1
|
Eswaran M, Shanmugavel S, Madhuvanthi CK, Thangaraj K, Aiyar B, Dev SA, Balakrishnan S, Ulaganathan K, Podicheti S, Dasgupta MG. Comparative transcriptomics reveals potential regulators of climate adaptation in Santalum album L. (Indian Sandalwood). 3 Biotech 2025; 15:64. [PMID: 39963148 PMCID: PMC11829887 DOI: 10.1007/s13205-025-04218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/19/2025] [Indexed: 02/20/2025] Open
Abstract
Santalum album L. (Indian Sandalwood), a valued tree species known for its fragrant heartwood and essential oil is facing increasing threat due to severe anthropogenic pressures compounded by climate change which has resulted in depletion of its adaptive gene pool. The present study investigates the transcriptome-level responses of nine sandalwood genotypes sourced from diverse climatic zones to identify adaptive genes in the species. Comparative transcriptomics predicted 727, 1141 and 479 differentially expressed transcripts (DETs) across wet vs. dry; monsoon vs. dry and wet vs. monsoon conditions, respectively, and majority of DETs were up-regulated in samples sourced from high rainfall areas. Transcripts including heat shock proteins, Zinc finger binding protein, ribosomal proteins, transcription factors and protein kinase were identified as probable regulators of climate adaptation in S. album. The expression changes of eight selected transcripts were further validated by real-time quantitative PCR. Protein-protein interaction analysis revealed key hub transcripts involved in climate response, while alternative splicing events in transcripts such as SURP and G-patch domain-containing protein 1-like protein, G-type lectin S-receptor-like serine/threonine protein kinase B120, Tetraspanin-3 and ARM repeat superfamily protein indicated the probable role of alternate splicing in increasing the transcript diversity during adaptation. This study presents the first insight into the molecular mechanisms of climate adaptation in the species and can form the basis for specific interventions such as selective breeding, genetic manipulation, and habitat management for conservation and long-term survival of sandalwood. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04218-4.
Collapse
Affiliation(s)
- Muthulakshmi Eswaran
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Senthilkumar Shanmugavel
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Chandramouli K. Madhuvanthi
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Karthick Thangaraj
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Balasubramanian Aiyar
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Suma Arun Dev
- Kerala Forest Research Institute, Peechi, Thrissur, Kerala India
| | | | | | - Sneha Podicheti
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, Telangana India
| | - Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| |
Collapse
|
2
|
Rizzuto G, Wang D, Chen J, Hung TH, Fitzky AC, Flashman E, MacKay JJ. Contrasted NCED gene expression across conifers with rising and peaking abscisic acid responses to drought. PLANT STRESS (AMSTERDAM, NETHERLANDS) 2024; 14:None. [PMID: 40110485 PMCID: PMC11913745 DOI: 10.1016/j.stress.2024.100574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 03/22/2025]
Abstract
Conifer trees have diverse strategies to cope with drought. They accumulate the plant hormone abscisic acid (ABA) following a range of profiles from constantly rising to peaking and falling (R- and P-type) with direct effect on foliar transpiration. The molecular basis of this adaptive diversification among species is largely unknown. Here, we analysed the sequences of candidate ABA biosynthesis and catabolism genes and monitored their expression in response to intensifying drought. We studied young trees from Cupressaceae, Pinaceae, and Taxaceae under controlled drought conditions and compared changes in water status, ABA profiles and gene-specific transcript levels. Our data indicate that R-type and P-type ABA profiles may be controlled by divergent expression of genes involved in the biosynthetic and catabolic pathways of ABA, respectively, and emphasize a key role of nine-cis-epoxycarotenoid dioxygenases (NCED) genes. Our results open the doors to understanding the molecular basis of contrasted drought response strategies across conifer taxa, which we expect will help foresters grow more drought-resilient trees.
Collapse
Affiliation(s)
- Gabriele Rizzuto
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, viale delle Scienze Ed. 16, Palermo, 90128, Italy
| | - Dapeng Wang
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Jinhui Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572019, People's Republic of China
| | - Tin Hang Hung
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Anne Charlott Fitzky
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Straße 82, Vienna A-1190, Austria
| | - Emily Flashman
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - John J. MacKay
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
3
|
Pavanetto N, Niinemets Ü, Rueda M, Puglielli G. Macroecology of Abiotic Stress Tolerance in Woody Plants of the Northern Hemisphere: Tolerance Biomes and Polytolerance Hotspots. Ecol Lett 2024; 27:e70016. [PMID: 39623739 PMCID: PMC11612541 DOI: 10.1111/ele.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Understanding the main ecological constraints on plants' adaptive strategies to tolerate multiple abiotic stresses is a central topic in plant ecology. We aimed to uncover such constraints by analysing how the interactions between climate, soil features and species functional traits co-determine the distribution and diversity of stress tolerance strategies to drought, shade, cold and waterlogging in woody plants of the Northern Hemisphere. Functional traits and soil fertility predominantly determined drought and waterlogging/cold tolerance strategies, while climatic factors strongly influenced shade tolerance. We describe the observed patterns by defining 'stress tolerance biomes' and 'polytolerance hotspots', that is, geographic regions where woody plant assemblages have converged to specific tolerance strategies and where the coexistence of multiple tolerance strategies is frequent. The depiction of these regions provides the first macroecological overview of the main environmental and functional requirements underlying the ecological limits to the diversity of abiotic stress tolerance strategies in woody plants.
Collapse
Affiliation(s)
- Nicola Pavanetto
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
- Estonian Academy of SciencesTallinnEstonia
| | - Marta Rueda
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Giacomo Puglielli
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| |
Collapse
|
4
|
Zhang M, Wu M, Xu T, Cao J, Zhang Z, Zhang T, Xie Q, Wang J, Sun S, Zhang Q, Ma R, Xie L. A putative Na +/H + antiporter BpSOS1 contributes to salt tolerance in birch. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112181. [PMID: 38969141 DOI: 10.1016/j.plantsci.2024.112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
White birch (Betula platyphylla Suk.) is an important pioneer tree which plays a critical role in maintaining ecosystem stability and forest regeneration. The growth of birch is dramatically inhibited by salt stress, especially the root inhibition. Salt Overly Sensitive 1 (SOS1) is the only extensively characterized Na+ efflux transporter in multiple plant species. The salt-hypersensitive mutant, sos1, display significant inhibition of root growth by NaCl. However, the role of SOS1 in birch responses to salt stress remains unclear. Here, we characterized a putative Na+/H+ antiporter BpSOS1 in birch and generated the loss-of-function mutants of the birch BpSOS1 by CRISPR/Cas9 approach. The bpsos1 mutant exhibit exceptional increased salt sensitivity which links to excessive Na+ accumulation in root, stem and old leaves. We observed a dramatic reduction of K+ contents in leaves of the bpsos1 mutant plants under salt stress. Furthermore, the Na+/K+ ratio of roots and leaves is significant higher in the bpsos1 mutants than the wild-type plants under salt stress. The ability of Na+ efflux in the root meristem zone is found to be impaired which might result the imbalance of Na+ and K+ in the bpsos1 mutants. Our findings indicate that the Na+/H+ exchanger BpSOS1 plays a critical role in birch salt tolerance by maintaining Na+ homeostasis and provide evidence for molecular breeding to improve salt tolerance in birch and other trees.
Collapse
Affiliation(s)
- Minghui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Mingke Wu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Tao Xu
- The Editorial Board of Journal of Forestry Research, Northeast Forestry University, Harbin, China
| | - Junfeng Cao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Zihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingyi Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiang Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Shanwen Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- School of Ecology, Northeast Forestry University, Harbin, 150040, China; The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Renyi Ma
- Yunnan Key Laboratory of Biodiversity of Gaoligong Mountain, Yunnan Academy of Forestry and Grassland, Kunming, China.
| | - Linan Xie
- School of Ecology, Northeast Forestry University, Harbin, 150040, China; The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
5
|
Tang J, Ling T, Li H, Fan C. Genome-wide analysis and identification of the TBL gene family in Eucalyptus grandis. FRONTIERS IN PLANT SCIENCE 2024; 15:1401298. [PMID: 39170793 PMCID: PMC11337025 DOI: 10.3389/fpls.2024.1401298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 08/23/2024]
Abstract
The TRICHOME BIREFRINGENCE-LIKE (TBL) gene encodes a class of proteins related to xylan acetylation, which has been shown to play an important role in plant response to environmental stresses. This gene family has been meticulously investigated in Arabidopsis thaliana, whereas there have been no related reports in Eucalyptus grandis. In this study, we identified 49 TBL genes in E. grandis. A conserved amino acid motif was identified, which plays an important role in the execution of the function of TBL gene family members. The expression of TBL genes was generally upregulated in jasmonic acid-treated experiments, whereas it has been found that jasmonic acid activates the expression of genes involved in the defense functions of the plant body, suggesting that TBL genes play an important function in the response of the plant to stress. The principle of the action of TBL genes is supported by the finding that the xylan acetylation process increases the rigidity of the cell wall of the plant body and thus improves the plant's resistance to stress. The results of this study provide new information about the TBL gene family in E. grandis and will help in the study of the evolution, inheritance, and function of TBL genes in E. grandis, while confirming their functions.
Collapse
Affiliation(s)
- Jiye Tang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Tenghong Ling
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
6
|
Zhuang Y, Chen Y, Wang Q, Chen Y, Yan L, Li S, Zhou G, Chai G. Ectopic expression of TTP gene from human in poplar promotes xylem differentiation and confers plant drought tolerance. FORESTRY RESEARCH 2024; 4:e011. [PMID: 39524418 PMCID: PMC11524242 DOI: 10.48130/forres-0024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 11/16/2024]
Abstract
The CCCH zinc finger proteins play critical roles in a wide variety of growth, development, and stress responses. Currently, limited reports are available about the roles of animal CCCH proteins in plants. In this study, we report the identification of human TTP (hTTP) with functional similarity to PdC3H17 in a hybrid poplar. hTTP and PdC3H17 shared highly similar tandem CCCH zinc-finger RNA-binding domains. The fragments excluding the CCCH domain of both hTTP and PdC3H17 possessed transcriptional activation activities in yeast cells. Compared to the controls, ectopic expression of hTTP in poplar caused dwarfism, and resulted in significant increases in stem xylem vessel number and photosynthetic and ROS-scavenging abilities, thereby enhancing plant tolerance to drought stress. Our results suggest that hTTP may perform a function in poplar through the PdC3H17-mediated system, and provide an example for the application of animal genes in plants.
