1
|
Yue SJ, Liu Y, Wang W, Hu HB, Zhang XH. Metabolic design of a platform Pseudomonas strain producing various phenazine derivatives. Metab Eng 2025; 91:217-227. [PMID: 40315980 DOI: 10.1016/j.ymben.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/25/2025] [Accepted: 04/30/2025] [Indexed: 05/04/2025]
Abstract
Phenazine derivatives, a class of nitrogen-containing heterocyclic compounds, exhibit broad-spectrum antifungal, anticancer, and antimalarial activities. Pseudomonas and Streptomyces are the primary microbial strains responsible for the synthesis of phenazine derivatives. In general, Pseudomonas strains use phenazine-1-carboxylic acid (PCA) as a precursor for enzymatic modification, while Streptomyces strains employ phenazine-1,6-dicarboxylic acid (PDC) as the precursor. Pseudomonas is considered an ideal platform for the efficient biosynthesis of various phenazine derivatives due to its rapid growth rate, ease of genetic manipulation, and well-established fermentation systems. However, the synthesis of phenazine derivatives in Pseudomonas largely relies on previously reported natural biosynthetic pathways from other microbial strains. The biosynthesis of phenazine derivatives through unknown pathways often presents significant challenges for researchers. The concept of combinatorial biosynthesis offers a promising solution to overcome these difficulties. In this study, we designed and constructed a platform Pseudomonas strain producing 15 phenazine derivatives by exchanging and combining the modifying enzymes of PCA and PDC, besides 16 constructed modification pathways. Among these, three derivatives feature novel chemical structures, while 13 represent previously unreported biosynthetic pathways. With the discovery of new phenazine modifying enzymes, they can be quickly incorporated into our platform, enabling the rapid synthesis of a wide variety of phenazine derivatives. This work demonstrates the potential of designing non-natural metabolic pathways to enable the production of diverse phenazine derivatives, thereby enhancing bacterial capacity for the synthesis of high-value phenazine compounds. This combinatorial biosynthetic approach provides a potential alternative for exploring unknown biosynthetic routes and for the development of unexplored natural biosynthetic pathways for phenazine derivatives.
Collapse
Affiliation(s)
- Sheng-Jie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Mo S, Zhao W, Wei Y, Su Z, Li S, Lu X, Zhang X, Qu Y, Wang P, Dong L, Zhang J, Guo Q, Ma P. Defense Responses Stimulated by Bacillus subtilis NCD-2 Through Salicylate- and Jasmonate-Dependent Signaling Pathways Protect Cotton Against Verticillium Wilt. Int J Mol Sci 2025; 26:2987. [PMID: 40243600 PMCID: PMC11988308 DOI: 10.3390/ijms26072987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Bacillus subtilis NCD-2 demonstrates exceptional biocontrol potential against cotton Verticillium wilt. While previous studies have established its direct antifungal activity (e.g., inhibiting Verticillium dahliae mycelial growth and spore germination), our work reveals a novel mechanism: NCD-2 primes systemic resistance in cotton by activating plant immune-signaling pathways. Firstly, transcriptional profiling uncovered that NCD-2 triggers a defense response in roots analogous to V. dahliae infection, allowing cotton to maintain a more balanced state when confronted with pathogen attacks. Meanwhile, the mutant strains ∆fen and ∆srf-defective in lipopeptide synthesis-also improved cotton resistance to Verticillium wilt by activating partially identical defense pathways in cotton roots. Furthermore, the application of lipopeptide compounds derived from NCD-2, particularly surfactin and fengycin, could enhance host resistance to V. dahliae. Using an RT-qPCR approach, we found that numerous resistance-related genes were induced by these lipopeptide compounds. The up-regulation of SA/JA pathway markers (e.g., NPR1, ICS1, COI1, and LOX1) revealed NCD-2's activation of plant immune signaling. Using virus-induced gene silencing (VIGS), we conclusively linked SA and JA signaling to NCD-2-induced defense priming. Silencing either pathway abolished resistance, highlighting their indispensable coordination. By bridging mechanistic insights and agricultural applicability, our work positions NCD-2 as a sustainable alternative to conventional fungicides, addressing both crop productivity and environmental health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Qinggang Guo
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (S.M.); (W.Z.); (Y.W.); (Z.S.); (S.L.); (X.L.); (X.Z.); (Y.Q.); (P.W.); (L.D.); (J.Z.)
| | - Ping Ma
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (S.M.); (W.Z.); (Y.W.); (Z.S.); (S.L.); (X.L.); (X.Z.); (Y.Q.); (P.W.); (L.D.); (J.Z.)
| |
Collapse
|
3
|
Pascual LS, Peláez-Vico MÁ, Gómez-Cadenas A, Zandalinas SI, Mittler R. Inoculation of tomato with a plant growth-promoting rhizobacteria enhances basal and wound-induced ROS levels. PLANT PHYSIOLOGY 2025; 197:kiaf054. [PMID: 39965166 PMCID: PMC11834975 DOI: 10.1093/plphys/kiaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Affiliation(s)
- Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana 12071, Spain
| | - María Ángeles Peláez-Vico
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana 12071, Spain
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana 12071, Spain
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| |
Collapse
|
4
|
Gogoi K, Gogoi H, Borgohain M, Saikia R, Chikkaputtaiah C, Hiremath S, Basu U. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant's response to biotic stress. PLANT CELL REPORTS 2024; 43:263. [PMID: 39412663 DOI: 10.1007/s00299-024-03343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.
Collapse
Affiliation(s)
- Krishna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Hunmoyna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Manashi Borgohain
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shridhar Hiremath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Centre for Infectious Diseases, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Udita Basu
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Han C, Cheng Q, Du X, Liang L, Fan G, Xie J, Wang X, Tang Y, Zhang H, Hu C, Zhao X. Selenium in soil enhances resistance of oilseed rape to Sclerotinia sclerotiorum by optimizing the plant microbiome. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5768-5789. [PMID: 38809805 DOI: 10.1093/jxb/erae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Plants can recruit beneficial microbes to enhance their ability to resist disease. It is well established that selenium is beneficial in plant growth, but its role in mediating microbial disease resistance remains poorly understood. Here, we investigated the correlation between selenium, oilseed rape rhizosphere microbes, and Sclerotinia sclerotiorum. Soil application of 0.5 and 1.0 mg kg-1 selenium [selenate Na2SeO4, Se(VI) or selenite Na2SeO3, Se(IV)] significantly increased the resistance of oilseed rape to Sclerotinia sclerotiorum compared with no selenium application, with a disease inhibition rate higher than 20% in Se(VI)0.5, Se(IV)0.5 and Se(IV)1.0 mg kg-1 treatments. The disease resistance of oilseed rape was related to the presence of rhizosphere microorganisms and beneficial bacteria isolated from the rhizosphere inhibited Sclerotinia stem rot. Burkholderia cepacia and the synthetic community consisting of Bacillus altitudinis, Bacillus megaterium, Bacillus cereus, Bacillus subtilis, Bacillus velezensis, Burkholderia cepacia, and Flavobacterium anhui enhanced plant disease resistance through transcriptional regulation and activation of plant-induced systemic resistance. In addition, inoculation of isolated bacteria optimized the bacterial community structure of leaves and enriched beneficial microorganisms such as Bacillus, Pseudomonas, and Sphingomonas. Bacillus isolated from the leaves were sprayed on detached leaves, and it also performed a significant inhibition effect on Sclerotinia sclerotiorum. Overall, our results indicate that selenium improves plant rhizosphere microorganisms and increase resistance to Sclerotinia sclerotiorum in oilseed rape.
Collapse
Affiliation(s)
- Chuang Han
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| | - Qin Cheng
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| | - Lianming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Guocheng Fan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350013, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanni Tang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| |
Collapse
|
6
|
Xiong X, Zeng J, Ning Q, Liu H, Bu Z, Zhang X, Zeng J, Zhuo R, Cui K, Qin Z, Gao Y, Liu X, Zhu Y. Ferroptosis induction in host rice by endophyte OsiSh-2 is necessary for mutualism and disease resistance in symbiosis. Nat Commun 2024; 15:5012. [PMID: 38866764 PMCID: PMC11169551 DOI: 10.1038/s41467-024-49099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death that was discovered recently. For beneficial microbes to establish mutualistic relationships with hosts, precisely controlled cell death in plant cells is necessary. However, whether ferroptosis is involved in the endophyte‒plant system is poorly understood. Here, we reported that endophytic Streptomyces hygroscopicus OsiSh-2, which established a sophisticated and beneficial interaction with host rice plants, caused ferroptotic cell death in rice characterized by ferroptosis- and immune-related markers. Treatments with ferroptosis inhibitors and inducers, different doses of OsiSh-2, and the siderophore synthesis-deficient mutant ΔcchH revealed that only moderate ferroptosis induced by endophytes is essential for the establishment of an optimal symbiont to enhance plant growth. Additionally, ferroptosis involved in a defence-primed state in rice, which contributed to improved resistance against rice blast disease. Overall, our study provides new insights into the mechanisms of endophyte‒plant interactions mediated by ferroptosis and suggests new directions for crop yield promotion.
Collapse
Affiliation(s)
- Xianqiu Xiong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Jing Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Qing Ning
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Heqin Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xuan Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Kunpeng Cui
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Ziwei Qin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China.
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China.
| |
Collapse
|
7
|
Ampntelnour L, Poulaki EG, Dimitrakas V, Mavrommati M, Amourgis GG, Tjamos SE. Enhancing Botrytis disease management in tomato plants: insights from a Pseudomonas putida strain with biocontrol activity. J Appl Microbiol 2024; 135:lxae094. [PMID: 38599633 DOI: 10.1093/jambio/lxae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
AIMS This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.
