1
|
Barrett MP. Transforming the chemotherapy of human African trypanosomiasis. Clin Microbiol Rev 2025; 38:e0015323. [PMID: 39772631 PMCID: PMC11905362 DOI: 10.1128/cmr.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
SUMMARYPrior to 2019, when the orally available drug fexinidazole began its clinical use, the treatment of human African trypanosomiasis (HAT) was complex and unsatisfactory for many reasons. Two sub-species of the Trypanosoma brucei parasite are responsible for HAT, namely the rhodesiense form found in East and Southern Africa and the gambiense form found in Central and West Africa. Diseases caused by both forms manifest in two stages: stage 1 before and stage 2 after central nervous system involvement. Prior to 2019, different drugs were required for each of the two parasite sub-species at each stage. Gambiense disease required pentamidine or nifurtimox-eflornithine combination therapy, while for rhodesiense disease, suramin or melarsoprol was given for stages 1 and 2, respectively. These drugs all suffered complications including protracted administration regimens involving multiple injections with drug-induced adverse effects common. Today, a single drug, fexinidazole, can be given orally in most cases for both diseases at either stage. Another compound, acoziborole, effective in both stages 1 and 2 gambiense disease with a single dosing is anticipated to become available within a few years. Moreover, the recent engagement of multilateral organizations in seeking other compounds that could be used in HAT therapy has also been successful, and a rich vein of new trypanocides has been discovered. Here, the clinical use, modes of action, and resistance risks for drugs used against HAT are discussed.
Collapse
Affiliation(s)
- Michael P. Barrett
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Lamba S, Roy A. Demystifying the potential of inhibitors targeting DNA topoisomerases in unicellular protozoan parasites. Drug Discov Today 2023; 28:103574. [PMID: 37003515 DOI: 10.1016/j.drudis.2023.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
DNA topoisomerases are a group of enzymes omnipresent in all organisms. They maintain the DNA topology during replication, repair, recombination, and transcription. However, the structure of topoisomerase in protozoan parasites differs significantly from that of human topoisomerases; thus, this enzyme acts as a crucial target in drug development against parasitic diseases. Although the therapeutic potential of drugs targeting the parasitic topoisomerase is well known, to manage the shortcomings of currently available therapeutics and the emergence of drug resistance, the discovery of novel antiparasitic molecules is an urgent need. In this review, we describe various investigational and repurposed topoisomerase inhibitors developed against protozoan parasites over the past few years. Teaser: Fatal parasitic diseases are an increasing cause for concern; here, we provide a compilation of different inhibitors targeting DNA topoisomerases, enzymes that are essential for, and unique to, protozoan parasites; therefore, inhibitors are efficient and have few adverse effects.
Collapse
Affiliation(s)
- Swati Lamba
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
3
|
Gao X, Wang Z, Xiong L, Wu F, Gan X, Liu J, Huang X, Liu J, Tang L, Li Y, Huang J, Huang Y, Li W, Zeng H, Ban Y, Chen T, He S, Lin A, Han F, Guo X, Yu Q, Shu W, Zhang B, Zou R, Zhou Y, Chen Y, Tian H, Wei W, Zhang Z, Wei C, Wei Y, Liu H, Yao H, Chen Q, Zou Z. The bs-YHEDA peptide protects the brains of senile mice and thus recovers intelligence by reducing iron and free radicals. Free Radic Biol Med 2022; 190:216-225. [PMID: 35970250 DOI: 10.1016/j.freeradbiomed.2022.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
Iron accumulates in the brain with age and catalyzes free radical damage to neurons, thus playing a pathogenic role in Alzheimer's disease (AD). To decrease the incidence of AD, we synthesized the iron-affinitive peptide 5YHEDA to scavenge the excess iron in the senile brain. However, the blood-brain barrier (BBB) blocks the entrance of macromolecules into the brain, thus decreasing the therapeutic effects. To facilitate the entrance of the 5YHEDA peptide, we linked the low-density lipoprotein receptor (LDLR)-binding segment of ApoB-100 to 5YHEDA (named "bs-YHEDA"). The results of intravenous injections of bs-5YHEDA into senescent mice demonstrated that bs-YHEDA entered the brain, increased ferriportin levels, reduced iron and free radical levels, decreased the consequences of neuronal necrosis and ameliorated cognitive disfunction without kidney or liver damage. bs-5YHEDA is a safe iron and free radical remover that potentially alleviates aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaodie Gao
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Zhigang Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lijun Xiong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Fengyao Wu
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Xinying Gan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Jinlian Liu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Xiansheng Huang
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China
| | - Juxia Liu
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China
| | - Liling Tang
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China
| | - Yanmei Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Jinli Huang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Yuping Huang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Wenyang Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Hongji Zeng
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Yunfei Ban
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Tingting Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Suyuan He
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Anni Lin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Fei Han
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Xuefeng Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Qiming Yu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Wei Shu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Bo Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Ruyi Zou
- Chemical Department of Shangrao Normal University, Shangrao, 334001, China.
| | - Yong Zhou
- Central Hospital Affiliated to Taizhou University, Taizhou, 318000, China
| | - Yongfeng Chen
- Central Hospital Affiliated to Taizhou University, Taizhou, 318000, China
| | - Haibo Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Wenjia Wei
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China.
| | - Zhen Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Chuandong Wei
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Yuhua Wei
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China
| | - Huihua Liu
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China.
| | - Hua Yao
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China.
| | - Qiang Chen
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China.
| | - Zhenyou Zou
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 542005, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China; Biochemistry Department of Purdue University, West Lafayette, IN47006, USA.
| |
Collapse
|
4
|
Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regul Toxicol Pharmacol 2022; 132:105197. [DOI: 10.1016/j.yrtph.2022.105197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
|
5
|
Abstract
RNA-based gene therapy requires therapeutic RNA to function inside target cells without eliciting unwanted immune responses. RNA can be ferried into cells using non-viral drug delivery systems, which circumvent the limitations of viral delivery vectors. Here, we review the growing number of RNA therapeutic classes, their molecular mechanisms of action, and the design considerations for their respective delivery platforms. We describe polymer-based, lipid-based, and conjugate-based drug delivery systems, differentiating between those that passively and those that actively target specific cell types. Finally, we describe the path from preclinical drug delivery research to clinical approval, highlighting opportunities to improve the efficiency with which new drug delivery systems are discovered.
Collapse
Affiliation(s)
- Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Iglesias-Carres L, Neilson AP. Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food Funct 2021; 12:11077-11105. [PMID: 34672309 DOI: 10.1039/d1fo02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| |
Collapse
|
7
|
Mosedale M, Cai Y, Eaddy JS, Kirby PJ, Wolenski FS, Dragan Y, Valdar W. Human-relevant mechanisms and risk factors for TAK-875-Induced liver injury identified via a gene pathway-based approach in Collaborative Cross mice. Toxicology 2021; 461:152902. [PMID: 34418498 PMCID: PMC8936092 DOI: 10.1016/j.tox.2021.152902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Development of TAK-875 was discontinued when a small number of serious drug-induced liver injury (DILI) cases were observed in Phase 3 clinical trials. Subsequent studies have identified hepatocellular oxidative stress, mitochondrial dysfunction, altered bile acid homeostasis, and immune response as mechanisms of TAK-875 DILI and the contribution of genetic risk factors in oxidative response and mitochondrial pathways to the toxicity susceptibility observed in patients. We tested the hypothesis that a novel preclinical approach based on gene pathway analysis in the livers of Collaborative Cross mice could be used to identify human-relevant mechanisms of toxicity and genetic risk factors at the level of the hepatocyte as reported in a human genome-wide association study. Eight (8) male mice (4 matched pairs) from each of 45 Collaborative Cross lines were treated with a single oral (gavage) dose of either vehicle or 600 mg/kg TAK-875. As expected, liver injury was not detected histologically and few changes in plasma biomarkers of hepatotoxicity were observed. However, gene expression profiling in the liver identified hundreds of transcripts responsive to TAK-875 treatment across all strains reflecting alterations in immune response and bile acid homeostasis and the interaction of treatment and strain reflecting oxidative stress and mitochondrial dysfunction. Fold-change expression values were then used to develop pathway-based phenotypes for genetic mapping which identified candidate risk factor genes for TAK-875 toxicity susceptibility at the level of the hepatocyte. Taken together, these findings support our hypothesis that a gene pathway-based approach using Collaborative Cross mice could inform sensitive strains, human-relevant mechanisms of toxicity, and genetic risk factors for TAK-875 DILI. This novel preclinical approach may be helpful in understanding, predicting, and ultimately preventing clinical DILI for other drugs.
Collapse
Affiliation(s)
- Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, United States.
| | - Yanwei Cai
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| | - J Scott Eaddy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, United States.
| | - Patrick J Kirby
- Takeda Pharmaceuticals International Co., Cambridge, MA, 02139, United States.
| | - Francis S Wolenski
- Takeda Pharmaceuticals International Co., Cambridge, MA, 02139, United States.
| | - Yvonne Dragan
- Takeda Pharmaceuticals International Co., Cambridge, MA, 02139, United States.