Collapse
Affiliation(s)
- Yamei Zhuang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shangdong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yang Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiao Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| | - Yan Chen
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shangdong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Gongke Zhou
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| |
Collapse
|
7
|
Ndayambaza B, Si J, Deng Y, Jia B, He X, Zhou D, Wang C, Zhu X, Liu Z, Qin J, Wang B, Bai X. The Euphrates Poplar Responses to Abiotic Stress and Its Unique Traits in Dry Regions of China (Xinjiang and Inner Mongolia): What Should We Know? Genes (Basel) 2023; 14:2213. [PMID: 38137039 PMCID: PMC10743205 DOI: 10.3390/genes14122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
At the moment, drought, salinity, and low-temperature stress are ubiquitous environmental issues. In arid regions including Xinjiang and Inner Mongolia and other areas worldwide, the area of tree plantations appears to be rising, triggering tree growth. Water is a vital resource in the agricultural systems of countries impacted by aridity and salinity. Worldwide efforts to reduce quantitative yield losses on Populus euphratica by adapting tree plant production to unfavorable environmental conditions have been made in response to the responsiveness of the increasing control of water stress. Although there has been much advancement in identifying the genes that resist abiotic stresses, little is known about how plants such as P. euphratica deal with numerous abiotic stresses. P. euphratica is a varied riparian plant that can tolerate drought, salinity, low temperatures, and climate change, and has a variety of water stress adaptability abilities. To conduct this review, we gathered all available information throughout the Web of Science, the Chinese National Knowledge Infrastructure, and the National Center for Biotechnology Information on the impact of abiotic stress on the molecular mechanism and evolution of gene families at the transcription level. The data demonstrated that P. euphratica might gradually adapt its stomatal aperture, photosynthesis, antioxidant activities, xylem architecture, and hydraulic conductivity to endure extreme drought and salt stress. Our analyses will give readers an understanding of how to manage a gene family in desert trees and the influence of abiotic stresses on the productivity of tree plants. They will also give readers the knowledge necessary to improve biotechnology-based tree plant stress tolerance for sustaining yield and quality trees in China's arid regions.
Collapse
Affiliation(s)
- Boniface Ndayambaza
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Si
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
| | - Yanfang Deng
- Qilian Mountain National Park Qinghai Provincial Administration, Xining 810000, China;
| | - Bing Jia
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui He
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Resources and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Baotou 014030, China
| | - Dongmeng Zhou
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijin Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qin
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyang Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Bai
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Yin Z, Zhou F, Chen Y, Wu H, Yin T. Genome-Wide Analysis of the Expansin Gene Family in Populus and Characterization of Expression Changes in Response to Phytohormone (Abscisic Acid) and Abiotic (Low-Temperature) Stresses. Int J Mol Sci 2023; 24:ijms24097759. [PMID: 37175464 PMCID: PMC10178758 DOI: 10.3390/ijms24097759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Expansins are a group of cell wall enzyme proteins that help to loosen cell walls by breaking hydrogen bonds between cellulose microfibrils and hemicellulose. Expansins are essential plant proteins that are involved in several key processes, including seed germination, the growth of pollen tubes and root hairs, fruit ripening and abscission processes. Currently, there is a lack of knowledge concerning the role of expansins in woody plants. In this study, we analyzed expansin genes using Populus genome as the study target. Thirty-six members of the expansin gene family were identified in Populus that were divided into four subfamilies (EXPA, EXPB, EXLA and EXLB). We analyzed the molecular structure, chromosome localization, evolutionary relationships and tissue specificity of these genes and investigated expression changes in responses to phytohormone and abiotic stresses of the expansin genes of Populus tremula L. (PtEXs). Molecular structure analysis revealed that each PtEX protein had several conserved motifs and all of the PtEXs genes had multiple exons. Chromosome structure analysis showed that the expansin gene family is distributed on 14 chromosomes. The PtEXs gene family expansion patterns showed segmental duplication. Transcriptome data of Populus revealed that 36 PtEXs genes were differently expressed in different tissues. Cis-element analysis showed that the PtEXs were closely associated with plant development and responses to phytohormone and abiotic stress. Quantitative real-time PCR showed that abscisic acid (ABA) and low-temperature treatment affected the expression of some PtEXs genes, suggesting that these genes are involved in responses to phytohormone and abiotic stress. This study provides a further understanding of the expansin gene family in Populus and forms a basis for future functional research studies.
Collapse
Affiliation(s)
- Zhihui Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangwei Zhou
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yingnan Chen
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Huaitong Wu
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
10
|
Cobo-Simón I, Maloof JN, Li R, Amini H, Méndez-Cea B, García-García I, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Wegrzyn JL, Seco JI, Linares JC, Gallego FJ. Contrasting transcriptomic patterns reveal a genomic basis for drought resilience in the relict fir Abies pinsapo Boiss. TREE PHYSIOLOGY 2023; 43:315-334. [PMID: 36210755 DOI: 10.1093/treephys/tpac115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.
Collapse
Affiliation(s)
- Irene Cobo-Simón
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Julin N Maloof
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Ruijuan Li
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Hajar Amini
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Belén Méndez-Cea
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Isabel García-García
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - José Ignacio Seco
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Carlos Linares
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Francisco Javier Gallego
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| |
Collapse
|
11
|
Chen X, Chen Y, Zhang W, Zhang W, Wang H, Zhou Q. Response characteristics of root to moisture change at seedling stage of Kengyilia hirsuta. FRONTIERS IN PLANT SCIENCE 2023; 13:1052791. [PMID: 36684787 PMCID: PMC9853184 DOI: 10.3389/fpls.2022.1052791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Kengyilia hirsuta is an important pioneer plant distributed on the desertified grassland of the Qinghai-Tibet Plateau. It has strong adaptability to alpine desert habitats, so it can be used as a sand-fixing plant on sandy alpine land. To study the response mechanisms of root morphological and physiological characteristics of K. hirsuta to sandy soil moisture, 10%, 25% and 40% moisture levels were set up through potted weighing water control method. The biomass, root-shoot ratio, root architecture parameters, and biochemical parameters malondialdehyde, free proline, soluble protein, indole-3-acetic acid, abscisic acid, cytokinin, gibberellin, relative conductivity and antioxidant enzyme activities were measured in the trefoil stage, and the response mechanisms of roots at different moisture levels were analyzed. The results showed that with the increase of soil moisture, root morphological indexes such as root biomass, total root length, total root volume and total root surface increased, while the root topological index decreased continuously. The malondialdehyde content, relative conductivity, superoxide dismutase activity, peroxidase activity, catalase activity, free proline content, soluble protein content, abscisic acid content and cytokinin content at the 25% and 40% moisture levels were significantly decreased compared with the 10% level (P< 0.05). Thus, the root growth of K. hirsuta was restricted by the 10% moisture level, but supported by the 25% and 40% moisture levels. An artificial neural network revealed that total root length, total root surface area, root link average length, relative conductivity, soluble protein, free proline and moisture level were the key factors affecting root development. These research results could contribute to future agricultural sustainability.
Collapse
Affiliation(s)
- Xueyao Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Wei Zhang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Wenlu Zhang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Hui Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
12
|
Zhao X, Wang H, Zhang B, Cheng Y, Ma X. Overexpression of histone deacetylase gene 84KHDA909 from poplar confers enhanced tolerance to drought and salt stresses in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111434. [PMID: 36029898 DOI: 10.1016/j.plantsci.2022.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Histone deacetylases (HDACs) are important enzymes participating in histone modification and epigenetic regulation of gene transcription. HDACs play an essential role in plant development and stress responses. To date, the role of HDACs is largely uninvestigated in woody plants. In this study, we identified a RPD3/HDA1-type HDAC, named 84KHDA909, from 84 K poplar (Populus alba × Populus glandulosa). The protein encoded by 84KHDA909 contained an HDAC domain. The 84KHDA909 was responsive to drought, salt, and cold stresses, but displayed different expression patterns. Overexpression of 84KHDA909 improved root growth, and conferred enhanced tolerance to drought and salt stresses in Arabidopsis. The transgenic plants displayed greater fresh weight, higher proline content and lower malondialdehyde (MDA) accumulation than the wild type. In the transgenic plants, transcript levels of several genes related to abscisic acid (ABA) biosynthesis and response were altered upon exposure to drought and salt stresses. Our results suggested that 84KHDA909 positively regulates drought and salt stress tolerance through ABA pathway.
Collapse
Affiliation(s)
- Xiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hanbin Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Bing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
13
|
Wei H, Movahedi A, Xu S, Zhang Y, Liu G, Aghaei-Dargiri S, Ghaderi Zefrehei M, Zhu S, Yu C, Chen Y, Zhong F, Zhang J. Genome-Wide Characterization and Expression Analysis of Fatty acid Desaturase Gene Family in Poplar. Int J Mol Sci 2022; 23:ijms231911109. [PMID: 36232411 PMCID: PMC9570219 DOI: 10.3390/ijms231911109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid desaturases (FADs) modulate carbon–carbon single bonds to form carbon–carbon double bonds in acyl chains, leading to unsaturated fatty acids (UFAs) that have vital roles in plant growth and development and their response to environmental stresses. In this study, a total of 23 Populus trichocarpaFAD (PtFAD) candidates were identified from the poplar genome and clustered into seven clades, including FAB2, FAD2, FAD3/7/8, FAD5, FAD6, DSD, and SLD. The exon–intron compositions and conserved motifs of the PtFADs, clustered into the same clade, were considerably conserved. It was found that segmental duplication events are predominantly attributable to the PtFAD gene family expansion. Several hormone- and stress-responsive elements in the PtFAD promoters implied that the expression of the PtFAD members was complicatedly regulated. A gene expression pattern analysis revealed that some PtFAD mRNA levels were significantly induced by abiotic stress. An interaction proteins and gene ontology (GO) analysis indicated that the PtFADs are closely associated with the UFAs biosynthesis. In addition, the UFA contents in poplars were significantly changed under drought and salt stresses, especially the ratio of linoleic and linolenic acids. The integration of the PtFAD expression patterns and UFA contents showed that the abiotic stress-induced PtFAD3/7/8 members mediating the conversion of linoleic and linolenic acids play vital roles in response to osmotic stress. This study highlights the profiles and functions of the PtFADs and identifies some valuable genes for forest improvements.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA
- Correspondence: (A.M.); (J.Z.)
| | - Songzhi Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Yanyan Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Soheila Aghaei-Dargiri
- Department of Horticulture, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Mostafa Ghaderi Zefrehei
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj 7591874831, Iran
| | - Sheng Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
- Correspondence: (A.M.); (J.Z.)
| |
Collapse
|
14
|
Nelson CD. Tree breeding, a necessary complement to genetic engineering. NEW FORESTS 2022; 54:1-18. [PMID: 35991378 PMCID: PMC9379239 DOI: 10.1007/s11056-022-09931-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The fields of tree breeding and genetic engineering can be perceived as being antagonistic towards each other-genetic engineers suggesting that tree breeding is too slow and expensive and tree breeders suggesting that genetic engineering is not practical and too expensive. We argue here that both fields have much to offer forestry and the success of each is intimately tied to the other. The major purposes of genetic engineering in forestry are described as well as the importance of evaluating tree engineering initiatives in the context of tree improvement and silviculture and integrating genetic engineering with tree breeding from start to finish. A generalized approach is developed that meets these requirements and demonstrates the interrelationships between the activities and phases of each program. In addition, a case study of the American chestnut (Castanea dentata) is provided to underscore the value of integrating genetic engineering and tree breeding programs to achieve a long-term conservation goal.
