressures involved in the evolution of animal coloration. However, almost all studies that addressed this issue have focused on species that inhabit more temperate environments, leaving the species and ecological factors of tropical regions mostly understudied. Here, our purpose was to evaluate whether butterfly assemblages from two distinct Neotropical biomes (i.e., tropical rainforest and xeric white forest) differ regarding their melanism and/or color saturation. Our hypotheses were that (1) tropical rainforest butterflies should be more melanic and color saturated, and that (2) butterflies from more open/arid tropical environments should be more melanic on their dorsal wing surfaces than on their ventral wings. Therefore, we quantified melanism and color saturation from dorsal and ventral surfaces of 121 different butterfly species. Comparisons show that rainforest butterflies, when contrasted to white forest butterflies, have more melanic dorsal wing surfaces, which might be seen as a form of protection against parasites. Our data also show that rainforest butterflies, but not white forest species, have darker dorsal wing surfaces, when compared to their own ventral surfaces, a trend that was also found for species inhabiting both biomes, which might be associated to thermoregulatory advantages. At last, our results also point that butterflies' dorsal wing sides present a higher variance between species (regardless of Biome), when compared to their own ventral wing side, an indication that some ecological factor (e.g., predation avoidance) might be exerting a strong homogenizing force on ventral wing coloration.
Collapse
|
27
|
Zhao L, Li XD, Jiang T, Wang H, Dan Z, Xu SQ, Guan DL. The Chromosome-Level Genome of Hestina assimilis (Lepidoptera: Nymphalidae) Reveals the Evolution of Saprophagy-Related Genes in Brush-Footed Butterflies. Int J Mol Sci 2023; 24:ijms24032087. [PMID: 36768416 PMCID: PMC9917059 DOI: 10.3390/ijms24032087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Most butterflies feed on nectar, while some saprophagous butterflies forage on various non-nectar foods. To date, little is known about the genomic and molecular shifts associated with the evolution of the saprophagous feeding strategy. Here, we assembled the high-quality chromosome-level genome of Hestina assimilis to explore its saprophagous molecular and genetic mechanisms. This chromosome-level genome of H. assimilis is 412.82 Mb, with a scaffold N50 of 15.70 Mb. In total, 98.11% of contigs were anchored to 30 chromosomes. Compared with H. assimilis and other Nymphalidae butterflies, the genes of metabolism and detoxification experienced expansions. We annotated 80 cytochrome P450 (CYP) genes in the H. assimilis genome, among which genes belonging to the CYP4 subfamily were significantly expanded (p < 0.01). These P450 genes were unevenly distributed and mainly concentrated on chromosomes 6-9. We identified 33 olfactory receptor (OR), 20 odorant-binding protein (OBP), and six gustatory receptor (GR) genes in the H. assimilis genome, which were fewer than in the nectarivorous Danaus plexippus. A decreased number of OBP, OR, and GR genes implied that H. assimilis should resort less to olfaction and gustation than their nectarivorous counterparts, which need highly specialized olfactory and gustatory functions. Moreover, we found one site under positive selection occurred in residue 996 (phenylalanine) of GR genes exclusive to H. assimilis, which is conservative in most lineages. Our study provides support for the adaptive evolution of feeding habits in butterflies.
Collapse
Affiliation(s)
- Lu Zhao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Xiao-Dong Li
- School of Chemistry and Bioengineering, Hechi University, Yizhou 546300, China
| | - Tao Jiang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Hang Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Zhicuo Dan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Sheng-Quan Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
- Correspondence: (S.-Q.X.); (D.-L.G.)
| | - De-Long Guan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
- School of Chemistry and Bioengineering, Hechi University, Yizhou 546300, China
- Correspondence: (S.-Q.X.); (D.-L.G.)
| |
Collapse
|
28
|
Wei F, Huang W, Fang L, He B, Zhao Y, Zhang Y, Shu Z, Su C, Hao J. Spatio-Temporal Evolutionary Patterns of the Pieridae Butterflies (Lepidoptera: Papilionoidea) Inferred from Mitogenomic Data. Genes (Basel) 2022; 14:72. [PMID: 36672814 PMCID: PMC9858963 DOI: 10.3390/genes14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Pieridae is one of the largest and almost cosmopolitan groups of butterflies, which plays an important role in natural ecosystems; however, to date, its phylogeny and evolutionary history have not been fully resolved. In this study, we obtained the complete or nearly complete mitochondrial genomes of 100 pierid taxa (six newly sequenced, sixty extracted from the whole-genome data, and thirty-four directly available from GenBank). At the same time, for the first time, we conducted comparative mitogenomic and phylogenetic analyses based on these mitogenomic data, to further clarify their spatio-temporal evolutionary patterns. Comparative mitogenomic analysis showed that, except for cox2, the GC content of each of the 13 protein-coding genes (PCGs) in the rapidly diverging subfamily Pierinae was higher than in its sister group Coliadinae. Moreover, the dN/dS values of nine genes (atp6, atp8, cox1, cox3, cob, nad1, nad3, nad5, and nad6) in Pierinae were also relatively higher than those in its sister group, Coliadinae. Phylogenetic analysis showed that all the resultant phylogenetic trees were generally in agreement with those of previous studies. The Pierinae family contained six clades in total with the relationship of (Leptosiaini + (((Nepheroniini + Arthocharidini) + Teracolini) + (Pierini + Elodini))). The Pieridae originated in the Palearctic region approximately 72.3 million years ago in the late Cretaceous, and the subfamily Pierinae diverged from this family around 57.9 million years ago in the Oriental region, shortly after the K-Pg mass extinction event; in addition, the spatio-temporal evolutionary patterns of Pierinae were closely correlated with geological events and environmental changes, as well as the host plant coevolutionary scenario in Earth's history. However, some incongruencies were observed between our results and those of previous studies in terms of shallow phylogenies for a few taxa, and should be further investigated.