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
8
|
Mosedale M, Cai Y, Eaddy JS, Corty RW, Nautiyal M, Watkins PB, Valdar W. Identification of Candidate Risk Factor Genes for Human Idelalisib Toxicity Using a Collaborative Cross Approach. Toxicol Sci 2020; 172:265-278. [PMID: 31501888 DOI: 10.1093/toxsci/kfz199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idelalisib is a phosphatidylinositol 3-kinase inhibitor highly selective for the delta isoform that has shown good efficacy in treating chronic lymphocytic leukemia and follicular lymphoma. In clinical trials, however, idelalisib was associated with rare, but potentially serious liver and lung toxicities. In this study, we used the Collaborative Cross (CC) mouse population to identify genetic factors associated with the drug response that may inform risk management strategies for idelalisib in humans. Eight male mice (4 matched pairs) from 50 CC lines were treated once daily for 14 days by oral gavage with either vehicle or idelalisib at a dose selected to achieve clinically relevant peak plasma concentrations (150 mg/kg/day). The drug was well tolerated across all CC lines, and there were no observations of overt liver injury. Differences across CC lines were seen in drug concentration in plasma samples collected at the approximate Tmax on study Days 1, 7, and 14. There were also small but statistically significant treatment-induced alterations in plasma total bile acids and microRNA-122, and these may indicate early hepatocellular stress required for immune-mediated hepatotoxicity in humans. Idelalisib treatment further induced significant elevations in the total cell count of terminal bronchoalveolar lavage fluid, which may be analogous to pneumonitis observed in the clinic. Genetic mapping identified loci associated with interim plasma idelalisib concentration and the other 3 treatment-related endpoints. Thirteen priority candidate quantitative trait genes identified in CC mice may now guide interrogation of risk factors for adverse drug responses associated with idelalisib in humans.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Yanwei Cai
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Department of Genetics
| | - John Scott Eaddy
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | | | - Manisha Nautiyal
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - William Valdar
- Department of Genetics.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
9
|
You D, Lyn-Cook LE, Gatti DM, Bell N, Mayeux PR, James LP, Mattes WB, Larson GJ, Harrill AH. Nitrosative Stress and Lipid Homeostasis as a Mechanism for Zileuton Hepatotoxicity and Resistance in Genetically Sensitive Mice. Toxicol Sci 2020; 175:220-235. [PMID: 32170957 PMCID: PMC7253212 DOI: 10.1093/toxsci/kfaa037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Zileuton is an orally active inhibitor of leukotriene synthesis for maintenance treatment of asthma, for which clinical usage has been associated with idiosyncratic liver injury. Mechanistic understanding of zileuton toxicity is hampered by the rarity of the cases and lack of an animal model. A promising model for mechanistic study of rare liver injury is the Diversity Outbred (J:DO) mouse population, with genetic variation similar to that found in humans. In this study, female DO mice were administered zileuton or vehicle daily for 7 days (i.g.). Serum liver enzymes were elevated in the zileuton group, with marked interindividual variability in response. Zileuton exposure-induced findings in susceptible DO mice included microvesicular fatty change, hepatocellular mitosis, and hepatocellular necrosis. Inducible nitric oxide synthase and nitrotyrosine abundance were increased in livers of animals with necrosis and those with fatty change, implicating nitrosative stress as a possible injury mechanism. Conversely, DO mice lacking adverse liver pathology following zileuton exposure experienced decreased hepatic concentrations of resistin and increased concentrations of insulin and leptin, providing potential clues into mechanisms of toxicity resistance. Transcriptome pathway analysis highlighted mitochondrial dysfunction and altered fatty acid oxidation as key molecular perturbations associated with zileuton exposure, and suggested that interindividual differences in cytochrome P450 metabolism, glutathione-mediated detoxification, and farnesoid X receptor signaling may contribute to zileuton-induced liver injury (ZILI). Taken together, DO mice provided a platform for investigating mechanisms of toxicity and resistance in context of ZILI which may lead to targeted therapeutic interventions.
Collapse
Affiliation(s)
- Dahea You
- Division of the National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Lascelles E Lyn-Cook
- Graduate Program in Interdisciplinary Biomedical Sciences, The University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, Arkansas 72205
| | | | - Natalie Bell
- Division of the National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
- East Carolina University, Greenville, North Carolina 27858
| | | | - Laura P James
- Department of Pediatrics, The University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, Arkansas 27705
| | - William B Mattes
- Division of Systems Biology, The National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Gary J Larson
- Social & Scientific Systems, Inc., Durham, North Carolina 27703
| | - Alison H Harrill
- Division of the National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
- Department of Environmental and Occupational Health, The University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, Arkansas 72205
| |
Collapse
|
10
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Dickie EA, Giordani F, Gould MK, Mäser P, Burri C, Mottram JC, Rao SPS, Barrett MP. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop Med Infect Dis 2020; 5:tropicalmed5010029. [PMID: 32092897 PMCID: PMC7157223 DOI: 10.3390/tropicalmed5010029] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing priorities associated with other medical crises ravaging the continent. A series of dedicated interventions and the introduction of innovative routes to develop drugs, involving Product Development Partnerships, has led to a dramatic turnaround in the fight against HAT caused by Trypanosoma brucei gambiense. The World Health Organization have been able to optimize the use of existing tools to monitor and intervene in the disease. A promising new oral medication for stage 1 HAT, pafuramidine maleate, ultimately failed due to unforeseen toxicity issues. However, the clinical trials for this compound demonstrated the possibility of conducting such trials in the resource-poor settings of rural Africa. The Drugs for Neglected Disease initiative (DNDi), founded in 2003, has developed the first all oral therapy for both stage 1 and stage 2 HAT in fexinidazole. DNDi has also brought forward another oral therapy, acoziborole, potentially capable of curing both stage 1 and stage 2 disease in a single dosing. In this review article, we describe the remarkable successes in combating HAT through the twenty first century, bringing the prospect of the elimination of this disease into sight.
Collapse
Affiliation(s)
- Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Matthew K. Gould
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
- University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA;
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
- Correspondence:
| |
Collapse
|
12
|
Real M, Barnhill MS, Higley C, Rosenberg J, Lewis JH. Drug-Induced Liver Injury: Highlights of the Recent Literature. Drug Saf 2020; 42:365-387. [PMID: 30343418 DOI: 10.1007/s40264-018-0743-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI), herbal-induced liver injury, and herbal and dietary supplement (HDS)-induced liver injury are an important aspect of drug safety. Knowledge regarding responsible drugs, mechanisms, risk factors, and the diagnostic tools to detect liver injury have continued to grow in the past year. This review highlights what we considered the most significant publications from among more than 1800 articles relating to liver injury from medications, herbal products, and dietary supplements in 2017 and 2018. The US Drug-Induced Liver Injury Network (DILIN) prospective study highlighted several areas of ongoing study, including the potential utility of human leukocyte antigens and microRNAs as DILI risk factors and new data on racial differences, the role of alcohol consumption, factors associated with prognosis, and updates on the clinical signatures of autoimmune DILI, thiopurines, and HDS agents. Novel data were also generated from the Spanish and Latin American DILI registries as well as from Chinese and Korean case series. A few new agents causing DILI were added to the growing list in the past 2 years, including sodium-glucose co-transporter-2 inhibitors, as were new aspects of chemotherapy-associated liver injury. A number of cases reported previously described hepatotoxins confirmed via the Roussel Uclaf Causality Assessment Method (RUCAM; e.g., norethisterone, methylprednisolone, glatiramer acetate) and/or the DILIN method (e.g., celecoxib, dimethyl fumarate). Additionally, much work centered on elucidating the pathophysiology of DILI, including the importance of bile salt export pumps and immune-mediated mechanisms. Finally, it must be noted that, while hundreds of new studies described DILI in 2017-2018, the quality of such reports must always be addressed. Björnsson reminds us to remain very critical of the data when addressing the future utility of a study, which is why it is so important to adhere to a standardized method such as RUCAM when determining DILI causality. While drug-induced hepatotoxicity remains a diagnosis of exclusion, the diverse array of publications that appeared in 2017 and 2018 provided important advances in our understanding of DILI, paving the way for our improved ability to make a more definitive diagnosis and risk assessment.