Collapse
Affiliation(s)
- C. Dana Nelson
- USDA Forest Service, Southern Research Station, Lexington, KY 40546 USA
| |
Collapse
|
15
|
Association mapping for abiotic stress tolerance using heat- and drought-related syntenic markers in okra. Mol Biol Rep 2022; 49:11409-11419. [PMID: 35960411 DOI: 10.1007/s11033-022-07827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Considerable production losses are caused by heat and drought stress in okra. Germplasm evaluation at genetic level is essential for the selection of promising genotypes. Lack of genomic information of okra limits the use of genetic markers. However, syntenic markers of some related family could be used for molecular characterization of major economic traits. METHODS AND RESULTS Herein, 56 okra genotypes were evaluated for drought and heat tolerance. Sixty-one expressed sequence tags (ESTs) identified for heat and drought tolerance in cotton were searched from literature surveys and databases. The identified ESTs were BLAST searched into okra unigene database. Primers of selected okra unigenes were synthesized and amplified in all genotypes using standard polymerase chain reaction (PCR) protocol. Marker trait association (MTA) of the syntenic unigenes were identified between genotypic and phenotypic data on the basis of linkage disequilibrium Functional syntenic analysis revealed that out of these 61 cotton ESTs 55 had functional homology with okra unigenes. These 55 unigenes were used as markers for further analysis (amplification). Okra genotypes showed significance variations for all the physo-morphological parameters under heat and drought stress. Genotypes Perbhani Karanti, IQRA-III, Selection Super Green, Anmol and Line Bourd performed better under drought stress whereas genotypes Perbhani Karanti, IQRA-III, Green Gold, OK-1501 and Selection Super Green showed heat tolerance. Fifty markers showed amplification in okra. Fifty-six okra genotypes were clustered into three distinct populations. LD analysis has shown most significant linkage between markers Unigene43786 and Unigene3662. MTAs using MLM and GLM models revealed that 23 markers have significant associations (p < 0.05) with different traits under control and stressed conditions. Relative water content is associated with four markers (Unigene10673, Unigene99547, Unigene152901, and Unigene129684) under drought conditions. Whereas, Electrolyte leakage was associated with 3 markers (Unigene109922, Unigene28667 and Unigene146907) under heat stress. CONCLUSION These identified unigenes may be helpful in the development of drought and heat tolerant genotypes in okra.
Collapse
|
16
|
Acclimation Strategy of Masson Pine (Pinus massoniana) by Limiting Flavonoid and Terpenoid Production under Low Light and Drought. Int J Mol Sci 2022; 23:ijms23158441. [PMID: 35955577 PMCID: PMC9368996 DOI: 10.3390/ijms23158441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Low light and drought often limit the growth and performance of Masson pines (Pinus massoniana) in the subtropical forest ecosystem of China. We speculated that stress-induced defensive secondary metabolites, such as flavonoids and terpenoids, might influence the growth of Masson pines, considering the existence of tradeoffs between growth and defense. However, the mechanisms of Masson pines responsive to low light and drought at the levels of these two metabolites remain unclear. In the present work, the compositions of flavonoids and terpenoids, as well as their biosynthetic pathways, were revealed through metabolome and transcriptome analyses, respectively, coupled with a study on carbon allocation using a 13CO2-pulse-labeling experiment in two-year-old seedlings under low light (LL), drought (DR), and their combined stress (DL) compared to a control (CK). A total of 35 flavonoids and derivatives (LL vs. CK: 18; DR vs. CK: 20; and DL vs. CK: 18), as well as 29 terpenoids and derivatives (LL vs. CK: 23; DR vs. CK: 13; and DL vs. CK: 7), were differentially identified in the leaves. Surprisingly, most of them were decreased under all three stress regimes. At the transcriptomic level, most or all of the detected DEGs (differentially expressed genes) involved in the biosynthetic pathways of flavonoids and terpenoids were downregulated in phloem and xylem under stress treatments. This indicated that stress treatments limited the production of flavonoids and terpenoids. The reduction in the 13C allocation to stems might suggest that it is necessary for maintaining the growth of Masson pine seedlings at the whole-plant level by attenuating energetic resources to the biosynthetic pathways of flavonoids and terpenoids when facing the occurrence of adverse environments. Our results provide new insight into understanding the acclimation strategy of Masson pines or other conifers in adverse environments.
Collapse
|
17
|
Oppenheimer-Shaanan Y, Jakoby G, Starr ML, Karliner R, Eilon G, Itkin M, Malitsky S, Klein T. A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress. eLife 2022; 11:79679. [PMID: 35858113 PMCID: PMC9385208 DOI: 10.7554/elife.79679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Root exudates are thought to play an important role in plant-microbial interactions. In return for nutrition, soil bacteria can increase the bioavailability of soil nutrients. However, root exudates typically decrease in situations such as drought, calling into question the efficacy of solvation and bacteria-dependent mineral uptake in such stress. Here, we tested the hypothesis of exudate-driven microbial priming on Cupressus saplings grown in forest soil in custom-made rhizotron boxes. A 1-month imposed drought and concomitant inoculations with a mix of Bacillus subtilis and Pseudomonas stutzeri, bacteria species isolated from the forest soil, were applied using factorial design. Direct bacteria counts and visualization by confocal microscopy showed that both bacteria associated with Cupressus roots. Interestingly, root exudation rates increased 2.3-fold with bacteria under drought, as well as irrigation. Forty-four metabolites in exudates were significantly different in concentration between irrigated and drought trees, including phenolic acid compounds and quinate. When adding these metabolites as carbon and nitrogen sources to bacterial cultures of both bacterial species, eight of nine metabolites stimulated bacterial growth. Importantly, soil phosphorous bioavailability was maintained only in inoculated trees, mitigating drought-induced decrease in leaf phosphorus and iron. Our observations of increased root exudation rate when drought and inoculation regimes were combined support the idea of root recruitment of beneficial bacteria, especially under water stress. The soil surrounding the roots of trees, termed the rhizosphere, is full of bacteria and other communities of microorganisms. Trees secrete organic compounds in to the soil which are thought to influence the behavior of bacteria in the rhizosphere. Specifically, these root secretions, or ‘exudates’, attract and feed soil bacteria, which, in return, release nutrients that benefit the tree. In 2020, a group of researchers found that some trees in the Mediterranean forest produce more exudates during the long dry season. This suggests that the compounds secreted by roots may help trees to tolerate stress conditions, such as drought. To test this hypothesis, Oppenheimer-Shaanan et al. – including some of the researchers involved in the 2020 study – grew young Cupressus sempervirens conifer trees in drought conditions that starved them of the nutrients phosphorous and iron. Each tree was planted in a custom-built box which allowed easy access to roots growing in the soil. Two species of bacteria from the forest soil C. sempervirens trees naturally live in were then added to the soil in each box. Microscopy revealed that both species of bacteria, which had been tagged with fluorescent markers, were attracted to the roots of the trees, boosting the bacterial community in the rhizosphere. Oppenheimer-Shaanan et al. found that the recruitment of the two bacterial species caused the rate at which exudates were secreted from the roots to increase. Compounds in the exudate stimulated the bacteria to grow. Ultimately, levels of phosphorous and iron in the leaves of the starved trees increased when in the presence of these soil bacteria. This suggests that bacteria in the rhizosphere helps trees to survive when they are under stress and have low levels of water. These findings provide further evidence that plants and bacteria can live together in symbiosis and benefit one another. This could have important implications for forest ecology and potentially how trees are grown in orchards and gardens. For example, specific bacteria and organic compounds in the rhizosphere may be able to improve tree health. However, further work is needed to investigate whether the exudate compounds identified in this study are found more widely in nature.
Collapse
Affiliation(s)
| | - Gilad Jakoby
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Maya L Starr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Romiel Karliner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Eilon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Vishnu MVJ, Parthiban KT, Raveendran M, Kanna SU, Radhakrishnan S, Shabbir R. Variation in biochemical, physiological and ecophysiological traits among the teak (Tectona grandis Linn. f) seed sources of India. Sci Rep 2022; 12:11677. [PMID: 35804090 PMCID: PMC9270387 DOI: 10.1038/s41598-022-15878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Teak being an iconic timber species the studies on its physiological and biochemical traits are very limited in India and worldwide. As a result, the current study aimed to assess biochemical parameters such as chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, chlorophyll ab ratio, proline content, and peroxidase activity, along with physiological parameters such as Chlorophyll stability index, relative water content, and leaf area, as well as ecophysiological traits such as net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), Leaf temperature, intrinsic water-use efficiency (iWUE), instantaneous water use efficiency and intrinsic carboxylation efficiency of thirty teak seed sources collected from different states of India. FCRITK 19, FCRITK 21, FCRITK 25, FCRITK 29, and FCRITK 05 were reported to have a greater photosynthetic rate (> 17 µmol m−2 s−1) coupled with a relative water content of more than 50% and a chlorophyll stability index of more than 60%, which could be used in a future genetic improvement programme. Correlation analysis indicated that water use efficiency was found to be strongly but negatively correlated with transpiration rate (−0.601) and stomatal conductance (−0.910). The proline content had a substantial positive correlation with the chlorophyll stability index (0.890), signifying that they are associated with abiotic stress conditions. Cluster analysis was attempted to discriminate the sources based on biochemical, physiological and ecophysiological traits. Eleven sources (FCRITK 25, FCRITK 27, FCRITK 29, FCRITK 14, FCRITK 30, FCRITK 16, FCRITK 05, FCRITK 13, FCRITK 02, FCRITK 17 and FCRITK 15) exhibited superior performance compared to rest of the sources.
Collapse
Affiliation(s)
- M V Jawahar Vishnu
- Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, 641 301, India.
| | - K T Parthiban
- Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, 641 301, India
| | - M Raveendran
- Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - S Umesh Kanna
- Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - S Radhakrishnan
- Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, 641 301, India
| | | |
Collapse
|
19
|
Park SJ, Bae EK, Choi H, Yoon SK, Jang HA, Choi YI, Lee H. Knockdown of PagSAP11 Confers Drought Resistance and Promotes Lateral Shoot Growth in Hybrid Poplar ( Populus alba × Populus tremula var. glandulosa). FRONTIERS IN PLANT SCIENCE 2022; 13:925744. [PMID: 35812954 PMCID: PMC9263715 DOI: 10.3389/fpls.2022.925744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved defense mechanisms to overcome unfavorable climatic conditions. The growth and development of plants are regulated in response to environmental stress. In this study, we investigated the molecular and physiological characteristics of a novel gene PagSAP11 in hybrid poplar (Populus alba × Populus tremula var. glandulosa) under drought stress. PagSAP11, a stress-associated protein (SAP) family gene, encodes a putative protein containing an A20 and AN1 zinc-finger domain at its N- and C-termini, respectively. Knockdown of PagSAP11 transgenic poplars (SAP11-Ri) enhanced their tolerance to drought stress compared with wild type plants. Moreover, the RNAi lines showed increased branching of lateral shoots that led to a gain in fresh weight, even when grown in the living modified organism (LMO) field. In SAP11-Ri transgenic plants, the expression levels of genes involved in axillary bud outgrowth and cell proliferation such as DML10, CYP707A and RAX were increased while the DRM gene which involved in bud dormancy was down-regulated. Taken together, these results indicate that PagSAP11 represents a promising candidate gene for engineering trees with improved stress tolerance and growth during unfavorable conditions.