Collapse
Affiliation(s)
- Fanyu Wei
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenxiang Huang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Lin Fang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Youjie Zhao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yingming Zhang
- Guangdong Chebaling National Nature Reserve Administration Bureau, Shaoguan 512500, China
| | - Zufei Shu
- Guangdong Chebaling National Nature Reserve Administration Bureau, Shaoguan 512500, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
29
|
Costa FP, Schrago CG, Mello B. Assessing the relative performance of fast molecular dating methods for phylogenomic data. BMC Genomics 2022; 23:798. [PMID: 36460948 PMCID: PMC9719170 DOI: 10.1186/s12864-022-09030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Advances in genome sequencing techniques produced a significant growth of phylogenomic datasets. This massive amount of data represents a computational challenge for molecular dating with Bayesian approaches. Rapid molecular dating methods have been proposed over the last few decades to overcome these issues. However, a comparative evaluation of their relative performance on empirical data sets is lacking. We analyzed 23 empirical phylogenomic datasets to investigate the performance of two commonly employed fast dating methodologies: penalized likelihood (PL), implemented in treePL, and the relative rate framework (RRF), implemented in RelTime. They were compared to Bayesian analyses using the closest possible substitution models and calibration settings. We found that RRF was computationally faster and generally provided node age estimates statistically equivalent to Bayesian divergence times. PL time estimates consistently exhibited low levels of uncertainty. Overall, to approximate Bayesian approaches, RelTime is an efficient method with significantly lower computational demand, being more than 100 times faster than treePL. Thus, to alleviate the computational burden of Bayesian divergence time inference in the era of massive genomic data, molecular dating can be facilitated using the RRF, allowing evolutionary hypotheses to be tested more quickly and efficiently.
Collapse
Affiliation(s)
- Fernanda P. Costa
- grid.8536.80000 0001 2294 473XDepartment of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617 Brazil
| | - Carlos G. Schrago
- grid.8536.80000 0001 2294 473XDepartment of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617 Brazil
| | - Beatriz Mello
- grid.8536.80000 0001 2294 473XDepartment of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617 Brazil
| |
Collapse
|
30
|
Pyrcz TW, Willmott KR, Lamas G, Boyer P, Florczyk K, Fåhraeus C, Mahecha O, Cerdeña J, Mrozek A, Farfán J, Zubek A. Considerations on the Systematics of Neotropical Pierina, with the Description of Two New Species of Phulia Herrich-Schäffer from the Peruvian Andes (Lepidoptera: Pieridae, Pierinae, Pierini). NEOTROPICAL ENTOMOLOGY 2022; 51:840-859. [PMID: 36378478 PMCID: PMC9705514 DOI: 10.1007/s13744-022-00999-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/20/2022] [Indexed: 05/29/2023]
Abstract
A comparative analysis of high-Andean Pierina was carried out, including a total of 25 species. Based on morphological evidence, with an emphasis on venation and genitalia and molecular data, using three genetic markers, we confirm the recent subjective synonymy of the generic names Tatochila Butler, 1870, Piercolias, Staudinger, 1894, Hypsochila Ureta, 1955, Infraphulia Field, 1958, Pierphulia Field, 1958, and Theochila Field, 1958 with Phulia Herrich-Schäffer, 1867. Two new species are described, namely Phulia stoddardi Pyrcz & Cerdeña n. sp., from the Andes of Central Peru, which occurs at an unusually high altitude of close to 5000 m a.s.l. in dry puna habitat, and Phulia phantasma Lamas, Willmott & Boyer n. sp., from dry montane forests in northern Peru and southern Ecuador. An overview of high-elevation butterflies is presented, with some discussion on adaptations to this environment.
Collapse
Affiliation(s)
- Tomasz W Pyrcz
- Dept of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Jagiellonian Univ, Kraków, Poland.
| | - Keith R Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Univ of Florida, FL, Gainesville, USA
| | - Gerardo Lamas
- Museo de Historia Natural, Univ Nacional Mayor de San Marcos, Lima, Perú
| | | | - Klaudia Florczyk
- Nature Education Centre of the Jagiellonian Univ, Kraków, Poland
| | | | - Oscar Mahecha
- Nature Education Centre of the Jagiellonian Univ, Kraków, Poland
- Grupo en Biogeografía y Ecología Evolutiva Neotropical BEEN, Univ Distrital F.J.C./Univ Incca de Colombia, Bogotá, Colombia
| | - José Cerdeña
- Univ Nacional de San Agustín de Arequipa, Museo de Historia Natural, Escuela de Biología UNSA, Arequipa, Perú
| | - Artur Mrozek
- Dept of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Jagiellonian Univ, Kraków, Poland
| | - Jackie Farfán
- Univ Nacional de San Agustín de Arequipa, Museo de Historia Natural, Escuela de Biología UNSA, Arequipa, Perú
| | - Anna Zubek
- Nature Education Centre of the Jagiellonian Univ, Kraków, Poland
| |
Collapse
|
31
|
Asar Y, Ho SYW, Sauquet H. Early diversifications of angiosperms and their insect pollinators: were they unlinked? TRENDS IN PLANT SCIENCE 2022; 27:858-869. [PMID: 35568622 DOI: 10.1016/j.tplants.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The present-day ubiquity of angiosperm-insect pollination has led to the hypothesis that these two groups coevolved early in their evolutionary history. However, recent fossil discoveries and fossil-calibrated molecular dating analyses challenge the notion that early diversifications of angiosperms and insects were inextricably linked. In this article, we examine (i) the discrepancies between dates of emergence for angiosperms and major clades of insects; (ii) the long history of gymnosperm-insect pollination modes, which likely shaped early angiosperm-insect pollination mutualisms; and (iii) how the K-Pg (Cretaceous-Paleogene) mass extinction event was vital in propelling modern angiosperm-insect mutualisms. We posit that the early diversifications of angiosperms and their insect pollinators were largely decoupled until the end of the Cretaceous.
Collapse
Affiliation(s)
- Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia; Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Marcussen T, Ballard HE, Danihelka J, Flores AR, Nicola MV, Watson JM. A Revised Phylogenetic Classification for Viola (Violaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2224. [PMID: 36079606 PMCID: PMC9460890 DOI: 10.3390/plants11172224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The genus Viola (Violaceae) is among the 40-50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker's classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.