Collapse
Affiliation(s)
- Mark Real
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA
| | - Michele S Barnhill
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Cory Higley
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Jessica Rosenberg
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|
13
|
Zou Z, Shao S, Zou R, Qi J, Chen L, Zhang H, Shen Q, Yang Y, Ma L, Guo R, Li H, Tian H, Li P, Yu M, Wang L, Kong W, Li C, Yu Z, Huang Y, Chen L, Shao Q, Gao X, Chen X, Zhang Z, Yan J, Shao X, Pan R, Xu L, Fang J, Zhao L, Huang Y, Li A, Zhang Y, Huang W, Tian K, Hu M, Xie L, Wu L, Wu Y, Luo Z, Xiao W, Ma S, Wang J, Huang K, He S, Yang F, Zhou S, Jia M, Zhang H, Lu H, Wang X, Tan J. Linking the low-density lipoprotein receptor-binding segment enables the therapeutic 5-YHEDA peptide to cross the blood-brain barrier and scavenge excess iron and radicals in the brain of senescent mice. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:717-731. [PMID: 31921964 PMCID: PMC6944740 DOI: 10.1016/j.trci.2019.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Introduction Iron accumulates in the brain during aging, which catalyzes radical formation, causing neuronal impairment, and is thus considered a pathogenic factor in Alzheimer's disease (AD). To scavenge excess iron-catalyzed radicals and thereby protect the brain and decrease the incidence of AD, we synthesized a soluble pro-iron 5-YHEDA peptide. However, the blood-brain barrier (BBB) blocks large drug molecules from entering the brain and thus strongly reduces their therapeutic effects. However, alternative receptor- or transporter-mediated approaches are possible. Methods A low-density lipoprotein receptor (LDLR)-binding segment of Apolipoprotein B-100 was linked to the 5-YHEDA peptide (bs-5-YHEDA) and intracardially injected into senescent (SN) mice that displayed symptoms of cognitive impairment similar to those of people with AD. Results We successfully delivered 5-YHEDA across the BBB into the brains of the SN mice via vascular epithelium LDLR-mediated endocytosis. The data showed that excess brain iron and radical-induced neuronal necrosis were reduced after the bs-5-YHEDA treatment, together with cognitive amelioration in the SN mouse, and that the senescence-associated ferritin and transferrin increase, anemia and inflammation reversed without kidney or liver injury. Discussion bs-5-YHEDA may be a mild and safe iron remover that can cross the BBB and enter the brain to relieve excessive iron- and radical-induced cognitive disorders.
Collapse
Affiliation(s)
- Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China.,Medical School of Taizhou University, Taizhou, ZJ, China.,Biochemistry Department, Purdue University, West Lafayette, USA
| | - Shengxi Shao
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Ruyi Zou
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Jini Qi
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Liguan Chen
- Zhejiang Armed Police Corps, Hangzhou, ZJ, China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, HN, China
| | - Qiqiong Shen
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Yue Yang
- Clinical Laboratory Department, Wenzhou Medical University, ZJ, China
| | - Liman Ma
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Ruzeng Guo
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Hongwen Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Haibo Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Pengxin Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Mingfang Yu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Lu Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Wenjuan Kong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Caiyu Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Zhenhai Yu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Yuping Huang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Li Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Qi Shao
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Xinyan Gao
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Xiaolin Chen
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Zhengbo Zhang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Jianguo Yan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Xiaoyun Shao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Ru Pan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Lu Xu
- Clinical Laboratory of Jingyou Hospital, Xiaoshan, ZJ, China
| | - Jing Fang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Lei Zhao
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Yaohui Huang
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Anqi Li
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Yuchong Zhang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Wenkao Huang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Kechun Tian
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Minxin Hu
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Linchao Xie
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Lingbin Wu
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Yu Wu
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Zhen Luo
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Wenxin Xiao
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Shanshan Ma
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Jianan Wang
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Kaixin Huang
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Siyuan He
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Fan Yang
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Shuni Zhou
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Mo Jia
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Hui Zhang
- Pathology Department, Affiliated Hospital of Taizhou University, ZJ, China
| | - Hongsheng Lu
- Pathology Department, Affiliated Hospital of Taizhou University, ZJ, China
| | - Xinjuan Wang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| |
Collapse
|
14
|
Ibrahim MA, Isah MB, Tajuddeen N, Hamza SA, Mohammed A. Interaction of Stigmasterol with Trypanosomal Uridylyl Transferase, Farnesyl Diphosphate Synthase and Sterol 14α-demethylase: An In Silico Prediction of Mechanism of Action. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180711110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Trypanosomiasis is one of the neglected tropical diseases and continues to
cause serious morbidity, mortality and economic loss. Current anti-trypanosomal drugs are antiquated
and suffer from a number of serious setbacks, thereby necessitating the search for new
drugs. Stigmasterol has previously demonstrated in vitro and in vivo anti-trypanosomal activity.
Methods:
Herein, stigmasterol was docked into three validated anti-trypanosomal drug targets;
uridylyl transferase, farnesyl diphosphate synthase and sterol 14α-demethylase, in order to elucidate
the possible biochemical targets for the observed anti-trypanosomal activity.
Results:
The binding free energy between stigmasterol and the enzymes was in the order; sterol
14α-demethylase (-8.9 kcal/mol) < uridylyl transferase (-7.9 kcal/mol) < farnesyl diphosphate synthase
(-5.7 kcal/mol). At the lowest energy docked pose, stigmasterol interacts with the active site
of the three trypanosomal enzymes via non-covalent interactions (apart from hydrogen bond) while
highly hydrophobic stigmasterol carbon atoms (21 and 27) were crucial in the interaction with varying
residues of the three anti-trypanosomal targets.
Conclusion:
Therefore, results from this study might suggest that stigmasterol mediated the antitrypanosomal
activity through interaction with the three anti-trypanosomal targets but with more
preference towards sterol 14α-demethylase.
Collapse
Affiliation(s)
| | | | - Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Aminu Mohammed
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
15
|
Troth SP, Simutis F, Friedman GS, Todd S, Sistare FD. Kidney Safety Assessment: Current Practices in Drug Development. Semin Nephrol 2019; 39:120-131. [DOI: 10.1016/j.semnephrol.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Mosedale M, Eaddy JS, Trask OJ, Holman NS, Wolf KK, LeCluyse E, Ware BR, Khetani SR, Lu J, Brock WJ, Roth SE, Watkins PB. miR-122 Release in Exosomes Precedes Overt Tolvaptan-Induced Necrosis in a Primary Human Hepatocyte Micropatterned Coculture Model. Toxicol Sci 2019; 161:149-158. [PMID: 29029277 DOI: 10.1093/toxsci/kfx206] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is thought to often result from an adaptive immune attack on the liver. However, it has been proposed that the cascade of events culminating in an adaptive immune response begins with drug-induced hepatocyte stress, release of exosomal danger signals, and innate immune activation, all of which may occur in the absence of significant hepatocelluar death. A micropatterned coculture model (HepatoPac) was used to explore the possibility that changes in exosome content precede overt necrosis in response to the IDILI drug tolvaptan. Hepatocytes from 3 human donors were exposed to a range of tolvaptan concentrations bracketing plasma Cmax or DMSO control continuously for 4, 24, or 72 h. Although alanine aminotransferase release was not significantly affected at any concentration, tolvaptan exposures at approximately 30-fold median plasma Cmax resulted in increased release of exosomal microRNA-122 (miR-122) into the medium. Cellular imaging and microarray analysis revealed that the most significant increases in exosomal miR-122 were associated with programmed cell death and small increases in membrane permeability. However, early increases in exosome miR-122 were more associated with mitochondrial-induced apoptosis and oxidative stress. Taken together, these data suggest that tolvaptan treatment induces cellular stress and exosome release of miR-122 in primary human hepatocytes in the absence of overt necrosis, providing direct demonstration of this with a drug capable of causing IDILI. In susceptible individuals, these early events may occur at pharmacologic concentrations of tolvaptan and may promote an adaptive immune attack that ultimately results in clinically significant liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - J Scott Eaddy
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - O Joseph Trask
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Natalie S Holman
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kristina K Wolf
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,QPS DMPK Hepatic Biosciences, Research Triangle Park, North Carolina 27709
| | - Edward LeCluyse
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Brenton R Ware
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Salman R Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Jingtao Lu
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - William J Brock
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland 20850.,Brock Scientific Consulting, Montgomery Village, Maryland 20886
| | - Sharin E Roth
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland 20850
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| |
Collapse
|
17
|
Zou Z, Cai J, Zhong A, Zhou Y, Wang Z, Wu Z, Yang Y, Li X, Cheng X, Tan J, Fan Y, Zhang X, Lu Y, Zhou Y, Yang L, Zhang C, Zhao Q, Fu D, Shen Q, Chen J, Bai S, Wu L, Chen Y, Chen X, Chen J, Zheng H, Wang H, Lou Y, Ding Y, Shen S, Ye Y, Chen L, Lin Y, Huang J, Zou K, Zhang J, Bian B, Huang C, Rong C, Dai L, Xu Y, Cheng L, Chen Y, Luo Y, Zhang S, Li L. Using the synthesized peptide HAYED (5) to protect the brain against iron catalyzed radical attack in a naturally senescence Kunming mouse model. Free Radic Biol Med 2019; 130:458-470. [PMID: 30448512 DOI: 10.1016/j.freeradbiomed.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain. It cannot be cured currently, and those suffering from AD place a great burden on their caregivers and society. AD is characterized by high levels of iron ions in the brain, which catalyze radicals that damage the neurons. Knowing that the Aβ42 peptide precipitates iron by binding iron ions at amino acid residues D1, E3, H11, H13, and H14, we synthesized a 5-repeat (HAYED) sequence peptide. By treating iron-stressed SH-SY5Y cells with it and injecting it into the cerebrospinal fluid (CSF) of naturally senescence Kunming mouse, which displaying AD-similar symptoms such as learning and memory dysfunction, neuron degeneration and high level of iron in brain, we found that HAYED (5) decreased the iron and radical levels in the cell culture medium and in the CSF. Specially, the synthesized peptide prevented cell and brain damage. Furthermore, functional magnetic resonance imaging (fMRI), Morris water maze and passive avoidance tests demonstrated that the peptide ameliorated brain blood-oxygen metabolism and slowed cognitive loss in the experimental senescence mice, and clinical and blood tests showed that HAYED (5) was innoxious to the kidney, the liver and blood and offset the AD-associated inflammation and anemia.