Collapse
Affiliation(s)
- Su Jin Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Eun-Kyung Bae
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Hyunmo Choi
- Forest Biomaterials Research Center, National Institute of Forest Science, Jinju, South Korea
| | - Seo-Kyung Yoon
- Department of Forest Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-A Jang
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Young-Im Choi
- National Forest Seed and Variety Center, Forest Service, Chungju, South Korea
| | - Hyoshin Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| |
Collapse
|
20
|
The Genetic Basis of Phosphorus Utilization Efficiency in Plants Provide New Insight into Woody Perennial Plants Improvement. Int J Mol Sci 2022; 23:ijms23042353. [PMID: 35216469 PMCID: PMC8877309 DOI: 10.3390/ijms23042353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/01/2023] Open
Abstract
Soil nutrient restrictions are the main environmental conditions limiting plant growth, development, yield, and quality. Phosphorus (P), an essential macronutrient, is one of the most significant factors that vastly restrains the growth and development of plants. Although the total P is rich in soil, its bio-available concentration is still unable to meet the requirements of plants. To maintain P homeostasis, plants have developed lots of intricate responsive and acclimatory mechanisms at different levels, which contribute to administering the acquisition of inorganic phosphate (Pi), translocation, remobilization, and recycling of Pi. In recent years, significant advances have been made in the exploration of the utilization of P in annual plants, while the research progress in woody perennial plants is still vague. In the meanwhile, compared to annual plants, relevant reviews about P utilization in woody perennial plants are scarce. Therefore, based on the importance of P in the growth and development of plants, we briefly reviewed the latest advances on the genetic and molecular mechanisms of plants to uphold P homeostasis, P sensing, and signaling, ion transporting and metabolic regulation, and proposed the possible sustainable management strategies to fasten the P cycle in modern agriculture and new directions for future studies.
Collapse
|
21
|
Meta-Analysis as a Tool to Identify Candidate Genes Involved in the Fagus sylvatica L. Abiotic Stress Response. FORESTS 2022. [DOI: 10.3390/f13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate whether candidate genes for abiotic stresses in Fagus sylvatica L. are also candidate genes for herbaceous plants, with the purpose of better defining the abiotic stress response model of F. sylvatica. Therefore, a meta-analysis was performed on published papers related to abiotic stress. Firstly, we carried out a systematic review regarding the activity of 24 candidate genes selected for F. sylvatica under abiotic stress reported in 503 articles. After choosing the inclusion criteria, 73 articles out of 503, regarding 12 candidate genes, were included in this analysis. We performed an exploratory meta-analysis based on the random-effect model and the combined effect-size approach (Cohen’s d). The results obtained through Forest and Funnel plots indicate that the candidate genes for F. sylvatica are considered to be candidate genes in other herbaceous species. These results allowed us to set up models of plants’ response to abiotic stresses implementing the stress models in forest species. The results of this study will serve to bridge knowledge gaps regarding the pathways of response to abiotic stresses in trees based on the meta-analysis. The study approach used could be extended to observe larger gene databases and different species.
Collapse
|
22
|
Patturaj M, Munusamy A, Kannan N, Ramasamy Y. Biologia Futura: progress and future perspectives of long non-coding RNAs in forest trees. Biol Futur 2021; 73:43-53. [PMID: 34843103 DOI: 10.1007/s42977-021-00108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Forest trees are affected by climate change, anthropogenic pressure, as well as abiotic and biotic stresses. Conventional tree breeding has so far been limited to enhance overall productivity, and our understanding of the genetic basis of quantitative traits is still inadequate. Quantum leaps in next-generation sequencing technologies and bioinformatics have permitted the exploration and identification of various non-coding regions of the genome other than protein coding genes. These genomic regions produce various types of non-coding RNAs and regulate myriads of biological functions at epigenetic, transcriptional and translational levels. Recently, long non-coding RNAs (lncRNAs) which act as molecular switch have been identified to be pivotal molecules in forest trees. This review focuses on progress made in regulatory mechanisms in various developmental phases like wood formation, adventitious rooting and flowering and stress responses. It was predicted that complex regulatory interactions among lncRNA, miRNA and gene exist. LncRNAs can function as a sponge for miRNAs, reducing the suppressive effect of miRNAs on target mRNAs and perhaps adding a new layer of regulatory interactions among non-coding RNA classes in trees. Furthermore, network analysis revealed the interactions of lncRNA and genes during the expression of several important genes. The insights generated about lncRNAs in forest trees would enable improvement of economically important traits including the devastating abiotic and biotic stresses. In addition, solid understanding on the wide range of regulatory functions of lncRNAs on traits influencing biomass productivity and adaptation would aid the applications of biotechnology in genetic improvement of forest trees.
Collapse
Affiliation(s)
- Maheswari Patturaj
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Aiswarya Munusamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Nithishkumar Kannan
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Yasodha Ramasamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India.
| |
Collapse
|
23
|
Yu D, Janz D, Zienkiewicz K, Herrfurth C, Feussner I, Chen S, Polle A. Wood Formation under Severe Drought Invokes Adjustment of the Hormonal and Transcriptional Landscape in Poplar. Int J Mol Sci 2021; 22:9899. [PMID: 34576062 PMCID: PMC8493802 DOI: 10.3390/ijms22189899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Drought is a severe environmental stress that exerts negative effects on plant growth. In trees, drought leads to reduced secondary growth and altered wood anatomy. The mechanisms underlying wood stress adaptation are not well understood. Here, we investigated the physiological, anatomical, hormonal, and transcriptional responses of poplar to strong drought. Drought-stressed xylem was characterized by higher vessel frequencies, smaller vessel lumina, and thicker secondary fiber cell walls. These changes were accompanied by strong increases in abscisic acid (ABA) and antagonistic changes in salicylic acid in wood. Transcriptional evidence supported ABA biosynthesis and signaling in wood. Since ABA signaling activates the fiber-thickening factor NST1, we expected upregulation of the secondary cell wall (SCW) cascade under stress. By contrast, transcription factors and biosynthesis genes for SCW formation were down-regulated, whereas a small set of cellulose synthase-like genes and a huge array of genes involved in cell wall modification were up-regulated in drought-stressed wood. Therefore, we suggest that ABA signaling monitors normal SCW biosynthesis and that drought causes a switch from normal to "stress wood" formation recruiting a dedicated set of genes for cell wall biosynthesis and remodeling. This proposition implies that drought-induced changes in cell wall properties underlie regulatory mechanisms distinct from those of normal wood.
Collapse
Affiliation(s)
- Dade Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Linné JA, Jesus MV, Lima VT, Reis LC, Santos CC, Scalon SPQ, Dresch DM. Do Dipteryx alata Vogel seedlings recover the quality and the photosynthetic and antioxidant responses in the post-flooding? BRAZ J BIOL 2021; 83:e246451. [PMID: 34495152 DOI: 10.1590/1519-6984.246451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
Dipteryx alata Vogel is a tree species widely found in Cerrado, settling preferentially in well drained soils. Studies related to ecophysiology of D. alata may contribute to the decision making about using seedlings of this species in projects aimed at the recovery of degraded areas where seasonal flooding happens. This study aimed to assess the effects of flooding on photosynthetic and antioxidant metabolism and quality of D. alata seedlings cultivated or not under flooding during four assessment periods (0, 20, 40, and 60 days), followed by 100 days after the end of each assessment period (0+100, 20+100, 40+100, and 60+100 days), allowing verifying the potential for post-flooding recovery. Flooded plants showed lower photosynthetic efficiency than non-flooded plants, regardless of the periods of exposure. However, this efficiency was recovered in the post-flooding, with values similar to that of the non-flooded seedlings. Moreover, the damage to FV/FM was evidenced by an increase in the period of exposure to flooding, but recovery was also observed at this stage of the photosynthetic metabolism. Seedling quality decreased under flooding, not varying between periods of exposure, but remained lower although the increase observed in the post-flooding period, with no recovery after flooding. The occurrence of hypertrophied lenticels associated with physiological changes and an efficient antioxidant enzyme system might have contributed to the survival and recovery of these seedlings. Thus, this species is sensitive to flooding stress but capable of adjusting and recovering metabolic characteristics at 100 days after the suspension of the water stress, but with no recovery in seedling quality. Thus, we suggested plasticity under the cultivation condition and determined that the time of 100 days is not enough for the complete resumption of growth.
Collapse
Affiliation(s)
- J A Linné
- Universidade Federal da Grande Dourados - UFGD, Faculty of Agrarian Sciences - FCA, Dourados, MS, Brasil
| | - M V Jesus
- Universidade Federal da Grande Dourados - UFGD, Faculty of Agrarian Sciences - FCA, Dourados, MS, Brasil
| | - V T Lima
- Universidade Estadual Paulista - UNESP, Institute of Biosciences, Rio Claro, SP, Brasil
| | - L C Reis
- Universidade Federal da Grande Dourados - UFGD, Faculty of Agrarian Sciences - FCA, Dourados, MS, Brasil
| | - C C Santos
- Universidade Federal da Grande Dourados - UFGD, Faculty of Agrarian Sciences - FCA, Dourados, MS, Brasil
| | - S P Q Scalon
- Universidade Federal da Grande Dourados - UFGD, Faculty of Agrarian Sciences - FCA, Dourados, MS, Brasil
| | - D M Dresch
- Universidade Federal da Grande Dourados - UFGD, Faculty of Agrarian Sciences - FCA, Dourados, MS, Brasil
| |
Collapse
|
25
|
Haas JC, Vergara A, Serrano AR, Mishra S, Hurry V, Street NR. Candidate regulators and target genes of drought stress in needles and roots of Norway spruce. TREE PHYSIOLOGY 2021; 41:1230-1246. [PMID: 33416078 PMCID: PMC8271197 DOI: 10.1093/treephys/tpaa178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/27/2020] [Indexed: 05/12/2023]
Abstract
Drought stress impacts seedling establishment, survival and whole-plant productivity. Molecular responses to drought stress have been most extensively studied in herbaceous species, mostly considering only aboveground tissues. Coniferous tree species dominate boreal forests, which are predicted to be exposed to more frequent and acute drought as a result of ongoing climate change. The associated impact at all stages of the forest tree life cycle is expected to have large-scale ecological and economic impacts. However, the molecular response to drought has not been comprehensively profiled for coniferous species. We assayed the physiological and transcriptional response of Picea abies (L.) H. Karst seedling needles and roots after exposure to mild and severe drought. Shoots and needles showed an extensive reversible plasticity for physiological measures indicative of drought-response mechanisms, including changes in stomatal conductance (gs), shoot water potential and abscisic acid (ABA). In both tissues, the most commonly observed expression profiles in response to drought were highly correlated with the ABA levels. Still, root and needle transcriptional responses contrasted, with extensive root-specific down-regulation of growth. Comparison between previously characterized Arabidopsis thaliana L. drought-response genes and P. abies revealed both conservation and divergence of transcriptional response to drought. In P. abies, transcription factors belonging to the ABA responsive element(ABRE) binding/ABRE binding factors ABA-dependent pathway had a more limited role. These results highlight the importance of profiling both above- and belowground tissues, and provide a comprehensive framework to advance the understanding of the drought response of P. abies. The results demonstrate that a short-term, severe drought induces severe physiological responses coupled to extensive transcriptome modulation and highlight the susceptibility of Norway spruce seedlings to such drought events.