Collapse
Affiliation(s)
- Thomas Marcussen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Harvey E. Ballard
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Jiří Danihelka
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Ana R. Flores
- Independent Researcher, Casilla 161, Los Andes 2100412, Chile
| | - Marcela V. Nicola
- Instituto de Botánica Darwinion (IBODA, CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, San Isidro, Buenos Aires B1642HYD, Argentina
| | - John M. Watson
- Independent Researcher, Casilla 161, Los Andes 2100412, Chile
| |
Collapse
|
33
|
Wang S, Teng D, Li X, Yang P, Da W, Zhang Y, Zhang Y, Liu G, Zhang X, Wan W, Dong Z, Wang D, Huang S, Jiang Z, Wang Q, Lohman DJ, Wu Y, Zhang L, Jia F, Westerman E, Zhang L, Wang W, Zhang W. The evolution and diversification of oakleaf butterflies. Cell 2022; 185:3138-3152.e20. [PMID: 35926506 DOI: 10.1016/j.cell.2022.06.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 01/20/2022] [Accepted: 06/22/2022] [Indexed: 10/16/2022]
Abstract
Oakleaf butterflies in the genus Kallima have a polymorphic wing phenotype, enabling these insects to masquerade as dead leaves. This iconic example of protective resemblance provides an interesting evolutionary paradigm that can be employed to study biodiversity. We integrated multi-omic data analyses and functional validation to infer the evolutionary history of Kallima species and investigate the genetic basis of their variable leaf wing patterns. We find that Kallima butterflies diversified in the eastern Himalayas and dispersed to East and Southeast Asia. Moreover, we find that leaf wing polymorphism is controlled by the wing patterning gene cortex, which has been maintained in Kallima by long-term balancing selection. Our results provide macroevolutionary and microevolutionary insights into a model species originating from a mountain ecosystem.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Peiwen Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wa Da
- Tibet Plateau Institute of Biology, Lhasa, Tibet 850001, China
| | - Yiming Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yubo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | | | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; National Teaching Center for Experimental Biology, Peking University, Beijing 100871, China
| | - Shun Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhisheng Jiang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qingyi Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA; Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA; Entomology Section, National Museum of Natural History, Manila 1000, Philippines
| | - Yongjie Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Fenghai Jia
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Erica Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing 100871, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; Center for Excellence in Animal Evolution and Genetics, Kunming 650223, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute of Ecology, Peking University, Beijing 100871, China; Institute for Tibetan Plateau Research, Peking University, Beijing 100871, China.
| |
Collapse
|
34
|
Kim KW, De-Kayne R, Gordon IJ, Omufwoko KS, Martins DJ, Ffrench-Constant R, Martin SH. Stepwise evolution of a butterfly supergene via duplication and inversion. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210207. [PMID: 35694743 PMCID: PMC9189502 DOI: 10.1098/rstb.2021.0207] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Supergenes maintain adaptive clusters of alleles in the face of genetic mixing. Although usually attributed to inversions, supergenes can be complex, and reconstructing the precise processes that led to recombination suppression and their timing is challenging. We investigated the origin of the BC supergene, which controls variation in warning coloration in the African monarch butterfly, Danaus chrysippus. By generating chromosome-scale assemblies for all three alleles, we identified multiple structural differences. Most strikingly, we find that a region of more than 1 million bp underwent several segmental duplications at least 7.5 Ma. The resulting duplicated fragments appear to have triggered four inversions in surrounding parts of the chromosome, resulting in stepwise growth of the region of suppressed recombination. Phylogenies for the inversions are incongruent with the species tree and suggest that structural polymorphisms have persisted for at least 4.1 Myr. In addition to the role of duplications in triggering inversions, our results suggest a previously undescribed mechanism of recombination suppression through independent losses of divergent duplicated tracts. Overall, our findings add support for a stepwise model of supergene evolution involving a variety of structural changes. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Kang-Wook Kim
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Rishi De-Kayne
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Ian J Gordon
- Centre of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye Campus, Huye, Rwanda
| | | | - Dino J Martins
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA.,Mpala Research Centre, Nanyuki, Kenya
| | | | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Robbins RK, Cong Q, Zhang J, Shen J, Busby RC, Faynel C, Duarte M, Martins ARP, Prieto C, Lamas G, Grishin NV. Genomics-based higher classification of the species-rich Hairstreaks (Lepidoptera: Lycaenidae: Eumaeini). SYSTEMATIC ENTOMOLOGY 2022; 47:445-469. [PMID: 35782754 PMCID: PMC9246340 DOI: 10.1111/syen.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We propose a higher classification of the lycaenid hairstreak tribe Eumaeini - one of the youngest and most species-rich butterfly tribes - based on autosome, Lepidopteran Z sex chromosome, and mitochondrial protein-coding genes. The subtribe Neolycaenina Korb is a synonym of Callophryidina Tutt, and subtribe Tmolusina Bálint is a synonym of Strephonotina K. Johnson, Austin, Le Crom, & Salazar. Proposed names are Rhammina Prieto & Busby, new subtribe; Timaetina Busby & Prieto, new subtribe; Atlidina Martins & Duarte, new subtribe; Evenina Faynel & Grishin, new subtribe; Jantheclina Robbins & Faynel, new subtribe; Paiwarriina Lamas & Robbins, new subtribe; Cupatheclina Lamas & Grishin, new subtribe; Parrhasiina Busby & Robbins, new subtribe; Ipideclina Martins & Grishin, new subtribe; and Trichonidina Duarte & Faynel, new subtribe. Phylogenetic results from the autosome and Z sex chromosome analyses are similar. Future analyses of datasets with hundreds of terminal taxa may be more practical time-wise by focussing on the smaller number of sex chromosome sequences (2.6% of nuclear protein-coding sequences). The phylogenetic classification and biological summaries for each subtribe suggest that a variety of factors affected Eumaeini diversification. About a dozen kinds of male secondary sexual organs with frequent evolutionary gains and losses occur in Atlidina, Evenina, and Jantheclina (141 species combined). Females have been shown to use these organs to discriminate between conspecific and non-conspecific males, facilitating sympatry among close relatives. Eumaeina, Rhammina, and Timaetina (140 species combined) are overwhelmingly montane with some evidence for a higher incidence of sympatric diversification. Seven Neotropical lineages in five subtribes invaded the temperate parts of the Nearctic Region with a diversification increase in the Callophryidina (262 species). North American Satyrium and Callophrys then invaded the Palearctic at least once each, with a major species-richness increase in Satyrium. The evolution of litter feeding detritivores within Calycopidina (172 species) resulted in an increase in diversification rate compared with its flower-feeding sister lineage. Atlidina, Strephonotina, Parrhasiina, and Strymonina (562 species combined) each contain a mixture of genera that specialize on one or two caterpillar food plant families and genera that are polyphagous. These would be appropriate subtribes to assess how the breadth of caterpillar food plants and the frequency of host shifts affected diversification.