Collapse
Affiliation(s)
- Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China; Medical School of Taizhou University, Taizhou, ZJ 318000, China; Biochemistry Department, Purdue University, West Lafayette, IN 47906, USA.
| | - Jing Cai
- Genetic Department of Nanjing Medical University, Nanjing, JS 210000, China
| | - Aiguo Zhong
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yong Zhou
- Clinical Laboratory of Affiliated Hospital of Taizhou University, Taizhou, ZJ 318000, China.
| | - Zengxian Wang
- Medical Image Center of Affiliated Hospital of Taizhou University, Taizhou, ZJ 318000, China.
| | - Zhongmin Wu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yue Yang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xin Li
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xiaoying Cheng
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China
| | - Yihao Fan
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xiaotong Zhang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yuxiang Lu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yaping Zhou
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Liu Yang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | | | - Qiang Zhao
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Derong Fu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Qiqiong Shen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jie Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Shi Bai
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Lijuan Wu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yongfeng Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xin Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jiaren Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Hongjie Zheng
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Hongdian Wang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yingjie Lou
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yarong Ding
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Shiyi Shen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Ying Ye
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Lifen Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yukai Lin
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jue Huang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Kechun Zou
- Shangli Teacher Training School, Pingxiang, JX 337009, China
| | - Jianxing Zhang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Baohua Bian
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Chengbo Huang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Cuiping Rong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China
| | - Limiao Dai
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yali Xu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Lin Cheng
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Ye Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yewen Luo
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Shanshan Zhang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China
| |
Collapse
|
18
|
Mosedale M. Mouse Population-Based Approaches to Investigate Adverse Drug Reactions. Drug Metab Dispos 2018; 46:1787-1795. [PMID: 30045843 DOI: 10.1124/dmd.118.082834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/06/2018] [Indexed: 02/13/2025] Open
Abstract
Genetic variation is now recognized as a key factor in the toxicity of pharmaceutical agents. However, genetic diversity is not present in standard nonclinical toxicology models, and small clinical studies (phase I/II) may not include enough subjects to identify toxicity liabilities associated with less common susceptibility factors. As a result, many drugs pass through preclinical and early clinical studies before safety concerns are realized. Furthermore, when adverse drug reactions are idiosyncratic in nature, suggesting a role for rare genetic variants in the toxicity susceptibility, even large clinical studies (phase III) are often underpowered (due to low population frequency and/or small effect size of the risk factor) to identify associations that may be used for precision medicine risk mitigation strategies. Genetically diverse mouse populations can be used to help overcome the limitations of standard nonclinical and clinical studies and to model toxicity responses that require genetic susceptibility factors. Furthermore, mouse population-based approaches can be used to: 1) identify sensitive strains that can serve as a screening tool for next-in-class compounds, 2) identify genetic susceptibility factors that can be used for risk mitigation strategies, and 3) study mechanisms underlying drug toxicity. This review describes genetically diverse mouse populations and provides examples of their utility in investigating adverse drug response. It also explores recent efforts to adapt mouse population-based approaches to in vitro platforms, thereby enabling the incorporation of genetic diversity and the identification of genetic risk factors and mechanisms associated with drug toxicity susceptibility at all stages of drug development.
Collapse
Affiliation(s)
- Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics and Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Venkatratnam A, Furuya S, Kosyk O, Gold A, Bodnar W, Konganti K, Threadgill DW, Gillespie KM, Aylor DL, Wright FA, Chiu WA, Rusyn I. Editor's Highlight: Collaborative Cross Mouse Population Enables Refinements to Characterization of the Variability in Toxicokinetics of Trichloroethylene and Provides Genetic Evidence for the Role of PPAR Pathway in Its Oxidative Metabolism. Toxicol Sci 2018; 158:48-62. [PMID: 28369613 DOI: 10.1093/toxsci/kfx065] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Trichloroethylene (TCE) is a known carcinogen in humans and rodents. Previous studies of inter-strain variability in TCE metabolism were conducted in multi-strain panels of classical inbred mice with limited genetic diversity to identify gene-environment interactions associated with chemical exposure. Objectives To evaluate inter-strain variability in TCE metabolism and identify genetic determinants that are associated with TCE metabolism and effects using Collaborative Cross (CC), a large panel of genetically diverse strains of mice. Methods We administered a single oral dose of 0, 24, 80, 240, or 800 mg/kg of TCE to mice from 50 CC strains, and collected organs 24 h post-dosing. Levels of trichloroacetic acid (TCA), a major oxidative metabolite of TCE were measured in multiple tissues. Protein expression and activity levels of TCE-metabolizing enzymes were evaluated in the liver. Liver transcript levels of known genes perturbed by TCE exposure were also quantified. Genetic association mapping was performed on the acquired phenotypes. Results TCA levels varied in a dose- and strain-dependent manner in liver, kidney, and serum. The variability in TCA levels among strains did not correlate with expression or activity of a number of enzymes known to be involved in TCE oxidation. Peroxisome proliferator-activated receptor alpha (PPARα)-responsive genes were found to be associated with strain-specific differences in TCE metabolism. Conclusions This study shows that CC mouse population is a valuable tool to quantitatively evaluate inter-individual variability in chemical metabolism and to identify genes and pathways that may underpin population differences.
Collapse
Affiliation(s)
- Abhishek Venkatratnam
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843.,Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Shinji Furuya
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Oksana Kosyk
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Avram Gold
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Wanda Bodnar
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kranti Konganti
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Kevin M Gillespie
- Bioinformatics Research Center and Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - David L Aylor
- Bioinformatics Research Center and Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Fred A Wright
- Bioinformatics Research Center and Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
20
|
Meier A, Erler H, Beitz E. Targeting Channels and Transporters in Protozoan Parasite Infections. Front Chem 2018; 6:88. [PMID: 29637069 PMCID: PMC5881087 DOI: 10.3389/fchem.2018.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e., channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease), and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).
Collapse
Affiliation(s)
- Anna Meier
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Holger Erler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
21
|
Mosedale M, Kim Y, Brock WJ, Roth SE, Wiltshire T, Eaddy JS, Keele GR, Corty RW, Xie Y, Valdar W, Watkins PB. Editor's Highlight: Candidate Risk Factors and Mechanisms for Tolvaptan-Induced Liver Injury Are Identified Using a Collaborative Cross Approach. Toxicol Sci 2018; 156:438-454. [PMID: 28115652 DOI: 10.1093/toxsci/kfw269] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Clinical trials of tolvaptan showed it to be a promising candidate for the treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD) but also revealed potential for idiosyncratic drug-induced liver injury (DILI) in this patient population. To identify risk factors and mechanisms underlying tolvaptan DILI, 8 mice in each of 45 strains of the genetically diverse Collaborative Cross (CC) mouse population were treated with a single oral dose of either tolvaptan or vehicle. Significant elevations in plasma alanine aminotransferase (ALT) were observed in tolvaptan-treated animals in 3 of the 45 strains. Genetic mapping coupled with transcriptomic analysis in the liver was used to identify several candidate susceptibility genes including epoxide hydrolase 2, interferon regulatory factor 3, and mitochondrial fission factor. Gene pathway analysis revealed that oxidative stress and immune response pathways were activated in response to tolvaptan treatment across all strains, but genes involved in regulation of bile acid homeostasis were most associated with tolvaptan-induced elevations in ALT. Secretory leukocyte peptidase inhibitor (Slpi) mRNA was also induced in the susceptible strains and was associated with increased plasma levels of Slpi protein, suggesting a potential serum marker for DILI susceptibility. In summary, tolvaptan induced signs of oxidative stress, mitochondrial dysfunction, and innate immune response in all strains, but variation in bile acid homeostasis was most associated with susceptibility to the liver response. This CC study has indicated potential mechanisms underlying tolvaptan DILI and biomarkers of susceptibility that may be useful in managing the risk of DILI in ADPKD patients.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Yunjung Kim
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - William J Brock
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850.,Brock Scientific Consulting, Montgomery Village, Maryland 20886
| | - Sharin E Roth
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599.,Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - J Scott Eaddy
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Gregory R Keele
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - Robert W Corty
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - Yuying Xie
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - William Valdar
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599.,Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| |
Collapse
|
22
|
Lewis L, Crawford GE, Furey TS, Rusyn I. Genetic and epigenetic determinants of inter-individual variability in responses to toxicants. CURRENT OPINION IN TOXICOLOGY 2017; 6:50-59. [PMID: 29276797 PMCID: PMC5739339 DOI: 10.1016/j.cotox.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that genetic variability has a major impact on susceptibility to common diseases, responses to drugs and toxicants, and influences disease-related outcomes. The appreciation that epigenetic marks also vary across the population is growing with more data becoming available from studies in humans and model organisms. In addition, the links between genetic variability, toxicity outcomes and epigenetics are being actively explored. Recent studies demonstrate that gene-by-environment interactions involve both chromatin states and transcriptional regulation, and that epigenetics provides important mechanistic clues to connect expression-related quantitative trait loci (QTL) and disease outcomes. However, studies of Gene×Environment×Epigenetics further extend the complexity of the experimental designs and create a challenge for selecting the most informative epigenetic readouts that can be feasibly performed to interrogate multiple individuals, exposures, tissue types and toxicity phenotypes. We propose that among the many possible epigenetic experimental methodologies, assessment of chromatin accessibility coupled with total RNA levels provides a cost-effective and comprehensive option to sufficiently characterize the complexity of epigenetic and regulatory activity in the context of understanding the inter-individual variability in responses to toxicants.