Collapse
Affiliation(s)
- Julia C Haas
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Alexander Vergara
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Alonso R Serrano
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Sanatkumar Mishra
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
26
|
Guerrero-Sánchez VM, Castillejo MÁ, López-Hidalgo C, Alconada AMM, Jorrín-Novo JV, Rey MD. Changes in the transcript and protein profiles of Quercus ilex seedlings in response to drought stress. J Proteomics 2021; 243:104263. [PMID: 34000457 DOI: 10.1016/j.jprot.2021.104263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Quercus ilex is the dominant tree species in natural forest ecosystems across the Mediterranean Basin and in the agrosilvopastoral system dehesa, which has a high ecological and economical significance. As in other forestry species, survival in Q. ilex is threatened by long periods of drought. This paper reports the transcriptome and proteome profiles of 6-month-old seedlings subjected to severe drought conditions. Drought was imposed by water withholding in seedlings grown in perlite for 28 days. Seedling leaves were collected when leaf fluorescence had decreased by 20% and 45% relative to well-watered seedlings. The transcriptome and proteome were analyzed by using Illumina and shotgun platforms. The quality and confidence of the mRNA and protein identifications and quantifications were assessed, obtaining 25,169 transcripts and 3312 proteins. Variable transcripts and proteins were analyzed by Venn diagram, Pearson's correlation, GO enrichment, KEGG pathways, multivariate analysis and interaction networks. Despite the poor correlation between mRNA and protein, both platforms gave a complementary view of the changes in the abundance of several gene products under drought conditions and indicated that gene expression regulation and translation to phenotype is quite complex and gene-specific. As a general tendency, while transcripts and proteins of the metabolism were down-accumulated, those of stress related were up-accumulated. Out of the variable dataset, four gene products (viz., FtSH6, CLPB1, CLPB3, and HSP22) were up-accumulated at both omics levels at the two surveyed times, being the first work where they are described in drought response in forest species. These chaperones and proteases could be considered as potential drought tolerance markers to be used in the selection of elite, resilient genotypes, and in breeding programs.
Collapse
Affiliation(s)
- Víctor Manuel Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Ana María Maldonado Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Jesús Valentín Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain.
| |
Collapse
|
27
|
El Rasafi T, Pereira R, Pinto G, Gonçalves FJM, Haddioui A, Ksibi M, Römbke J, Sousa JP, Marques CR. Potential of Eucalyptus globulus for the phytoremediation of metals in a Moroccan iron mine soil-a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15782-15793. [PMID: 33242196 DOI: 10.1007/s11356-020-11494-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
The contamination left by abandoned mines demands sustainable mitigation measures. Hence, the aim of this study was to examine the phytoremediator ability of Eucalyptus globulus Labill. to be used for cleaning up metal-contaminated soils from an African abandoned iron (Fe) mine (Ait Ammar, Oued Zem, Morocco). Plantlets of this species were exposed to a control (CTL), a reference (REF), and a mine-contaminated soil (CS). Morphological (growth, leaf area) and physiological stress biomarkers (photosynthetic efficiency, pigments content, leaf relative water, and malondialdehyde (MDA) levels) and metal bioaccumulation were assessed. The growth and leaf area of E. globulus increased overtime in all soils, although at a lower rate in the CS. Its photosynthetic efficiency was not markedly impaired, as well as MDA levels decreased throughout the experiment in CS. In this soil, higher metal contents were detected in E. globulus roots than in leaves, especially Fe (roots: 15.98-213.99 μg g-1; leaves: 5.97-15.98 μg g-1) and Zn (roots: 1.64-1.99 μg g-1; leaves: 0.67-1.19 μg g-1), indicating their reduced translocation. Additionally, though at low extent, the plants bioaccumulated some metals (Pb > Zn > Cu) from CS. Overall, E. globulus may be potentially used for the phytoremediation of metals in metal-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Department of Biology, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Ruth Pereira
- 1GreenUPorto - Sustainable Agrifood Production Research Centre & Department of Biology, 8 Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Glória Pinto
- CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Abdelmajid Haddioui
- Department of Biology, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Mohamed Ksibi
- Laboratory of Water, Energy and Environment (3E), National School of Engineering of Sfax, University of Sfax, Route de Soukra Km 3.5, PO Box 1173, 3038, Sfax, Tunisia
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, D-65439, Flörsheim a.M, Germany
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Catarina R Marques
- CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Mitrović AL, Radosavljević JS, Prokopijević M, Spasojević D, Kovačević J, Prodanović O, Todorović B, Matović B, Stanković M, Maksimović V, Mutavdžić D, Skočić M, Pešić M, Prokić L, Radotić K. Cell wall response to UV radiation in needles of Picea omorika. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:176-190. [PMID: 33618201 DOI: 10.1016/j.plaphy.2021.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
The UV-B represents the minor fraction of the solar spectrum, while UV-C is not contained in natural solar radiation, but both radiation types can cause damaging effects in plants. Cell walls (CWs) are one of the targets for external stressors. Juvenile P. omorika trees were treated either with 21 day-high doses UV-B or with 7 day- UV-C in open-top chambers. Using spectroscopic and biochemical techniques, it was shown that the response to UV radiation includes numerous modifications in needle CW structure: relative content of xylan, xyloglucan, lignin and cellulose decreased; cellulose crystallinity changed; yield of lignin monomers with stronger connection of CC in side chain with the ring increased; re-distribution of inter- and intra-polymer H-bonds occurred. The recovery was mediated by an increase in the activities and changes in isoform profiles of CW bound covalent peroxidases (POD) and polyphenol oxidases (PO) (UV-B), and ionic POD and covalent PO (UV-C). A connection between activities of specific POD/PO isoforms and phenolic species (m- and p-coumaric acid, pinoresinol and cinnamic acid derivatives) was demonstrated, and supported by changes in the sRNA profile. In vivo fluorometry showed phenolics accumulation in needle epidermal CWs. These results imply transversal connections between polymers and changed mechanical properties of needle CW as a response to UV. The CW alterations enabled maintenance of physiological functions, as indicated by the preserved chlorophyll content and/or organization. The current study provides evidence that in conifers, needle CW response to both UV-B and UV-C includes biochemical modifications and structural remodeling.
Collapse
Affiliation(s)
- Aleksandra Lj Mitrović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | | | - Miloš Prokopijević
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Dragica Spasojević
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Jovana Kovačević
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Olivera Prodanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Bratislav Todorović
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, Leskovac, 16000, Serbia
| | - Branko Matović
- Vinča Institute of Nuclear Sciences, Department of Material Science, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Serbia
| | - Mira Stanković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Vuk Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Miloš Skočić
- Faculty of Physics, University of Belgrade, Studentski trg 12, 11000, Belgrade, Serbia
| | - Mirjana Pešić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 1108, Belgrade-Zemun, Serbia
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 1108, Belgrade-Zemun, Serbia
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| |
Collapse
|
29
|
Kong L, Li Z, Song Q, Li X, Luo K. Construction of a Full-Length cDNA Over-Expressing Library to Identify Valuable Genes from Populus tomentosa. Int J Mol Sci 2021; 22:ijms22073448. [PMID: 33810585 PMCID: PMC8036549 DOI: 10.3390/ijms22073448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Poplar wood is the main source of renewable biomass energy worldwide, and is also considered to be a model system for studying woody plants. The Full-length cDNA Over-eXpressing (FOX) gene hunting system is an effective method for generating gain-of-function mutants. Large numbers of novel genes have successfully been identified from many herbaceous plants according to the phenotype of gain-of-function mutants under normal or abiotic stress conditions using this system. However, the system has not been used for functional gene identification with high-throughput mutant screening in woody plants. In this study, we constructed a FOX library from the Chinese white poplar, Populus tomentosa. The poplar cDNA library was constructed into the plant expression vector pEarleyGate101 and further transformed into Arabidopsis thaliana (thale cress). We collected 1749 T1 transgenic plants identified by PCR. Of these, 593 single PCR bands from different transgenic lines were randomly selected for sequencing, and 402 diverse sequences of poplar genes were isolated. Most of these genes were involved in photosynthesis, environmental adaptation, and ribosome biogenesis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. We characterized in detail two mutant lines carrying PtoCPCa or PtoWRKY13 cDNA insertions. Phenotypic characterization showed that overexpression of these genes in A. thaliana affected trichome development or secondary cell wall (SCW) deposition, respectively. Together, the Populus-FOX-Arabidopsis library generated in our experiments will be helpful for efficient discovery of novel genes in poplar.
Collapse
Affiliation(s)
| | | | | | | | - Keming Luo
- Correspondence: ; Tel.: +86-23-6825-3021; Fax: +86-23-6825-2365
| |
Collapse
|
30
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
31
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
32
|
Growth promotion and protection from drought in Eucalyptus grandis seedlings inoculated with beneficial bacteria embedded in a superabsorbent polymer. Sci Rep 2020; 10:18221. [PMID: 33106567 PMCID: PMC7588442 DOI: 10.1038/s41598-020-75212-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
Eucalyptus grandis is a globally important tree crop. Greenhouse-grown tree seedlings often face water deficit after outplanting to the field, which can affect their survival and establishment severely. This can be alleviated by the application of superabsorbent hydrophilic polymers (SAPs). Growth promoting bacteria can also improve crop abiotic stress tolerance; however, their use in trees is limited, partly due to difficulties in the application and viability loss. In this work, we evaluated the improvement of drought tolerance of E. grandis seedlings by inoculating with two Pseudomonas strains (named M25 and N33), carried by an acrylic-hydrocellulosic SAP. We observed significant bacterial survival in the seedling rhizosphere 50 days after inoculation. Under gradual water deficit conditions, we observed a considerable increase in the water content and wall elasticity of M25-inoculated plants and a trend towards growth promotion with both bacteria. Under rapid water deficit conditions, which caused partial defoliation, both strains significantly enhanced the formation of new leaves, while inoculation with M25 reduced the transpiration rate. Co-inoculation with M25 and N33 substantially increased growth and photosynthetic capacity. We conclude that the selected bacteria can benefit E. grandis early growth and can be easily inoculated at transplant by using an acrylic-hydrocellulosic SAP.