Collapse
Affiliation(s)
- Robert K Robbins
- Department of Entomology, National Museum of Natural History, PO Box 37012, NHB Stop 105, Smithsonian Institution, Washington, D.C., USA
| | - Qian Cong
- Department of Biochemistry, University of Washington, Seattle, WA, 98105, USA
| | - Jing Zhang
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA
| | - Jinhui Shen
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA
| | | | | | - Marcelo Duarte
- Museu de Zoologia, Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, SP, Brazil
| | - Ananda R P Martins
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Canada, H3A0C4
| | - Carlos Prieto
- Departamento de Biología, Universidad del Atlántico, Barranquilla, Colombia and Corporación Universitaria Autónoma del Cauca, Popayán, Colombia
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Apartado 14-0434, Lima-14, Peru
| | - Nick V Grishin
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9050, USA
| |
Collapse
|
36
|
Zhao Y, He B, Tao R, Su C, Ma J, Hao J, Yang Q. Phylogeny and Biogeographic History of Parnassius Butterflies (Papilionidae: Parnassiinae) Reveal Their Origin and Deep Diversification in West China. INSECTS 2022; 13:insects13050406. [PMID: 35621742 PMCID: PMC9142892 DOI: 10.3390/insects13050406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Butterflies of the genus Parnassius are distributed in the mountains across the Northern Hemisphere. Studies have shown that this genus originated in the regions of West China–Central Asia. To further explore the spatiotemporal pattern and driving mechanism of Parnassius diversification, we reconstructed the phylogeny and biogeographic history of Parnassius based on 45 species. Ancestral area reconstruction obtained by using the statistical dispersal–extinction cladogenesis model indicated that Parnassius originated in West China (Qinghai–Tibet Plateau and Xinjiang) during the Middle Miocene. Paleoenvironment changes and host plants were probably influenced by the dispersal of Parnassius butterflies from West China to East Asia, Europe, and North America. Furthermore, ancient gene introgression might have contributed to the spread of Parnassius butterflies from the high mountains of the Qinghai–Tibet Plateau to the low-altitude areas of Central East China. This study will provide an understanding of the phylogeny and biogeographic history of the genus Parnassius. Abstract We studied 239 imagoes of 12 Parnassius species collected from the mountains of the Qinghai–Tibet Plateau (QTP) and its neighbouring areas in China. We selected three mitochondrial gene (COI, ND1, and ND5) sequences, along with the homologous gene sequences of other Parnassius species from GenBank, to reconstruct the phylogenetic tree and biogeographic history of this genus. Our results show that Parnassius comprises eight monophyletic subgenera, with subgenus Parnassius at the basal position; the genus crown group originated during the Middle Miocene (ca. 16.99 Ma), and species diversification continued during sustained cooling phases after the Middle Miocene Climate Optimum (MMCO) when the QTP and its neighbouring regions experienced rapid uplift and extensive orogeny. A phylogenetic network analysis based on transcriptomes from GenBank suggests that ancient gene introgression might have contributed to the spread of the Parnassius genus to different altitudes. Ancestral area reconstruction indicates that Parnassius most likely originated in West China (QTP and Xinjiang) and then spread to America in two dispersal events as subgenera Driopa and Parnassius, along with their host plants Papaveraceae and Crassulaceae, respectively. Our study suggests that extensive mountain-building processes led to habitat fragmentation in the QTP, leading to the early diversification of Parnassius, and climate cooling after MMCO was the driving mechanism for the dispersal of Parnassius butterflies from West China to East Asia, Europe, and North America.
Collapse
Affiliation(s)
- Youjie Zhao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Y.Z.); (B.H.); (C.S.)
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Y.Z.); (B.H.); (C.S.)
| | - Ruisong Tao
- College of Life Sciences, Hefei Normal University, Hefei 230001, China;
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Y.Z.); (B.H.); (C.S.)
| | - Junye Ma
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Y.Z.); (B.H.); (C.S.)
- Correspondence: (J.H.); (Q.Y.); Tel.: +86-1395-537-1696 (J.H.); +86-025-8328-2150 (Q.Y.)
| | - Qun Yang
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China;
- Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, China
- Correspondence: (J.H.); (Q.Y.); Tel.: +86-1395-537-1696 (J.H.); +86-025-8328-2150 (Q.Y.)
| |
Collapse
|
37
|
Liu D, Basso A, Babbucci M, Patarnello T, Negrisolo E. Macrostructural Evolution of the Mitogenome of Butterflies (Lepidoptera, Papilionoidea). INSECTS 2022; 13:insects13040358. [PMID: 35447800 PMCID: PMC9031222 DOI: 10.3390/insects13040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Papilionoidea is a superfamily of Lepidoptera encompassing about 19,000 species. In the present work, we study the evolution of the structure of the mitogenome of these lepidopterans. The mechanisms generating the eight arrangements known for Papilionoidea were investigated analysing the movements of different mitochondrial genes. Five newly sequenced/assembled mitogenomes were included in our analysis involving more than 600 genomes. We provide new findings that help to understand the evolution of the gene orders MIQGO, IMQGO, 2S1GO, ES1GO and S1NGO in different butterflies. We demonstrate that the evolution of the 2S1GO in Lycaenidae followed a complicated pathway with multiple events of duplication and loss of trnS1 and changes in anticodon. We describe two new gene orders 2FFGO and 4QGO for Ampittia subvittatus (Hesperiidae) and Bhutanitis thaidina (Papilionidae). Abstract The mitogenome of the species belonging to the Papilionodea (Lepidoptera) is a double stranded circular molecule containing the 37 genes shared by Metazoa. Eight mitochondrial gene orders are known in the Papilionoidea. MIQGO is the plesiomorphic gene order for this superfamily, while other mitochondrial arrangements have a very limited distribution. 2S1GO gene order is an exception and is present in several Lycaenidae and one species of Hesperiidae. We studied the macrostructural changes generating the gene orders of butterflies by analysing a large data set (611 taxa) containing 5 new mitochondrial sequences/assemblies and 87 de novo annotated mitogenomes. Our analysis supports a possible origin of the intergenic spacer trnQ-nad2, characterising MIQGO, from trnM. We showed that the homoplasious gene order IMQGO, shared by butterflies, species of ants, beetles and aphids, evolved through different transformational pathways. We identify a complicated evolutionary scenario for 2S1GO in Lycaenidae, characterised by multiple events of duplication/loss and change in anticodon of trnS1. We show that the gene orders ES1GO and S1NGO originated through a tandem duplication random loss mechanism. We describe two novel gene orders. Ampittia subvittatus (Hesperiidae) exhibits the gene order 2FFGO, characterised by two copies of trnF, one located in the canonical position and a second placed in the opposite strand between trnR and trnN. Bhutanitis thaidina (Papilionidae) exhibits the gene order 4QGO, characterised by the quadruplication of trnQ.