Collapse
Affiliation(s)
- Litsa Ampntelnour
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Eirini G Poulaki
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Vasilis Dimitrakas
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Maria Mavrommati
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Grigorios G Amourgis
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Sotiris E Tjamos
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| |
Collapse
|
8
|
Ambreetha S, Zincke D, Balachandar D, Mathee K. Genomic and metabolic versatility of Pseudomonas aeruginosa contributes to its inter-kingdom transmission and survival. J Med Microbiol 2024; 73. [PMID: 38362900 DOI: 10.1099/jmm.0.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most versatile bacteria with renowned pathogenicity and extensive drug resistance. The diverse habitats of this bacterium include fresh, saline and drainage waters, soil, moist surfaces, taps, showerheads, pipelines, medical implants, nematodes, insects, plants, animals, birds and humans. The arsenal of virulence factors produced by P. aeruginosa includes pyocyanin, rhamnolipids, siderophores, lytic enzymes, toxins and polysaccharides. All these virulent elements coupled with intrinsic, adaptive and acquired antibiotic resistance facilitate persistent colonization and lethal infections in different hosts. To date, treating pulmonary diseases remains complicated due to the chronic secondary infections triggered by hospital-acquired P. aeruginosa. On the contrary, this bacterium can improve plant growth by suppressing phytopathogens and insects. Notably, P. aeruginosa is one of the very few bacteria capable of trans-kingdom transmission and infection. Transfer of P. aeruginosa strains from plant materials to hospital wards, animals to humans, and humans to their pets occurs relatively often. Recently, we have identified that plant-associated P. aeruginosa strains could be pathologically similar to clinical isolates. In this review, we have highlighted the genomic and metabolic factors that facilitate the dominance of P. aeruginosa across different biological kingdoms and the varying roles of this bacterium in plant and human health.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Diansy Zincke
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Li ZJ, Tang SY, Gao HS, Ren JY, Xu PL, Dong WP, Zheng Y, Yang W, Yu YY, Guo JH, Luo YM, Niu DD, Jiang CH. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis. PLANT, CELL & ENVIRONMENT 2024; 47:337-353. [PMID: 37775913 DOI: 10.1111/pce.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Phytoalexins play a crucial role in plant immunity. However, the mechanism of how phytoalexin is primed by beneficial microorganisms against broad-spectrum pathogens remains elusive. This study showed that Bacillus cereus AR156 could trigger ISR against broad-spectrum disease. RNA-sequencing and camalexin content assays showed that AR156-triggered ISR can prime the accumulation of camalexin synthesis and secretion-related genes. Moreover, it was found that AR156-triggered ISR elevates camalexin accumulation by increasing the expression of camalexin synthesis genes upon pathogen infection. We observed that the priming of camalexin accumulation by AR156 was abolished in cyp71a13 and pad3 mutants. Further investigations reveal that in the wrky33 mutant, the ability of AR156 to prime camalexin accumulation is abolished, and the mediated ISR against the three pathogens is significantly compromised. Furthermore, PEN3 and PDR12, acting as camalexin transporters, participate in AR156-induced ISR against broad-spectrum pathogens differently. In addition, salicylic acid and JA/ET signalling pathways participate in AR156-primed camalexin synthesis to resist pathogens in different forms depending on the pathogen. In summary, B. cereus AR156 triggers ISR against Botrytis cinerea, Pst DC3000 and Phytophthora capsici by priming camalexin synthesis. Our study provides deeper insights into the significant role of camalexin for AR156-induced ISR against broad-spectrum pathogens.
Collapse
Affiliation(s)
- Zi-Jie Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Shu-Ya Tang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Hong-Shan Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jin-Yao Ren
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Pei-Ling Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Wen-Pan Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Ying Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Wei Yang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, China
| | - Yi-Yang Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jian-Hua Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Yu-Ming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, China
| | - Dong-Dong Niu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
| |
Collapse
|
10
|
Leibman-Markus M, Schneider A, Gupta R, Marash I, Rav-David D, Carmeli-Weissberg M, Elad Y, Bar M. Immunity priming uncouples the growth-defense trade-off in tomato. Development 2023; 150:dev201158. [PMID: 37882831 DOI: 10.1242/dev.201158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Plants have developed an array of mechanisms to protect themselves against pathogen invasion. The deployment of defense mechanisms is imperative for plant survival, but can come at the expense of plant growth, leading to the 'growth-defense trade-off' phenomenon. Following pathogen exposure, plants can develop resistance to further attack. This is known as induced resistance, or priming. Here, we investigated the growth-defense trade-off, examining how defense priming via systemic acquired resistance (SAR), or induced systemic resistance (ISR), affects tomato development and growth. We found that defense priming can promote, rather than inhibit, plant development, and that defense priming and growth trade-offs can be uncoupled. Cytokinin response was activated during induced resistance, and found to be required for the observed growth and disease resistance resulting from ISR activation. ISR was found to have a stronger effect than SAR on plant development. Our results suggest that growth promotion and induced resistance can be co-dependent, and that, in certain cases, defense priming can drive developmental processes and promote plant yield.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Anat Schneider
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Mira Carmeli-Weissberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| |
Collapse
|
11
|
Gupta R, Leibman-Markus M, Weiss D, Spiegelman Z, Bar M. Tobamovirus infection aggravates gray mold disease caused by Botrytis cinerea by manipulating the salicylic acid pathway in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1196456. [PMID: 37377809 PMCID: PMC10291333 DOI: 10.3389/fpls.2023.1196456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Botrytis cinerea is the causative agent of gray mold disease, and infects more than 1400 plant species, including important crop plants. In tomato, B. cinerea causes severe damage in greenhouses and post-harvest storage and transport. Plant viruses of the Tobamovirus genus cause significant damage to various crop species. In recent years, the tobamovirus tomato brown rugose fruit virus (ToBRFV) has significantly affected the global tomato industry. Most studies of plant-microbe interactions focus on the interaction between the plant host and a single pathogen, however, in agricultural or natural environments, plants are routinely exposed to multiple pathogens. Here, we examined how preceding tobamovirus infection affects the response of tomato to subsequent infection by B. cinerea. We found that infection with the tobamoviruses tomato mosaic virus (ToMV) or ToBRFV resulted in increased susceptibility to B. cinerea. Analysis of the immune response of tobamovirus-infected plants revealed hyper-accumulation of endogenous salicylic acid (SA), upregulation of SA-responsive transcripts, and activation of SA-mediated immunity. Deficiency in SA biosynthesis decreased tobamovirus-mediated susceptibility to B. cinerea, while exogenous application of SA enhanced B. cinerea symptoms. These results suggest that tobamovirus-mediated accumulation of SA increases the plants' susceptibility to B. cinerea, and provide evidence for a new risk caused by tobamovirus infection in agriculture.
Collapse
Affiliation(s)
| | | | | | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
12
|
Niem JM, Billones-Baaijens R, Stodart BJ, Reveglia P, Savocchia S. Biocontrol Potential of an Endophytic Pseudomonas poae Strain against the Grapevine Trunk Disease Pathogen Neofusicoccum luteum and Its Mechanism of Action. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112132. [PMID: 37299111 DOI: 10.3390/plants12112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Grapevine trunk diseases (GTDs) impact the sustainability of vineyards worldwide and management options are currently limited. Biological control agents (BCAs) may offer a viable alternative for disease control. With an aim to develop an effective biocontrol strategy against the GTD pathogen Neofusicoccum luteum, this study investigated the following: (1) the efficacy of the strains in suppressing the BD pathogen N. luteum in detached canes and potted vines; (2) the ability of a strain of Pseudomonas poae (BCA17) to colonize and persist within grapevine tissues; and (3) the mode of action of BCA17 to antagonize N. luteum. Co-inoculations of the antagonistic bacterial strains with N. luteum revealed that one strain of P. poae (BCA17) suppressed infection by 100% and 80% in detached canes and potted vines, respectively. Stem inoculations of a laboratory-generated rifampicin-resistant strain of BCA17 in potted vines (cv. Shiraz) indicated the bacterial strain could colonize and persist in the grapevine tissues, potentially providing some protection against GTDs for up to 6 months. The bioactive diffusible compounds secreted by BCA17 significantly reduced the spore germination and fungal biomass of N. luteum and the other representative GTD pathogens. Complementary analysis via MALDI-TOF revealed the presence of an unknown cyclic lipopeptide in the bioactive diffusible compounds, which was absent in a non-antagonistic strain of P. poae (JMN13), suggesting this novel lipopeptide may be responsible for the biocontrol activity of the BCA17. Our study provided evidence that P. poae BCA17 is a potential BCA to combat N. luteum, with a potential novel mode of action.
Collapse
Affiliation(s)
- Jennifer Millera Niem
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- UPLB Museum of Natural History, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines
- Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines
| | | | - Benjamin J Stodart
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Pierluigi Reveglia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Institute for Sustainable Agriculture, CSIC, 14004 Córdoba, Spain
| | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
13
|
Narh Mensah DL, Wingfield BD, Coetzee MPA. Nonribosomal peptide synthetase gene clusters and characteristics of predicted NRPS-dependent siderophore synthetases in Armillaria and other species in the Physalacriaceae. Curr Genet 2023; 69:7-24. [PMID: 36369495 DOI: 10.1007/s00294-022-01256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
Fungal secondary metabolites are often pathogenicity or virulence factors synthesized by genes contained in secondary metabolite gene clusters (SMGCs). Nonribosomal polypeptide synthetase (NRPS) clusters are SMGCs which produce peptides such as siderophores, the high affinity ferric iron chelating compounds required for iron uptake under aerobic conditions. Armillaria spp. are mostly facultative necrotrophs of woody plants. NRPS-dependent siderophore synthetase (NDSS) clusters of Armillaria spp. and selected Physalacriaceae were investigated using a comparative genomics approach. Siderophore biosynthesis by strains of selected Armillaria spp. was evaluated using CAS and split-CAS assays. At least one NRPS cluster and other clusters were detected in the genomes studied. No correlation was observed between the number and types of SMGCs and reported pathogenicity of the species studied. The genomes contained one NDSS cluster each. All NDSSs were multi-modular with the domain architecture (ATC)3(TC)2. NDSS clusters of the Armillaria spp. showed a high degree of microsynteny. In the genomes of Desarmillaria spp. and Guyanagaster necrorhizus, NDSS clusters were more syntenic with NDSS clusters of Armillaria spp. than to those of the other Physalacriaceae species studied. Three A-domain orthologous groups were identified in the NDSSs, and atypical Stachelhaus codes were predicted for the A3 orthologous group. In vitro biosynthesis of mainly hydroxamate and some catecholate siderophores was observed. Hence, Armillaria spp. generally contain one highly conserved, NDSS cluster although some interspecific variations in the products of these clusters is expected. Results from this study lays the groundwork for future studies to elucidate the molecular biology of fungal phyto-pathogenicity.