Collapse
Affiliation(s)
- Lauren Lewis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology and Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Terrence S. Furey
- Department of Genetics, Department of Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| |
Collapse
|
23
|
Berninger M, Schmidt I, Ponte-Sucre A, Holzgrabe U. Novel lead compounds in pre-clinical development against African sleeping sickness. MEDCHEMCOMM 2017; 8:1872-1890. [PMID: 30108710 PMCID: PMC6072528 DOI: 10.1039/c7md00280g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/29/2017] [Indexed: 01/21/2023]
Abstract
Human African trypanosomiasis (HAT), also known as African sleeping sickness, is caused by parasitic protozoa of the genus Trypanosoma. As the disease progresses, the parasites cross the blood brain barrier and are lethal for the patients if the disease is left untreated. Current therapies suffer from several drawbacks due to e.g. toxicity of the respective compounds or resistance to approved antitrypanosomal drugs. In this review, the different strategies of drug development against HAT are considered, namely the target-based approach, the phenotypic high throughput screening and the drug repurposing strategy. The most promising compounds emerging from these approaches entering an in vivo evaluation are mentioned herein. Of note, it may turn out to be difficult to confirm in vitro activity in an animal model of infection; however, possible reasons for the missing efficacy in unsuccessful in vivo studies are discussed.
Collapse
Affiliation(s)
- Michael Berninger
- Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Ines Schmidt
- Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology , Institute of Experimental Medicine , Luis Razetti School of Medicine , Faculty of Medicine , Universidad Central de Venezuela Caracas , Venezuela . Tel: +0931 31 85461
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany .
| |
Collapse
|
24
|
Harrill AH, McAllister KA. New Rodent Population Models May Inform Human Health Risk Assessment and Identification of Genetic Susceptibility to Environmental Exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:086002. [PMID: 28886592 PMCID: PMC5783628 DOI: 10.1289/ehp1274] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene-environment interactions in human disease and to inform human health risk assessment. OBJECTIVES This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. METHODS This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. DISCUSSION These unique resources have the potential to be powerful tools for generating hypotheses related to gene-environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. CONCLUSIONS These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274.
Collapse
Affiliation(s)
- Alison H Harrill
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Kimberly A McAllister
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| |
Collapse
|
25
|
Abstract
AKI is an increasingly common disorder that is strongly linked to short- and long-term morbidity and mortality. Despite a growing heterogeneity in its causes, providing a timely and certain diagnosis of AKI remains challenging. In this review, we summarize the evolution of AKI biomarker studies over the past few years, focusing on two major areas of investigation: the early detection and prognosis of AKI. We highlight some of the lessons learned in conducting AKI biomarker studies, including ongoing attempts to address the limitations of creatinine as a reference standard and the recent shift toward evaluating the prognostic potential of these markers. Lastly, we suggest current gaps in knowledge and barriers that may be hindering their incorporation into care and a full ascertainment of their value.
Collapse
Affiliation(s)
- Rakesh Malhotra
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California
| | - Edward D. Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical center, Nashville, Tennessee
- Tennessee Valley Healthcare System, Veteran's Administration Medical Center, Veterans Health Administration, Nashville, Tennessee; and
- Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury Research, Nashville, Tennessee
| |
Collapse
|
26
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
27
|
Patrick DA, Gillespie JR, McQueen J, Hulverson MA, Ranade RM, Creason SA, Herbst ZM, Gelb MH, Buckner FS, Tidwell RR. Urea Derivatives of 2-Aryl-benzothiazol-5-amines: A New Class of Potential Drugs for Human African Trypanosomiasis. J Med Chem 2016; 60:957-971. [PMID: 27992217 DOI: 10.1021/acs.jmedchem.6b01163] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A previous publication from this lab (Patrick, et al. Bioorg. Med. Chem. 2016, 24 , 2451 - 2465 ) explored the antitrypanosomal activities of novel derivatives of 2-(2-benzamido)ethyl-4-phenylthiazole (1), which had been identified as a hit against Trypanosoma brucei, the causative agent of human African trypanosomiasis. While a number of these compounds, particularly the urea analogues, were quite potent, these molecules as a whole exhibited poor metabolic stability. The present work describes the synthesis of 65 new analogues arising from medicinal chemistry optimization at different sites on the molecule. The most promising compounds were the urea derivatives of 2-aryl-benzothiazol-5-amines. One such analogue, (S)-2-(3,4-difluorophenyl)-5-(3-fluoro-N-pyrrolidylamido)benzothiazole (57) was chosen for in vivo efficacy studies based upon in vitro activity, metabolic stability, and brain penetration. This compound attained 5/5 cures in murine models of both early and late stage human African trypanosomiasis, representing a new lead for the development of drugs to combat this neglected disease.
Collapse
Affiliation(s)
- Donald A Patrick
- Department of Pathology and Laboratory Medicine, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | | - Richard R Tidwell
- Department of Pathology and Laboratory Medicine, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
28
|
Will OM, Damm T, Campbell GM, von Schönfells W, Açil Y, Will M, Chalaris-Rissmann A, Ayna M, Drucker C, Glüer CC. Longitudinal micro-computed tomography monitoring of progressive liver regeneration in a mouse model of partial hepatectomy. Lab Anim 2016; 51:422-426. [PMID: 27932685 DOI: 10.1177/0023677216678824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The partial hepatectomy (PH) model is widely used to study liver regeneration. Currently, the extent of regeneration is analyzed by measuring the weight of the liver post-mortem or by magnetic resonance imaging. In this study we aimed to determine whether liver volume gain can be accurately measured using micro-computed tomography (microCT). Approximately 42% of the liver was removed by ligation in C57BL/6 N mice. Mice were divided into two study groups. In group 1 conventional characterization of liver hyperplasia was performed by weighing the liver post-mortem. In group 2, liver volume gain was determined by microCT volume estimation. MicroCT results showed equivalent regeneration rates compared with the conventional method without the need to mathematically determine initial liver weights before PH. This parameter is strongly influenced by the age, strain and sex of the mice. In addition non-invasive microCT determination of volume gain over multiple time-points using the same animal reduces the number of animals needing to be used (in line with the 3R principle of replacement, reduction and refinement).