Collapse
Affiliation(s)
- Di Liu
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Andrea Basso
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
- Correspondence:
| |
Collapse
|
38
|
Hu P, Lu L, Hu S, Da W, Huang CL, Zhang H, Wang D, Zhang Y, Xu Y, Wang R. Differentiation of the Chestnut Tiger Butterfly Parantica sita (Lepidoptera: Nymphalidae: Danainae) in China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.846499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chestnut tiger butterfly, Parantica sita (Kollar) (Lepidoptera: Nymphalidae: Danainae), occurs in Asia, along the Himalayas, and into the Malayan region. Previous studies found three types of mitogenomes with substantial genetic divergence in samples from China. To clarify the level of differentiation within P. sita, we investigated both molecular data and morphological features in 429 individuals from China. Upon examination, mitochondrial cytochrome oxidase subunit I (COI) sequences showed three substantially diverged haplotype groups. Based on microsatellite genotypes, the samples divided into three clusters that were consistent with the COI haplotype groups. With that genetic data, we named three distinguishable P. sita lineages: PS-A, PS-B, and PS-C. We also found obvious morphological differences in wing color, male sex brand, and genitalia structures among the three lineages. According to the published structure of male genitalia, that of PS-A is identical to that of P. s. sita, and that of PS-B is identical to that of P. pedonga. Based on all the results, we tentatively propose dividing P. sita into three species: PS-A (the former P. s. sita) is the typical Parantica sita [Kollar, (1844)], mainly distributed in southwestern China; PS-C (the former P. s. niphonica) is elevated to full species as Parantica niphonica (Moore, 1883), distributed in Taiwan Island and Japan; and PS-B will be Parantica pedongaFujioka, 1970, mainly distributed in Tibet and western Sichuan. Divergence time estimates showed that PS-A separated from the PS-B + PS-C clade about 8.79 million years ago (Ma), when the Hengduan Mountains underwent an appreciable elevation increase, isolating the Tibet population from the others. PS-B and PS-C diverged about 4.87 Ma, in accord with the formation of Taiwan Island mountains. The founder effect may explain why PS-C’s genetic diversity is lower than that of the other clades.
Collapse
|
39
|
Benton MJ, Wilf P, Sauquet H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. THE NEW PHYTOLOGIST 2022; 233:2017-2035. [PMID: 34699613 DOI: 10.1111/nph.17822] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Biodiversity today has the unusual property that 85% of plant and animal species live on land rather than in the sea, and half of these live in tropical rainforests. An explosive boost to terrestrial diversity occurred from c. 100-50 million years ago, the Late Cretaceous and early Palaeogene. During this interval, the Earth-life system on land was reset, and the biosphere expanded to a new level of productivity, enhancing the capacity and species diversity of terrestrial environments. This boost in terrestrial biodiversity coincided with innovations in flowering plant biology and evolutionary ecology, including their flowers and efficiencies in reproduction; coevolution with animals, especially pollinators and herbivores; photosynthetic capacities; adaptability; and ability to modify habitats. The rise of angiosperms triggered a macroecological revolution on land and drove modern biodiversity in a secular, prolonged shift to new, high levels, a series of processes we name here the Angiosperm Terrestrial Revolution.
Collapse
Affiliation(s)
- Michael J Benton
- School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
40
|
Davis RB, Õunap E, Tammaru T. A supertree of Northern European macromoths. PLoS One 2022; 17:e0264211. [PMID: 35180261 PMCID: PMC8856531 DOI: 10.1371/journal.pone.0264211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/05/2022] [Indexed: 11/19/2022] Open
Abstract
Ecological and life-history data on the Northern European macromoth (Lepidoptera: Macroheterocera) fauna is widely available and ideal for use in answering phylogeny-based research questions: for example, in comparative biology. However, phylogenetic information for such studies lags behind. Here, as a synthesis of all currently available phylogenetic information on the group, we produce a supertree of 114 Northern European macromoth genera (in four superfamilies, with Geometroidea considered separately), providing the most complete phylogenetic picture of this fauna available to date. In doing so, we assess those parts of the phylogeny that are well resolved and those that are uncertain. Furthermore, we identify those genera for which phylogenetic information is currently too poor to include in such a supertree, or entirely absent, as targets for future work. As an aid to studies involving these genera, we provide information on their likely positions within the macromoth tree. With phylogenies playing an ever more important role in the field, this supertree should be useful in informing future ecological and evolutionary studies.
Collapse
Affiliation(s)
- Robert B. Davis
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Erki Õunap
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
41
|
Craig JM, Kumar S, Hedges SB. Limitations of phylogenomic data can drive inferred speciation rate shifts. Mol Biol Evol 2022; 39:6528856. [PMID: 35166841 PMCID: PMC8896619 DOI: 10.1093/molbev/msac038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biodiversity analyses of phylogenomic timetrees have produced many high-profile examples of shifts in the rate of speciation across the tree of life. Temporally correlated events in ecology, climate, and biogeography are frequently invoked to explain these rate shifts. In a re-examination of 15 genomic timetrees and 25 major published studies of the pattern of speciation through time, we observed an unexpected correlation between the timing of reported rate shifts and the information content of sequence alignments. Here, we show that the paucity of sequence variation and insufficient species sampling in phylogenomic datasets are the likely drivers of many inferred speciation rate shifts, rather than the proposed biological explanations. Therefore, data limitations can produce predictable but spurious signals of rate shifts even when speciation rates may be similar across taxa and time. Our results suggest that the reliable detection of speciation rate shifts requires the acquisition and assembly of long phylogenomic alignments with near-complete species sampling and accurate estimates of species richness for the clades of study.