Collapse
Affiliation(s)
- Deborah L Narh Mensah
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.,Council for Scientific and Industrial Research-Food Research Institute (CSIR-FRI), P. O. Box M20, Accra, Ghana
| | - Brenda D Wingfield
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
14
|
Pyocyanin and 1-Hydroxyphenazine Promote Anaerobic Killing of Pseudomonas aeruginosa via Single-Electron Transfer with Ferrous Iron. Microbiol Spectr 2022; 10:e0231222. [PMID: 36321913 PMCID: PMC9769500 DOI: 10.1128/spectrum.02312-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously, it was reported that natural phenazines are able to support the anaerobic survival of Pseudomonas aeruginosa PA14 cells via electron shuttling, with electrodes poised as the terminal oxidants (Y. Wang, S. E. Kern, and D. K. Newman, J Bacteriol 192:365-369, 2010, https://doi.org/10.1128/JB.01188-09). The present study shows that both pyocyanin (PYO) and 1-hydroxyphenazine (1-OHPHZ) promoted the anaerobic killing of PA14 Δphz cells presumably via a single-electron transfer reaction with ferrous iron. However, phenazine-1-carboxylic acid (PCA) did not affect anaerobic survival in the presence of ferrous iron. Anaerobic cell death was alleviated by the addition of antioxidant compounds, which inhibit electron transfer via DNA damage. Neither superoxide dismutase (SOD) nor catalase was able to alleviate P. aeruginosa cell death, ruling out the possibility of reactive oxygen species (ROS)-induced killing. Further, the phenazine degradation profile and the redox state-associated color changes suggested that phenazine radical intermediates are likely generated by single-electron transfer. In this study, we showed that the phenazines 1-OHPHZ and PYO anaerobically killed the cell via single-electron transfer with ferrous iron and that the killing might have resulted from phenazine radicals. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen which infects patients with burns, immunocompromised individuals, and in particular, the mucus that accumulates on the surface of the lung in cystic fibrosis (CF) patients. Phenazines as redox-active small molecules have been reported as important compounds for the control of cellular functions and virulence as well as anaerobic survival via electron shuttles. We show that both pyocyanin (PYO) and 1-hydroxyphenazine (1-OHPHZ) generate phenazine radical intermediates via presumably single-electron transfer reaction with ferrous iron, leading to the anaerobic killing of Pseudomonas cells. The recA mutant defect in the DNA repair system was more sensitive to anaerobic conditions. Our results collectively suggest that both phenazines anaerobically kill cells via DNA damage during electron transfer with iron.
Collapse
|
15
|
Verma S, Azevedo LCB, Pandey J, Khusharia S, Kumari M, Kumar D, Kaushalendra, Bhardwaj N, Teotia P, Kumar A. Microbial Intervention: An Approach to Combat the Postharvest Pathogens of Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:3452. [PMID: 36559563 PMCID: PMC9787458 DOI: 10.3390/plants11243452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 09/29/2023]
Abstract
Plants host diverse microbial communities, which undergo a complex interaction with each other. Plant-associated microbial communities provide various benefits to the host directly or indirectly, viz. nutrient acquisition, protection from pathogen invaders, mitigation from different biotic and abiotic stress. Presently, plant-associated microbial strains are frequently utilized as biofertilizers, biostimulants and biocontrol agents in greenhouse and field conditions and have shown satisfactory results. Nowadays, the plant/fruit microbiome has been employed to control postharvest pathogens and postharvest decay, and to maintain the quality or shelf life of fruits. In this context, the intervention of the natural fruit microbiome or the creation of synthetic microbial communities to modulate the functional attributes of the natural microbiome is an emerging aspect. In this regard, we discuss the community behavior of microbes in natural conditions and how the microbiome intervention plays a crucial role in the postharvest management of fruits.
Collapse
Affiliation(s)
- Sargam Verma
- Department of Biotechnology, Noida International University, Noida 203201, India
| | - Lucas Carvalho Basilio Azevedo
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Campus Glória—Bloco CCG, Santa Mônica 38408-100, Brazil
| | - Jyoti Pandey
- Department of Biochemistry, Singhania University, Jhunjhunu 333515, India
| | - Saksham Khusharia
- Kuwar SatyaVira College of Engineering and Management, Bijnor 246701, India
| | | | - Dharmendra Kumar
- Department of Zoology, C.M.B.College, Deorh, Ghoghardiha 847402, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University (A Central University), Aizawl 796001, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur 247001, India
| | - Pratibha Teotia
- Department of Biotechnology, Noida International University, Noida 203201, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
16
|
Srivastava P, Ramesh M, Kaushik P, Kumari A, Aggarwal S. Pyocyanin pigment from Pseudomonas species: Source of a dye and antimicrobial textile finish—a review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Ebrahimi-Zarandi M, Saberi Riseh R, Tarkka MT. Actinobacteria as Effective Biocontrol Agents against Plant Pathogens, an Overview on Their Role in Eliciting Plant Defense. Microorganisms 2022; 10:microorganisms10091739. [PMID: 36144341 PMCID: PMC9500821 DOI: 10.3390/microorganisms10091739] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 01/02/2023] Open
Abstract
Pathogen suppression and induced systemic resistance are suitable alternative biocontrol strategies for integrated plant disease management and potentially comprise a sustainable alternative to agrochemicals. The use of Actinobacteria as biocontrol agents is accepted in practical sustainable agriculture, and a short overview on the plant-beneficial members of this phylum and recent updates on their biocontrol efficacies are the two topics of this review. Actinobacteria include a large portion of microbial rhizosphere communities and colonizers of plant tissues that not only produce pest-antagonistic secondary metabolites and enzymes but also stimulate plant growth. Non-pathogenic Actinobacteria can also induce systemic resistance against pathogens, but the mechanisms are still poorly described. In the absence of a pathogen, a mild defense response is elicited under jasmonic acid and salicylic acid signaling that involves pathogenesis-related proteins and secondary plant metabolites. Priming response partly includes the same compounds as the response to a sole actinobacterium, and the additional involvement of ethylene signaling has been suggested. Recent amplicon sequencing studies on bacterial communities suggest that future work may reveal how biocontrol active strains of Actinobacteria can be enriched in plant rhizosphere.
Collapse
Affiliation(s)
- Marzieh Ebrahimi-Zarandi
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
- Correspondence: (R.S.R.); (M.T.T.)
| | - Mika T. Tarkka
- UFZ—Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig Puschstrasse 4, 04103 Leipzig, Germany
- Correspondence: (R.S.R.); (M.T.T.)
| |
Collapse
|
18
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Ravinath R, Das AJ, Usha T, Ramesh N, Middha SK. Targeted metagenome sequencing reveals the abundance of Planctomycetes and Bacteroidetes in the rhizosphere of pomegranate. Arch Microbiol 2022; 204:481. [PMID: 35834016 DOI: 10.1007/s00203-022-03100-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Agricultural productivity of pomegranate can be enhanced by identifying the crop-associated microbial diversity in the rhizosphere region with respect to plant growth promoters and other beneficial organisms. Traditional culture methods have limitations in microbial screening as only 1-2% of these organisms can be cultured. In the present study, 16S rRNA amplicon-based metagenomics approach using MinION Oxford Nanopore platform was employed to explore the microbial diversity in the rhizosphere of pomegranate Bhagwa variety, across variable soil depths from 0 to 5 cms (R2), 5-10 cms (R4) and 10-15 cms (R6), using bulk soil as the control. Across all the three layers, significant variations in pH, nitrogen content and total fungal count were observed. 16S rRNA analysis showed the abundance of planctomycetes, Pirellula staleyi, followed by bacteroidetes, Flavisolibacter LC59 and Niastella koreensis across the various soil depths in the rhizospheric soil samples. Pathway prediction analysis indicated arginine and proline metabolism (gamma-glutamyl putrescine oxidase) and hydrogen sulfide biosynthesis as the most abundant pathway hits. Comparative abundance analysis across layers showed the R6 layer with the maximum microbial diversity in terms of highest dimension of variation (79.2%) followed by R4 and R2 layers (p < 0.01). Our analysis shows the significant influence of root zone in shaping microbial diversity. This study has reported the presence of Planctomycetes, Pirellula staleyi for the first time in the pomegranate field.
Collapse
Affiliation(s)
- Renuka Ravinath
- School of Applied Sciences, REVA University, Rukmini Knowledge Park, Bangalore, 560064, Karnataka, India
| | - Anupam J Das
- School of Applied Sciences, REVA University, Rukmini Knowledge Park, Bangalore, 560064, Karnataka, India
- Basesolve Informatics Private Limited, Ellisbridge, Ahmedabad, 380006, Gujarat, India
| | - Talambedu Usha
- Department of Biotechnology, Maharani Lakshmi Ammani College for Women, Bangalore, 560012, Karnataka, India
| | - Nijalingappa Ramesh
- School of Applied Sciences, REVA University, Rukmini Knowledge Park, Bangalore, 560064, Karnataka, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammani College for Women, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
20
|
Lee JH, Anderson AJ, Kim YC. Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests. Microorganisms 2022; 10:microorganisms10051053. [PMID: 35630495 PMCID: PMC9146382 DOI: 10.3390/microorganisms10051053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Biological control is an important process for sustainable plant production, and this trait is found in many plant-associated microbes. This study reviews microbes that could be formulated into pesticides active against various microbial plant pathogens as well as damaging insects or nematodes. The focus is on the beneficial microbes that colonize the rhizosphere where, through various mechanisms, they promote healthy plant growth. Although these microbes have adapted to cohabit root tissues without causing disease, they are pathogenic to plant pathogens, including microbes, insects, and nematodes. The cocktail of metabolites released from the beneficial strains inhibits the growth of certain bacterial and fungal plant pathogens and participates in insect and nematode toxicity. There is a reinforcement of plant health through the systemic induction of defenses against pathogen attack and abiotic stress in the plant; metabolites in the beneficial microbial cocktail function in triggering the plant defenses. The review discusses a wide range of metabolites involved in plant protection through biocontrol in the rhizosphere. The focus is on the beneficial firmicutes and pseudomonads, because of the extensive studies with these isolates. The review evaluates how culture conditions can be optimized to provide formulations containing the preformed active metabolites for rapid control, with or without viable microbial cells as plant inocula, to boost plant productivity in field situations.