Collapse
|
33
|
Jia H, Liu G, Li J, Zhang J, Sun P, Zhao S, Zhou X, Lu M, Hu J. Genome resequencing reveals demographic history and genetic architecture of seed salinity tolerance in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4308-4320. [PMID: 32242238 PMCID: PMC7475257 DOI: 10.1093/jxb/eraa172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/01/2020] [Indexed: 05/07/2023]
Abstract
Populus euphratica is a dominant tree species in desert riparian forests and possesses extraordinary adaptation to salinity stress. Exploration of its genomic variation and molecular underpinning of salinity tolerance is important for elucidating population evolution and identifying stress-related genes. Here, we identify approximately 3.15 million single nucleotide polymorphisms using whole-genome resequencing. The natural populations of P. euphratica in northwest China are divided into four distinct clades that exhibit strong geographical distribution patterns. Pleistocene climatic fluctuations and tectonic deformation jointly shaped the extant genetic patterns. A seed germination rate-based salinity tolerance index was used to evaluate seed salinity tolerance of P. euphratica and a genome-wide association study was implemented. A total of 38 single nucleotide polymorphisms were associated with seed salinity tolerance and were located within or near 82 genes. Expression profiles showed that most of these genes were regulated under salt stress, revealing the genetic complexity of seed salinity tolerance. Furthermore, DEAD-box ATP-dependent RNA helicase 57 and one undescribed gene (CCG029559) were demonstrated to improve the seed salinity tolerance in transgenic Arabidopsis. These results provide new insights into the demographic history and genetic architecture of seed salinity tolerance in desert poplar.
Collapse
Affiliation(s)
- Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | | | - Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xun Zhou
- Beijing Novogene Co. Ltd, Beijing, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Correspondence: or
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Correspondence: or
| |
Collapse
|
34
|
Estravis-Barcala M, Mattera MG, Soliani C, Bellora N, Opgenoorth L, Heer K, Arana MV. Molecular bases of responses to abiotic stress in trees. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3765-3779. [PMID: 31768543 PMCID: PMC7316969 DOI: 10.1093/jxb/erz532] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 05/05/2023]
Abstract
Trees are constantly exposed to climate fluctuations, which vary with both time and geographic location. Environmental changes that are outside of the physiological favorable range usually negatively affect plant performance and trigger responses to abiotic stress. Long-living trees in particular have evolved a wide spectrum of molecular mechanisms to coordinate growth and development under stressful conditions, thus minimizing fitness costs. The ongoing development of techniques directed at quantifying abiotic stress has significantly increased our knowledge of physiological responses in woody plants. However, it is only within recent years that advances in next-generation sequencing and biochemical approaches have enabled us to begin to understand the complexity of the molecular systems that underlie these responses. Here, we review recent progress in our understanding of the molecular bases of drought and temperature stresses in trees, with a focus on functional, transcriptomic, epigenetic, and population genomic studies. In addition, we highlight topics that will contribute to progress in our understanding of the plastic and adaptive responses of woody plants to drought and temperature in a context of global climate change.
Collapse
Affiliation(s)
- Maximiliano Estravis-Barcala
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, (Consejo Nacional de Investigaciones Científicas y Técnicas- Universidad Nacional del Comahue), San Carlos de Bariloche, Rio Negro, Argentina
| | - María Gabriela Mattera
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| | - Carolina Soliani
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| | - Nicolás Bellora
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, (Consejo Nacional de Investigaciones Científicas y Técnicas- Universidad Nacional del Comahue), San Carlos de Bariloche, Rio Negro, Argentina
| | - Lars Opgenoorth
- Department of Ecology, Philipps University Marburg, Marburg, Germany
- Swiss Federal Research Institute WSL, BirmensdorfSwitzerland
| | - Katrin Heer
- Department of Conservation Biology, Philipps University Marburg, Marburg Germany
| | - María Verónica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
- Correspondence:
| |
Collapse
|
35
|
Liu B, Wang JP. Tracheid-associated transcription factors in loblolly pine. TREE PHYSIOLOGY 2020; 40:700-703. [PMID: 32050028 DOI: 10.1093/treephys/tpaa014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/02/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Baoguang Liu
- Department of Forestry, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin 132013, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, 840 Main Campus Drive, Raleigh, NC 27695, USA
| |
Collapse
|
36
|
Jing X, Yao J, Ma X, Zhang Y, Sun Y, Xiang M, Hou P, Li N, Zhao R, Li J, Zhou X, Chen S. Kandelia candel Thioredoxin f Confers Osmotic Stress Tolerance in Transgenic Tobacco. Int J Mol Sci 2020; 21:E3335. [PMID: 32397215 PMCID: PMC7247566 DOI: 10.3390/ijms21093335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022] Open
Abstract
Water deficit caused by osmotic stress and drought limits crop yield and tree growth worldwide. Screening and identifying candidate genes from stress-resistant species are a genetic engineering strategy to increase drought resistance. In this study, an increased concentration of mannitol resulted in elevated expression of thioredoxin f (KcTrxf) in the nonsecretor mangrove species Kandelia candel. By means of amino acid sequence and phylogenetic analysis, the mangrove Trx was classified as an f-type thioredoxin. Subcellular localization showed that KcTrxf localizes to chloroplasts. Enzymatic activity characterization revealed that KcTrxf recombinant protein possesses the disulfide reductase function. KcTrxf overexpression contributes to osmotic and drought tolerance in tobacco in terms of fresh weight, root length, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) production. KcTrxf was shown to reduce the stomatal aperture by enhancing K+ efflux in guard cells, which increased the water-retaining capacity in leaves under drought conditions. Notably, the abscisic acid (ABA) sensitivity was increased in KcTrxf-transgenic tobacco, which benefits plants exposed to drought by reducing water loss by promoting stomatal closure. KcTrxf-transgenic plants limited drought-induced H2O2 in leaves, which could reduce lipid peroxidation and retain the membrane integrity. Additionally, glutathione (GSH) contributing to reactive oxygen species (ROS) scavenging and transgenic plants are more efficient at regenerating GSH from oxidized glutathione (GSSG) under conditions of drought stress. Notably, KcTrxf-transgenic plants had increased glucose and fructose contents under drought stress conditions, presumably resulting from KcTrxf-promoted starch degradation under water stress. We conclude that KcTrxf contributes to drought tolerance by increasing the water status, by enhancing osmotic adjustment, and by maintaining ROS homeostasis in transgene plants.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Xujun Ma
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China;
| | - Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Yuanling Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Min Xiang
- Department of Biology, College of Life Science, Hainan Normal University, Haikou 571158, China; (M.X.); (N.L.)
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Niya Li
- Department of Biology, College of Life Science, Hainan Normal University, Haikou 571158, China; (M.X.); (N.L.)
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Jinke Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Xiaoyang Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| |
Collapse
|
37
|
Zhuang Y, Wang C, Zhang Y, Chen S, Wang D, Liu Q, Zhou G, Chai G. Overexpression of PdC3H17 Confers Tolerance to Drought Stress Depending on Its CCCH Domain in Populus. FRONTIERS IN PLANT SCIENCE 2020; 10:1748. [PMID: 32063912 PMCID: PMC6999075 DOI: 10.3389/fpls.2019.01748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/12/2019] [Indexed: 05/25/2023]
Abstract
Plant CCCH zinc finger proteins control growth, development, and stress responses mainly at the post-transcriptional level. Currently, limited reports are available about the roles of plant CCCH proteins in drought tolerance. In this study, we provided evidence showing that PdC3H17 from Populus deltoides × P. euramericana involves drought tolerance and response. Overexpression of PdC3H17 in poplar caused dwarf, resulted in higher stem water potential, and showed increased photosynthetic and ROS-scavenging abilities, thereby enhancing tolerance to drought stress, compared to controls. Accordingly, after drought treatment the stem elongation and thickening rates of these overexpression lines were higher than those of the controls. However, overexpression of the coding region excluding the CCCH domain of PdC3H17 roughly exhibited WT-like physiological and drought-resistant phenotypes, indicating the requirement of the CCCH domain for PdC3H17 controlling these processes. In addition, N-terminal sequence of PdC3H17 was found to possess transcriptional activity ability in yeast cells. Together, our results suggest that PdC3H17 may depend on its CCCH domain to control drought tolerance in Populus.
Collapse
Affiliation(s)
- Yamei Zhuang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Congpeng Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Yang Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Sihui Chen
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qing Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
38
|
Rodrigues AM, Ribeiro-Barros AI, António C. Experimental Design and Sample Preparation in Forest Tree Metabolomics. Metabolites 2019; 9:E285. [PMID: 31766588 PMCID: PMC6950530 DOI: 10.3390/metabo9120285] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Appropriate experimental design and sample preparation are key steps in metabolomics experiments, highly influencing the biological interpretation of the results. The sample preparation workflow for plant metabolomics studies includes several steps before metabolite extraction and analysis. These include the optimization of laboratory procedures, which should be optimized for different plants and tissues. This is particularly the case for trees, whose tissues are complex matrices to work with due to the presence of several interferents, such as oleoresins, cellulose. A good experimental design, tree tissue harvest conditions, and sample preparation are crucial to ensure consistency and reproducibility of the metadata among datasets. In this review, we discuss the main challenges when setting up a forest tree metabolomics experiment for mass spectrometry (MS)-based analysis covering all technical aspects from the biological question formulation and experimental design to sample processing and metabolite extraction and data acquisition. We also highlight the importance of forest tree metadata standardization in metabolomics studies.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (A.I.R.-B.)
| | - Ana I. Ribeiro-Barros
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (A.I.R.-B.)