Collapse
Affiliation(s)
- Jack M Craig
- Center for Biodiversity, Temple University, Philadelphia, United States.,Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, United States.,Department of Biology, Temple University, Philadelphia, United States
| | - Sudhir Kumar
- Center for Biodiversity, Temple University, Philadelphia, United States.,Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, United States.,Department of Biology, Temple University, Philadelphia, United States.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S Blair Hedges
- Center for Biodiversity, Temple University, Philadelphia, United States.,Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, United States.,Department of Biology, Temple University, Philadelphia, United States
| |
Collapse
|
42
|
Hui-Yun T, Chiba H, Lohman DJ, Yen SH, Aduse-Poku K, Ohshima Y, Wu LW. Out of Asia: Intercontinental dispersals after the Eocene-Oligocene transition shaped the zoogeography of Limenitidinae butterflies (Lepidoptera: Nymphalidae). Mol Phylogenet Evol 2022; 170:107444. [DOI: 10.1016/j.ympev.2022.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
|
43
|
Chazot N, Condamine FL, Dudas G, Peña C, Kodandaramaiah U, Matos-Maraví P, Aduse-Poku K, Elias M, Warren AD, Lohman DJ, Penz CM, DeVries P, Fric ZF, Nylin S, Müller C, Kawahara AY, Silva-Brandão KL, Lamas G, Kleckova I, Zubek A, Ortiz-Acevedo E, Vila R, Vane-Wright RI, Mullen SP, Jiggins CD, Wheat CW, Freitas AVL, Wahlberg N. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nat Commun 2021; 12:5717. [PMID: 34588433 PMCID: PMC8481491 DOI: 10.1038/s41467-021-25906-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.
Collapse
Affiliation(s)
- Nicolas Chazot
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 75651, Uppsala, Sweden.
- Systematic Biology Group, Department of Biology, Lund University, Lund, Sweden.
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier|CNRS|IRD|EPHE), Place Eugene Bataillon, 34095, Montpellier, France
| | - Gytis Dudas
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Carlos Peña
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Pável Matos-Maraví
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Kwaku Aduse-Poku
- Department of Life and Earth Sciences, Perimeter College, Georgia State University, 33 Gilmer Street, Atlanta, GA, 30303, USA
| | - Marianne Elias
- ISYEB, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, Paris, 75005, France
| | - Andrew D Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - David J Lohman
- City College of New York and Graduate Center, CUNY, New York, NY, USA
- National Museum of Natural History, Manila, Philippines
| | - Carla M Penz
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| | - Phil DeVries
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| | - Zdenek F Fric
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Soren Nylin
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Chris Müller
- Australian Museum, 6 College Street, Sydney, NSW, 2010, Australia
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Karina L Silva-Brandão
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Av. Candido Rondom, 400, 13083-875, Campinas, SP, Brazil
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Irena Kleckova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Anna Zubek
- Nature Education Centre, Jagiellonian University, ul. Gronostajowa 5, 30-387, Kraków, Poland
| | - Elena Ortiz-Acevedo
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Departamento de Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Richard I Vane-Wright
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
- Durrell Institute of Conservation and Ecology (DICE), University of Kent, Canterbury, CT2 7NR, UK
| | - Sean P Mullen
- 5 Cummington Street, Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | - Andre V L Freitas
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Niklas Wahlberg
- Systematic Biology Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
44
|
He QJ, Shi W, Li CY, Yi CH, Jiang ZH, Hu SJ, Zhang HH. The first record of the monospecific genus Rhinopalpa (Lepidoptera: Nymphalidae) from China. Biodivers Data J 2021; 9:e70975. [PMID: 34539204 PMCID: PMC8408099 DOI: 10.3897/bdj.9.e70975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/12/2022] Open
Abstract
Background The family Nymphalidae is the largest group of butterflies with high species richeness. Rhinopalpapolynice (Cramer, [1779]), a forest species, was discovered in the mid-stream of the Yuanjiang-Red River Valley of Yunnan Province for the first time, which represents the first record of the genus Rhinopalpa in China. New information The species R. polynice (Cramer, [1779]) is the first record of the genus Rhinopalpa from China. The specimen was collected in the mid-stream of the Yuanjiang-Red River Valley of Yunnan Province. The female genitalia are described for the first time.
Collapse
Affiliation(s)
- Qiu-Ju He
- School of Biodiversity Conservation, Southwest Forestry University, Kunming, China School of Biodiversity Conservation, Southwest Forestry University Kunming China
| | - Wen Shi
- School of Biodiversity Conservation, Southwest Forestry University, Kunming, China School of Biodiversity Conservation, Southwest Forestry University Kunming China
| | - Chen-Yang Li
- School of Biodiversity Conservation, Southwest Forestry University, Kunming, China School of Biodiversity Conservation, Southwest Forestry University Kunming China
| | - Chuan-Hui Yi
- School of Biodiversity Conservation, Southwest Forestry University, Kunming, China School of Biodiversity Conservation, Southwest Forestry University Kunming China
| | - Zhuo-Heng Jiang
- School of Life Sciences, Westlake University, Hangzhou, China School of Life Sciences, Westlake University Hangzhou China
| | - Shao-Ji Hu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Kunming, China Yunnan Key Laboratory of International Rivers and Transboundary Eco-security Kunming China
| | - Hui-Hong Zhang
- School of Agriculture, Yunnan University, Kunming, China School of Agriculture, Yunnan University Kunming China
| |
Collapse
|
45
|
Zhao Z, Zhu J, Hoffmann AA, Cao L, Shen L, Fang J, Ma S, Liu Q, Yu W, Tang L, Wang Y, Jiang W. Horizontal transmission and recombination of Wolbachia in the butterfly tribe Aeromachini Tutt, 1906 (Lepidoptera: Hesperiidae). G3-GENES GENOMES GENETICS 2021; 11:6312560. [PMID: 34544126 PMCID: PMC8496314 DOI: 10.1093/g3journal/jkab221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022]
Abstract
Wolbachia is arguably one of the most ubiquitous heritable symbionts among insects and understanding its transmission dynamics is crucial for understanding why it is so common. While previous research has studied the transmission pathways of Wolbachia in several insect lineages including Lepidoptera, this study takes advantage of data collected from the lepidopteran tribe Aeromachini in an effort to assess patterns of transmission. Twenty-one of the 46 species of Aeromachini species were infected with Wolbachia. Overall, 25% (31/125) of Aeromachini specimens tested were Wolbachia positive. All Wolbachia strains were species-specific except for the wJho strain which appeared to be shared by three host species with a sympatric distribution based on a cophylogenetic comparison between Wolbachia and the Aeromachini species. Two tests of phylogenetic congruence did not find any evidence for cospeciation between Wolbachia strains and their butterfly hosts. The cophylogenetic comparison, divergence time estimation, and Wolbachia recombination analysis revealed that Wolbachia acquisition in Aeromachini appears to have mainly occurred mainly through horizontal transmission rather than codivergence.