Collapse
Affiliation(s)
- Jang Hoon Lee
- Agricultural Solutions, BASF Korea Ltd., Seoul 04518, Korea;
| | - Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA;
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
- Correspondence:
| |
Collapse
|
21
|
Harnessing phytomicrobiome signals for phytopathogenic stress management. J Biosci 2022. [DOI: 10.1007/s12038-021-00240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Tümmler B. What Makes Pseudomonas aeruginosa a Pathogen? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:283-301. [DOI: 10.1007/978-3-031-08491-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Roca-Couso R, Flores-Félix JD, Rivas R. Mechanisms of Action of Microbial Biocontrol Agents against Botrytis cinerea. J Fungi (Basel) 2021; 7:1045. [PMID: 34947027 PMCID: PMC8707566 DOI: 10.3390/jof7121045] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/20/2023] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus responsible for economic losses from USD 10 to 100 billion worldwide. It affects more than 1400 plant species, thus becoming one of the main threats to the agriculture systems. The application of fungicides has for years been an efficient way to control this disease. However, fungicides have negative environmental consequences that have changed popular opinion and clarified the need for more sustainable solutions. Biopesticides are products formulated based on microorganisms (bacteria or fungi) with antifungal activity through various mechanisms. This review gathers the most important mechanisms of antifungal activities and the microorganisms that possess them. Among the different modes of action, there are included the production of diffusible molecules, both antimicrobial molecules and siderophores; production of volatile organic compounds; production of hydrolytic enzymes; and other mechanisms, such as the competition and induction of systemic resistance, triggering an interaction at different levels and inhibition based on complex systems for the production of molecules and regulation of crop biology. Such a variety of mechanisms results in a powerful weapon against B. cinerea; some of them have been tested and are already used in the agricultural production with satisfactory results.
Collapse
Affiliation(s)
- Rocío Roca-Couso
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - José David Flores-Félix
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Raúl Rivas
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Unit, University of Salamanca-CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
24
|
Rizvi A, Ahmed B, Khan MS, Umar S, Lee J. Sorghum-Phosphate Solubilizers Interactions: Crop Nutrition, Biotic Stress Alleviation, and Yield Optimization. FRONTIERS IN PLANT SCIENCE 2021; 12:746780. [PMID: 34925401 PMCID: PMC8671763 DOI: 10.3389/fpls.2021.746780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Sweet sorghum [Sorghum bicolor (L.) Moench] is a highly productive, gluten-free cereal crop plant that can be used as an alternative energy resource, human food, and livestock feed or for biofuel-ethanol production. Phosphate fertilization is a common practice to optimize sorghum yield but because of high cost, environmental hazards, and soil fertility reduction, the use of chemical P fertilizer is discouraged. Due to this, the impetus to search for an inexpensive and eco-friendly microbiome as an alternative to chemical P biofertilizer has been increased. Microbial formulations, especially phosphate solubilizing microbiome (PSM) either alone or in synergism with other rhizobacteria, modify the soil nutrient pool and augment the growth, P nutrition, and yield of sorghum. The use of PSM in sorghum disease management reduces the dependence on pesticides employed to control the phytopathogens damage. The role of PSM in the sorghum cultivation system is, however, relatively unresearched. In this manuscript, the diversity and the strategies adopted by PSM to expedite sorghum yield are reviewed, including the nutritional importance of sorghum in human health and the mechanism of P solubilization by PSM. Also, the impact of solo or composite inoculations of biological enhancers (PSM) with nitrogen fixers or arbuscular mycorrhizal fungi is explained. The approaches employed by PSM to control sorghum phytopathogens are highlighted. The simultaneous bio-enhancing and biocontrol activity of the PS microbiome provides better options for the replacement of chemical P fertilizers and pesticide application in sustainable sorghum production practices.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
25
|
Mitra D, Mondal R, Khoshru B, Shadangi S, Das Mohapatra PK, Panneerselvam P. Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100071. [PMID: 34841361 PMCID: PMC8610296 DOI: 10.1016/j.crmicr.2021.100071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Advanced technologies are commonly used in modern agriculture to break the yield barriers and increase crop productivity. Seeds treated with plant growth-promoting rhizobacteria (PGPR) are an effective bio-priming method to introduce beneficial microbial inocula into the rhizosphere or soil. Bio-priming is a type of seed treatment that employs biological entities, which involves the hydration of seeds and inoculation with beneficial microorganisms. Mainly, the seed bio-priming technique improves the seed quality, germination, viability, vigor index, growth promotion, production, and subsequent disease resistance by enhancing the uniform speed of germination and production of others growth regulators. In the majority of cases, bacterial inoculants mostly PGPR are used for seed bio-priming, it is an ecologically comprehensive strategy that uses selected PGPR to promote plant growth by producing regulatory substances, enhancing uptake of nutrients, protecting seedlings/plants from seed or soil-borne pathogens. Bio-priming methods using PGPR inoculants are becoming more common in modern agriculture as an alternative to chemical treatments. They are more environmentally sustainable and safer for future agriculture apart from improving plants and soil health.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134 Uttar Dinajpur, West Bengal, India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University, Raiganj, 733 134 Uttar Dinajpur, West Bengal, India
| | - Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Smriti Shadangi
- Microbiology, Crop Production Division, ICAR -National Rice Research Institute, Cuttack, Odisha 753 006 India
| | - Pradeep K Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj, 733 134 Uttar Dinajpur, West Bengal, India.,PAKB Environment Conservation Centre, Raiganj University, Raiganj, 733 134 Uttar Dinajpur, West Bengal, India
| | - Periyasamy Panneerselvam
- Microbiology, Crop Production Division, ICAR -National Rice Research Institute, Cuttack, Odisha 753 006 India
| |
Collapse
|
26
|
Tundo S, Paccanaro MC, Bigini V, Savatin DV, Faoro F, Favaron F, Sella L. The Fusarium graminearum FGSG_03624 Xylanase Enhances Plant Immunity and Increases Resistance against Bacterial and Fungal Pathogens. Int J Mol Sci 2021; 22:10811. [PMID: 34639149 PMCID: PMC8509205 DOI: 10.3390/ijms221910811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/05/2022] Open
Abstract
Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| | - Maria Chiara Paccanaro
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, VT, Italy; (V.B.); (D.V.S.)
| | - Daniel V. Savatin
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, VT, Italy; (V.B.); (D.V.S.)
| | - Franco Faoro
- Department of Agricultural and Environmental Sciences, University of Milano, Via Celoria 2, 20133 Milano, MI, Italy;
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| |
Collapse
|
27
|
Ambreetha S, Marimuthu P, Mathee K, Balachandar D. Rhizospheric and endophytic Pseudomonas aeruginosa in edible vegetable plants share molecular and metabolic traits with clinical isolates. J Appl Microbiol 2021; 132:3226-3248. [PMID: 34608722 DOI: 10.1111/jam.15317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 01/02/2023]
Abstract
AIM Pseudomonas aeruginosa, a leading opportunistic pathogen causing hospital-acquired infections, is also commonly found in agricultural settings. However, there are minimal attempts to examine the molecular and functional attributes shared by agricultural and clinical strains of P. aeruginosa. This study investigates the presence of P. aeruginosa in edible vegetable plants (including salad vegetables) and analyses the evolutionary and metabolic relatedness of the agricultural and clinical strains. METHODS AND RESULTS Eighteen rhizospheric and endophytic P. aeruginosa strains were isolated from cucumber, tomato, eggplant, and chili directly from the farms. The identity of these strains was confirmed using biochemical and molecular assays. The genetic and metabolic traits of these plant-associated P. aeruginosa isolates were compared with clinical strains. DNA fingerprinting and 16S rDNA-based phylogenetic analyses revealed that the plant- and human-associated strains are evolutionarily related. Both agricultural and clinical isolates possessed plant-beneficial properties, including mineral solubilization to release essential nutrients (phosphorous, potassium, and zinc), ammonification, and the ability to release extracellular pyocyanin, siderophore, and indole-3 acetic acid. CONCLUSION These findings suggest that rhizospheric and endophytic P. aeruginosa strains are genetically and functionally analogous to the clinical isolates. In addition, the genotypic and phenotypic traits do not correlate with plant sources or ecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY This study reconfirms that edible plants are the potential source for human and animal transmission of P. aeruginosa.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.,Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Ponnusamy Marimuthu
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
28
|
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:269-295. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.