- Plant Stress and Biodiversity Laboratory, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa (ISA/ULisboa), 1349-017 Lisboa, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (A.I.R.-B.)
| |
Collapse
|
39
|
Elucidating Drought Stress Tolerance in European Oaks Through Cross-Species Transcriptomics. G3-GENES GENOMES GENETICS 2019; 9:3181-3199. [PMID: 31395652 PMCID: PMC6778798 DOI: 10.1534/g3.119.400456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The impact of climate change that comes with a dramatic increase of long periods of extreme summer drought associated with heat is a fundamental challenge for European forests. As a result, forests are expected to shift their distribution patterns toward north-east, which may lead to a dramatic loss in value of European forest land. Consequently, unraveling key processes that underlie drought stress tolerance is not only of great scientific but also of utmost economic importance for forests to withstand future heat and drought wave scenarios. To reveal drought stress-related molecular patterns we applied cross-species comparative transcriptomics of three major European oak species: the less tolerant deciduous pedunculate oak (Quercus robur), the deciduous but quite tolerant pubescent oak (Q. pubescens), and the very tolerant evergreen holm oak (Q. ilex). We found 415, 79, and 222 differentially expressed genes during drought stress in Q. robur, Q. pubescens, and Q. ilex, respectively, indicating species-specific response mechanisms. Further, by comparative orthologous gene family analysis, 517 orthologous genes could be characterized that may play an important role in drought stress adaptation on the genus level. New regulatory candidate pathways and genes in the context of drought stress response were identified, highlighting the importance of the antioxidant capacity, the mitochondrial respiration machinery, the lignification of the water transport system, and the suppression of drought-induced senescence - providing a valuable knowledge base that could be integrated in breeding programs in the face of climate change.
Collapse
|
40
|
Galeano E, Vasconcelos TS, Novais de Oliveira P, Carrer H. Physiological and molecular responses to drought stress in teak (Tectona grandis L.f.). PLoS One 2019; 14:e0221571. [PMID: 31498810 PMCID: PMC6733471 DOI: 10.1371/journal.pone.0221571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/11/2019] [Indexed: 11/19/2022] Open
Abstract
Drought stress is an increasingly common and worrying phenomenon because it causes a loss of production in both agriculture and forestry. Teak is a tropical tree which needs alternating rainy and dry seasons to produce high-quality wood. However, a robust understanding about the physiological characteristics and genes related to drought stress in this species is lacking. Consequently, after applying moderate and severe drought stress to teak seedlings, an infrared gas analyzer (IRGA) was used to measure different parameters in the leaves. Additionally, using the root transcriptome allowed finding and analyzing the expression of several drought-related genes. As a result, in both water deficit treatments a reduction in photosynthesis, transpiration, stomatal conductance and leaf relative water content was found. As well, an increase in free proline levels and intrinsic water use efficiency was found when compared to the control treatment. Furthermore, 977 transcripts from the root contigs showed functional annotation related to drought stress, and of these, TgTPS1, TgDREB1, TgAREB1 and TgPIP1 were selected. The expression analysis of those genes along with TgHSP1, TgHSP2, TgHSP3 and TgBI (other stress-related genes) showed that with moderate treatment, TgTPS1, TgDREB1, TgAREB1, TgPIP1, TgHSP3 and TgBI genes had higher expression than the control treatment, but with severe treatment only TgTPS1 and TgDREB1 showed higher expression than the control treatment. At the end, a schematic model for the physiological and molecular strategies under drought stress in teak from this study is provided. In conclusion, these physiological and biochemical adjustments in leaves and genetic changes in roots under severe and prolonged water shortage situations can be a limiting factor for teak plantlets' growth. Further studies of those genes under different biotic and abiotic stress treatments are needed.
Collapse
Affiliation(s)
- Esteban Galeano
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba, Brazil
| | - Tarcísio Sales Vasconcelos
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba, Brazil
| | - Perla Novais de Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba, Brazil
| |
Collapse
|
41
|
Tariq A, Pan K, Olatunji OA, Graciano C, Li Z, Li N, Song D, Sun F, Wu X, Dakhil MA, Sun X, Zhang L. Impact of phosphorus application on drought resistant responses of Eucalyptus grandis seedlings. PHYSIOLOGIA PLANTARUM 2019; 166:894-908. [PMID: 30414178 DOI: 10.1111/ppl.12868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 05/11/2023]
Abstract
Eucalyptus grandis is the most widely planted tree species worldwide and can face severe drought during the initial months after planting because the root system is developing. A complete randomized design was used to study the effects of two water regimes (well-watered and water-stressed) and phosphorus (P) applications (with and without P) on the morphological and physio-biochemical responses of E. grandis. Drought had negative effects on the growth and metabolism of E. grandis, as indicated by changes in morphological traits, decreased net photosynthetic rates (Pn ), pigment concentrations, leaf relative water contents (LRWCs), nitrogenous compounds, over-production of reactive oxygen species (ROS) and higher lipid peroxidation. However, E. grandis showed effective drought tolerance strategies, such as reduced leaf area and transpiration rate (E), higher accumulation of soluble sugars and proline and a strong antioxidative enzyme system. P fertilization had positive effects on well-watered seedlings due to improved growth and photosynthesis, which indicated the high P requirements during the initial E. grandis growth stage. In drought-stressed seedlings, P application had no effects on the morphological traits, but it significantly improved the LRWC, Pn , quantum efficiency of photosystem II (Fv /Fm ), chlorophyll pigments, nitrogenous compounds and reduced lipid peroxidation. P fertilization improved E. grandis seedling growth under well-watered conditions but also ameliorated some leaf physiological traits under drought conditions. The effects of P fertilization are mainly due to the enhancement of plant N nutrition. Therefore, P can be used as a fertilizer to improve growth and production in the face of future climate change.
Collapse
Affiliation(s)
- Akash Tariq
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Olusanya A Olatunji
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Zilong Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Ningning Li
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Dagang Song
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Mohammed A Dakhil
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Botany and Microbiology department, Faculty of Science, Helwan University, Cairo, 11790, Egypt
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| |
Collapse
|
42
|
Acevedo RM, Avico EH, González S, Salvador AR, Rivarola M, Paniego N, Nunes-Nesi A, Ruiz OA, Sansberro PA. Transcript and metabolic adjustments triggered by drought in Ilex paraguariensis leaves. PLANTA 2019; 250:445-462. [PMID: 31055624 DOI: 10.1007/s00425-019-03178-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Abscisic acid is involved in the drought response of Ilex paraguariensis. Acclimation includes root growth stimulation, stomatal closure, osmotic adjustment, photoprotection, and regulation of nonstructural carbohydrates and amino acid metabolisms. Ilex paraguariensis (yerba mate) is cultivated in the subtropical region of South America, where the occurrence of drought episodes limit yield. To explore the mechanisms that allow I. paraguariensis to overcome dehydration, we investigated (1) how gene expression varied between water-stressed and non-stressed plants and (2) in what way the modulation of gene expression was linked to physiological status and metabolite composition. A total of 4920 differentially expressed transcripts were obtained through RNA-Seq after water deprivation. Drought induced the expression of several transcripts involved in the ABA-signalling pathway. Stomatal closure and leaf osmotic adjustments were promoted to minimize water loss, and these responses were accompanied by a high transcriptional remodeling of stress perception, signalling and transcriptional regulation, the photoprotective and antioxidant systems, and other stress-responsive genes. Simultaneously, significant changes in metabolite contents were detected. Glutamine, phenylalanine, isomaltose, fucose, and malate levels were shown to be positively correlated with dehydration. Principal component analysis showed differences in the metabolic profiles of control and stressed leaves. These results provide a comprehensive overview of how I. paraguariensis responds to dehydration at transcriptional and metabolomic levels and provide further characterization of the molecular mechanisms associated with drought response in perennial subtropical species.
Collapse
Affiliation(s)
- Raúl M Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional. Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE-CONICET), Universidad Nacional del Nordeste, W3402BKG, Corrientes, Argentina
| | - Edgardo H Avico
- Laboratorio de Biotecnología Aplicada y Genómica Funcional. Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE-CONICET), Universidad Nacional del Nordeste, W3402BKG, Corrientes, Argentina
| | - Sergio González
- Instituto de Biotecnología, CICVyA (INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | | | - Máximo Rivarola
- Instituto de Biotecnología, CICVyA (INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | - Norma Paniego
- Instituto de Biotecnología, CICVyA (INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Oscar A Ruiz
- Unidad de Biotecnología 1, IIB-INTECH (UNSAM-CONICET), B7130IWA, Chascomús, Argentina
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) "Ing. Victorio S. Trippi" (CIAP-INTA), X5020ICA, Córdoba, Argentina
| | - Pedro A Sansberro
- Laboratorio de Biotecnología Aplicada y Genómica Funcional. Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE-CONICET), Universidad Nacional del Nordeste, W3402BKG, Corrientes, Argentina.
| |
Collapse
|
43
|
Efficient Agrobacterium-Mediated Transformation of the Commercial Hybrid Poplar Populus Alba × Populus glandulosa Uyeki. Int J Mol Sci 2019; 20:ijms20102594. [PMID: 31137806 PMCID: PMC6566960 DOI: 10.3390/ijms20102594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Transgenic technology is a powerful tool for gene functional characterization, and poplar is a model system for genetic transformation of perennial woody plants. However, the poplar genetic transformation system is limited to a number of model genotypes. Herein, we developed a transformation system based on efficient Agrobacterium-mediated transformation for the hybrid poplar Populus Alba × Populus glandulosa Uyeki, which is a fast-growing poplar species that is suitably grown in the northern part of China. Importantly, we optimized many independent factors and showed that the transformation efficiency was improved significantly using juvenile leaf explants. Explants were infected by an Agrobacterium suspension with the OD600 = 0.6 for 15 min and then co-cultured in dark conditions for 3 days. Using the improved transformation system, we obtained the transgenic poplar with overexpression of β-glucuronidase (GUS) via direct organogenesis without callus induction. Furthermore, we analyzed the GUS gene in the transgenic poplars using PCR, qRT-PCR, and GUS staining. These analyses revealed that the GUS gene was efficiently transformed, and it exhibited various expression levels. Taken together, these results represent a simple, fast, and efficient transformation system of hybrid poplar plants. Our findings may facilitate future studies of gene functions in perennial woody plants and tree breeding via transgenic technology assisted design.
Collapse
|
44
|
Singh J, Silva KJP, Fuchs M, Khan A. Potential role of weather, soil and plant microbial communities in rapid decline of apple trees. PLoS One 2019; 14:e0213293. [PMID: 30840713 PMCID: PMC6402675 DOI: 10.1371/journal.pone.0213293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/18/2019] [Indexed: 02/08/2023] Open
Abstract
An unusual decline and collapse of young established trees known as “rapid apple decline” (RAD) has become a major concern for apple growers, particularly in the northeastern United States. This decline is characterized by stunted growth, pale yellow to reddish leaves, and tree collapse within weeks after onset of symptoms. We studied declining apple trees to identify potential involvement of abiotic and biotic stresses. We used 16S and ITS to profile bacterial and fungal communities in the soil, rhizosphere, roots, and shoots and tested for the presence of six viruses in scions and rootstocks of symptomatic and asymptomatic trees. The viruses detected were not associated with RAD symptoms. Bacterial and fungal populations were highly variable in plant tissue, soil and rhizosphere samples, with bacteroidetes, firmicutes, proteobacteria, acidobacteria, and actinobacteria the predominant bacterial classes in various samples. ‘Alphaproteobacteria-rickettsiales’, a bacterial class usually reduced in water-limiting soils, had significantly low abundance in root samples of symptomatic trees. Basidiomycota and Ascomycota fungal classes were the most common fungal classes observed, but neither showed differential enrichment between symptomatic and asymptomatic trees. Analyzing weather data showed an extremely cold winter followed by drought in 2015–2016, which likely weakened the trees to make them more susceptible to varied stresses. In addition, similar physical and nutritional soil composition from symptomatic and asymptomatic trees rules out the role of nutritional stress in RAD. Necrotic lesions and wood decay symptoms dispersing from bark or vascular cambium towards the heartwood were observed primarily below the graft union of declining apple trees, suggesting that the rootstock is the originating point of RAD. We speculate that differences in abiotic factors such as moisture levels in declining roots in combination with extreme weather profiles might cause RAD but cannot clearly rule out the involvement of other factors.