Collapse
Affiliation(s)
- Zimiao Zhao
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Jianqing Zhu
- Shanghai Zoological Park, Shanghai 200335, People's Republic of China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lijun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People's Republic of China
| | - Li Shen
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Jie Fang
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Shuojia Ma
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Qunxiu Liu
- Shanghai Zoological Park, Shanghai 200335, People's Republic of China
| | - Weidong Yu
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Liying Tang
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yongqiang Wang
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Weibin Jiang
- Laboratory of Environmental Entomology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| |
Collapse
|
46
|
Richter A, Nakamura G, Agra Iserhard C, da Silva Duarte L. The hidden side of diversity: Effects of imperfect detection on multiple dimensions of biodiversity. Ecol Evol 2021; 11:12508-12519. [PMID: 34594516 PMCID: PMC8462181 DOI: 10.1002/ece3.7995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
Studies on ecological communities often address patterns of species distribution and abundance, but few consider uncertainty in counts of both species and individuals when computing diversity measures.We evaluated the extent to which imperfect detection may influence patterns of taxonomic, functional, and phylogenetic diversity in ecological communities.We estimated the true abundance of fruit-feeding butterflies sampled in canopy and understory strata in a subtropical forest. We compared the diversity values calculated by observed and estimated abundance data through the hidden diversity framework. This framework evaluates the deviation of observed diversity when compared with diversities derived from estimated true abundances and whether such deviation represents a bias or a noise in the observed diversity pattern.The hidden diversity values differed between strata for all diversity measures, except for functional richness. The taxonomic measure was the only one where we observed an inversion of the most diverse stratum when imperfect detection was included. Regarding phylogenetic and functional measures, the strata showed distinct responses to imperfect detection, despite the tendency to overestimate observed diversity. While the understory showed noise for the phylogenetic measure, since the observed pattern was maintained, the canopy had biased diversity for the functional metric. This bias occurred since no significant differences were found between strata for observed diversity, but rather for estimated diversity, with the canopy being more clustered.We demonstrate that ignore imperfect detection may lead to unrealistic estimates of diversity and hence to erroneous interpretations of patterns and processes that structure biological communities. For fruit-feeding butterflies, according to their phylogenetic position or functional traits, the undetected individuals triggered different responses in the relationship of the diversity measures to the environmental factor. This highlights the importance to evaluate and include the uncertainty in species detectability before calculating biodiversity measures to describe communities.
Collapse
Affiliation(s)
- Aline Richter
- Departamento de EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Gabriel Nakamura
- Departamento de BiologiaUniversidade Federal do CearáFortalezaBrazil
| | | | | |
Collapse
|
47
|
Krupitsky AV, Shapoval NA, Schepetov DM, Ekimova IA, Lukhtanov VA. Phylogeny, species delimitation and biogeography of the endemic Palaearctic tribe Tomarini (Lepidoptera: Lycaenidae). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The tribe Tomarini is represented by the sole genus Tomares, comprising about eight species distributed from the western Mediterranean to Central Asia. We carried out a multilocus phylogenetic and a biogeographical analysis to test the taxonomy of the genus by several molecular species delimitation methods and reveal patterns shaping the current distribution of Tomares. The phylogenetic analysis based on four molecular markers recovered the monophyly of the genus and recovered two deep-branching lineages: an African clade and an Asian clade. Species delimitation analyses suggested six or ten putative species depending on the method applied. The haplotype network analysis of the Tomares nogelii clade revealed no phylogeographical and taxonomic structure. We consider the taxon Tomares nesimachus (syn. nov.) a synonym of T. nogelii and reinstate Tomares callimachus dentata stat. rev. for populations from south-eastern Turkey. Tomares originated between the early Oligocene and the early Miocene, most probably in south-west Asia. The split of the most recent common ancestor of Tomares occurred between the middle-late Miocene and middle-late Pliocene, probably as a response to increasing aridification and habitat fragmentation. Differentiation of the Asian clade took place in south-west Asia during the Pliocene and Pleistocene and coincided temporally with the evolution of Tomares host plants of the genus Astragalus (Fabaceae).