Collapse
Affiliation(s)
- Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de, Institut Scientifique Rabat, Maroc; University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
29
|
Shang XC, Cai X, Zhou Y, Han X, Zhang CS, Ilyas N, Li Y, Zheng Y. Pseudomonas Inoculation Stimulates Endophytic Azospira Population and Induces Systemic Resistance to Bacterial Wilt. FRONTIERS IN PLANT SCIENCE 2021; 12:738611. [PMID: 36406638 PMCID: PMC9673043 DOI: 10.3389/fpls.2021.738611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/19/2021] [Indexed: 06/04/2023]
Abstract
Bacterial communities in the rhizosphere play an important role in sustaining plant growth and the health of diverse soils. Recent studies have demonstrated that microbial keystone taxa in the rhizosphere microbial community are extremely critical for the suppression of diseases. However, the mechanisms involved in disease suppression by keystone species remain unclear. The present study assessed the effects of three Pseudomonas strains, which were identified as keystone species in our previous study, on the growth performance and root-associated bacterial community of tobacco plants. A high relative abundance of Ralstonia was found in the non-inoculated group, while a large Azospira population was observed in all groups inoculated with the three Pseudomonas strains. Correspondingly, the activities of the defense-related enzymes and the expression levels of the defense signaling marker genes of the plant were increased after inoculation with the Pseudomonas strains. Moreover, the correlation analyses showed that the relative abundance of Azospira, the activity of superoxide dismutase, catalase, and polyphenol oxidase, and the expression of H1N1, ACC Oxidase, and PR1 a/c had a significantly negative (p<0.05) relationship with the abundance of Ralstonia. This further revealed that the keystone species, such as Pseudomonas spp., can suppress bacterial wilt disease by enhancing the systemic resistance of tobacco plants.
Collapse
Affiliation(s)
- Xian-chao Shang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianjie Cai
- Shanghai Tobacco Group Co., Ltd., Shanghai, China
| | - Yanan Zhou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaobin Han
- Biological Organic Fertilizer Engineering Technology Center of China Tobacco, Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Naila Ilyas
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
30
|
Wang H, Liu R, You MP, Barbetti MJ, Chen Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021; 9:microorganisms9091988. [PMID: 34576883 PMCID: PMC8470069 DOI: 10.3390/microorganisms9091988] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
A vast microbial community inhabits in the rhizosphere, among which, specialized bacteria known as Plant Growth-Promoting Rhizobacteria (PGPR) confer benefits to host plants including growth promotion and disease suppression. PGPR taxa vary in the ways whereby they curtail the negative effects of invading plant pathogens. However, a cumulative or synergistic effect does not always ensue when a bacterial consortium is used. In this review, we reassess the disease-suppressive mechanisms of PGPR and present explanations and illustrations for functional diversity and/or stability among PGPR taxa regarding these mechanisms. We also provide evidence of benefits when PGPR mixtures, rather than individuals, are used for protecting crops from various diseases, and underscore the critical determinant factors for successful use of PGPR mixtures. Then, we evaluate the challenges of and limitations to achieving the desired outcomes from strain/species-rich bacterial assemblages, particularly in relation to their role for plant disease management. In addition, towards locating additive or synergistic outcomes, we highlight why and how the benefits conferred need to be categorized and quantified when different strains/species of PGPR are used in combinations. Finally, we highlight the critical approaches needed for developing PGPR mixtures with improved efficacy and stability as biocontrols for utilization in agricultural fields.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences, Xianyang 712100, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runjin Liu
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao 266109, China;
| | - Ming Pei You
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Martin J. Barbetti
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
- Correspondence:
| |
Collapse
|
31
|
Kou MZ, Bastías DA, Christensen MJ, Zhong R, Nan ZB, Zhang XX. The Plant Salicylic Acid Signalling Pathway Regulates the Infection of a Biotrophic Pathogen in Grasses Associated with an Epichloë Endophyte. J Fungi (Basel) 2021; 7:jof7080633. [PMID: 34436172 PMCID: PMC8399569 DOI: 10.3390/jof7080633] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
The study of the contribution of the plant defence hormones, salicylic acid (SA) and jasmonic acid (JA), in the resistance against pathogens of plants associated with Epichloë fungal endophytes has been scanty. We hypothesised that Epichloë spp., capable of inducing host plant SA-dependent defences, would increase the levels of plant resistance against biotrophic pathogens. Plants of Achnatherum inebrians, with and without the fungal endophyte Epichloë gansuensis, were inoculated with the biotrophic fungal pathogen Blumeria graminis. We measured the status of plant defences (associated with SA and JA signalling pathways) and the levels of resistance to the pathogen. Plants associated with the endophyte showed less disease symptoms caused by the biotrophic pathogen than plants without the endophyte. In agreement with our hypothesis, the Epichloë endophyte increased the plant production of SA and enhanced the expression levels of plant genes of synthesis and response to the SA hormone. The elevated expression of SA-related genes coding for putative plant enzymes with anti-fungal activities promoted by the endophyte may explain the enhanced resistance to the pathogen. The present study highlights that interaction between the plant immune system and Epichloë fungal endophytes can contribute significantly to the resistance of endophyte-symbiotic plants against pathogens.
Collapse
Affiliation(s)
- Ming-Zhu Kou
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
| | - Daniel A. Bastías
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (D.A.B.); (M.J.C.)
| | - Michael J. Christensen
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (D.A.B.); (M.J.C.)
| | - Rui Zhong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
| | - Zhi-Biao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
| | - Xing-Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
- Correspondence:
| |
Collapse
|
32
|
Pellan L, Dieye CAT, Durand N, Fontana A, Strub C, Schorr-Galindo S. Biocontrol Agents: Toolbox for the Screening of Weapons against Mycotoxigenic Fusarium. J Fungi (Basel) 2021; 7:446. [PMID: 34205071 PMCID: PMC8226957 DOI: 10.3390/jof7060446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to develop a set of experiments to screen and decipher the mechanisms of biocontrol agents (BCAs), isolated from commercial formulation, against two major mycotoxigenic fungi in cereals, Fusarium graminearum and Fusarium verticillioides. These two phytopathogens produce mycotoxins harmful to human and animal health and are responsible for the massive use of pesticides, for the protection of cereals. It is therefore essential to better understand the mechanisms of action of alternative control strategies such as the use of BCAs in order to optimize their applications. The early and late stages of interaction between BCAs and pathogens were investigated from germination of spores to the effects on perithecia (survival form of pathogen). The analysis of antagonist activities of BCAs revealed different strategies of biocontrol where chronological, process combination and specialization aspects of interactions are discussed. Streptomyces griseoviridis main strategy is based on antibiosis with the secretion of several compounds with anti-fungal and anti-germination activity, but also a mixture of hydrolytic enzymes to attack pathogens, which compensates for an important deficit in terms of spatial colonization capacity. It has good abilities in terms of nutritional competition. Trichoderma asperellum is capable of activating a very wide range of defenses and attacks combining the synthesis of various antifungal compounds (metabolite, enzymes, VOCs), with different targets (spores, mycelium, mycotoxins), and direct action by mycoparasitism and mycophagy. Concerning Pythium oligandrum, its efficiency is mainly due to its strong capacity to colonize the environment, with a direct action via microbial predation, stimulation of its reproduction at the contact of pathogens and the reduction of perithecia formation.
Collapse
Affiliation(s)
- Lucile Pellan
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Cheikh Ahmeth Tidiane Dieye
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Noël Durand
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, 34398 Montpellier, France
| | - Angélique Fontana
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Caroline Strub
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| |
Collapse
|
33
|
Bacterial Endophytes: The Hidden Actor in Plant Immune Responses against Biotic Stress. PLANTS 2021; 10:plants10051012. [PMID: 34069509 PMCID: PMC8161118 DOI: 10.3390/plants10051012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Bacterial endophytes constitute an essential part of the plant microbiome and are described to promote plant health by different mechanisms. The close interaction with the host leads to important changes in the physiology of the plant. Although beneficial bacteria use the same entrance strategies as bacterial pathogens to colonize and enter the inner plant tissues, the host develops strategies to select and allow the entrance to specific genera of bacteria. In addition, endophytes may modify their own genome to adapt or avoid the defense machinery of the host. The present review gives an overview about bacterial endophytes inhabiting the phytosphere, their diversity, and the interaction with the host. Direct and indirect defenses promoted by the plant-endophyte symbiont exert an important role in controlling plant defenses against different stresses, and here, more specifically, is discussed the role against biotic stress. Defenses that should be considered are the emission of volatiles or antibiotic compounds, but also the induction of basal defenses and boosting plant immunity by priming defenses. The primed defenses may encompass pathogenesis-related protein genes (PR family), antioxidant enzymes, or changes in the secondary metabolism.
Collapse
|
34
|
Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hijri M, Bhowmik A, Elkelish A, Hassan SED. Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:935. [PMID: 34067154 PMCID: PMC8151188 DOI: 10.3390/plants10050935] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Endophytic bacteria colonize plants and live inside them for part of or throughout their life without causing any harm or disease to their hosts. The symbiotic relationship improves the physiology, fitness, and metabolite profile of the plants, while the plants provide food and shelter for the bacteria. The bacteria-induced alterations of the plants offer many possibilities for biotechnological, medicinal, and agricultural applications. The endophytes promote plant growth and fitness through the production of phytohormones or biofertilizers, or by alleviating abiotic and biotic stress tolerance. Strengthening of the plant immune system and suppression of disease are associated with the production of novel antibiotics, secondary metabolites, siderophores, and fertilizers such as nitrogenous or other industrially interesting chemical compounds. Endophytic bacteria can be used for phytoremediation of environmental pollutants or the control of fungal diseases by the production of lytic enzymes such as chitinases and cellulases, and their huge host range allows a broad spectrum of applications to agriculturally and pharmaceutically interesting plant species. More recently, endophytic bacteria have also been used to produce nanoparticles for medical and industrial applications. This review highlights the biotechnological possibilities for bacterial endophyte applications and proposes future goals for their application.