Collapse
Affiliation(s)
- Olga M Will
- 1 Department of Radiology, Molecular Imaging North Competence Center (MOINCC), Kiel, Germany
| | - Timo Damm
- 1 Department of Radiology, Molecular Imaging North Competence Center (MOINCC), Kiel, Germany
| | - Graeme M Campbell
- 1 Department of Radiology, Molecular Imaging North Competence Center (MOINCC), Kiel, Germany
| | - Witigo von Schönfells
- 2 Department of Visceral and Thoracic Surgery, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Germany
| | - Yahya Açil
- 3 Department of Oral and Maxillofacial Surgery, UKSH, Kiel, Germany
| | - Marcus Will
- 4 Department of Research Affairs, Christian-Albrechts-University, Kiel, Germany
| | | | | | - Claudia Drucker
- 5 Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Claus-Christian Glüer
- 1 Department of Radiology, Molecular Imaging North Competence Center (MOINCC), Kiel, Germany
| |
Collapse
|
29
|
Sutherland CS, Stone CM, Steinmann P, Tanner M, Tediosi F. Seeing beyond 2020: an economic evaluation of contemporary and emerging strategies for elimination of Trypanosoma brucei gambiense. LANCET GLOBAL HEALTH 2016; 5:e69-e79. [PMID: 27884709 DOI: 10.1016/s2214-109x(16)30237-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Trypanosoma brucei (T b) gambiense is targeted to reach elimination as a public health problem by 2020 and full elimination by 2030. To achieve these goals, stakeholders need to consider strategies to accelerate elimination. Hence, we aimed to model several options related to current and emerging methods for case detection, treatment, and vector control across settings to assess cost-effectiveness and the probability of elimination. METHODS Five intervention strategies were modelled over 30 years for low, moderate, and high transmission settings. Model parameters related to costs, efficacy, and transmission were based on available evidence and parameter estimation. Outcomes included disability-adjusted life-years (DALYs), costs, and long-term prevalence. Sensitivity analyses were done to calculate the uncertainty of the results. FINDINGS To reach elimination targets for 2020 across all settings, approaches combining case detection, treatment, and vector control would be most effective. Elimination in high and moderate transmission areas was probable and cost-effective when strategies included vector control and novel methods, with incremental cost-effectiveness ratios (ICERs) ranging from US$400 to $1500 per DALY averted. In low transmission areas, approaches including the newest interventions alone or in combination with tiny targets (vector control) were cost-effective, with ICERs of $200 or $1800 per DALY averted, respectively, but only strategies including vector control were likely to lead to elimination. Results of sensitivity analyses showed that allowing for biennial surveillance, reducing vector control maintenance costs, or variations of active surveillance coverage could also be cost-effective options for elimination, depending on the setting. INTERPRETATION Although various strategies might lead to elimination of T b gambiense, cost-effective approaches will include adoption of emerging technologies and, in some settings, increased surveillance or implementation of vector control. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- C Simone Sutherland
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland
| | - Christopher M Stone
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland
| | - Peter Steinmann
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland
| | - Fabrizio Tediosi
- Swiss Tropical and Public Health Institute and Universität Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Harrill AH, Moggs JG, Adkins KK, Augustin HG, Johnson RC, Leach MW. A Synopsis of the "Influence of Epigenetics, Genetics, and Immunology" Session Part A at the 35th Annual Society of Toxicologic Pathology Symposium. Toxicol Pathol 2016; 45:114-118. [PMID: 27708198 DOI: 10.1177/0192623316670781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The overarching theme of the 2016 Society of Toxicology Pathology's Annual Symposium was "The Basis and Relevance of Variation in Toxicologic Responses." Session 4 focused on genetic variation as a potential source for variability in toxicologic responses within nonclinical toxicity studies and further explored how knowledge of genetic traits might enable targeted prospective and retrospective studies in drug development and human health risk assessment. In this session, the influence of both genetic sequence variation and epigenetic modifications on toxicologic responses and their implications for understanding risk were explored. In this overview, the presentations in this session will be summarized, with a goal of exploring the ramifications of genetic and epigenetic variability within and across species for toxicity studies and disseminating information regarding novel tools to harness this variability to advance understanding of toxicologic responses across populations.
Collapse
Affiliation(s)
- Alison H Harrill
- 1 University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jonathan G Moggs
- 2 Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Karissa K Adkins
- 3 Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | | | - Robert C Johnson
- 5 Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Michael W Leach
- 6 Drug Safety Research and Development, Pfizer, Andover, Massachusetts, USA
| |
Collapse
|
31
|
Antileishmanial Mechanism of Diamidines Involves Targeting Kinetoplasts. Antimicrob Agents Chemother 2016; 60:6828-6836. [PMID: 27600039 DOI: 10.1128/aac.01129-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/28/2016] [Indexed: 02/08/2023] Open
Abstract
Leishmaniasis is a disease caused by pathogenic Leishmania parasites; current treatments are toxic and expensive, and drug resistance has emerged. While pentamidine, a diamidine-type compound, is one of the treatments, its antileishmanial mechanism of action has not been investigated in depth. Here we tested several diamidines, including pentamidine and its analog DB75, against Leishmania donovani and elucidated their antileishmanial mechanisms. We identified three promising new antileishmanial diamidine compounds with 50% effective concentrations (EC50s) of 3.2, 3.4, and 4.5 μM, while pentamidine and DB75 exhibited EC50s of 1.46 and 20 μM, respectively. The most potent antileishmanial inhibitor, compound 1, showed strong DNA binding properties, with a shift in the melting temperature (ΔTm) of 24.2°C, whereas pentamidine had a ΔTm value of 2.1°C, and DB75 had a ΔTm value of 7.7°C. Additionally, DB75 localized in L. donovani kinetoplast DNA (kDNA) and mitochondria but not in nuclear DNA (nDNA). For 2 new diamidines, strong localization signals were observed in kDNA at 1 μM, and at higher concentrations, the signals also appeared in nuclei. All tested diamidines showed selective and dose-dependent inhibition of kDNA, but not nDNA, replication, likely by inhibiting L. donovani topoisomerase IB. Overall, these results suggest that diamidine antileishmanial compounds exert activity by accumulating toward and blocking replication of parasite kDNA.
Collapse
|
32
|
Patrick DA, Wenzler T, Yang S, Weiser PT, Wang MZ, Brun R, Tidwell RR. Synthesis of novel amide and urea derivatives of thiazol-2-ethylamines and their activity against Trypanosoma brucei rhodesiense. Bioorg Med Chem 2016; 24:2451-2465. [PMID: 27102161 PMCID: PMC4862372 DOI: 10.1016/j.bmc.2016.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 11/24/2022]
Abstract
2-(2-Benzamido)ethyl-4-phenylthiazole (1) was one of 1035 molecules (grouped into 115 distinct scaffolds) found to be inhibitory to Trypanosoma brucei, the pathogen causing human African trypanosomiasis, at concentrations below 3.6μM and non-toxic to mammalian (Huh7) cells in a phenotypic high-throughput screen of a 700,000 compound library performed by the Genomics Institute of the Novartis Research Foundation (GNF). Compound 1 and 72 analogues were synthesized in this lab by one of two general pathways. These plus 10 commercially available analogues were tested against T. brucei rhodesiense STIB900 and L6 rat myoblast cells (for cytotoxicity) in vitro. Forty-four derivatives were more potent than 1, including eight with IC50 values below 100nM. The most potent and most selective for the parasite was the urea analogue 2-(2-piperidin-1-ylamido)ethyl-4-(3-fluorophenyl)thiazole (70, IC50=9nM, SI>18,000). None of 33 compounds tested were able to cure mice infected with the parasite; however, seven compounds caused temporary reductions of parasitemia (⩾97%) but with subsequent relapses. The lack of in vivo efficacy was at least partially due to their poor metabolic stability, as demonstrated by the short half-lives of 15 analogues against mouse and human liver microsomes.
Collapse
Affiliation(s)
- Donald A Patrick
- University of North Carolina, Pathology & Laboratory Medicine, 805 Brinkhous-Bullitt Bldg, CB7525, Chapel Hill, NC 27599-7525, USA
| | - Tanja Wenzler
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Sihyung Yang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Patrick T Weiser
- University of North Carolina, Pathology & Laboratory Medicine, 805 Brinkhous-Bullitt Bldg, CB7525, Chapel Hill, NC 27599-7525, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Richard R Tidwell
- University of North Carolina, Pathology & Laboratory Medicine, 805 Brinkhous-Bullitt Bldg, CB7525, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
33
|
Clarke JI, Dear JW, Antoine DJ. Recent advances in biomarkers and therapeutic interventions for hepatic drug safety – false dawn or new horizon? Expert Opin Drug Saf 2016; 15:625-34. [DOI: 10.1517/14740338.2016.1160057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna I. Clarke
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - James W. Dear
- Pharmacology, Toxicology and Therapeutics Unit, BHF/University Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
34
|
Cheng Y, El-Kattan A, Zhang Y, Ray AS, Lai Y. Involvement of Drug Transporters in Organ Toxicity: The Fundamental Basis of Drug Discovery and Development. Chem Res Toxicol 2016; 29:545-63. [DOI: 10.1021/acs.chemrestox.5b00511] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical
Candidate Optimization, Bristol-Myers Squibb Company, 3551 Lawrenceville
Road, Princeton, New Jersey 08540, United States
| | - Ayman El-Kattan
- Department
of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., 610 Main
Street, Cambridge, Massachusetts 02139, United States
| | - Yan Zhang
- Drug
Metabolism and Biopharmaceutics, Incyte Corporation, 1801 Augustine
Cutoff, Wilmington, Delaware 19803, United States
| | - Adrian S. Ray
- Department
of Drug Metabolism, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yurong Lai
- Pharmaceutical
Candidate Optimization, Bristol-Myers Squibb Company, 3551 Lawrenceville
Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
35
|
Pohlig G, Bernhard SC, Blum J, Burri C, Mpanya A, Lubaki JPF, Mpoto AM, Munungu BF, N’tombe PM, Deo GKM, Mutantu PN, Kuikumbi FM, Mintwo AF, Munungi AK, Dala A, Macharia S, Bilenge CMM, Mesu VKBK, Franco JR, Dituvanga ND, Tidwell RR, Olson CA. Efficacy and Safety of Pafuramidine versus Pentamidine Maleate for Treatment of First Stage Sleeping Sickness in a Randomized, Comparator-Controlled, International Phase 3 Clinical Trial. PLoS Negl Trop Dis 2016; 10:e0004363. [PMID: 26882015 PMCID: PMC4755561 DOI: 10.1371/journal.pntd.0004363] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/14/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sleeping sickness (human African trypanosomiasis [HAT]) is a neglected tropical disease with limited treatment options that currently require parenteral administration. In previous studies, orally administered pafuramidine was well tolerated in healthy patients (for up to 21 days) and stage 1 HAT patients (for up to 10 days), and demonstrated efficacy comparable to pentamidine. METHODS This was a Phase 3, multi-center, randomized, open-label, parallel-group, active control study where 273 male and female patients with first stage Trypanosoma brucei gambiense HAT were treated at six sites: one trypanosomiasis reference center in Angola, one hospital in South Sudan, and four hospitals in the Democratic Republic of the Congo between August 2005 and September 2009 to support the registration of pafuramidine for treatment of first stage HAT in collaboration with the United States Food and Drug Administration. Patients were treated with either 100 mg of pafuramidine orally twice a day for 10 days or 4 mg/kg pentamidine intramuscularly once daily for 7 days to assess the efficacy and safety of pafuramidine versus pentamidine. Pregnant and lactating women as well as adolescents were included. The primary efficacy endpoint was the combined rate of clinical and parasitological cure at 12 months. The primary safety outcome was the frequency and severity of adverse events. The study was registered on the International Clinical Trials Registry Platform at www.clinicaltrials.gov with the number ISRCTN85534673. FINDINGS/CONCLUSIONS The overall cure rate at 12 months was 89% in the pafuramidine group and 95% in the pentamidine group; pafuramidine was non-inferior to pentamidine as the upper bound of the 95% confidence interval did not exceed 15%. The safety profile of pafuramidine was superior to pentamidine; however, 3 patients in the pafuramidine group had glomerulonephritis or nephropathy approximately 8 weeks post-treatment. Two of these events were judged as possibly related to pafuramidine. Despite good tolerability observed in preceding studies, the development program for pafuramidine was discontinued due to delayed post-treatment toxicity.