Collapse
Affiliation(s)
- Anatoly V Krupitsky
- Department of Entomology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory, GSP-1, korp. 12, Moscow, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect 33, Moscow, Russia
| | - Nazar A Shapoval
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg, Russia
| | - Dmitry M Schepetov
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory, GSP-1, korp. 12, Moscow, Russia
| | - Irina A Ekimova
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory, GSP-1, korp. 12, Moscow, Russia
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg, Russia
| |
Collapse
|
48
|
Aduse-Poku K, van Bergen E, Sáfián S, Collins SC, Etienne RS, Herrera-Alsina L, Brakefield PM, Brattström O, Lohman DJ, Wahlberg N. Miocene Climate and Habitat Change Drove Diversification in Bicyclus, Africa's Largest Radiation of Satyrine Butterflies. Syst Biol 2021; 71:570-588. [PMID: 34363477 PMCID: PMC9016770 DOI: 10.1093/sysbio/syab066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022] Open
Abstract
Compared to other regions, the drivers of diversification in Africa are poorly understood. We studied a radiation of insects with over 100 species occurring in a wide range of habitats across the Afrotropics to investigate the fundamental evolutionary processes and geological events that generate and maintain patterns of species richness on the continent. By investigating the evolutionary history of Bicyclus butterflies within a phylogenetic framework, we inferred the group's origin at the Oligo-Miocene boundary from ancestors in the Congolian rainforests of central Africa. Abrupt climatic fluctuations during the Miocene (ca. 19-17 Ma) likely fragmented ancestral populations, resulting in at least eight early-divergent lineages. Only one of these lineages appears to have diversified during the drastic climate and biome changes of the early Miocene, radiating into the largest group of extant species. The other seven lineages diversified in forest ecosystems during the late Miocene and Pleistocene when climatic conditions were more favourable-warmer and wetter. Our results suggest changing Neogene climate, uplift of eastern African orogens, and biotic interactions might have had different effects on the various subclades of Bicyclus, producing one of the most spectacular butterfly radiations in Africa.
Collapse
Affiliation(s)
- Kwaku Aduse-Poku
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.,Biology Department, University of Richmond, Richmond, 138 UR Drive, USA.,Department of Life and Earth Sciences, Perimeter College, Georgia State University, USA
| | - Erik van Bergen
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.,Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Szabolcs Sáfián
- Institute of Silviculture and Forest Protection, University of Sopron, Sopron, Hungary
| | - Steve C Collins
- African Butterfly Research Institute, P.O. Box 14308, 0800 Westlands, Nairobi, Kenya
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, 9700 CC Groningen, The Netherlands
| | | | - Paul M Brakefield
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
| | - Oskar Brattström
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.,African Butterfly Research Institute, P.O. Box 14308, 0800 Westlands, Nairobi, Kenya.,University of Glasgow, School of Life Sciences, Glasgow, Scotland, UK.,University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, Scotland, UK
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, USA.,Ph.D. Program in Biology, Graduate Center, City University of New York, NY, USA.,Entomology Section, National Museum of Natural History, Manila, 1000, Philippines
| | - Niklas Wahlberg
- Department of Biology, Lund University, Sölvegatan35, SE-223, 62 Lund, Sweden
| |
Collapse
|
49
|
Halali S, Halali D, Barlow HS, Molleman F, Kodandaramaiah U, Brakefield PM, Brattström O. Predictability of temporal variation in climate and the evolution of seasonal polyphenism in tropical butterfly communities. J Evol Biol 2021; 34:1362-1375. [PMID: 34173293 DOI: 10.1111/jeb.13895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022]
Abstract
Phenotypic plasticity in heterogeneous environments can provide tight environment-phenotype matching. However, the prerequisite is a reliable environmental cue(s) that enables organisms to use current environmental information to induce the development of a phenotype with high fitness in a forthcoming environment. Here, we quantify predictability in the timing of precipitation and temperature change to examine how this is associated with seasonal polyphenism in tropical Mycalesina butterflies. Seasonal precipitation in the tropics typically results in distinct selective environments, the wet and dry seasons, and changes in temperature can be a major environmental cue. We sampled communities of Mycalesina butterflies from two seasonal locations and one aseasonal location. Quantifying environmental predictability using wavelet analysis and Colwell's indices confirmed a strong periodicity of precipitation over a 12-month period at both seasonal locations compared to the aseasonal one. However, temperature seasonality and periodicity differed between the two seasonal locations. We further show that: (a) most females from both seasonal locations synchronize their reproduction with the seasons by breeding in the wet season but arresting reproduction in the dry season. In contrast, all species breed throughout the year in the aseasonal location and (b) species from the seasonal locations, but not those from the aseasonal location, exhibited polyphenism in wing pattern traits (eyespot size). We conclude that seasonal precipitation and its predictability are primary factors shaping the evolution of polyphenism in Mycalesina butterflies, and populations or species secondarily evolve local adaptations for cue use that depend on the local variation in the environment.
Collapse
Affiliation(s)
- Sridhar Halali
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Dheeraj Halali
- Department of Biodiversity, Abasaheb Garware College, Pune, Maharashtra, India
| | | | - Freerk Molleman
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | | | - Oskar Brattström
- Department of Zoology, University of Cambridge, Cambridge, UK.,African Butterfly Research Institute (ABRI), Nairobi, Kenya.,School of Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
50
|
Kozak KM, Joron M, McMillan WO, Jiggins CD. Rampant Genome-Wide Admixture across the Heliconius Radiation. Genome Biol Evol 2021; 13:evab099. [PMID: 33944917 PMCID: PMC8283734 DOI: 10.1093/gbe/evab099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
How frequent is gene flow between species? The pattern of evolution is typically portrayed as a phylogenetic tree, yet gene flow between good species may be an important mechanism in diversification, spreading adaptive traits and leading to a complex pattern of phylogenetic incongruence. This process has thus far been studied mainly among a few closely related species, or in geographically restricted areas such as islands, but not on the scale of a continental radiation. Using a genomic representation of 40 out of 47 species in the genus, we demonstrate that admixture has played a role throughout the evolution of the charismatic Neotropical butterflies Heliconius. Modeling of phylogenetic networks based on the exome uncovers up to 13 instances of interspecific gene flow. Admixture is detected among the relatives of Heliconius erato, as well as between the ancient lineages leading to modern clades. Interspecific gene flow played a role throughout the evolution of the genus, although the process has been most frequent in the clade of Heliconius melpomene and relatives. We identify Heliconius hecalesia and relatives as putative hybrids, including new evidence for introgression at the loci controlling the mimetic wing patterns. Models accounting for interspecific gene flow yield a more complete picture of the radiation as a network, which will improve our ability to study trait evolution in a realistic comparative framework.
Collapse
Affiliation(s)
- Krzysztof M Kozak
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Department of Zoology, University of Cambridge, United Kingdom
| | - Mathieu Joron
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, France
| | | | - Chris D Jiggins
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Department of Zoology, University of Cambridge, United Kingdom
| |
Collapse
|