Collapse
Affiliation(s)
- Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Albaraa Elsaied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
| | - Mohamed Hijri
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, Montréal, QC 22001, Canada;
- African Genome Center, Mohammed VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Amr Elkelish
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| |
Collapse
|
35
|
Nozari RM, Ortolan F, Astarita LV, Santarém ER. Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Braz J Microbiol 2021; 52:1371-1383. [PMID: 33834385 DOI: 10.1007/s42770-021-00480-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
Saline stress is one of the abiotic stresses that most compromises the yield of crops and can be mitigated by plant growth-promoting rhizobacteria (PGPR). This work characterized rhizobacteria isolates from the genus Streptomyces as PGPR and evaluated their role on growth and alleviation of the effects caused by saline stress in maize (Zea mays L.). Production of indolic compounds (IC), siderophores, ACC deaminase, phenazines, and promotion of plant growth were determined to characterize bacterial isolates. Salinity tolerance was accessed by culturing the Streptomyces isolates under NaCl increasing concentrations (0-300 mM). Four Streptomyces isolates exhibiting PGPR traits and salinity tolerance were selected and their effect on tolerance of maize plants to saline stress was evaluated. Plants obtained from bacterized seeds and submitted to 100 and 300 mM NaCl were used. All Streptomyces spp. produced IC and siderophores, CLV178 being the best producer of these two compounds. ACC deaminase was detected in six of the 10 isolates (CLV95, CLV97, CLV127, CLV179, CLV193, and CLV205), while phenazines were found only in CLV186 and CLV194. All isolates were tolerant to salinity, growing at concentrations up to 300 mM NaCl, with exception of CLV188. Increased concentrations of IC were detected in most of the isolates exposed to salinity. CLV97 and CLV179 significantly promoted growth of roots and leaves of maize plants and attenuated the negative effects of salinity on plant growth. Root colonization by Streptomyces spp. was confirmed in plants cultivated 20 days under saline stress.
Collapse
Affiliation(s)
- Rafaela Mendonça Nozari
- Plant Biotechnology Laboratory, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Francieli Ortolan
- Plant Biotechnology Laboratory, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Leandro Vieira Astarita
- Plant Biotechnology Laboratory, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Eliane Romanato Santarém
- Plant Biotechnology Laboratory, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
36
|
|
37
|
Park YS, Ryu CM. Understanding Plant Social Networking System: Avoiding Deleterious Microbiota but Calling Beneficials. Int J Mol Sci 2021; 22:ijms22073319. [PMID: 33805032 PMCID: PMC8037233 DOI: 10.3390/ijms22073319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 01/24/2023] Open
Abstract
Plant association with microorganisms elicits dramatic effects on the local phytobiome and often causes systemic and transgenerational modulation on plant immunity against insect pests and microbial pathogens. Previously, we introduced the concept of the plant social networking system (pSNS) to highlight the active involvement of plants in the recruitment of potentially beneficial microbiota upon exposure to insects and pathogens. Microbial association stimulates the physiological responses of plants and induces the development of their immune mechanisms while interacting with multiple enemies. Thus, beneficial microbes serve as important mediators of interactions among multiple members of the multitrophic, microscopic and macroscopic communities. In this review, we classify the steps of pSNS such as elicitation, signaling, secreting root exudates, and plant protection; summarize, with evidence, how plants and beneficial microbes communicate with each other; and also discuss how the molecular mechanisms underlying this communication are induced in plants exposed to natural enemies. Collectively, the pSNS modulates robustness of plant physiology and immunity and promotes survival potential by helping plants to overcome the environmental and biological challenges.
Collapse
Affiliation(s)
- Yong-Soon Park
- Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infection Disease Research Center, KRIBB, Daejeon 34141, Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST) KRIBB School, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
38
|
Jiao X, Takishita Y, Zhou G, Smith DL. Plant Associated Rhizobacteria for Biocontrol and Plant Growth Enhancement. FRONTIERS IN PLANT SCIENCE 2021; 12:634796. [PMID: 33815442 PMCID: PMC8009966 DOI: 10.3389/fpls.2021.634796] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/23/2021] [Indexed: 05/20/2023]
Abstract
Crop disease remains a major problem to global food production. Excess use of pesticides through chemical disease control measures is a serious problem for sustainable agriculture as we struggle for higher crop productivity. The use of plant growth promoting rhizobacteria (PGPR) is a proven environment friendly way of controlling plant disease and increasing crop yield. PGPR suppress diseases by directly synthesizing pathogen-antagonizing compounds, as well as by triggering plant immune responses. It is possible to identify and develop PGPR that both suppress plant disease and more directly stimulate plant growth, bringing dual benefit. A number of PGPR have been registered for commercial use under greenhouse and field conditions and a large number of strains have been identified and proved as effective biocontrol agents (BCAs) under environmentally controlled conditions. However, there are still a number of challenges before registration, large-scale application, and adoption of PGPR for the pest and disease management. Successful BCAs provide strong theoretical and practical support for application of PGPR in greenhouse production, which ensures the feasibility and efficacy of PGPR for commercial horticulture production. This could be pave the way for widespread use of BCAs in agriculture, including under field conditions, to assist with both disease management and climate change conditions.
Collapse
Affiliation(s)
- Xiurong Jiao
- Institute of Agricultural Science and Technology Development of Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Yoko Takishita
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Guisheng Zhou
- Institute of Agricultural Science and Technology Development of Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Donald L. Smith
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
39
|
Abdulsalam O, Wagner K, Wirth S, Kunert M, David A, Kallenbach M, Boland W, Kothe E, Krause K. Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies). MYCORRHIZA 2021; 31:173-188. [PMID: 33210234 PMCID: PMC7910269 DOI: 10.1007/s00572-020-01005-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/11/2020] [Indexed: 05/29/2023]
Abstract
The ectomycorrhizospheric habitat contains a diverse pool of organisms, including the host plant, mycorrhizal fungi, and other rhizospheric microorganisms. Different signaling molecules may influence the ectomycorrhizal symbiosis. Here, we investigated the potential of the basidiomycete Tricholoma vaccinum to produce communication molecules for the interaction with its coniferous host, Norway spruce (Picea abies). We focused on the production of volatile organic compounds and phytohormones in axenic T. vaccinum cultures, identified the potential biosynthesis genes, and investigated their expression by RNA-Seq analyses. T. vaccinum released volatiles not usually associated with fungi, like limonene and β-barbatene, and geosmin. Using stable isotope labeling, the biosynthesis of geosmin was elucidated. The geosmin biosynthesis gene ges1 of T. vaccinum was identified, and up-regulation was scored during mycorrhiza, while a different regulation was seen with mycorrhizosphere bacteria. The fungus also released the volatile phytohormone ethylene and excreted salicylic and abscisic acid as well as jasmonates into the medium. The tree excreted the auxin, indole-3-acetic acid, and its biosynthesis intermediate, indole-3-acetamide, as well as salicylic acid with its root exudates. These compounds could be shown for the first time in exudates as well as in soil of a natural ectomycorrhizospheric habitat. The effects of phytohormones present in the mycorrhizosphere on hyphal branching of T. vaccinum were assessed. Salicylic and abscisic acid changed hyphal branching in a concentration-dependent manner. Since extensive branching is important for mycorrhiza establishment, a well-balanced level of mycorrhizospheric phytohormones is necessary. The regulation thus can be expected to contribute to an interkingdom language.
Collapse
Affiliation(s)
- Oluwatosin Abdulsalam
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Katharina Wagner
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Sophia Wirth
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Maritta Kunert
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Anja David
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Mario Kallenbach
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany.
| |
Collapse
|
40
|
Sambyal K, Singh RV. Production of salicylic acid; a potent pharmaceutically active agent and its future prospects. Crit Rev Biotechnol 2021; 41:394-405. [PMID: 33618601 DOI: 10.1080/07388551.2020.1869687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Salicylic acid is one of the potent pharmaceutical organic acids that have various applications in the medical field. It acts as a plant hormone and helps in plant's growth & defence against pathogens. Beyond its numerous functions in plants, SA has great pharmaceutical importance since it acts as an intermediate for the synthesis of various drugs and dyes e.g. aspirin. At the industrial scale, chemical methods are used for the synthesis of SA but presently, several other sources are available that have the capability to alternate the chemical process which will be a step forward toward green synthesis. Aim of this paper is to provide comprehensive knowledge of SA production and its biological application.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab
| | | |
Collapse
|
41
|
Rieusset L, Rey M, Gerin F, Wisniewski-Dyé F, Prigent-Combaret C, Comte G. A Cross-Metabolomic Approach Shows that Wheat Interferes with Fluorescent Pseudomonas Physiology through Its Root Metabolites. Metabolites 2021; 11:84. [PMID: 33572622 PMCID: PMC7911646 DOI: 10.3390/metabo11020084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Roots contain a wide variety of secondary metabolites. Some of them are exudated in the rhizosphere, where they are able to attract and/or control a large diversity of microbial species. In return, the rhizomicrobiota can promote plant health and development. Some rhizobacteria belonging to the Pseudomonas genus are known to produce a wide diversity of secondary metabolites that can exert a biological activity on the host plant and on other soil microorganisms. Nevertheless, the impact of the host plant on the production of bioactive metabolites by Pseudomonas is still poorly understood. To characterize the impact of plants on the secondary metabolism of Pseudomonas, a cross-metabolomic approach has been developed. Five different fluorescent Pseudomonas strains were thus cultivated in the presence of a low concentration of wheat root extracts recovered from three wheat genotypes. Analysis of our metabolomic workflow revealed that the production of several Pseudomonas secondary metabolites was significantly modulated when bacteria were cultivated with root extracts, including metabolites involved in plant-beneficial properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Gilles Comte
- Ecologie Microbienne, Université Claude Bernard Lyon1, Université de Lyon, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne, France; (L.R.); (M.R.); (F.G.); (F.W.-D.); (C.P.-C.)