Collapse
Affiliation(s)
- Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, United Sttaes of America
| | | | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, United Sttaes of America
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, United Sttaes of America
- * E-mail:
| |
Collapse
|
45
|
Shukla P, Reddy RA, Ponnuvel KM, Rohela GK, Shabnam AA, Ghosh MK, Mishra RK. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Mulberry (Morus alba L.) under different abiotic stresses. Mol Biol Rep 2019; 46:1809-1817. [PMID: 30694457 DOI: 10.1007/s11033-019-04631-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/19/2019] [Indexed: 01/02/2023]
Abstract
Mulberry (Morus alba L.) is the sole food source for the mulberry silkworm, Bombyx mori and therefore important for sericulture industry. Different abiotic stress conditions like drought, salt, heat and cold stress adversely affect the productivity and quality of mulberry leaves. Quantitative real time PCR (qPCR) is a reliable and widely used method to identify abiotic stress responsive genes and molecular mechanism in different plant species. Selection of suitable reference genes is important requirement for normalizing the expression of genes through qRT-PCR study. In the present study, we have selected eight candidate reference genes in mulberry for analyzing their expression stability in different abiotic stress treatments including drought, salt, heat and cold stresses. The expression stability of these reference genes was determined using geNorm, NormFinder and RefFinder statistical algorithms. The results showed that Ubiquitin and protein phosphatase 2A regulatory subunit A (PP2A) were the most stable genes across all the treatment samples. However, analysis of individual stresses revealed different expression profiles and stability of reference genes. Actin3 and PP2A were most stable in drought and salt conditions respectively. RPL3 most preferred in heat stress and Ubiquitin was most stable in cold stress. We propose the ubiquitin and PP2A are the preferred reference genes for normalization of gene expression data from abiotic stresses. In addition, Actin3 are preferred for drought stress, PP2A for salt stress, RPL3 for heat stress and Ubiquitin for cold stress studies.
Collapse
Affiliation(s)
- Pawan Shukla
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore -192 121, Jammu and Kashmir, Srinagar, India.
| | - Ramesha A Reddy
- Seri-biotech Research Laboratory (SBRL), Carmelram Post, Kodathi, Bangalore, 560035, India
| | - Kangayam M Ponnuvel
- Seri-biotech Research Laboratory (SBRL), Carmelram Post, Kodathi, Bangalore, 560035, India
| | - Gulab Khan Rohela
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore -192 121, Jammu and Kashmir, Srinagar, India
| | - Aftab A Shabnam
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore -192 121, Jammu and Kashmir, Srinagar, India
| | - M K Ghosh
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore -192 121, Jammu and Kashmir, Srinagar, India
| | - Rakesh Kumar Mishra
- Seri-biotech Research Laboratory (SBRL), Carmelram Post, Kodathi, Bangalore, 560035, India
| |
Collapse
|
46
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 DOI: 10.3389/fpls.2018.0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/27/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
47
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 PMCID: PMC6331418 DOI: 10.3389/fpls.2018.01875] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
48
|
Clifton‐Brown J, Harfouche A, Casler MD, Dylan Jones H, Macalpine WJ, Murphy‐Bokern D, Smart LB, Adler A, Ashman C, Awty‐Carroll D, Bastien C, Bopper S, Botnari V, Brancourt‐Hulmel M, Chen Z, Clark LV, Cosentino S, Dalton S, Davey C, Dolstra O, Donnison I, Flavell R, Greef J, Hanley S, Hastings A, Hertzberg M, Hsu T, Huang LS, Iurato A, Jensen E, Jin X, Jørgensen U, Kiesel A, Kim D, Liu J, McCalmont JP, McMahon BG, Mos M, Robson P, Sacks EJ, Sandu A, Scalici G, Schwarz K, Scordia D, Shafiei R, Shield I, Slavov G, Stanton BJ, Swaminathan K, Taylor G, Torres AF, Trindade LM, Tschaplinski T, Tuskan GA, Yamada T, Yeon Yu C, Zalesny RS, Zong J, Lewandowski I. Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:118-151. [PMID: 30854028 PMCID: PMC6392185 DOI: 10.1111/gcbb.12566] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output-input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed-based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass-scale deployment of PBCs.
Collapse
Affiliation(s)
- John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systemsUniversity of TusciaViterboItaly
| | | | - Huw Dylan Jones
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | | | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityGenevaNew York
| | - Anneli Adler
- SweTree Technologies ABUmeåSweden
- Institute of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Chris Ashman
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Danny Awty‐Carroll
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Sebastian Bopper
- Department of Seed Science and Technology, Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| | - Vasile Botnari
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | | | - Zhiyong Chen
- Insitute of MiscanthusHunan Agricultural UniversityHunan ChangshaChina
| | - Lindsay V. Clark
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Salvatore Cosentino
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Sue Dalton
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Chris Davey
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Oene Dolstra
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Joerg Greef
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | | | - Astley Hastings
- Institute of Biological and Environmental ScienceUniversity of AberdeenAberdeenUK
| | | | - Tsai‐Wen Hsu
- Taiwan Endemic Species Research Institute (TESRI)Nantou CountyTaiwan
| | - Lin S. Huang
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antonella Iurato
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Elaine Jensen
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Xiaoli Jin
- Department of Agronomy & The Key Laboratory of Crop Germplasm Resource of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Uffe Jørgensen
- Department of AgroecologyAarhus University Centre for Circular BioeconomyTjeleDenmark
| | - Andreas Kiesel
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Do‐Soon Kim
- Department of Plant Sciences, Research Institute of Agriculture & Life Sciences, CALSSeoul National UniversitySeoulKorea
| | - Jianxiu Liu
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Jon P. McCalmont
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Bernard G. McMahon
- Natural Resources Research InstituteUniversity of Minnesota – DuluthDuluthMinnesota
| | | | - Paul Robson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Erik J. Sacks
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Anatolii Sandu
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | - Giovanni Scalici
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Kai Schwarz
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | - Danilo Scordia
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Reza Shafiei
- James Hutton InstituteUniversity of DundeeDundeeUK
| | | | | | | | | | - Gail Taylor
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Andres F. Torres
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Luisa M. Trindade
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Timothy Tschaplinski
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Gerald A. Tuskan
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Toshihiko Yamada
- Field Science Centre for the Northern BiosphereHokkaido UniversitySapporoJapan
| | - Chang Yeon Yu
- College of Agriculture and Life Sciences 2Kangwon National UniversityChuncheonSouth Korea
| | | | - Junqin Zong
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Iris Lewandowski
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| |
Collapse
|
49
|
Natural and Synthetic Hydrophilic Polymers Enhance Salt and Drought Tolerance of Metasequoia glyptostroboides Hu and W.C.Cheng Seedlings. FORESTS 2018. [DOI: 10.3390/f9100643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We compared the effects of hydrophilic polymer amendments on drought and salt tolerance of Metasequoia glyptostroboides Hu and W.C.Cheng seedlings using commercially available Stockosorb and Luquasorb synthetic hydrogels and a biopolymer, Konjac glucomannan (KGM). Drought, salinity, or the combined stress of both drought and salinity caused growth retardation and leaf injury in M. glyptostroboides. Under a range of simulated stress conditions, biopolymers and synthetic hydrogels alleviated growth inhibition and leaf injury, improved photosynthesis, and enhanced whole-plant and unit transpiration. For plants subjected to drought conditions, Stockosorb hydrogel amendment specifically caused a remarkable increase in water supply to roots due to the water retention capacity of the granular polymer. Under saline stress, hydrophilic polymers restricted Na+ and Cl− concentrations in roots and leaves. Moreover, root K+ uptake resulted from K+ enrichment in Stockosorb and Luquasorb granules. Synthetic polymers and biopolymers increased the ability of M. glyptostroboides to tolerate combined impacts of drought and salt stress due to their water- and salt-bearing capacities. Similar to the synthetic polymers, the biopolymer also enhanced M. glyptostroboides drought and salt stress tolerance.
Collapse
|
50
|
López-Orenes A, Bueso MC, Conesa H, Calderón AA, Ferrer MA. Seasonal ionomic and metabolic changes in Aleppo pines growing on mine tailings under Mediterranean semi-arid climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:625-635. [PMID: 29758419 DOI: 10.1016/j.scitotenv.2018.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Aleppo pine is the most abundant conifer species in Mediterranean basin. Knowledge of adaptive mechanisms to cope with different environmental stresses simultaneously is necessary to improve its resilience to the predicted climatic changes and anthropogenic stressors, such as heavy metal/metal(loid)s (HMMs) pollution. Here, one year-old needles and rhizosphere soil samples from five mining and non-mining (NM) populations of Aleppo pines grown spontaneously in SE Spain were sampled in two consecutive years during spring and summer. Quantitative determination of a wide suite of edaphic, biochemical, and physiological parameters was performed, including soil physicochemical properties, ionome profile, foliar redox components, primary and secondary metabolites. Mining rhizosphere soils were characterized by elevated contents of HMMs, particularly lead and zinc, and low carbon, nitrogen and potassium levels. Multivariate data analysis based on needle ionome and antioxidative/oxidative parameters revealed a clear distinction between seasons irrespective of the population considered. Spring needles were characterized by higher levels of HMMs, sulfur, glutathione (GSH), proanthocyanidins (PAs), and soluble phenols (TPC), whereas reduced chlorophylls and increased levels of carotenoids, relative water content and K+, Na+ and Cl- typified summer needles. In general mining populations had higher levels of ascorbate, and TPC, and exhibited higher antioxidant activities than the NM population. This could contribute to prevent oxidative injury induced by HMMs. Taken together, results suggest that seasonal factors have a more marked effect on the metabolism of the Aleppo pine populations studied than that exerted by soil conditions. This effect could be mediated by water availability in surface soil layers. If this conclusion is right, predicted rainfall reduction and temperature increase in the Mediterranean basin associated to global climate change would lead to pine needle metabolism to express the summer pattern for more prolonged periods. This, in turn, could negatively affect the performance of Aleppo pine populations.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María C Bueso
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, Doctor Fleming s/n, 30202 Cartagena, Murcia, Spain
| | - Héctor Conesa
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - Antonio A Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María A Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain.
| |
Collapse
|