Collapse
Affiliation(s)
- Gabriele Pohlig
- Swiss Tropical and Public Health Institute, Pharmaceutical Medicine Unit, Swiss Centre for International Health, Basel, Switzerland
| | - Sonja C. Bernhard
- Swiss Tropical and Public Health Institute, Pharmaceutical Medicine Unit, Swiss Centre for International Health, Basel, Switzerland
- Pharmacy & Clinical Pharmacology at the Division of Clinical Pharmacology, University of Basel, Basel, Switzerland
| | - Johannes Blum
- Swiss Tropical and Public Health Institute, Medical Services and Diagnostic, Basel, Switzerland
| | - Christian Burri
- Pharmacy & Clinical Pharmacology at the Division of Clinical Pharmacology, University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Department of Medicines Research, Basel, Switzerland
| | - Alain Mpanya
- Programme Nationale de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, Democratic Republic of the Congo
| | | | | | | | | | | | - Pierre Nsele Mutantu
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Florent Mbo Kuikumbi
- Programme Nationale de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, Democratic Republic of the Congo
| | | | | | - Amadeu Dala
- Instituto de Combate e de Controlo das Tripanossomíases, Luanda, Angola
| | | | | | - Victor Kande Betu Ku Mesu
- Programme des Maladies Tropicales Négligées, Ministère de la Santé Publique Kinshasa, Democratic Republic of the Congo
| | - Jose Ramon Franco
- World Health Organisation Geneva, Department of Control of Neglected Diseases, Geneva, Switzerland
| | | | - Richard R. Tidwell
- University of North Carolina, Department of Pathology and Lab Medicine, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Carol A. Olson
- Sapphire Oak Consultants, LLC, Lindenhurst, Illinois, United States of America
| |
Collapse
|
36
|
Yang G, Zhu W, Wang Y, Huang G, Byun S, Choi G, Li K, Huang Z, Docampo R, Oldfield E, No JH. In Vitro and in Vivo Activity of Multitarget Inhibitors against Trypanosoma brucei. ACS Infect Dis 2015; 1:388-98. [PMID: 26295062 PMCID: PMC4539249 DOI: 10.1021/acsinfecdis.5b00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We tested a series of amidine and related compounds against Trypanosoma brucei. The most active compound was a biphenyldiamidine that had an EC 50 of 7.7 nM against bloodstream-form parasites. There was little toxicity against two human cell lines with CC 50 > 100 μM. There was also good in vivo activity in a mouse model of infection with 100% survival at 3 mg/kg i.p. The most potent lead blocked replication of kinetoplast DNA (k-DNA), but not nuclear DNA, in the parasite. Some compounds also inhibited the enzyme farnesyl diphosphate synthase (FPPS), and some were uncouplers of oxidative phosphorylation. We developed a computational model for T. brucei cell growth inhibition (R (2) = 0.76) using DNA ΔT m values for inhibitor binding combined with T. brucei FPPS IC 50 values. Overall, the results suggest that it may be possible to develop multitarget drug leads against T. brucei that act by inhibiting both k-DNA replication and isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Gyongseon Yang
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
- Interdisciplinary Programs of Functional Genomics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Wei Zhu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yang Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Sooyoung Byun
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| | - Gahee Choi
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| | - Kai Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zhuoli Huang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| |
Collapse
|
37
|
Yoo HS, Bradford BU, Kosyk O, Uehara T, Shymonyak S, Collins LB, Bodnar WM, Ball LM, Gold A, Rusyn I. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:32-49. [PMID: 25424545 PMCID: PMC4281933 DOI: 10.1080/15287394.2015.958418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.
Collapse
Affiliation(s)
- Hong Sik Yoo
- a Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sensitivity to hepatotoxicity due to epigallocatechin gallate is affected by genetic background in diversity outbred mice. Food Chem Toxicol 2014; 76:19-26. [PMID: 25446466 DOI: 10.1016/j.fct.2014.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/06/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022]
Abstract
Consumer use of herbal and dietary supplements has recently grown in the United States and, with increased use, reports of rare adverse reactions have emerged. One such supplement is green tea extract, containing the polyphenol epigallocatechin gallate (EGCG), which has been shown to be hepatotoxic at high doses in animal models. The Drug-Induced Liver Injury Network has identified multiple patients who have experienced liver injury ascribed to green tea extract consumption and the relationship to dose has not been straightforward, indicating that differences in sensitivity may contribute to the adverse response in susceptible people. The Diversity Outbred (DO), a genetically heterogeneous mouse population, provides a potential platform for study of interindividual toxicity responses to green tea extract. Within the DO population, an equal exposure to EGCG (50 mg/kg; daily for three days) was found to be tolerated in the majority of mice; however, a small fraction of the animals (16%; 43/272) exhibited severe hepatotoxicity (10-86.8% liver necrosis) that is analogous to the clinical cases. The data indicate that the DO mice may provide a platform for informing risk of rare, adverse reactions that may occur in consumer populations upon ingestion of concentrated herbal products.
Collapse
|
39
|
Mosedale M, Wu H, Kurtz CL, Schmidt SP, Adkins K, Harrill AH. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug. Toxicol Appl Pharmacol 2014; 280:21-9. [PMID: 24967691 DOI: 10.1016/j.taap.2014.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 01/15/2023]
Abstract
A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug.
Collapse
Affiliation(s)
- Merrie Mosedale
- Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | - Hong Wu
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340, USA
| | - C Lisa Kurtz
- Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | - Stephen P Schmidt
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340, USA
| | - Karissa Adkins
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340, USA.
| | - Alison H Harrill
- Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA; University of Arkansas for Medical Sciences, Little Rock, AR72205, USA
| |
Collapse
|
40
|
In vitro and in vivo evaluation of 28DAP010, a novel diamidine for treatment of second-stage African sleeping sickness. Antimicrob Agents Chemother 2014; 58:4452-63. [PMID: 24867978 DOI: 10.1128/aac.02309-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
African sleeping sickness is a neglected tropical disease transmitted by tsetse flies. New and better drugs are still needed especially for its second stage, which is fatal if untreated. 28DAP010, a dipyridylbenzene analogue of DB829, is the second simple diamidine found to cure mice with central nervous system infections by a parenteral route of administration. 28DAP010 showed efficacy similar to that of DB829 in dose-response studies in mouse models of first- and second-stage African sleeping sickness. The in vitro time to kill, determined by microcalorimetry, and the parasite clearance time in mice were shorter for 28DAP010 than for DB829. No cross-resistance was observed between 28DAP010 and pentamidine on the tested Trypanosoma brucei gambiense isolates from melarsoprol-refractory patients. 28DAP010 is the second promising preclinical candidate among the diamidines for the treatment of second-stage African sleeping sickness.