| |
Collapse
|
42
|
Windisch S, Sommermann L, Babin D, Chowdhury SP, Grosch R, Moradtalab N, Walker F, Höglinger B, El-Hasan A, Armbruster W, Nesme J, Sørensen SJ, Schellenberg I, Geistlinger J, Smalla K, Rothballer M, Ludewig U, Neumann G. Impact of Long-Term Organic and Mineral Fertilization on Rhizosphere Metabolites, Root-Microbial Interactions and Plant Health of Lettuce. Front Microbiol 2021; 11:597745. [PMID: 33519736 PMCID: PMC7838544 DOI: 10.3389/fmicb.2020.597745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Fertilization management can affect plant performance and soil microbiota, involving still poorly understood rhizosphere interactions. We hypothesized that fertilization practice exerts specific effects on rhizodeposition with consequences for recruitment of rhizosphere microbiota and plant performance. To address this hypothesis, we conducted a minirhizotron experiment using lettuce as model plant and field soils with contrasting properties from two long-term field experiments (HUB-LTE: loamy sand, DOK-LTE: silty loam) with organic and mineral fertilization history. Increased relative abundance of plant-beneficial arbuscular mycorrhizal fungi and fungal pathotrophs were characteristic of the rhizospheres in the organically managed soils (HU-org; BIODYN2). Accordingly, defense-related genes were systemically expressed in shoot tissues of the respective plants. As a site-specific effect, high relative occurrence of the fungal lettuce pathogen Olpidium sp. (76-90%) was recorded in the rhizosphere, both under long-term organic and mineral fertilization at the DOK-LTE site, likely supporting Olpidium infection due to a lower water drainage potential compared to the sandy HUB-LTE soils. However, plant growth depressions and Olpidium infection were exclusively recorded in the BIODYN2 soil with organic fertilization history. This was associated with a drastic (87-97%) reduction in rhizosphere abundance of potentially plant-beneficial microbiota (Pseudomonadaceae, Mortierella elongata) and reduced concentrations of the antifungal root exudate benzoate, known to be increased in presence of Pseudomonas spp. In contrast, high relative abundance of Pseudomonadaceae (Gammaproteobacteria) in the rhizosphere of plants grown in soils with long-term mineral fertilization (61-74%) coincided with high rhizosphere concentrations of chemotactic dicarboxylates (succinate, malate) and a high C (sugar)/N (amino acid) ratio, known to support the growth of Gammaproteobacteria. This was related with generally lower systemic expression of plant defense genes as compared with organic fertilization history. Our results suggest a complex network of belowground interactions among root exudates, site-specific factors and rhizosphere microbiota, modulating the impact of fertilization management with consequences for plant health and performance.
Collapse
Affiliation(s)
- Saskia Windisch
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Loreen Sommermann
- Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Doreen Babin
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | | | - Rita Grosch
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Narges Moradtalab
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Frank Walker
- Central Chemical-Analytical Laboratory, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Birgit Höglinger
- Central Chemical-Analytical Laboratory, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Abbas El-Hasan
- Department of Phytopathology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Wolfgang Armbruster
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Joseph Nesme
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ingo Schellenberg
- Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Jörg Geistlinger
- Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Günter Neumann
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
43
|
Lorrai R, Francocci F, Gully K, Martens HJ, De Lorenzo G, Nawrath C, Ferrari S. Impaired Cuticle Functionality and Robust Resistance to Botrytis cinerea in Arabidopsis thaliana Plants With Altered Homogalacturonan Integrity Are Dependent on the Class III Peroxidase AtPRX71. FRONTIERS IN PLANT SCIENCE 2021; 12:696955. [PMID: 34484262 PMCID: PMC8415794 DOI: 10.3389/fpls.2021.696955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/26/2021] [Indexed: 05/18/2023]
Abstract
Pectin is a major cell wall component that plays important roles in plant development and response to environmental stresses. Arabidopsis thaliana plants expressing a fungal polygalacturonase (PG plants) that degrades homogalacturonan (HG), a major pectin component, as well as loss-of-function mutants for QUASIMODO2 (QUA2), encoding a putative pectin methyltransferase important for HG biosynthesis, show accumulation of reactive oxygen species (ROS), reduced growth and almost complete resistance to the fungal pathogen Botrytis cinerea. Both PG and qua2 plants show increased expression of the class III peroxidase AtPRX71 that contributes to their elevated ROS levels and reduced growth. In this work, we show that leaves of PG and qua2 plants display greatly increased cuticle permeability. Both increased cuticle permeability and resistance to B. cinerea in qua2 are suppressed by loss of AtPRX71. Increased cuticle permeability in qua2, rather than on defects in cuticle ultrastructure or cutin composition, appears to be dependent on reduced epidermal cell adhesion, which is exacerbated by AtPRX71, and is suppressed by the esmeralda1 mutation, which also reverts the adhesion defect and the resistant phenotype. Increased cuticle permeability, accumulation of ROS, and resistance to B. cinerea are also observed in mutants lacking a functional FERONIA, a receptor-like kinase thought to monitor pectin integrity. In contrast, mutants with defects in other structural components of primary cell wall do not have a defective cuticle and are normally susceptible to the fungus. Our results suggest that disrupted cuticle integrity, mediated by peroxidase-dependent ROS accumulation, plays a major role in the robust resistance to B. cinerea of plants with altered HG integrity.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fedra Francocci
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Helle J. Martens
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Simone Ferrari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- *Correspondence: Simone Ferrari,
| |
Collapse
|
44
|
Lee SM, Kong HG, Song GC, Ryu CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. THE ISME JOURNAL 2021; 15:330-347. [PMID: 33028974 PMCID: PMC7852523 DOI: 10.1038/s41396-020-00785-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Enrichment of protective microbiota in the rhizosphere facilitates disease suppression. However, how the disruption of protective rhizobacteria affects disease suppression is largely unknown. Here, we analyzed the rhizosphere microbial community of a healthy and diseased tomato plant grown <30-cm apart in a greenhouse at three different locations in South Korea. The abundance of Gram-positive Actinobacteria and Firmicutes phyla was lower in diseased rhizosphere soil (DRS) than in healthy rhizosphere soil (HRS) without changes in the causative Ralstonia solanacearum population. Artificial disruption of Gram-positive bacteria in HRS using 500-μg/mL vancomycin increased bacterial wilt occurrence in tomato. To identify HRS-specific and plant-protective Gram-positive bacteria species, Brevibacterium frigoritolerans HRS1, Bacillus niacini HRS2, Solibacillus silvestris HRS3, and Bacillus luciferensis HRS4 were selected from among 326 heat-stable culturable bacteria isolates. These four strains did not directly antagonize R. solanacearum but activated plant immunity. A synthetic community comprising these four strains displayed greater immune activation against R. solanacearum and extended plant protection by 4 more days in comparison with each individual strain. Overall, our results demonstrate for the first time that dysbiosis of the protective Gram-positive bacterial community in DRS promotes the incidence of disease.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, South Korea
| | - Hyun Gi Kong
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, 54875, South Korea
| | - Geun Cheol Song
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
45
|
Gupta R, Pizarro L, Leibman‐Markus M, Marash I, Bar M. Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. MOLECULAR PLANT PATHOLOGY 2020; 21:1287-1306. [PMID: 32841497 PMCID: PMC7488468 DOI: 10.1111/mpp.12978] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 05/26/2023]
Abstract
Plant immunity is often defined by the immunity hormones: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). These hormones are well known for differentially regulating defence responses against pathogens. In recent years, the involvement of other plant growth hormones such as auxin, gibberellic acid, abscisic acid, and cytokinins (CKs) in biotic stresses has been recognized. Previous reports have indicated that endogenous and exogenous CK treatment can result in pathogen resistance. We show here that CK induces systemic immunity in tomato (Solanum lycopersicum), modulating cellular trafficking of the pattern recognition receptor (PRR) LeEIX2, which mediates immune responses to Xyn11 family xylanases, and promoting resistance to Botrytis cinerea and Oidium neolycopersici in an SA- and ET-dependent mechanism. CK perception within the host underlies its protective effect. Our results support the notion that CK promotes pathogen resistance by inducing immunity in the host.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
| | - Lorena Pizarro
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
- School of Plant Sciences and Food SecurityTel Aviv UniversityTel AvivIsrael
- Present address:
Institute of Agri‐food, Animal and Environmental SciencesUniversidad de O'HigginsChile
| | - Meirav Leibman‐Markus
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
| | - Iftah Marash
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
- School of Plant Sciences and Food SecurityTel Aviv UniversityTel AvivIsrael
| | - Maya Bar
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
46
|
Subedi P, Gattoni K, Liu W, Lawrence KS, Park SW. Current Utility of Plant Growth-Promoting Rhizobacteria as Biological Control Agents towards Plant-Parasitic Nematodes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1167. [PMID: 32916856 PMCID: PMC7569769 DOI: 10.3390/plants9091167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Plant-parasitic nematodes (PPN) are among the most economically and ecologically damaging pests, causing severe losses of crop production worldwide. Chemical-based nematicides have been widely used, but these may have adverse effects on human health and the environment. Hence, biological control agents (BCAs) have become an alternative option for controlling PPN, since they are environmentally friendly and cost effective. Lately, a major effort has been made to evaluate the potential of a commercial grade strain of plant growth-promoting rhizobacteria (PGPR) as BCAs, because emerging evidence has shown that PGPR can reduce PPN in infested plants through direct and/or indirect antagonistic mechanisms. Direct antagonism occurs by predation, release of antinematicidal metabolites and semiochemicals, competition for nutrients, and niche exclusion. However, the results of direct antagonism may be inconsistent due to unknown endogenous and exogenous factors that may prevent PGPR from colonizing plant's roots. On the other hand, indirect antagonism may occur from the induced systemic resistance (ISR) that primes whole plants to better fight against various biotic and abiotic constraints, actuating faster and/or stronger defense responses (adaption), enhancing their promise as BCAs. Hence, this review will briefly revisit (i) two modes of PGPR in managing PPN, and (ii) the current working models and many benefits of ISR, in the aim of reassessing current progresses and future directions for isolating more effective BCAs and/or developing better PPN management strategy.
Collapse
Affiliation(s)
| | | | | | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (P.S.); (K.G.); (W.L.)
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (P.S.); (K.G.); (W.L.)
| |
Collapse
|
47
|
Nguyen NH, Trotel-Aziz P, Villaume S, Rabenoelina F, Schwarzenberg A, Nguema-Ona E, Clément C, Baillieul F, Aziz A. Bacillus subtilis and Pseudomonas fluorescens Trigger Common and Distinct Systemic Immune Responses in Arabidopsis thaliana Depending on the Pathogen Lifestyle. Vaccines (Basel) 2020; 8:vaccines8030503. [PMID: 32899695 PMCID: PMC7563191 DOI: 10.3390/vaccines8030503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Plants harbor various beneficial bacteria that modulate their innate immunity, resulting in induced systemic resistance (ISR) against various pathogens. However, the immune mechanisms underlying ISR triggered by Bacillus spp. and Pseudomonas spp. against pathogens with different lifestyles are not yet clearly elucidated. Here, we show that root drenching of Arabidopsis plants with Pseudomonas fluorescensPTA-CT2 and Bacillus subtilis PTA-271 can induce ISR against the necrotrophic fungus B. cinerea and the hemibiotrophic bacterium Pseudomonas syringae Pst DC3000. In the absence of pathogen infection, both beneficial bacteria do not induce any consistent change in systemic immune responses. However, ISR relies on priming faster and robust expression of marker genes for the salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) signaling pathways upon pathogen challenge. These responses are also associated with increased levels of SA, JA, and abscisic acid (ABA) in the leaves of bacterized plants after infection. The functional study also points at priming of the JA/ET and NPR1-dependent defenses as prioritized immune pathways in ISR induced by both beneficial bacteria against B. cinerea. However, B. subtilis-triggered ISR against Pst DC3000 is dependent on SA, JA/ET, and NPR1 pathways, whereas P. fluorescens-induced ISR requires JA/ET and NPR1 signaling pathways. The use of ABA-insensitive mutants also pointed out the crucial role of ABA signaling, but not ABA concentration, along with JA/ET signaling in primed systemic immunity by beneficial bacteria against Pst DC3000, but not against B. cinerea. These results clearly indicate that ISR is linked to priming plants for enhanced common and distinct immune pathways depending on the beneficial strain and the pathogen lifestyle.
Collapse
Affiliation(s)
- Ngoc Huu Nguyen
- Induced Resistance and Plant Bioprotection EA 4707, SFR Condorcet FR-CNRS 3417, UFR Sciences, Campus Moulin de la Housse, University of Reims, CEDEX 02, 51687 Reims, France; (N.H.N.); (P.T.-A.); (S.V.); (F.R.); (C.C.); (F.B.)
| | - Patricia Trotel-Aziz
- Induced Resistance and Plant Bioprotection EA 4707, SFR Condorcet FR-CNRS 3417, UFR Sciences, Campus Moulin de la Housse, University of Reims, CEDEX 02, 51687 Reims, France; (N.H.N.); (P.T.-A.); (S.V.); (F.R.); (C.C.); (F.B.)
| | - Sandra Villaume
- Induced Resistance and Plant Bioprotection EA 4707, SFR Condorcet FR-CNRS 3417, UFR Sciences, Campus Moulin de la Housse, University of Reims, CEDEX 02, 51687 Reims, France; (N.H.N.); (P.T.-A.); (S.V.); (F.R.); (C.C.); (F.B.)
| | - Fanja Rabenoelina
- Induced Resistance and Plant Bioprotection EA 4707, SFR Condorcet FR-CNRS 3417, UFR Sciences, Campus Moulin de la Housse, University of Reims, CEDEX 02, 51687 Reims, France; (N.H.N.); (P.T.-A.); (S.V.); (F.R.); (C.C.); (F.B.)
| | - Adrian Schwarzenberg
- Centre Mondial de l’Innovation, Groupe Roullier, 35401 Saint-Malo, France; (A.S.); (E.N.-O.)
| | - Eric Nguema-Ona
- Centre Mondial de l’Innovation, Groupe Roullier, 35401 Saint-Malo, France; (A.S.); (E.N.-O.)
| | - Christophe Clément
- Induced Resistance and Plant Bioprotection EA 4707, SFR Condorcet FR-CNRS 3417, UFR Sciences, Campus Moulin de la Housse, University of Reims, CEDEX 02, 51687 Reims, France; (N.H.N.); (P.T.-A.); (S.V.); (F.R.); (C.C.); (F.B.)
| | - Fabienne Baillieul
- Induced Resistance and Plant Bioprotection EA 4707, SFR Condorcet FR-CNRS 3417, UFR Sciences, Campus Moulin de la Housse, University of Reims, CEDEX 02, 51687 Reims, France; (N.H.N.); (P.T.-A.); (S.V.); (F.R.); (C.C.); (F.B.)
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection EA 4707, SFR Condorcet FR-CNRS 3417, UFR Sciences, Campus Moulin de la Housse, University of Reims, CEDEX 02, 51687 Reims, France; (N.H.N.); (P.T.-A.); (S.V.); (F.R.); (C.C.); (F.B.)
- Correspondence:
| |
Collapse
|
48
|
Puri A, Padda KP, Chanway CP. Sustaining the growth of Pinaceae trees under nutrient-limited edaphic conditions via plant-beneficial bacteria. PLoS One 2020; 15:e0238055. [PMID: 32845898 PMCID: PMC7449467 DOI: 10.1371/journal.pone.0238055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
Lodgepole pine, a prominent Pinaceae tree species native to western North America, is well-known for its ability to thrive in highly disturbed and degraded areas. One such area is the Sub-Boreal Pine-Spruce xeric-cold (SBPSxc) region in British Columbia, Canada, which is characterized by weakly-developed, parched soils that lack an organic forest floor and essential plant-available nutrients. We hypothesized that plant growth-promoting bacteria could play a significant role in sustaining the growth of lodgepole pine trees in the SBPSxc region. Testing this hypothesis, we evaluated plant growth-promoting abilities of six endophytic bacterial strains previously isolated from lodgepole pine trees growing in this region. These bacterial strains significantly enhanced the length and biomass of their natural host (lodgepole pine) as well as a foreign host (hybrid white spruce) in a 540-day long greenhouse trial. This growth stimulation could be linked to the diverse plant growth-promoting (PGP) abilities detected in these strains using in vitro assays for inorganic/organic phosphate-solubilization, siderophore production IAA production, ACC deaminase activity, lytic enzymes (chitinase, β-1,3-glucanase, protease, and cellulase) activity, ammonia production and catalase activity. ACC deaminase activity was also detected in vivo for all strains using ethylene-sensitive plants–canola and tomato. Notably, strains belonging to the Burkholderiaceae family (HP-S1r, LP-R1r and LP-R2r) showed the greatest potential in all PGP assays and enhanced pine and spruce seedling length and biomass by up to 1.5-fold and 4-fold, respectively. Therefore, such bacterial strains with multifarious PGP abilities could be crucial for survival and growth of lodgepole pine trees in the SBPSxc region and could potentially be utilized as bioinoculant for Pinaceae trees in highly disturbed and nutrient-poor ecosystems.
Collapse
Affiliation(s)
- Akshit Puri
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Kiran Preet Padda
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris P. Chanway
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
49
|
Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management. SUSTAINABILITY 2020. [DOI: 10.3390/su12135446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent crop production studies have aimed at an increase in the biotic and abiotic tolerance of plant communities, along with increased nutrient availability and crop yields. This can be achieved in various ways, but one of the emerging approaches is to understand the phytomicrobiome structure and associated chemical communications. The phytomicrobiome was characterized with the advent of high-throughput techniques. Its composition and chemical signaling phenomena have been revealed, leading the way for “rhizosphere engineering”. In addition to the above, phytomicrobiome studies have paved the way to best tackling soil contamination with various anthropogenic activities. Agricultural lands have been found to be unbalanced for crop production. Due to the intense application of agricultural chemicals such as herbicides, fungicides, insecticides, fertilizers, etc., which can only be rejuvenated efficiently through detailed studies on the phytomicrobiome component, the phytomicrobiome has recently emerged as a primary plant trait that affects crop production. The phytomicrobiome also acts as an essential modifying factor in plant root exudation and vice versa, resulting in better plant health and crop yield both in terms of quantity and quality. Not only supporting better plant growth, phytomicrobiome members are involved in the degradation of toxic materials, alleviating the stress conditions that adversely affect plant development. Thus, the present review compiles the progress in understanding phytomicrobiome relationships and their application in achieving the goal of sustainable agriculture.
Collapse
|
50
|
Formela-Luboińska M, Chadzinikolau T, Drzewiecka K, Jeleń H, Bocianowski J, Kęsy J, Labudda M, Jeandet P, Morkunas I. The Role of Sugars in the Regulation of the Level of Endogenous Signaling Molecules during Defense Response of Yellow Lupine to Fusarium oxysporum. Int J Mol Sci 2020; 21:E4133. [PMID: 32531938 PMCID: PMC7312090 DOI: 10.3390/ijms21114133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Abstract
Soluble sugars such as sucrose, glucose and fructose in plant host cells not only play the role as donors of carbon skeletons, but they may also induce metabolic signals influencing the expression of defense genes. These metabolites function in a complex network with many bioactive molecules, which independently or in dialogue, induce successive defense mechanisms. The aim of this study was to determine the involvement of sucrose and monosaccharides as signaling molecules in the regulation of the levels of phytohormones and hydrogen peroxide participating in the defense responses of Lupinus luteus L. to a hemibiotrophic fungus Fusarium oxysporum Schlecht f. sp. lupini. A positive correlation between the level of sugars and postinfection accumulation of salicylic acid and its glucoside, as well as abscisic acid, was noted. The stimulatory effect of sugars on the production of ethylene was also reported. The protective role of soluble sugars in embryo axes of yellow lupine was seen in the limited development of infection and fusariosis. These results provide evidence for the enhanced generation of signaling molecules both by sugar alone as well as during the crosstalk between sugars and infection caused by F. oxysporum. However, a considerable postinfection increase in the level of these signaling molecules under the influence of sugars was recorded. The duration of the postinfection generation of these molecules in yellow lupine was also variable.
Collapse
Affiliation(s)
- Magda Formela-Luboińska
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (M.F.-L.); (T.C.)
| | - Tamara Chadzinikolau
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (M.F.-L.); (T.C.)
| | - Kinga Drzewiecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Henryk Jeleń
- Institute of Plant Products Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań;
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Philippe Jeandet
- Research Unit “Induced Resistance and Plant Bioprotection”, UPRES EA 4707, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, P.O. Box 1039, CEDEX 02, 51687 Reims, France;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (M.F.-L.); (T.C.)
| |
Collapse
|