Collapse
|
41
|
Church RJ, Wu H, Mosedale M, Sumner SJ, Pathmasiri W, Kurtz CL, Pletcher MT, Eaddy JS, Pandher K, Singer M, Batheja A, Watkins PB, Adkins K, Harrill AH. A systems biology approach utilizing a mouse diversity panel identifies genetic differences influencing isoniazid-induced microvesicular steatosis. Toxicol Sci 2014; 140:481-92. [PMID: 24848797 DOI: 10.1093/toxsci/kfu094] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Isoniazid (INH), the mainstay therapeutic for tuberculosis infection, has been associated with rare but serious hepatotoxicity in the clinic. However, the mechanisms underlying inter-individual variability in the response to this drug have remained elusive. A genetically diverse mouse population model in combination with a systems biology approach was utilized to identify transcriptional changes, INH-responsive metabolites, and gene variants that contribute to the liver response in genetically sensitive individuals. Sensitive mouse strains developed severe microvesicular steatosis compared with corresponding vehicle control mice following 3 days of oral treatment with INH. Genes involved in mitochondrial dysfunction were enriched among liver transcripts altered with INH treatment. Those associated with INH treatment and susceptibility to INH-induced steatosis in the liver included apolipoprotein A-IV, lysosomal-associated membrane protein 1, and choline phosphotransferase 1. These alterations were accompanied by metabolomic changes including reduced levels of glutathione and the choline metabolites betaine and phosphocholine, suggesting that oxidative stress and reduced lipid export may additionally contribute to INH-induced steatosis. Finally, genome-wide association mapping revealed that polymorphisms in perilipin 2 were linked to increased triglyceride levels following INH treatment, implicating a role for inter-individual differences in lipid packaging in the susceptibility to INH-induced steatosis. Taken together, our data suggest that INH-induced steatosis is caused by not one, but multiple events involving lipid retention in the livers of genetically sensitive individuals. This work also highlights the value of using a mouse diversity panel to investigate drug-induced responses across a diverse population.
Collapse
Affiliation(s)
- Rachel J Church
- Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Hong Wu
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Merrie Mosedale
- Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Susan J Sumner
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina 27709
| | - Wimal Pathmasiri
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina 27709
| | - Catherine L Kurtz
- Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Mathew T Pletcher
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - John S Eaddy
- Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Karamjeet Pandher
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Monica Singer
- Janssen Research and Development, Drug Safety Sciences, Raritan, New Jersey 08869
| | - Ameesha Batheja
- Janssen Research and Development, Drug Safety Sciences, Raritan, New Jersey 08869
| | - Paul B Watkins
- Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709 Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Karissa Adkins
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Alison H Harrill
- Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709 Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 The University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
42
|
Using Pharmacogene Polymorphism Panels to Detect Germline Pharmacodynamic Markers in Oncology. Clin Cancer Res 2014; 20:2530-40. [DOI: 10.1158/1078-0432.ccr-13-2780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Tatipaka HB, Gillespie JR, Chatterjee AK, Norcross NR, Hulverson MA, Ranade RM, Nagendar P, Creason SA, McQueen J, Duster NA, Nagle A, Supek F, Molteni V, Wenzler T, Brun R, Glynne R, Buckner FS, Gelb MH. Substituted 2-phenylimidazopyridines: a new class of drug leads for human African trypanosomiasis. J Med Chem 2014; 57:828-35. [PMID: 24354316 DOI: 10.1021/jm401178t] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A phenotypic screen of a compound library for antiparasitic activity on Trypanosoma brucei, the causative agent of human African trypanosomiasis, led to the identification of substituted 2-(3-aminophenyl)oxazolopyridines as a starting point for hit-to-lead medicinal chemistry. A total of 110 analogues were prepared, which led to the identification of 64, a substituted 2-(3-aminophenyl)imidazopyridine. This compound showed antiparasitic activity in vitro with an EC50 of 2 nM and displayed reasonable druglike properties when tested in a number of in vitro assays. The compound was orally bioavailable and displayed good plasma and brain exposure in mice. Compound 64 cured mice infected with Trypanosoma brucei when dosed orally down to 2.5 mg/kg. Given its potent antiparasitic properties and its ease of synthesis, compound 64 represents a new lead for the development of drugs to treat human African trypanosomiasis.
Collapse
Affiliation(s)
- Hari Babu Tatipaka
- Departments of †Chemistry, ‡Medicine, and §Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Antoine DJ, Harrill AH, Watkins PB, Park BK. Safety biomarkers for drug-induced liver injury – current status and future perspectives. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50077b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
45
|
Antiprotozoal activity of dicationic 3,5-diphenylisoxazoles, their prodrugs and aza-analogues. Bioorg Med Chem 2013; 22:559-76. [PMID: 24268543 DOI: 10.1016/j.bmc.2013.10.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/21/2013] [Accepted: 10/29/2013] [Indexed: 11/23/2022]
Abstract
Fifty novel prodrugs and aza-analogues of 3,5-bis(4-amidinophenyl)isoxazole and its derivatives were prepared. Eighteen of the 24 aza-analogues exhibited IC₅₀ values below 25 nM against Trypanosoma brucei rhodesiense or Plasmodium falciparum. Six compounds had antitrypanosomal IC₅₀ values below 10 nM. Twelve analogues showed similar antiplasmodial activities, including three with sub-nanomolar potencies. Forty-four diamidines (including 16 aza-analogues) and the 26 prodrugs were evaluated for efficacy in mice infected with T. b. rhodesiense STIB900. Six diamidines cured 4/4 mice at daily 5 mg/kg intraperitoneal doses for 4 days, giving results far superior to pentamidine and furamidine. One prodrug attained 3/4 cures at daily 25 mg/kg oral doses for 4 days.
Collapse
|
46
|
Thuita JK, Wolf KK, Murilla GA, Liu Q, Mutuku JN, Chen Y, Bridges AS, Mdachi RE, Ismail MA, Ching S, Boykin DW, Hall JE, Tidwell RR, Paine MF, Brun R, Wang MZ. Safety, pharmacokinetic, and efficacy studies of oral DB868 in a first stage vervet monkey model of human African trypanosomiasis. PLoS Negl Trop Dis 2013; 7:e2230. [PMID: 23755309 PMCID: PMC3674995 DOI: 10.1371/journal.pntd.0002230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
There are no oral drugs for human African trypanosomiasis (HAT, sleeping sickness). A successful oral drug would have the potential to reduce or eliminate the need for patient hospitalization, thus reducing healthcare costs of HAT. The development of oral medications is a key objective of the Consortium for Parasitic Drug Development (CPDD). In this study, we investigated the safety, pharmacokinetics, and efficacy of a new orally administered CPDD diamidine prodrug, 2,5-bis[5-(N-methoxyamidino)-2-pyridyl]furan (DB868; CPD-007-10), in the vervet monkey model of first stage HAT. DB868 was well tolerated at a dose up to 30 mg/kg/day for 10 days, a cumulative dose of 300 mg/kg. Mean plasma levels of biomarkers indicative of liver injury (alanine aminotransferase, aspartate aminotransferase) were not significantly altered by drug administration. In addition, no kidney-mediated alterations in creatinine and urea concentrations were detected. Pharmacokinetic analysis of plasma confirmed that DB868 was orally available and was converted to the active compound DB829 in both uninfected and infected monkeys. Treatment of infected monkeys with DB868 began 7 days post-infection. In the infected monkeys, DB829 attained a median Cmax (dosing regimen) that was 12-fold (3 mg/kg/day for 7 days), 15-fold (10 mg/kg/day for 7 days), and 31-fold (20 mg/kg/day for 5 days) greater than the IC50 (14 nmol/L) against T. b. rhodesiense STIB900. DB868 cured all infected monkeys, even at the lowest dose tested. In conclusion, oral DB868 cured monkeys with first stage HAT at a cumulative dose 14-fold lower than the maximum tolerated dose and should be considered a lead preclinical candidate in efforts to develop a safe, short course (5–7 days), oral regimen for first stage HAT. Development of orally administered medicines for human African trypanosomiasis (HAT) would potentially reduce the need for patient hospitalization, thus lowering healthcare costs. In this study, we investigated the potential of a novel diamidine prodrug, DB868 (CPD-007-10), as an oral treatment for first stage HAT. When administered to uninfected monkeys by oral gavage, DB868 was well tolerated up to a maximum dose of 30 mg/kg/day for 10 days (cumulative dose [CD] = 300 mg/kg). DB868 was absorbed into the systemic circulation and was converted to the active compound DB829 in concentrations that were potentially therapeutic for blood trypanosomes. Subsequently, DB868 was evaluated for efficacy in the first stage vervet monkey model of HAT in which treatment was initiated at 7 days post-infection with T. b. rhodesiense KETRI 2537. All infected monkeys were cured, even at the lowest of the three dose regimens tested: 3 mg/kg/day for 7 days (CD = 21 mg/kg), 10 mg/kg/day for 7 days (CD = 70 mg/kg) and 20 mg/kg/day for 5 days (CD = 100 mg/kg). DB868 conversion to DB829 was comparable between uninfected and infected monkeys. In view of its favourable safety and oral efficacy profile, we conclude that DB868 is a suitable candidate for development as a new treatment for first stage HAT.
Collapse
Affiliation(s)
- John K. Thuita
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (KARI-TRC), Kikuyu, Kenya
- University of Basel, Basel, Switzerland
| | - Kristina K. Wolf
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Grace A. Murilla
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (KARI-TRC), Kikuyu, Kenya
| | - Qiang Liu
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James N. Mutuku
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (KARI-TRC), Kikuyu, Kenya
| | - Yao Chen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Arlene S. Bridges
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raymond E. Mdachi
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (KARI-TRC), Kikuyu, Kenya
| | - Mohamed A. Ismail
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
| | - Shelley Ching
- SVC Associates, Inc., Apex, North Carolina, United States of America
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
| | - James Edwin Hall
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard R. Tidwell
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mary F. Paine
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Reto Brun
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|